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This paper explores tests of the hypothesis that the tail thickness of a distribution is constant 
over time. Using Hill's conditional maximum likelihood estimator for the tail index of a dis- 
tribution, tests of tail shape constancy are constructed that alIow for an unknown breakpoint. 
The recursive test IS shown to be inconsistent in one direction, and only a one-sided test is 
recommended. Specifically, the test can be used when the alternative hypothesis is that the tail 
index decreases over time. A rolling and sequential version of the test is consistent in both direc- 
tions. The methods are illustrated on recent stock price data for Thailand, Malaysia and Indonesia. 
The period covers the recent Asian financial crisis and enables us to assess whether breakpoints 
in domestic asset return distributions are related to known changes in institutional arrangements 
in the foreign currency markets oT these countries. 

The role of extreme outliers has long been relevant in economics and is now important in 
many financial market applications. More specifically, tail shape is well recognized as a 
distinguishing empirical feature of asset price and financial return data. Exchange rate 
and stock market return data are especially known to exhibit extreme outlier behaviour 
(Mandelbrot, 1963; Boothe-Glassman, 1987). Events like the October 1987 stock market 
crash, the Asian financial crisis of 1997-1998, the hedge fund crisis in 1998, and general 
market concern over value at  risk (VaR) underscore the relevance of outlier activity and 
bear witness to the importance of this area of study in empirical work. One aspect of tail 
behaviour that is especially interesting during periods of market turbulence is whether the 
tail shape of the distribution itself changes, thereby increasing (or decreasing) the prob- 
ability of outliers. The Asian financial crisis over 1997-1998 is a poignant recent example 
that we will consider, where abrupt changes in the market caught informed observers by 
surprise and were of a sufficient magnitude to suggest the possibility of a change in the 
underlying distribution. 

There is econometric evidence that the tail behaviour of some financial series has 
changed over time. Assuming that the breakdate is exogenous or known, Phillips-Loretan 
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(1990) and Koedjick et al. (1990) construct tests for the null hypothesis that the tail thick- 
ness is constant over time. They find that the null of constancy is rejected by exchange 
rate data for the U.S., Japan and a subset of Western European countries. Other papers, 
like Pagan-Schwert (1 990a, b), apply parameter constancy tests with stricter moment 
requirements (i.e. that the fourth moment be finite) and arrive at the same conclusion. 
Thus, there is a consensus from past empirical research that the tail behaviour of certain 
financial series are time varying. 

The t e s l  considered by Phillips-Loretan and Koedjick el ai, are based on Hill's 
conditional maximum likelihood estimator of the tail index of a distribution. Hill's esti- 
mator does not make use of the full sample to estimate the tail slope but only the m 
largest order statistics. This estimator has been shown to perform well in simulations 
(Kearns-Pagan, 1997). On theoretical grounds, it has been argued to be a more robust 
procedure for tail slope estimation compared with other estimators that use the full data 
and, in consequence, look at the centre of the distribution as well (DuMouchel, 1983). 
Furthermore, Hill's estimator and tests constructed from it do not require finiteness of 
the fourth moment. 

Using Hill's estimator for tail thickness, we develop tests for the constancy of the tail 
behaviour over time when the breakdate is endogenous or unknown. While other papers 
have looked at  the constancy of the tails using regression methods on the full sample, this 
is the first paper to construct tests for unknown breakpoints using an extreme value esti- 
mator. The framework of extreme value theory has the problem of selecting the m largest 
order statistics that goes into the estimation of the tails. In particular, the optimal selection 
rule for m has been shown to depend on properties of the tails (Hall, 1982). Because of 
this inherent circularity in tail slope estimation, DuMouchel (1983) suggested the simple 
rule that m be chosen as a fixed fraction of sample size. This rule has been shown to 
perform well in simulations and is widely used by practitioners in fields such as financial 
risk management, engineering, bankruptcy law and insurance. 

It turns out that DuMouchel's rule can lead to the wrong test size for standard tests 
of structural change. When the fixed fraction is such that the corresponding m grows too 
fast with the sample size, then all three forms of the test considered here (recursive, rolling 
and sequential tests) diverge under the null. Under the alternative, the most commonly 
used test, the recursive test, which is based on the fluctuations test of Ploberger-Kramer- 
Kontrus (1989) fails as a two-sided test when m is optimal, but the rolling and sequential 
tests are consistent as two-sided tests. The power properties of these tests decrease with 
the wrong choice of m. This highlights the importance of finding an estimator for m rather 
than relying on a rule that disregards tail shape. We therefore also suggest a procedure 
for estimating m consistently. 

We note that our test procedures are valid for both i.i.d. and serially dependent data. 
Since the current literature contains the theory of Hill's estimator for i.i.d. and linearly 
dependent data only, we derive in this paper the theory of Hill's estimator for nonlinear 
dependent data of the GARCH(1,l) form. This theory draws heavily from Quintos 
(1999). 

As an  empirical application of our tests for time varying tail slope, we consider some 
recent data series whose tail behaviour is of much current interest and which have not, to 
our knowledge, been studied in the literature. Our sample of daily stock market returns 
covers the period from January 2, 1995 to October 16, 1998 which includes the recent 
Asian financial crisis. We apply our tests to stock market indices for the three Asian 
countries that were most affected by the crisis-Thailand, Malaysia and Indonesia. These 
three countries had their currency rates pegged to the U.S. Dollar and switched to a 
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floating rate system in July 1997. This known structural change in the operation of the 
foreign exchange market in these economies provides an interesting backdrop for the 
empirical application of our testing methods. 

The rest of the paper is organized as follows. Section 2 presents an overview of the 
theory of Hill's estimator for i.i.d, heavy tailed time series. Section 3 contains the tests for 
structurai change and Section 4 extends the theory to accommodate serial dependence. 
Section 5 contains simulation results and Section 6 reports our empirical application to the 
emerging markets data. Section 7 offers some conclusions and the final section contains all 
proofs. 

2. PRELIMINARIES 

Consider the three time series of stock returns for Thailand, Malaysia and Indonesia 
shown in Figure 1. It is clear from these graphs that the degree of extreme movement in 
the series varies before and after July 1997, the time of the onset of the Asian financial 
crisis. One source of such variation in tail activity in a series is that the tail thickness of 
the underlying return distribution is not constant over time. Our aim is to develop test 
statistics that allow us to test the hypothesis of constant tail shape so we can address this 
question empirically in the case of the Asian financial crisis of 1997- 1998. 

To clarify ideas, we first consider an i.i.d. sequence { X, )T= whose tail behaviour is 
of the Pareto-Levy form, 

with x > 0 where a, c, p > 0, d~ '3 and the symmetry parameters, a, b 2 0, satisfy a a b = 1. 
The parameter e is the scale dispersion parameter. The parameter that determines tail 
shape is the parameter a. It is also called the maximal moment exponent of the distri- 
bution since absolute moments of X of order less than a are finite. 

When 0 < a5 2 then X is said to be "stable" Paretian in the sense that the maximal 
exponent does not change with convolution. The stable Paretian includes as a special case 
the Cauchy distribution (a = 1) and the normal distribution ( a  = 2). The case 0 i a < 2 is 
referred to as the "infinite variance" model. If a > 2 then Xis in the domain of attraction 
of a normal distribution and standardized partial sums of X converge in distribution to a 
normal. 

We restrict our discussion to estimation and inference for the right tail of the distri- 
bution and set a = 1 (the behaviour of the left tail is easily inferred by premultiplication 
of a negative sign assuming symmetry). We let XC, denote the i-th ordered statistic of the 
sample of size J ,  i.e. X ; ~ , S .  . 4 5 x$,. Hill's estimator estimates a using m ~ ,  the m largest 
observations of a sample of size J ,  ~(~-,,,~,6. - ,sX~,. For the full sample, Hill's 
estimator is given by 

The asymptotic properties of &, depend on the rate at  which m, grows with T. From 
Hall (1982) we have the folIowing rates of convergence: 

(A) If m , 4  and mT = o(~l~/(~O+~)) then 
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(B) If  AT^^/(^^+^) for 0 < A  < a then 

where A =  { ~ ~ ~ ~ " ( l  + f l / ~ x ) ~ / ( 2 d ~ ( f l / a ) ~ ) )  1/(2(P'a)* 'I ,  

(C) If d+O, mr= o(T)  and m T / ~ 2 P / ( 2 P ' u ' + ~  then 

As long as mT grows slowly enough then Hill's index converges to a normal distribution 
with variance a'. When r n ~  grows too fast then its distribution is degenerate. 

Outcomes (A)+) show why tests for tail shape constancy have properties that 
depend on the choice of mT. Note the circular problem in estimating a. We need r n ~  to 
estimate a in (2) but we also need a to select rn, in (A)+). DuMouchel(L983) suggested 
that mT be chosen as a fraction of T, uiz. r n ~  = [ K T ]  with K =  0.10, which implicitly selects 
an exponent for T. This presents a problem when the chosen K leads to (B) or ( C )  and 
tests are constructed assuming (A) holds, as is usually done in practice. 

We consider tests with a single unknown breakpoint and leave the extension to mul- 
tiple breaks for later work. We let C = [rT] for re (0, l )  denote the endpoint of a subsample 
of size w,. For example, for the full sample we have w, = w,= T. Correspondingly, we 
index Hill's estimator with a time subscript as &, where 

DuMouchel's rule is then written as m,, = [ K W , ] .  

The recursive, rolling and sequential estimators are modifications of (5). The recursive 
estimator &, is estimated from the subsample [1, . . . , t]. Thus, the recursive estimator is 
given by (5) with subsample size w ,  = t = [Tr]. The rolling estimator fixes the subsample 
size w, and estimates o! using w, rolled through time. Let yO€(O, 1) denote the fraction of 
the fixed sample length and restrict r ~ ( y , ,  I). The calculation of the tail index a starts 
from to = [T(v - y o ) ]  + 1. Each subsample is of length w 7  = t -to + 1 = [Tyo] rolled through 
the full sample by eliminating past observations and adding future observations. Thus, 
the rolling estimator is (5) with subsample size w T ,  viz. 

The sequential test is constructed from a pre-break and a post-break estimator. The 
sequential pre-break estimator is just the recursive estimator. The post-break estimator, 
denoted by dl,, is the reverse recursive estimator with sample size w, = w2[ = T- C. 

The following theorem gives invariance principles for the recursive, rolling and 
sequential estimators. The rates of convergence of (A) and (B) are also given with respect 
to the choice of K. 

Theorem 1. Let t = [Tr], mw, = [ K W ~ ]  and let W(r) denote a standard Wiener process. 

(A)' If m,, = o ( w  :P'(ZP + -') or K = o (w? + +)-I) then 
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1/2 
(ii) (F) (h: - a )  5 o: w r ,  y o ) ;  

112 
W2r mw,, (iii) jl) ( ~ % ~ , - a ) % a ~ ( l -  

where W(r, yo )  = W(v) - W(s) with s = r - yo in (ii). 

(B)' Ifm,, = ;kw2fl/(2fl +a)oy K =  ;lW:P/(v +a)-1 then 

(i) ( ~ ) " 2 ( ~ ,  - a)  4 ar[w(r) + qr112]; 

1/2 
W2r mw,, (iii) (A ( & , , - a ) 4 a [ ~ ( 1 - r ) + q ( l  -r)'l2]. 

Conditions (A) and (B) can be derived as a special case of (i) with t = T so r = 1. 
Condition (C)' requires that (C) be modified by replacing T = w, and m~ = m,,. 

3. THE TESTS 

Our null hypothesis is that the tail index a is constant over time. More specifically, let a, 
be the tail index of the distribution of X,. We focus on observations t = [ T r ]  for r E  R, = 
[ R ,  1 - x], a prespecified compact subset of (0, 1) for some small R > 0. The null hypothesis 
of constancy then takes the form 

with the alternative HA : alTrj $a for some r E  A,. Sets like R, are commonly used in the 
construction of parameter constancy tests (e.g. Hawkins, 1987, and Andrews, 1993) and 
represent some constant fraction of the overall number of observations, while being 
bounded away from zero and unity. 

Since the 0-ptimal K assumes knowledge of the tails in (B)' we assume that K is set 
arbitrarily (say to 0.10) and assume that (A)' is satisfied. Our tests are constructed from 
the quantities 

Note that the recursive test YT(t) is based on the fluctuations test of Ploberger-Krarner- 
Kontrus since ((&, /hT)  - 1) = &; (&, - hr). The same applies to the rolling test, since it 
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is the recursive test rolled through the full sample. The sequential test measures the fluc- 
tuation of the recursive estimator against the reverse recursive estimator as opposed to 
the full sample estimator. 

Theorem 2. Let h, = [ K W , ]  and let (A)' hold. Then, under Ho : 

where we h u e  W(r) = W(r) - r W(l), W(r, yo)  = W(r, y o )  - (r - s) W(1, 1) and ~ ' ( r )  = 
W(r) - (r/(l - r)) W(1 - r). 

The critical values of the tests are tabulated in Appendix A. With Theorem I and the 
CMT, it is possible to construct tests for structural change other than the sup test. Let 
H,(t) correspond to Y,(t), VT(t) or Z,(t) then the mean-score test and mean-exponential 
test of Andrews-Plo berger (1 994) are, respectively, 

and 

where T(Y) corresponds to the Wiener functionals given in Theorem 2. 
Under the alternative hypothesis, we need the following result on the behaviour of 

Hill's estimator with independent and non-identically distributed (i.ni.d.) data. Let z be 
the breakpoint and denote the subsamples as Y, = [I, z) and Y2 = [r, g. The theorem 
below is for the case where the data is segmented into two parts (i.e. a single breakpoint), 
but the result will hold more generally for multiple breaks. 

Theorem 3 (Hill's Estimator under i.ni.d. Data). Let &, correspond to the estimate 
of a obtained from using the full sample (X! ), t~ [I, TI = Y (uiz. ,  equation (2)). For i.ni.d. 
data {X,) such that tc r, has index a, and te YZ has index a, we haw 

d 
&-min ( a , ,  a 2 )  = a. (7) 

According to (7), thick tails dominate in the sense that 

as x 4 m  iff al < a2 (and vice versa for al i a , ) .  The implication of Theorem 3 is that 
Hill's estimator converges to the dominant tail slope for samples w, in which there are 
different tail indices. 

The consistency of the tests in Theorem 2 now follow using Theorem 3. 
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Theorem 4. A s s m  (A)' is satisfied. Suppose T is the breakpoint. We assume that 
a t=  a l f o r  and a,= a2for  t€Y2. Then, under H A : H A ~ u H A ~ ,  

HA1: a1 > a 2 ,  HA2: < CY2, 

4! = Op(mr), Q =Op(l), 

Q* = Op(mY:), Q* = Op(mW:), 

Q" Op(mr), Qu = O,(m,). 

Case A1 has the tails uaryingfvom thinner to thicker and Case A2 has the tails vavying from 
thicker to thinner. 

Remark I.  Under the alternative, the recursive test is consistent only under A l .  It 
can therefore only be used as a one-sided test. The intuition behind this result is that Hill's 
estimator is conditional on the m largest observations, so that outlier behaviour that 
appears in the initial sample remains in the selection of the m observations in the latter 
part of the sample. This is not true for the rolling estimator since outlier behaviour that 
occurs in the initial sample is removed in the selection of the ~a largest observations as the 
sample is rolled through by eliminating past observations. The sequential test is consistent 
because it is constructed from the sum of the recursive and reverse recursive estimator, 
each of which is consistent in opposite directions. 

Remark 2. Theorems 2 and 4 assume that K is chosen so that (A)' is satisfied. 

Corollary 5. Suppose K satkfies (B)' then under HO : 

1/2 2. 6)  Q = Supre R, YT(I ~ r l ) ~  % SUP,, R, I @"(r) + qr1'2( 1 - r )I , 
1/2 a. 

(ii) Q" SUPM R, VT( IT~I )~% SUP,, R. [ w@, YO) + ~y; / ' ( l  - Y o  )I , 
(iii) ~ " s u p , , ~ ,  zT([T~I)~%suP~,R, [wt(r) + ~pyl'~(l -(r/(l -r))l '*)~~, 

r f  K satisgks (C)' [hen under Ho, 

Ql Q*, Q#+m. 

If K is such that m,, has the optimal rate, then all three tests have the wrong size if 
critical values under (A)' are used (uiz. Appendix A). Furthermore, if K is such that (C)' 
is satisfied then the tests diverge and the null is falsely rejected with probability one. 

Remark 3. The current literature has tests of tail shape constancy that assume the 
sample splits are known. Suppose the sample size T is divided into g known subsamples 
according to a window length wi ,  xf=, w, = T and a is calculated for each subsample. We 
let subscripts (i) denote the subsamples i = 1,2, . . . , g. The null hypothesis with known 
breakpoint is 

H o : ~ r t j = . - - =  a(g) = a. (8) 

Koedijk et al. recommend the statistic 
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However, to implement this test one needs to specify a. Alternatively, one could use the 
test of Phillips-Loretan (1990) based on differences. For g = 2 and an equal sample split 
where w l l )  = w12) they recommend the statistic 

For an uneven sample split the extension for Po is straightforward. Assuming r n ~ ~ )  = 
[y($q2)1 with Yrz) > O  we have 

so Po becomes 

The revised test P ,  is the pointwise version of the sequential test Q#(r )  when breakpoints 
are known and Q#(r)  is normalized by its Zperiod variance. The test Qo with g = 1 is the 
pointwise version of the recursive test with a estimated by bT. 

Remark 4. Value-a[-Risk. Time-varying tails have implications for Value-at-Risk 
(VaR) calculation. VaR is defined as the maximum loss expected with (1 -p)% probability 
(typically taken as 5% or 1%) over a prespecified period of time (typically 1 day or 10 
days). The VaR's reported by financial institutions determine their capital requirements 
and also inform investors of the (extreme) risk associated with their investments. Under 
the extreme value theory framework, the effect of time-varying tails is clearly seen from 
the VaR formula, 

Remark 5 .  Oplimal Tests and Adaptation. The results in Theorems 2 and 4 are 
derived under rates that satisfy (A)' and Remark 2 discusses the consequences of misspeci- 
fication. It is possible to use the optimal rate (B)' and to estimate m , .  Consider the 
following recursive estimator for m,, 

where , = i n  1 d l )  and , = ( 1  + - 2 , ) ) 1 ' 2 1  ' with 
2r - I = (A1 - , / w l  - l)(XG;!, + 1,)61-1 and dt - , = 2r /2. The initial selection of m, can be done 
using a fixed fraction. Then, under the null hypothesis & , - m , 5 0  where m, = 
Aw:P/(2P+a) .  Similarly, we can define the rolling estimator A,: and the reverse recursive 
estimator A,,. 

Theorem 6. Assume (B )' is satisJied und fi,, - ~a,, 5 0. Then 
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where HT(t) is either YT(t), VT(t) or ZT(t) and ~ ( r ) ~  is the corresponding distribution in 
Theorem 2. For ZT(l) replace the subscript T by w2[ in the correction terms. 

The correction term comes from the noncentraI term q in (B)', which is defined in 
(B). Note that with the choice of A, q~ simplifies to q = I/ d'm. Thus, 

under Ho where p,,, hLYC correspond to the recursive, rolling or sequential estimates. 
The time-varying estimators m, and m,; "adapt" to the behaviour of the tail param- 

eters a, and 0,. They are alternatives to the adaptive estimator for m given by Hall-Welsh 
(1985) and to the bootstrap estimator of Danielsson-DeVries (1997a, b). The restriction 
Pr = min(1, a , )  is the same as the restriction used by Hall-Welsh (1985) in adaptively 
estimating m. It is valid for stable distributions and symmetric distributions for which 
0, = a,. An important distribution that the restriction excludes is the t-distribution where 
0 = 2 and a, equals the degrees of freedom. 

4. TIME SERIES EXTENSIONS 

The tests in Section 3 assume that ( X i }  is i.i.d. It is possible to modify the tests using 
Hsing's (1991) results for serially dependent data. Hill's estimator is still consistent and 
asymptotically normal with the same rates of convergence under serially dependent data, 
but with different variance. We let x +  = max (x, 0) in what follows. Assume a consistent 

T estimator for X(T -mT+ such that 

and b(T/m,) = F-'(I - mT/T) is the quantile function which satisfies 

Let 

CT; = (log XT - log b(~/m,)), and D, =  log xT> log h(T/m,) + 6 /  G T ) .  

Jkrnma 7 (Hill's estimator for linearly dependent data; Hsing (1991), Theorem 
3 . 3 ) .  Let {X, ) be a strictly stationary, I-dependent sequence wilh I > 0. Suppose there exist 
constants x, yl and w such that for all 6 ~ 3 ,  

Then 
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d e v  (A). U n k r  ( B ) ,  the same noncenlval term enters into the limiting distribution. 

We now extend Hsing's result to the case where nonlinear dependence is allowed. 
Theorem 8 and Corollary 9 below draw heavily from Quintos (1999). We concentrate on 
the stationary ARCH and GARCH process which can be approximated by an 1-dependent 
sequence. Let (X, ) follow a GARCH(1, 1) process, 

with an ARCH(1) process being a special case with PI = 0. We work with a stochastic 
difference equation of the € o m  

where (A,, B , )  are i.i.d, pairs. By substitution, we can write (16) in terms of (17). 

with Yl = a:, or for an ARCH(l), 

with Y, = x:. Note that X: has tail index a/2. Thus, when we construct Hill's estimator 
in terms of Y, we have 

We assume throughout that the conditions guaranteeing that (17) is strictly stationary, 
ergodic and regularly varying with tail index a/2 are satisfied-viz. P o  > 0 and 0 < A < 1 
for an ARCH(1) and P o  > 0 and 0 < p, + i 1 for a GARCH(1, I). We further assume 
that the process starts at Z, (i.e. (Zei , .  . . , Z-,) = 0). We can then write (17) in finite 
moving average form (with random coefficients), 

Y r = n : = I ~ i ~ ~ + C J = l  (JJ:=,+, A,)B,= G;Yo+ Y:" (20) 

where we have set n:=,, , A, = 1 for jZ t .  Note that stationarity requires E(G:)  < 1. We let 
b = b(T/mT) in what follows. 

Theorem 8 (Hill's Estimator for ARCH(1) and GARCH(1, 1) processes). We con- 
slruct Hill's estimator in terms of the squared process (x: ), 

Define 

CT, = (log x : ~  - log b)+ and DT, = I(10g xfT > log b + 6 /  &), 

r f  { X, ) follows an  ARCH(1) (GARCH(1, 1)) process, then (a)-(c) ((d)-(f )) hold, 

(a) 2a2V/md E , ~ = ~  E C , , C ~ + ~ C ~ ~ = , ( ~ +  t r E ( G { ' ) ' )  = X ,  

(b) & ( ~ / ~ T ) Z , ~ = ~ ( E C T ~ D ~ +  E C T P T , ) + ~ C ~ ~ = ~ ( I  + E ( G { ' ) ' )  = v, 
(c) 2 ( ~ l r n ~ ) ~ , ? = , ~ ~ ~ , 1 ) , , + 2 c ~ , ( l  + E ( G ' , - I ) " )  = o. 
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(d) ~ & * T / ~ , ~ ~ ~ = , E C ~ , C ~ ~ + ~ C E ( Z P ) ~ , ~ = ~ ( ~ + ~ E ( G ~ ~ ) ~ ) =  X ,  

From Lemma 7 ,  Hill's estimator for an ARCH(1) or GARCH(1, 1) process is distributed 
m (15). 

Lemma 7 and Theorem 8 show that Hill's estimator is asymptotically normal so that 
the tests in Section 3 need only be modified by scaling with a covariance matrix. Rather 
than construct empirical estimates of the right-hand terns in (a)-If), we follow Hsing's 
method which uses empirical estimates for CT, and DT,. Define 

C W ,  = (log x,Zw' - log x:,": -,w, + , ,)+ and d,,, = [(log ~ f " '  > log X$ + 

and construct 

so that fl,, = 1 + f w ,  + h w ,  - 2qWt.  For example, for the full sample with w, = T we have 

1 T - 1  &, = 2 - zj = I(l0g x ; ~  > log x:,T_ mr + ,))I(log x;f: > log x : : - ~ ~ +  1)). 

W T  

Note that X, ly and w are zero if { x:) is i.i.d. Extensions of the results in the previous 
section now require normalization by d,,. 

Corollary 9. Suppose (A)' holdr. Then, under Ho : 

where W(r), W(r, yo) and ~ ' ( r )  are defined in Theorem 2. Under (B) ' ,  the distributional 
results of Covollavy 5 holds. 
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Remurk 6 .  The parameter a under the GARCH data generating process is a func- 
tion of the parameters of the model. Thus, an alternative to Hill's estimator is to find a 
as the unique solution to 

for an ARCH(1) or GARCH(1, 1) respectively (see Embrechts, el al., 1997, and Mikosch- 
Starica, 1998). For example, the relation of the tail index of an ARCH(1) process and its 
conditional parameter ;1 is tabulated in Embrechts et nl. (1997) and is repeated here. 

We observe, in particular, that the second moment is infinite when 12 1. 

Remark 7 .  (Conditional versus Uncondilionai Tail Testing). An important impli- 
cation of (22) is that instability in the ARCH/GARCH parameter 1 implies instability in 
the tail parameter a: of the unconditional distribution, and vice versa. Thus, the uncon- 
ditional distribution of (X,] has very fat tails when k is greater than 1 .  Our coditianai 
distribution has Gaussian (thin) tails irrespective of A, viz. 

The relation of A and o! given in Remark 6 relies on this assumption. Our limit theory is 
not justified by the analysis given here when thick tails appear in the conditional distri- 
bution, for example, when (2,) is [-distributed. Such cases may be analysed by an exten- 
sion of our methods but we have not done so in this paper. 

5. SIMULATIONS 

This section explores the finite sample properties of the parameter constancy tests using 
5000 Monte Carlo simulations. Sections 5.1 and 5.2 consider only the i.i.d. case to high- 
light the results of Theorem 4. Section 5.3 extends the simulations to the dependent case. 
All simulations were done using Visual C++ version 4.0. 

5.1. Data generating process 

We split our sample into two periods of length T,  = [rT) ( r ~ ( 0 ,  1 ) )  and T2 = T -  T I  + 1. 
For each sub-period, we generate the Xis randomly from a stable distribution with index 
a using the method of Samorodnitsky-Taqqu (1994), uiz. we set 

where y is uniform on ( - ~ / 2 ,  ~ / 2 )  and W is exponential with mean 1 .  Different values of 
the shape parameter a were chosen to lie in the interval 0 < a < 1 (where the mean and 
variance are infinite) and 1 < a < 2 (where the variance is infinite) for each period. Both 
Cases A1 and A2 are tested, i.e. from thin to thick tails and from thick to thin tails. 
Breakpoints are imposed ex an&. Specifically, we set v = 0-25,0.5 and 0-75. Sample size T 
is set to 500, and 2000, two sample sizes representative of those commonly found in 
financial data applications. We use 5000 iterations. 
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TABLE 1 

Size of !2(r) ,  Q*(r), QU(r) 

T =  500 T = 2000 

NominaI size Nominal size 
0-01 0.05 0,Ol 0.05 

Recursive 
a= 0.5 0-02 0 08 0-01 006 
a= 1-5 0-01 0.06 0.01 0.05 
Rolling (yo = 0. l 5 )  
0: = 0-05 0-03 0-07 0 02 0.07 
a= 1-5 0.02 0.07 0.01 0.06 
Sequential 
a = 0.5 0.03 0.08 0.01 0.07 
a= 1.5 0.02 0.06 0.01 0.05 

5.2. Slructwai change lesls for a 

Since we specified a in our simulation we can ensure that (A)' is satisfied. The problem 
then is how to select rn since both estimators & and c* are constructed conditional on the 
m largest observations. DuMouchel(1983) suggests the simple rule mZO.lT, i.e. that the 
upper 10 percentile be used as extreme values. Hall (1982) and Hall-Welsh (1985) find the 
optimal rate to be m = 2 ~ ~ / ~ .  In this paper, we set K =  0-10 and select a such that 
m,, = [(I. low,] < ~ , ~ : f l f / ( ~ f l l + ~ f ) ,  

Table 1 gives the size properties of the tests. Note the good size properties in both 
the finite and infinite variance case. The tests perform better the further out in the tails, 
as expected from extreme value theory. 

Table 2(a) reports the power properties of the recursive test. For the power property 
of the tests, we look at 2 cases: Case Al-where the change goes from thin to thicker tails 
and Case A2-where the tails become thinner as T gets larger. Notice the drop in power 
for Q from Case A1 to Case A2. This is, in fact, intuitively reasonable since the tests are 
based on estimators that use only the largest observations. In Case A2, where the thicker 
tails occur in the initial period, the outliers in this tail enter into the calculation of success- 
ive tests as long as they belong in them largest observations. For example, if the maximum 
point in the data occurs in the first subsample, this point will enter into the calculation of 
each successive test, thereby making the tails appear thicker than they really are. This will 
not be the case when the outlier behaviour occurs in the latter part of the sample, as 
evidenced by Case Al.  These results support the theoretical findings in Theorem 4. 

TABLE 2A 

Power properties o/ Q(r) (nominaI size = 0.05) 

T =  500 T =  2000 

Breakpoints Breakpoints 
(at, a11 
Power r = 0,2S r = 0.50 r =  0 75 r = 0-25 r = 0.50 r =  0 75 
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TABLE 2B 

Power properties o j  Q 1 ( r )  (nominal size = 0.05) 

(4,  dl) 
Power 

Breakpoints Breakpoints 

Tables 2(b) and (c) report the power properties of the rolling test Q* and sequential 
test Q'. Compared with the recursive test, the rolling test has more power in both direc- 
tions: from thick to thin tails, and from thin to thick tails which coincides with Theorem 
4. The sequential test seems to do poorly when the sample size is small ( T =  500). Its 
power also depends on the location of the breakpoint and the direction that the tail varies. 
This is, of course, due to the fact that the test is constructed from two statistics which are 
consistent in opposite directions. At T =  2000 for Al ,  the recursive test is consistent (and 
the reverse recursive test is inconsistent) but the power of the test is low because of sample 
size (i.e, only 25% of the sample is used for the recursive test). At 0.75 the power of the 
recursive test dominates. The symmetry in the power of A1 and A2 depending on the 
breakpoint is evident in the tables. 

Table 3 reports estimates of the breakpoint, i.e. the location of the sup value of the 
kst.  The recursive test does well in estimating the breakpoint for Case Al. For Case A2, 
the sup values occur far from the location of the true breakpoints. Since the test is incon- 
sistent in this direction the location of the breakpoint is also inconsistent. The breakpoint 
estimates of Q improve as T becomes larger, both in terms of mean and standard error. 

While the rolling test is consistent, its estimate of the breakpoints do not coincide 
with the true breakpoints. The sequential test Q', however, seems to perform well in 
estimating the breakpoints for both Case A1 and A2 when T = 2000. Its weakness lies in 
its poor small sample behaviour. In our example, it fails when T =  500. 

5.3. Extension to ARCH(1) 

Our data generating process is an ARCH(1) as given in (16). We set fl, = 1 and vary A 
since, from Remark 6 ,  this gives the value for the tail index a. Table 4 contains the 

TABLE 2C 

Powev pvopevlies of Q "(r) (nominal size = 0.05) 

Breakpoinu 
(a,, a,) 
Power r = 0,25 r = 0 50 r =  0.75 

Breakpoints 
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TABLE 3 

Estimates of brerrkpoinis 

Breakpoints 
(a!, a21 
Power r = 0.25 r = 0-50 r = O 7 5  

Recursive test 
A1 (0,8,0,5) 0 2897 (O,L195) 0,4492(0 1446) 0 5908 (0,2140) 

8 I 2) 0 2826 (0 1072) 0 4646 (0 1296) 0-6162(0.1978) 
(1.5,O-8) 0-2653 (0 0848) 0,4654 (0,L166) 0,6500 (0,1753) 

A2 (0.5,O-8) 0 2922 (0 L956) 0,2268 (0,096 1) 0 2540 (0 1256) 
( 2  I 8) 0-3084(0-2278) 0-2242 (0-1 160) 0 2442(0 1130) 
(0-8, 1.5) 0-1941 (0-0520) 0.2126 (0.0676) 0 2668 (0,1236) 

Rolling test 
A1 ( 0 8  0 0-3868 (0-2509) 0-3966 (0 1907) 0 4821 (0,2028) 

(1.8, 1.2) 0-3161 (0,2147) 0.3633 (0.1574) 0,4676 (0,1966) 
(1.5,0.8) 0.294L (0.1978) 0-3589 (0.1538) 0 4620 (0 1924) 

A2 (0 5,O.g) 0.6619 (0,2024) 0 7387 (0 1918) 0 7494 (0 2530) 
(1-2, 1.8) 0-6774(0-1949) 0.7828 (0 1591) 0,8386 (0,2058) 
(0.8, 1.5) 0.678L (0.1934) 0,7874 (0 1508) 0 851 l ( 0  1975) 

Sequential test 
A1 (0.8,O.S) 0 8240 (-) 0,8086 (0,0367) 0.8L13 (0,0393) 

( 8  12) 0.83 10 (0.0246) 0.7735 (0-0806) 0 7978 (0 0434) 
(I 5 8  0 8440 (-1 0,7093 (0,1037) 0,7886 (0,0459) 

A2 (0,5,0.8) 0-1926 (0-041 1) 0.2042 (0.0491) - 

Breakpoints 

1. All computations of Hi l l  index use k = 0 10. 
2. Table shows mean estimate of  r over 5000 iterations. Standard errors are in parentheses. 

TABLE 4 

Size cund power properties of rue of ARCH(1) process 

Size 
Nominal size = 0-05 

a= 1 a = $  

Recursive 0.04 
Rolling 0.05 
Sequential 0-04 

Power 

Case A1 Case A2 

a21 = (4,l) (4,2) (1,4) (2,4) 
Recurswe 
r = 0.25 0,8970 0.4260 0.1886 0-0540 
r = 0.5 0 9400 0.5280 0 2662 0.0938 

Rolling 
v = 0.25 0 4500 0-2$00 0 4300 0,2600 
r=0,5 0.5500 0.3621 0 5484 0,3560 

Sequential 
r = 0.25 0 0001 0-0000 0-0002 0-0000 
r = 0.5 0 0020 0~0000 0,0030 0~0001 

Nmes: 
* SampIe size T =  500. 

** For rolling test, rolling sample size is 20% oCfull sample size. 
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simulation outcomes for the size and power properties of our tests. We give results only 
for T = 500 since a larger sample will give only better results. The tests have the correct 
size but the power is lower than in Table 2 for the i.i.d. case. The pattern of inconsistency 
that appears in Table 2 can be seen here. The recursive test has significantly lower power 
for Case A2 than Case A1 and this is revealed as well in the sequential test. Recall that 
the sequential test is constructed from the recursive and reverse recursive test. The rolling 
test has the best power in both directions as expected. The sample size fraction used in 
these simulations is yo = 0.20. 

6. APPLICATION TO THE TAIL BEHAVIOUR OF ASIAN FINANCIAL 
MARKETS 

6.1. Data 

Our dataset consists of the daily stock price index series of Thailand, Malaysia and 
Indonesia, downloaded from Bloomberg Financial Markets. The sample covers the period 
from January 2, 1995 to October 16, 1998, which includes 93 1 daily return observations 
for the Bangkok SET Index of Thailand (SET), 933 daily return observations for the 
Kuala Lumpur Composite Index of Malaysia (KLCI) and 937 daily return observations 
for the Jakarta Composite Index (JCI). This sample covers the period of the recent 
financial crisis. 

These stock market data present interesting cases for studying tail behaviour as all 
three countries experienced financial economic turmoil since May 1997. Following IMF 
recommendations, all three countries switched from a pegged exchange rate system to a 
floating rate system in July 1997. Our interest is in whether equity markets reacted differ- 
ently under the two currency regimes in terns of extreme movements in equity returns. 
When exchange rates float, external shocks are partly absorbed by currency exchange rate 
Auctuations. The institution of a floating currency should therefore play a role in influenc- 
ing the extent of extreme price movements in other markets, such as the domestic equity 
market. 

6.2. Results 

We are interested in whether there was a change in the tail behaviour of the stock market 
during this period. A rise (fall) in o: would imply a reduction (an increase) of extreme 
market movements. Figure 1 graphs changes in the stock prices and seems to indicate that 
all three countries exhibit a change in the degree of extreme movements over time. We 
first apply our version of the Phillips-Loretan test of unequal sample split (uiz. P I )  on the 
three data samples using July 1997 as our breakpoint to test this assertion, then perfom 
the sequential, recursive and rolling tests assuming no knowledge of the breakpoints. We 
use our most general result, Theorem 8 and Corollary 9, throughout this exercise 
(Theorems 8 and 9 reduce to the i.i.d. tests of Section 3). The test size is set to 5%. 

6.2.1. Sequential test 

We split each data series into two periods according to the dates when each of the three 
countries announced that they would no longer support their pegged exchange rate 
systems. A11 countries widened the trading band first before they let their currencies float. 
We treat the widening of the trading band as an interim step toward the float system. 
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Therefore, we picked the initial central bank announcement date of widening the trading 
band as the breakpoint for our sample. Specifically, the SET index is divided into two 
subsamples by July 2, 1997 when the Bank of Thailand announced a managed float of 
the baht. KLCI index is separated on July 14, 1997 when the Malaysian central bank, 
Bank Negara, abandoned the defence of the ringgit, and we split the JCI index into two 
by July 11, 1997 when Jakarta widened its rupiah trading band from 8% to 12%. 

TABLE 5 

The tail index of rhree equlty markets in ~ w o  sub-periods 

Pegged rate system Floating rate system 
Equity index Point estimate Po~nt estimate P, 

SET 2-54 (2 10-2'99) 2-15(1-51-2 78) 1-51  
RLCl 2.51 (2.03-3 00) I 84(1,32-2,43) 5.12 
JCl 2-80 (2,26-3 33) 2.05 (1.51-2.60) 5.37 

The results for a known breakpoint are reported in Table 5. The first and second 
column give Hill's estimates of the tail index for the pre- and post-break periods. The 
numbers in parentheses are the corresponding 95% confidence interval. From Theorem 8, 
our confidence interval is constructed as 

where zsm, = ~ o . o ~ / ~  = 1.96, i denotes the pre and post sample periods and T, the corre- 
sponding sample size. Note that all three indices are higher in the first period and the 
confidence intervals show that a11 three indices have a point estimate of a above 2 under 
this regime. The estimates of the second period are lower and are indicative of fatter tails. 

The revised Phillips-Loretan test P I  for the null hypothesis that a, = a, for all three 
series is given in the third column. Following the notation of Section 3, the test is revised 
to accommodate dependence as 

The variances qrl)  and q,,, are calculated using (21) with corresponding sample size TI 
and TZ.  The covariance term q12) is constructed from 

where T, = max (TI, T2), Tn = min (TI, T2),amin = min(aIl,, and mh, is the number 
of order statistics used to calculate a,,. With a X: critical value of 3.84, the test P,  rejects 
the null of tail constancy for both Malaysia and Indonesia at the 5% level. 

Figure 2 plots the sequential test Q# for all three series. From Appendix A, the 95% 
critical value is 18.31 and the 90% critical value is 13.98. Figure 2 shows that we are once 
again able to reject the null of tail constancy for Malaysia, but not for Indonesia even at  



QUINTOS, FAN & PHILLIPS STRUCTURAL CHANGE TESTS 651 

Thailand 
7 

0 

MI1 1/95 10128/95 051 15/96 12101196 06/19/97 0 Lt05198 07/24/98 

Date 

Malaysia 

a/ 1 1/95 I0/28195 051 15196 1210 I /96 061 19/97 0 1105198 07/24/93 

Date 

Indonesia 

WI1195 10/2X/95 05/15/96 12/01/96 06/19/97 0 1105198 W12A198 

Date 

FIGURE 2 

SequentiaI test (95% critical value = 18.3 1) 
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the 10°h level (test statistic is 12.60). A possible reason for the failure of the test is that 
we do not have a large sample size and we know from the simulations that Q# does not 
perform well in small samples. The estimated breakpoints are listed in Table 5. 

6.2.2. Recuvsiue test 

For our recursive test of Theorem 2, we start with a window size of 500 observations and 
successively increase the sample size by a single observation. Figure 3 shows the evolution 
of the tail index starting from January 1997. It shows that the tail index for all three series 
trend downward through the period and stays relatively stable at  a lower level during 
1998. The transition takes place in the mid and late half of 1997, which is roughly about 
the time when the Asian financial crisis occurred. The downward trend of a indicates that 
there is an increase in extreme movement in all three markets during the period. 

0 

12101196 03111197 06119197 09127197 OLIO5I'Y 14/15/98 0712A198 11101198 

Date 

FIGURE 3 
Hill's index: recursive 

The recursive test statistic Q for all three equity indices during the period are plotted 
in Figure 4. We are able to strongly reject the one sided null of constant a (i.e. Ho : ol,5 aT 
vs. HA: aI > aT) for all three indices, with much stronger rejection for both Malaysia and 
Indonesia. Suprema of the test statistics and hence the breakpoint dates detected by the 
test are reported in Table 6. Note that for Malaysia and Indonesia, the selected break- 
points are close to July 1997. 

6.2.3. Rolling lesl 

The rolling test Q* is a modification of the recursive test, for which we keep the window 
size fixed at 500 observations and roll it through the sample. Our results are summarized 
in Figures 5 and 6. Figure 5 confirms the downward trend of a. The difference between 
the rolling a and the recursive a is that the extreme movements during the previous 
period will be carried over in calculating the recursive a ,  but not so much in calculating 
the rolling a. The chart suggests that there tends to be an increase in extreme movements 
in all three equity markets. 
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Date 

Malaysia 

02120195 10128195 07104196 031 1 1197 11116197 07/24/98 03131199 

Date 

Indonesia 

5 

0 

041 1 1195 10128195 051 15196 12/01/97 061 19197 0 1105198 07124198 02109199 

Date 

FIGURE 4 
Recursive test (95% critical value = I 78) 
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TABLE 6 

Tests of breakpoints 

Recursive test Rolling test Sequential test 

equity index Sup Date Sup Date Sup Date 

SET 4,78 16/05/97 7.49 03/06/97 6,39 04/04/96 
KLCl 20.37 21/08/97 53.75 19/08/97 2TW 13/01/97 
JC1 37 74 20/08/97 37 57 14/08/97 12.60 19/02/97 

0 

12/01/96 031 11/97 M/ 69/97 09/27/97 01/05/5% 04/15/98 07/24/98 1 1/02/98 02/09/99 

Date 

FIGURE 5 

Hill's index: rolling 

The rolling test statistic Q* for all three data series are plotted in Figure 6. Suprema 
of the test statistic and the breakpoint dates detected by the test are again summarized in 
Table 6. Like the recursive test, the rolling test strongly rejects the null hypothesis of 
constant a for both KLCI and JCI indices. Moreover, the breakpoints picked by the 
rolling test are close to those picked by the recursive test. Note that the rolling test 
produces more "flat" surfaces due to the construction of the test so that it can reach its 
suprema on multiple dates. 

7. CONCLUSION 

This paper has constructed tests for tail shape constancy using Hill's estimator. It is the 
first to do so with unknown breakpoints. The results show that standard tests for struc- 
tural change have quite different power properties in this context. Furthermore, unless 
the tests are normalized at the correct rate, the tes& can diverge under the null and have 
no power. This highlights the importance of the opthal/adaptive tests discussed in 
Remark 5. 

The simulations corroborate the limit theory that the recursive test is a one-sided 
test. For cases where it is valid, the recursive test outperforms the rolling and sequential 
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Thailand 

Date 

Malaysia 

03/11/97 M/19/97 04127197 01/05/98 04/15/98 MI24198 1110 1198 02/03/99 

Date 

Indonesia 

0 
12/01/96 031 11197 06119/47 09127197 0 1105198 04115198 07I24I98 1110 1198 0U041W 

Date 

FIGURE 6 
RoIling test (95% critical value = 2.25) 
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tests both in power and in estimation of the breakpoint. An alternative to the sequential 
test is therefore simply to treat the recursive and reverse recursive tests separately as one- 
sided tests. 

When our methodology is applied to Asian stock market indexes the empirical evi- 
dence shows that both the recursive test and the rolling test reject the null of tail shape 
constancy for Malaysia and Indonesia. The breakpoints picked by both tests match well 
with suspected breakpoints arising from known changes in institutional arrangements. 
However, unlike the recursive test and due to the nature of its construction, the rolling 
test often does not produce a singleton supremum for the estimation of the break point. 
Therefore, separate one-sided tests of the recursive and reverse recursive tests seem 
preferable when the breakpoint date is of interest, as it is in this application. 

APPENDIX PROOFS 

Proof of Theorem 1 .  From Hall (L982, p. 41) and Hall-Welsh (1985, p. 338) we have for (i) 

a(&;[ -111"') = my' z:=,,+ (2:- I) - d P p ( l  +p ) - ' (m , /~ , )~+o , ( l )  (24) 

where p = P/a, 2; are independent exponential random variables with mean I, and the o,(l) error hoIds uni- 
formly in I .  Set 

rn{ = [KI] = [K~T] = [IT]. (25) 

By Donsker's Theorem and with r = [rT] we get 

ST = T - I f '  x; = , - m , +  (2; - 1) 4 W(1). 

Let 4 = dc-'p(I + p)-', so that we can write 

=d W(r). 

Then, since a(&;' - a F 1 )  = -&;I (d,  - a), we have 

Tor (A)'(i). For (B)'(i) if m, = ~ w f " ~ ' ~ ~ ' ' )  then 

as required. 
For the rolIing estimator, our subsample size is w: = [Tr] - [T(r - yo)]. Then, instead of (25), set 

m,: = [KW:] = [ K ~ T ]  - [KsT]. The results follow as before with 

~ $ = ~ - 1 / 2  ' xi=, _,,, +,  (2; - 1) W ( K ~ )  - W(K4 =dt2 W(r, Y O ) .  

For (B)'(ii) the noncentral term follows from wf /T+r - s = yo.  The post-break sequential estimator foIlows by 
setting (25) as m,,, = [ I C W ~ , ]  = [K(L -r)Tl. 1 1  

Proof of Theorem 2. The result For Q foIlows from 
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since (ml/T)/(mT/T)= ( [ i r rT] /n/ ( [Kr] /n+f ,  For Q* we have 

since (md/T)/(m,/Z') = ([KYT] - [KST]/T~/([KT]/T) 9 1  -3. Similarly for Q', noting that 6;: a under the 
null, 

and the result folIows by the continuous mapping theorem. I I 
Proof of Thearem 3. Let (x;];:: and (xi):= , have indices a, and a>, respectively, where TI = z - I and 

T, = T- z +  l. We work with the m, Iargest order statistics of the Full sampIe of which m,, and m,, are each 
taken from rl =[I,  z) and r2 = [z, TI. We let KG-,,, l , ~ T l ,  say Then, Hill's estimator is written as 

I I a;! = -C:=T~llogX~,-~+l] - I o ~ X ~ + [ - ~ ~ [ + ~ ] + - ~ ~ = ~ ~ [  l o g ~ ~ + , - , + I ]  
MT W T  

Following Hall (1982, equation (3)) and Hall-Welsh (1985, equation ([.I)), we make the transformation x+x-' 
so (I) becomes 

and 

The following lemma is used in the proof of Theorem 3. It generalizes (24), the representation of Hill's estimator 
in terms of standard exponential random variables, to the case of i.ni.d. data. The result (24) is a special case 
of our lemma with m,= mTI and mfi = 0). 

Lemma 10. For i.ni.d. darn such rhar {X, ):I: and { X, ) f= . h u e  id ices  a, and a,, respeciiuely, we haw 

where p, = P,/a, a d  2:' are U p e n d e n r  expuponenrid random unriabIes with mean 1 consrructedfrom the order 
sturisrics in period T i ,  i = 1,2. 

Proof of L e m m  10 We make use of the Collowing representatlon Cor from Hall-Welsh (equations 
(3 9) and (3.10)): 

log ~ 7 ,  = log c-'/"' - a;' Y,, , - a;'oFP.exp (-p, YT,< + o,(l), (29) 

where YT,+) = ~ , T ~ ~ t l ~ ~ ~ c  -j+ I. Working with (28) and applying (29) we have for A, 

I 
- [u;'(dr-p, exp (-p, Y T . ~ ~  + I)) - - ~ y > ,  UP (-PI ~ i ~ ( ~ ~ )  

W T  11 
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For A2, 

where the last line follows from Hall-Welsh equation (3.3). For A3, 

where the Last Line Follows from Hall-WeIsh Lemma 3.1. Thus we have 

rrom (30), (3 L )  and (32) 
For B we have 

For B2 we have 

1 
~2 = 3 - C m T r l  

zy2 
; = 0 z;:-; - 

m~ "TI T z - j +  L  

T2 - j +  1 

from Hall-Welsh equation (3.3) and for B3, 

L B3 = a-ld - P t m T ' -  
2 c 

mr m ~ ,  T A - j + l  

- - a - ~ & - ~ l m ~ z  I T=~c' EXP ( - P I Y T ~ ~ ~ ~  E ~ P  (-fi ~27: g m T 2  + 
MT WT, Tl -j+ 1 

= a;ldc-!3, mT' L  z yl 
~ X ~ ( - P ~ Y ~ ~ < ~ T ~ + I ~ ) ( - X T > ~  [ ~ X P  ( - P * x J : ~ : - ~ ~ ~ +  I-)) 

m r  m ~ t  
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Trom Hall-Welsh Lemma 3.1.  Thus 

and the Lemma follows from (33) and (35). 1 I 
The proof of Theorem 3 follows from Lemma 10. Let 

m*l+xl~  [o, I ]  and m*'+xz~ [o, 11. 
m~ m* 

A necessary cond~tion for consistency of &, for a ,  is that m T l  = o(T,) and m,, = o(T,); a sufficient condition 
being 

m T I  = TQ(  and mTI  = To',  (36) 

with 4; = 2P1/(2flj + a / )  < 1 For i = 1,2. Then since 

by the WLLN we have from Lemma 10, 

assuming (36) (or m*, = o(T,) and m,, = o(T1)) holds. 
We set mT,/mT = TQr/T' in what follows with 4 = (2@/2fl + a ) .  We require a > 0 so n l  and/or n, have to 

be greater than zero. Suppose a ,  i a ,  then T+' > T4' and 

( i )  if T m l / ~ * + n ,  > O  then TQ'/T*+n2 = O  so nl  = I. 
(ii) if TB'/TQ+n2 > 0 then T + [ / T + + ~  which violates the requirement that K , E  [O, 11. 

Thus, if a, c a? then 122 % a;' = a-' 
Suppose a l  > a ,  then T Q [  < To' and 

(i) if T m l / T Q  +n,  > 0 then T m 2 / T m  +m which violates the requirement that n 2 €  [0, I]. 
(ii) if TB'/TQ+n2>0 then T + ' / T ~ + ~ ,  =O 30 xa= 1. 

Thus, iC a ,  > 1112 then &;I 111;' = a-'. I I 

Proofof Theorem4. Write 

For the recurswe test we have m ~ =  ; L ~ T ~ ~ ~ ( ~ ~ ~ " )  and a=min(a, ,a , ) .  Suppose Case A1 then a = a ,  so for te 
Y2 we have I =  o,(l) and For I E  rl  we have I =  0,(m :I2). For Case A2 we have a = a ,  and a ,  = a ,  so I =  o,(l) 
Tor I E T , , T ~ .  

For the rolling test w, = w :  in (38 ) .  Then for Case A1 I =  O,(m:'!) and for Case A2 we have I= 0, 
(mk'?) for I E  [Z + w : ,  TI. The sequential test is the sum of the recursive and reverse recursive test so the conver- 
gence is reversed for the Iatter-i.e. the reverse recursive test is inconsistent for Case AL but for Case A2 we 
t zavem)"d; ! (a , -u~)=o, (~: '~) .  11 

Proofof Corollary 5. The result follows from (B)' and the continuous mapping theorem. For Q we have 

and for Q*, 
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and finally 

as required. Under (C)', divergence comes from the second term in (26) since the first tern is O,(I) and 

Proofof Theorem 6 .  The correction terms follow from the noncentral terms of Corollary 5 under (B)'. [I 

Proof of Theorem 8. We write the process YT as Y, in what follows to simplify notation. We use the 
rollowing result rrom Resnick-Starica (1996, Cemma 4 . 1 ~ ) :  for a strictly stationary process {Y,] that satisfies 
(17) we have for E > 0, 

We also use the foIlowing fact extensively: for independent random variables 7 and Yo, 

P(U Y, > X )  - E ~ " P ( Y ,  > X )  (40) 

from equation (2.10) oC Mikosch-Starica (1999). Note that from regular variation of Y we have 

~ ( ~ ~ > x ) - c x - ~ ' ~  as x-tocl. 

To show (a), for ECT, CT,, we write 

m  m  
lay& =6=16=L  P ( K >  bx, Y, > by) - y - x 

dx 
P ( y a  > b r ,  G < - I  > b ~ )  - 

X 

= A l + A 2 + A 3  

where the inequality follows from (39). For AL we have 

m 
& m m  dx 

log xP(Yo > h x )  - f c log x(x-= /3  - , (as x -t m ) 
x T IX=[ x 
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and similarly for Al, 

m 
d? Iogy(y-")-, (as y+rn,&+O) 
Y 

For A3 we use (401, 

and the result follows by substitution into (41). We assume x 2 y  for (b) and (c). For (b), 

E Log- I(Log ~ , > l o ~ b + S / & ~ )  ( :I+ 
65 

P(Y1 > bx, Y, > be 6/Gy) - 
x 

dx 
?(YO > bx, G{-' yo > be 6'G&) - 

x 

and 

El(10g Yl > log b + 6 /  KT) log - ( 

Finally, we have 

E(l(log Yl>logb+SlG), I (Log F > l o g h + G / K T ) )  

= P( Yl > he 'jGx, Y, > be 

5 P( Yo > be " G x ) ~ ( ~ o  > be - E ) )  

for part (c). 
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For parts (d)-(T), note that the difference equation is written in terms of 0;. Thus reguIar variation of the 
tails of Xf comes from regular variation of a:. The proof of (d)-(f) follows (a)-(c) with the rollowing modifi- 
cation. Note that C ,  and D,, are defined in terms of X: so, 

and (39) is applied to the last expression. 

APPENDIX A 

TABLE 

Crirical values for recursiue, volfing and sequenrial tests 

Tests 0-50 0 60 0-70 0-80 0-90 0.95 0.975 0.99 

Acknowledgements. Our thanks go to Rohit Deo at NYU for numerous discussions and valuable 
insights. We also thank Orazio Attanasio, the Editor, and three referees for extensive comments. PhiIlips 
thanks the NSF for research support under grant No. SBR 97-30295. This paper was circulated under the 
title "Measur~ng Change in Tail Behaviour with an Application to Emerging Financial Markets in Asia", 
NYU working paper series, SOR-99-2. 

REFERENCES 
ANDREWS, D. W. K. (1993), "Tests for Parameter Stability and Structural Change with Unknown Change 

Point", Econome~rica, 59, 817-858. 
ANDREWS, D. W. K. and PLOBERGER, W. (1994), "Optimal Tests When a Nuisance Parameter is 

Present Only Under the Alternative", Economerrica, 62, 1383-1414. 
BANERJEE, A,, LUMSDAINE, L. and STOCK, J.  (1992), "Recursive and Sequential Tests of the Unit- 

Root and Trend-Break Hypothesa: Theory and InternationaI Evidence", Journal of Business and 
Economic Srafistics, 10(3), 27 1-37. 

BOOTHE, P. and GLASSMAN, D .  (1987), 'The Statistical Distribution of Exchange Rates", Journal of 
Infernational Economics, 22, 297-319. 

DANIELSSON, J.  and DE VRIES, C. G. (l997aj, "Beyond the Sample: Extreme Quantile and Probability 
Estimation" (Manuscript, Tinbergen Institute, Rotterdam). 

DANLELSSON, J. and DE YRIES, C. G. (1997b), "Tail Index and Quantile Estimation with Very High 
Frequency Data", Journal of Empirical Finance, 4, 241 -257. 

DAVIS, R. D. and MIKOSCH, T. (1998), "The Sample ACF of Heavy-Tailed Stationary Processes with 
Applications to ARCH", Annals of Statistics, 26(S), 2049-2080. 

DuMOWHEL, W. H. (1983), "Estimating the Stable Index a in Order to Measure Tail Thickness: A 
Critique", Anmh of Statistics, 11, 1019-1031. 

EMBRECHTS, P., KLUPPELBERG, C. and MIKOSCH, T. (1997), Modelling Exrremal Ewnts (New York: 
(Springer Verlag). 

HAEUSLER, E. and TEUGELS, J. L. (1985). "On Asymptotic Normality oT Hill's Estimator Tor the 
Exponent of Regular Variation", Ann& of Sfatisrics, 13(2), 743-756. 

HALL, P. (19823, "On Some Simple Estimates of an Exponent of Regular Variation", Journal of the Royal 
Statistical Society 8, 44(1), 37-42. 

HALL, P. and WELSH, A. H. (1985), "Adaptive Estimates of Parameters of Regular Variation", The 
Annals of Statistics, 13(1), 33 1-341. 

HAWKMS, D. C. (19871, "A Test for a Change Point in a Parametric Model Based on a Maximal Wald- 
Type Statistic", Sankhya, 49, 368-376. 



QUINTOS, FAN & PHILLIPS STRUCTURAL CHANGE TESTS 663 

HILL, B. M. (19751, "A Simple General Approach to Inference about the Tail of a Distribution", Annah 
o f  Siatistics. 3151. 1163-1 174. 

HSING, T. (19911, "on Tail Index Estimation Using Dependent Data", Annals of Stufislics, 19(3), 1547- 
1569. . . .. 

H S I W ,  T. (1993), "Extremal Index Estimation fox a Weakly Dependent Stationary Sequence", Annals of 
Staiistics, 21(4), 2043-207 1. 

KEARNS, P, and PAGAN, A. (1997). "Estimating the Tail Density Tail Index for Financial Time Series", 
Reuiew of Economics and Stac~tics ,  79, 171-175. 

KOEDIJK, K. G. ec 01. (1990), "The Tail Index of Exchange Rate Returns", Jouvnal of Jnrernaiional 
Economics, 29, 93-108. 

LORETAN, M. and PHILLIPS, P. C. B. (1994), 'Testing Covariance Stationarity of Heavy Tailed Time 
Series: An Overview of the Theory with Applications to Several Financial Datasets", Journal of 
Empirical Fhance, 1, 21 1-248. 

MANDELBROT, B. B. (l963), "The Variation of Certain Speculative Prices", Journal of Bushers, 36, 
394-419. 

MIKOSCH, T. and STARICA, C. (1998), "Limit Theory for the Sample Autocorrelations and Extremes 
of a GARCH(1, I) Process" (working paper). 

PAGAN, A. R. and SCHWERT, G.  W. (1990a), 'Testing for Covariance Stationarity in Stock Market 
Data", Economics Letcevs, 33, 165-170. 

PAGAN, A. R. and SCHWERT, G. W. (1990b), "Alternative Models for Conditional Stock Volatility", 
Journai of Econometrics, 45, 267-290. 

PHILLIPS, P. C. B. and LORETAN, M. (1990), "Testing Covariance Stationarity under Moment Condition 
Failure with an Application to Common Stock Returns" (Cowles Foundation Discussion Paper 
No. 947). 

PHILLIPS, P. C. B. and LORETAN, M. (1994), "On the Theory of Testing Covariance Stationarity Under 
Moment Condition Failure", in G .  S. Maddala, P. C. B. Phillips and T. N. Srinivasan (ds.) ,  
Econometrics Feslschrifi for C. R. Rao (Oxford: Basil Blackwell). 

PLOBERGER, W., KRAMER, W, and KONTRUS, K. (1989), "A New Test for Structural Stability in 
the Linear Regression Model", Journal of Econometrics, 40, 307-3 18. 

QUINTOS, C. E. (1999), "Tail Xndex Estimation and Value-at-Risk with Dependent Data" (New York 
University working paper). 

RESNXCK, S. and STARICA, C. (199S), "Consistency of Hill's Estimatox for Dependent Data", J. Applied 
Probabiliry, 32, 129-167. 

RESNICK, S. and STARICA, C. (1996), "Tail Index Estimation for Dependent Data", (Cornell University, 
working paper). 

SAMORODNITSKY, G. and TAQQU, M. (1994), S r ~ b l e  Non-Gaussian Random Processer (New Yoxk: 
Chapman and Hall). 


