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Estimating Demand Uncertainty Using Judgmental 
Forecasts 

 
 

Abstract 
 
Measuring demand uncertainty is a key activity in supply chain planning. Of various methods of 

estimating the standard deviation of demand, one that has been employed successfully in the 

recent literature uses dispersion among experts’ forecasts. However, there has been limited 

empirical validation of this methodology. In this paper we provide a general methodology for 

estimating the standard deviation of a random variable using dispersion among experts’ forecasts. 

We test this methodology using three datasets, demand data at item level, sales data at firm level 

for retailers, and sales data at firm level for manufacturers. We show that the standard deviation 

of a random variable (demand and sales for our datasets) is positively correlated with dispersion 

among experts’ forecasts. Further we use longitudinal datasets with sales forecasts made 3-9 

months before earnings report date for retailers and manufacturers to show that the effects of 

dispersion and scale on standard deviation of forecast error are consistent over time. 

 
1. Introduction 
 
Measuring demand uncertainty is a key activity in supply chain planning. Of various methods of 

estimating the standard deviation of demand, one that has been employed successfully in the 

recent literature uses dispersion among experts’ forecasts. Experts on a panel independently 

assign point forecasts of demand for a given product and the standard deviation of these forecasts 

is used to estimate the standard deviation of demand. Thus far, however, there has been limited 

empirical validation of this methodology. 

In this paper, we test the hypothesis that dispersion among experts’ forecasts is positively 

correlated with the standard deviation of a random variable, and provide a general methodology 

for using dispersion among experts’ forecasts to estimate the standard deviation of the random 
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variable. We define the standard deviation of a random variable as the standard deviation of its 

forecast error given forecasts by several experts. The principal challenge in estimating the 

foregoing relationship is that the standard deviation of the forecast error is not known and must be 

estimated from only a single realization of the random variable. We first propose a multiplicative 

functional form to represent the relationship between standard deviation of a random variable and 

dispersion among experts. We then derive a heteroscedastic regression equation to test the 

hypothesis and estimate the standard deviation of forecast error as a function of the dispersion 

among experts’ point forecasts and other control variables. Heteroscedastic regression models 

have been well-studied in the econometrics literature. Our analysis applies the results of Harvey 

(1976). 

We apply this methodology to three datasets. The first, obtained from Sport Obermeyer, 

an Aspen, Colorado-based ski-wear manufacturer, records demand forecasts and actual demand 

for 248 items at the style-color level. The second dataset, obtained from I/B/E/S, records at firm-

level experts’ forecasts of annual sales and realized annual sales for public-listed U.S. retailers for 

the years 1997-2004. We consider forecasts made at least 90 days prior to the announcement of 

actual sales, and partition our data into seven time buckets depending on the time difference 

between the forecast date and the earnings report date (when sales are revealed). We estimate our 

model for each of these time buckets, and thus, test the correlation between dispersion among 

experts and standard deviation of forecast error over different time frames. The third dataset, also 

obtained from I/B/E/S, pertains to public-listed U.S. manufacturers, and is analyzed similar to the 

second dataset. 

Our empirical results show that the standard deviation of forecast error has a statistically 

significant positive correlation with dispersion among experts for all datasets. Testing this 

correlation using both non-parametric and parametric methods yields consistent results. We 

control for bias in forecasts as well as the effect of scale on the standard deviation of forecast 

error. As expected, scale is found to be statistically significant. Dispersion among experts’ 



 3

forecasts has a statistically significant positive correlation with standard deviation of forecast 

error even after controlling for scale. We obtain fifteen estimates of the coefficients of 

log(dispersion) and log(scale) across the three datasets and different time buckets. The average 

values of the coefficients are 0.201 and 0.715, respectively. 

Standard deviation is used extensively in both forecasting and inventory management. In 

the forecasting process the standard deviation of forecast errors is used to generate prediction 

intervals for the forecasts (Makridakis and Wheelwright 1987), in inventory management to 

compute order quantities. In many cases the standard deviation of forecast errors can be 

computed from historical forecasts and actual demand. But the method cannot be used for new 

products that lack demand history. Our methodology is particularly valuable in such cases. It can 

also be integrated with a causal forecasting model by including explanatory variables other than 

experts’ forecasts. 

Given the widespread use of judgemental forecasts in practice, there is a rich literature in 

experimental psychology on eliciting the standard deviation of a random variable from experts. 

Soll and Klayman (2004), for example, show experts to be grossly overconfident when asked to 

estimate the confidence interval of a random variable. Our work augments this literature in that 

our methodology requires experts to provide only point estimates of mean, while the papers in 

experimental psychology have sought to elicit confidence intervals from experts. 

A number of contemporaneous research papers suggest a relationship between level of 

experts’ agreement and degree of uncertainty of the variable they are trying to predict. The Delphi 

system of forecasting, for example, is used widely in operations management and other fields to 

obtain consensus opinions by reducing divergence among experts’ views. Dalkey and Helmer 

(1963), note that the Delphi method often leaves some residual disagreement, which they 

interpret as a measure of the uncertainty of the variable being forecasted. Similarly, in numerous 

papers that discuss implementations of Delphi methodology it is stated that it was not possible to 
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obtain a consensus opinion due to various uncertainties faced by the forecasters (Milkovich et al. 

1972; Munier and Ronde 2001). 

A more direct relationship than Dalkey and Helmer (1963) was proposed by Fisher and 

Raman (1996). They found at Sport Obermeyer that the standard deviation of forecast error is 

highly correlated with the level of agreement among the experts who forecast demand for a 

product. Similarly, MacCormack and Verganti (2003), who used data collected from a Delphi 

process to assess level of market uncertainty, took the residual variation in experts’ opinions that 

is, the variation that cannot be removed through the Delphi process, to be a measure of 

uncertainty around customers’ requirements for the product.  

As in operations management, experts, referred to as analysts in the finance literature, are 

employed to forecast various financial measures for firms. These analysts, however, are usually 

associated with the financial intermediaries that closely track firms’ performance. Numerous 

articles that explore the characteristics of analysts’ forecasts have been published. Givoly and 

Lakonishok (1984) survey the finance literature to summarize the findings on the properties of 

financial analysts’ earnings forecasts. Malkiel (1982) and Ajinkya and Gift (1985) state that 

dispersion among analysts’ earnings forecasts is a better measure of risk than beta. Whereas 

Ajinkya and Gift (1985) test the relationship between dispersion among analysts’ forecasts and 

implied standard deviation (obtained from the Black-Scholes formula), we develop a model to test 

the relationship directly by estimating standard deviation in an operational context. 

The rest of the paper is organized as follows. The main hypothesis of the paper is 

presented in §2. Section 3 deals with the model that is used for empirical analysis. The 

description of the data is presented in §4. Results are discussed in §5. Section 6 concludes this 

paper. 

2. Hypothesis 

The uncertainty of a random variable is often the result of many complex underlying processes 

that cannot be completely identified. As a result, experts tend to use different information sets or 
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forecasting models that capture different aspects of the information available for prediction. 

Hence experts could offer different forecasts for the same random variable. 

We hypothesize that the extent to which experts differ from each other depends on the 

uncertainty of the random variable that they try to predict. In other words, we expect the 

dispersion among the experts' forecasts to be correlated with the standard deviation of the random 

variable. For example, suppose that the demand for a product is dependent on several factors, 

such as consumer tastes, weather patterns, fluctuations in the economy, alterations to the product 

as it evolves from design to production, etc. If some of these factors are uncertain, and experts 

have different views about them or each expert evaluates only a subset of the factors, then the 

forecasts given by experts will differ from each other. This reasoning is consistent with the 

research literature in psychology and decision sciences. Experts are known to differ in their 

forecasts of a random variable. In fact, Hogarth (1978) suggests that the experts that are not 

strongly correlated with each other should be selected for forecasting, and the optimal number of 

experts that a decision-maker should consult for forecasting is 8-12. Other researchers have 

sought to explain why experts differ in their forecasts. Summers, et al (2004) discuss how experts 

differ in terms of their functioning and experience; Armstrong (1986) states that experts differ 

when they make adjustments for recent events whose effects have not yet been observed; 

Flugstad and Windschitl (2003) show that even numerical estimates of probability can be 

interpreted in different ways depending on the reasons provided for arriving at the estimate.  

Based on demand data from Sport Obermeyer we find that experts tend to be more 

accurate when they agree than when they do not agree. Figure 1 illustrates the relationship 

between forecast error and dispersion among expert’s forecasts. Here, the forecast error of 

demand is defined as the absolute value of difference between the realized value of demand and 

the experts’ mean forecast, and dispersion among experts’ forecasts is defined as the standard 

deviation of the point forecasts of the different experts. For clarity, data points have been 

combined into groups of four. (The data are first sorted on dispersion among experts’ forecasts 
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and then combined into groups of four.) The figure shows a positive correlation between 

dispersion and forecast error.  Motivated by this observation, we set up the following 

hypothesis: 

Hypothesis 1. Standard deviation of forecast error is positively correlated with the dispersion 

among experts’ forecasts. 

We test this hypothesis against the null hypothesis that the standard deviation of forecast error is 

uncorrelated with the dispersion among experts’ forecasts. 

We use scale as a control variable in testing the above hypothesis. Note that the standard 

deviation of forecast error is commonly known to increase with scale. For example, Conrad 

(1976) finds that Poisson distribution can be used to represent demand generating processes. Van 

Ryzin and Mahajan (1999) use a more general distributional assumption, where the standard 

deviation of demand is a power function of scale, consistent with our model described in §3. 

Similar to standard deviation of forecast error the dispersion between experts’ forecasts could 

also be increasing in scale. Thus it is possible to observe a positive correlation between the 

Figure 1: Relationship between Forecast Error and Dispersion among Experts’ Forecasts at 
Sport Obermeyer. 
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standard deviation of forecast error and the dispersion among experts’ forecasts error just because 

both variables are correlated with scale (omitted variable bias). Using scale as a control variable 

in the model avoids this bias. 

We also control for the presence of bias in forecasts. Biased forecasts produce non-zero 

forecast errors (asymptotically) that affect the computation of standard deviation of forecast error 

(i.e., it is no longer valid to use the absolute value of forecast error as a single point estimate of 

the standard deviation of forecast error).  

3. Model 

In this section we develop an empirical model to test the proposed hypothesis. We express the 

model in general terms because it could be applied to forecasts not only for demand or sales (as 

we do in this paper), but also for other random variables for which experts’ assessments are used. 

Let i index the set of random variables. Each random variable is forecasted by several 

experts and then its realization is observed. Thus, the i-th observation includes the experts’ 

forecasts for and realization of the i-th random variable. For example, each observation might 

refer to the demand realization for a different product. We do not require the set of experts to be 

the same for all random variables. 

We use the following notation: 

Xij: Forecast for random variable i by expert j; 

Xi: Mean of {Xij} across experts; 

Zi: Dispersion among experts’ forecasts, Xij ; 

 ( ) ( )2

i ij i i
j

Z = X -X n -1∑ , where ni is the number of experts used for random variable i; 

Yi: Actual realization of random variable i; 

σi: Standard deviation of random variable i; 

Si: Scale factor. We use Xi as the scale factor.  
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We use a simple regression model to predict random variable Yi. We assume that all 

experts are assigned equal weights in computing the forecast. Hence, the only explanatory 

variable used to predict Yi is the mean forecast, Xi. However, the mean forecast might be biased. 

We introduce intercept and slope parameters to account for any bias that might be present. The 

general form of the forecasting model is 

 Yi = α + βXi + εi (1) 

where εi are independent normally distributed error terms with mean 0 and variance σi
2. Here, we 

use the subscript i for σi
2 to model our hypothesis that the variance of the error term differs across 

observations. Particularly, Hypothesis 1 implies that σi is positively correlated with Zi. 

It is possible to test our hypothesis using both non-parametric and parametric tests. For a 

non-parametric test note that a positive correlation between σi and Zi implies heteroscedastic 

errors. Hence, a test of heteroscedasticity such as the Goldfeld-Quandt test could be used to test 

the hypothesis. The Spearman’s rank correlation test could also be adapted to test the hypothesis 

non-parametrically. These tests, explained in §3.1, are advantageous because they do not make 

any assumptions about the functional form of the relationship between σi and Zi. Hence, 

conclusions drawn from these tests are robust to erroneous assumptions that might otherwise be 

made in parametric estimation. The weakness of these tests is that they do not yield a method for 

estimating σi from Zi. 

On the other hand, parametric tests based on regression such as feasible generalized least 

squares (FGLS) estimation or maximum likelihood estimation (MLE) yield a method for 

estimating σi from Zi by assuming some functional form of the relationship between σi and Zi. 

We use a multiplicative functional form as specified in §3.2.  

3.1 Non-parametric tests 

We perform the Goldfeld-Quandt test for heteroscedasticity (Greene 2003). In order to execute 

this test we rank the observations based on dispersion among experts’ forecasts. The data are then 
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divided into two equal groups of high and low dispersion and the hypothesis is tested by 

comparing the estimates of standard error obtained from the regressions on these two groups.  

We also perform the Spearman’s rank correlation test to estimate the correlation between 

forecast error and dispersion among experts’ forecasts. In this test we first conduct an OLS 

regression of (1) using all observations. We define the absolute values of the residuals as forecast 

errors. We rank the forecast error for each observation and the corresponding dispersion among 

experts’ forecasts and compute the correlation between the rankings. Under the null hypothesis of 

homoscedastic errors this correlation should be zero. On the other hand, under the alternative 

hypothesis residuals become stochastically more variable as the dispersion among experts’ 

forecasts increases. Hence, the forecast error will be stochastically increasing in the dispersion 

among experts. Therefore, we expect to observe a positive correlation between forecast error and 

dispersion among experts’ forecasts under the alternative hypothesis. 

3.2 Parametric tests 

We consider the following regression model with multiplicative heteroscedasticity: 

 Yi = α + βXi + εi, (2) 

 εi ∼ N[0, σi
2], (3) 

 ( ) ( )1 2
i i iZ Sγ γσ = λ , (4) 

where α, β, λ, γ1 and γ2 are unknown parameters. Here, εi denotes the forecast error and we model 

the variance of the forecast error as a function of dispersion and scale raised to certain powers. 

We use this generalized regression model to test the hypothesis that the standard deviation of Yi 

is proportional to the dispersion among experts. 

This heteroscedasticity model has been well-studied in the econometrics literature. 

Harvey (1976) uses the term “multiplicative heteroscedasticity” to describe this model and 

analyzes the statistical properties of various estimators. Besides this model, various other 

functional forms such as additive, power function, and groupwise have been used in the 
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econometrics literature to represent heteroscedasticity. Judge et al. (1985) and Greene (2003) 

provide useful references and detailed descriptions of these models. The heteroscedastic 

regression model was originally applied to the estimation of household expenditure functions 

(Battese and Bonyhady 1981). 

The multiplicative form (4) is well suited to represent uncertainty in our case for several 

reasons. First, in application to demand forecasting, it is common to model the standard deviation 

of demand as having a multiplicative relationship with mean demand. We extend this model by 

incorporating dispersion as an additional variable. Second, a multiplicative model possesses 

constant elasticity with respect to the explanatory variables, which is intuitively appealing. 

Finally, the multiplicative model is more attractive than an additive model from an estimation 

point of view because (i) the likelihood function is bounded and no problems arise due to 

estimated variances being negative or zero, and (ii) the error terms in two-step estimation are 

asymptotically homoscedastic so that the estimated covariance matrix of the vector of parameters, 

(log λ, γ1, γ2), is consistent. A multiplicative model has the drawback that observations having 

zero dispersion cannot be included in the estimation when the multiplicative model is transformed 

using logarithms. We note that it is not only unlikely but also undesirable to have zero dispersion 

between experts. For example, Hogarth (1978) suggests that the experts selected for a forecasting 

task should not be strongly correlated with each other. 

We estimate model (2)-(4) by maximum likelihood estimation (MLE). Assuming that εi 

are normally distributed, the log-likelihood function is written as: 

 ( ) ( )
2

2 i
i 2

i i

en 1ln L ln 2 ln
2 2

⎡ ⎤⎛ ⎞= − π − σ +⎢ ⎥⎜ ⎟ σ⎝ ⎠ ⎣ ⎦
∑   

where ei are the residuals from (2) and n is the total number of observations. Substituting for 

variance from (4), we get: 

 [ ] ( ) ( )
1 2

2
i

1 i 2 i 2 2γ 2γ
i i i i i

en 1ln L=- ln(2π)+2lnλ - γ lnZ - γ lnS -
2 2λ Z S

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (5) 
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We follow the method enumerated in Greene (2003) to estimate the parameters using MLE. First, 

we fix γ1 and γ2 and estimate α, β and λ using the weighted least squares method. Then the 

likelihood function can be maximized by searching over values of γ1 and γ2. The standard errors 

of the estimates of the parameters are obtained by computing the inverse of the Hessian matrix. 

We also consider an alternative estimation method, feasible generalized least squares 

(FGLS), for its intuitive appeal. Note that (4) can be written as a log-log regression model as 

follows: 

log (εi)2 = 2log λ + 2γ1 log (Zi) + 2γ2 log (Si) + νi 

where νi = log(εi
2 / σi

2). Since the true values of α and β are unknown, εi is also unknown. 

Therefore, the estimators of the parameters of (2) and (4) can be obtained by a two-step procedure 

as follows. First, obtain the ordinary least squares (OLS) residuals for (2), ei = yi – a – bxi, where 

a and b are the OLS estimators for α and β, respectively. Then set up the regression equation 

 log (ei
2) ≈ 2log λ + 2γ1log (Zi)+ 2γ2log (Si)+ vi, (6) 

where vi ≈ log(ei
2 / σi

2). From (6), the OLS estimators of log λ, γ1 and γ2 are obtained. These 

estimators can be used to test the statistical significance of γ1 and γ2; γ1 > 0 would provide 

evidence for our hypothesis. Further, these estimators can be used to construct revised estimators 

of α and β, and test their statistical significance. 

While we use the FGLS procedure as an alternative, the results reported in this paper are 

based on MLE. A problem with the FGLS procedure is that if εi are normally distributed then vi 

are distributed as the logarithm of a χ2 random variable with one degree of freedom. Hence, vi 

have non-zero means.1  In fact, as the number of observations increases, the asymptotic mean and 

variance of vi are E[vi] = -1.2704 and Var[vi] = 4.9348, respectively. Thus, MLE yields more 

efficient estimators than the FGLS procedure (Harvey 1976). 

                                                 
1 We also note that because the computation of (6) is based on ei rather than εi (since the true values of α 
and β are unknown), vi are heteroscedastic and autocorrelated. However, as sample size increases vi will be 
independent and homoscedastic in the limit. 
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4. Data Description 

We use item-level demand data, firm-level sales data for retail firms, and firm-level sales data for 

manufacturing firms to test our hypothesis. The first dataset contains style-color level forecasts 

from individual experts and final demand information for 248 items. The experts were members 

of a committee specifically constituted to forecast demand. The committee consisted of seven 

members: the president, a vice president, two designers, and the managers of marketing, 

production, and customer service (Fisher and Raman 1996). We call this dataset the Sport 

Obermeyer dataset. Table 1 presents summary statistics for the key variables relevant to our 

study. The average dispersion among experts is 37.6% of forecasts and average forecast error is 

60.6 % of forecasts, both values being of the same order of magnitude. 

The second and third datasets, which we call the retail sales dataset and the 

manufacturing sales dataset, respectively are both taken from the Institutional Brokers Estimate 

System (I/B/E/S), a Thomson Financial Product, which provides analysts’ estimates of various 

financial measures of U.S. and international companies. The financial measures include sales 

(SAL), Earnings Per Share (EPS), Book Value Per Share (BPS), Cash Flow Per Share (CPS), and 

so forth for each fiscal year. Typically, analysts forecast these financial measures for up to three 

years ahead. I/B/E/S contains two datasets, a Detail History dataset and a Summary History 

dataset. The Summary History Dataset contains monthly summary statistics such as the mean and 

standard deviation of the analysts’ estimates available up to each month for the abovementioned 

financial measures. Analysts are expected to update I/B/E/S with any revisions to their forecasts 

and those who do not issue revised forecasts are presumed by I/B/E/S to stick to their previous 

forecasts. We merge this dataset with Detail History dataset which contains actual realizations of 

the financial measures.  

We use forecasts of annual sales of firms for the period 1997-2004 for our analysis (Data 

prior to 1997 contain forecasts of earnings but not of sales). We consider forecasts that are made 

90 days or more before the earnings report date (when sales are revealed) for each firm-year 
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combination. We classify these data based on the time difference between the forecast date and 

the earnings report date into seven buckets ranging from 3 months prior to earnings report date to 

9 or more months prior to earnings report date. Thus, each observation in the dataset is a firm-

month-year combination. 

I/B/E/S uses a proprietary scheme to classify firms based on business lines into 

sector/industry/group (SIG) codes. We identified SIG codes that contain firms in the retail and 

manufacturing sectors as shown in Tables 2a and 2b, respectively. There are 13 SIG codes 

mapped to the retail sales dataset and 140 SIG codes mapped to the manufacturing sales dataset. 

Table 3a summarizes the final retail sales dataset. It consists of 605 observations in each 

time bucket across 217 firms for the years 1998-2003. Not all firms have data available for each 

year. However, the same set of firms is represented in each time bucket. In other words, we 

consider only those firm-year combinations where we have forecasts available up to 9 months 

prior to the earnings report date. If a firm had forecasts going back up to less than 9 months from 

the earnings report date for a particular year, then that firm-year was dropped form the dataset to 

ensure comparability of results across time buckets. Two observations each had to be deleted 

from the 3-month dataset and the 9-month dataset because there was zero dispersion among 

experts in these observations. The number of experts in each observation range between 2 and 27, 

with an average of 5.1. The remaining rows of the table provide summary statistics for all the 

variables. The average dispersion among experts is 2.88% of forecasts and average forecast error 

is 4.80% of forecasts.  

Table 3b summarizes the manufacturing sales dataset. Here, we have 1171 observations 

in each time bucket across 479 firms for the same set of years. As with the retail sales dataset, not 

all firms have data available in each year. Further, only those firms were considered that had 

forecasts available up to 9 months or more prior to the earnings report date. In each time bucket, a 

few observations had to be deleted because of zero dispersion between experts. The average 
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number of experts in an observation is 3.75. The average dispersion among experts is 3.50% of 

forecasts and average forecast error is 5.84% of forecasts. 

5. Results 

This section presents our estimation results. We first note that the Goldfeld-Quandt test strongly 

rejects the null hypothesis of homoscedastic errors (p<0.001) for all three datasets. The 

Spearman’s rank correlation between dispersion among experts and the absolute value of forecast 

error is 0.385 for the Sport Obermeyer dataset, 0.504 for the retail sales dataset and 0.219 for the 

manufacturing sales dataset. These correlations are also statistically significant (p<0.0001). 

Hence, both non-parametric tests support our hypothesis that the standard deviation of forecast 

error increases with dispersion among experts’ forecasts. The rest of this section discusses the 

results of the parametric tests. 

Using MLE, the values of the log likelihood function for the Sport Obermeyer dataset for 

the full model, the restricted model with γ1 = 0, and the restricted model with γ1 = γ2 = 0 (i.e., 

homoscedastic errors) are -1708.0, -1710.4, and -1748.0, respectively. The likelihood ratio test 

using these values is statistically significant against the restriction γ1 = 0 (p = 0.03) as well as 

against the null hypothesis of homoscedastic errors (p<0.0001). Table 4 shows the values of the 

log likelihood function for the retail sales and the manufacturing sales datasets. We find that the 

likelihood ratio test is statistically significant for each month: in each case, the χ2 statistic from 

this test yields p<0.0001 both against the restriction γ1 = 0, and against the null hypothesis of 

homoscedastic errors. 

Tables 5, 6 and 7 present the coefficients’ estimates and corresponding standard errors for 

the three dataset. For the Sport Obermeyer dataset, the estimated coefficient for dispersion among 

experts, γ1, is 0.258 (statistically significant at p = 0.03) and the estimated coefficient for scale, γ2, 

is 0.602 (statistically significant at p<0.0001). For the remaining two datasets, all coefficients are 

statistically significant at p<0.0001. The estimate of γ1 ranges between 0.143 and 0.360 for the 
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retail sales dataset, and between 0.159 and 0.193 for the manufacturing sales dataset. The 

estimate of γ2 ranges between 0.549 and 0.729, and between 0.790 and 0.837 for the retail sales 

and the manufacturing sales datasets, respectively. These results consistently support our 

hypothesis that the standard deviation of Yi is positively correlated with dispersion among 

experts’ forecasts. Further, dispersion among experts’ forecasts has significant explanatory power 

over and above scale. We also note that the values of coefficients’ estimates for our datasets 

clarify the assumptions in previous research with respect to demand uncertainty. For example, 

Fisher and Raman (1996) and MacCormack and Verganti (2003) have assumed direct 

proportionality between the standard deviation of forecast error and dispersion among experts, 

i.e., γ1 = 1, γ2 = 0. Other researchers, e.g., van Ryzin and Mahajan (1999), have assumed that the 

standard deviation of forecast error is a power function of scale, i.e, γ1 = 0, γ2 ∈ [0,1). We find 

that the average values of the estimates for γ1 and γ2 across our datasets are 0.201 and 0.715, 

respectively. 

5.1 Longitudinal Analysis of Dataset 

We now compare the results of the longitudinal analysis of our dataset using forecasts made 3-9 

months before report date. Our observations lead to a conjecture that the estimate of γ1 increases 

as we approach the earnings report date, i.e., the closer the forecast date to the report date, the 

greater is the sensitivity of standard deviation of forecast error to dispersion among experts. 

However, we offer only one set of observations supporting this conjecture, and it needs to be 

tested with other datasets in future research. 

First, notice from Tables 3a and 3b that the average volatility of sales, measured as 

absolute percentage error, decreases with the time difference between the forecast date and the 

earnings report date. It decreases from 6.8% to 2.92% in the retail sales dataset, and from 7.58% 

to 4.06% in the manufacturing sales dataset. This decrease is intuitive because, with the approach 

of the earnings report date, a number of uncertainties related to the economy, industry, firm, etc. 
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that affect sales get resolved or diminish. Correspondingly, the coefficient of variation of 

dispersion also decreases with time, going from 3.4% to 2.3% for the retail sales dataset, and 

from 3.9% to 3.1% for the manufacturing sales datasets. This decrease shows that experts agree 

with each other more and more closely as we approach the earnings report date. Also, consistent 

with the decrease in the coefficient of variation of sales, we find that the estimate of λ decreases 

significantly with time. It declines from 0.774 (nine months) to 0.345 (three months) for the retail 

sales dataset, and from 0.280 (nine months) to 0.137 (three months) for the manufacturing sales 

dataset. Finally the coefficient of variation of sales measured from our model (i.e., the average of 

( ) ( )1 2
i i iZ S Xγ γλ α + β  ) decreases with time from 10.2% to 4.7% for the retail sales dataset, and 

from 11.4% to 7.5% for the manufacturing sales dataset. 

The estimates of γ1 for the two datasets vary slightly with the time difference between the 

forecast date and the earnings report date. For the retail sales dataset, the estimate increases from 

0.166 to 0.282 as we approach the earnings report date. A Bonferroni test on the coefficients’ 

estimates shows that the estimates of γ1 are statistically similar for months 6 - 9. They are also 

statistically similar for months 3 - 5. However, the estimate obtained for month 5 is found to be 

statistically different (p < 0.0001) from that obtained for month 6. For the manufacturing sales 

dataset, the estimates of γ1 increase from 0.169 to 0.178 as we approach the earnings report date. 

This increase is consistent with the retail sales dataset but not statistically significant. We believe 

that these differences may occur due to the release of quarterly earnings reports every 3 months. 

Quarterly reports provide information about how a firm performed in the previous quarter. This 

enables experts to adjust their forecasts of annual sales for the firm. It is possible that, as we 

approach the earnings report date, the dispersion among experts reflects firm-specific 

uncertainties more accurately so that γ1 increases in magnitude, as seen in the retail sales dataset. 

However further research with new datasets and new business scenarios would be needed to 

analyze the effect of information availability on the coefficients in our model. 
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6. Conclusions 

Standard deviation has been used extensively in models of decision-making, but estimating 

standard deviation remains a challenge. Recent literature has provided many methods. This paper 

augments this literature by providing a method to estimate standard deviation using dispersion 

among point forecasts obtained from multiple experts and managers. It also shows empirically 

that dispersion among experts’ forecasts is a good measure of the volatility of demand. We 

consider the effect of timing of expert forecasts on the standard deviation of forecast error. 

Forecasts of sales from I/B/E/S were made about three to nine months before earnings report date. 

As expected, the standard deviation of forecast error obtained from our model decreases with 

time as we approach the earnings report date. Tests of hypothesis of the effects of  dispersion and 

scale on standard deviation of forecast error show consistent results in the longitudinal analysis.  

Besides the empirical evidence reported in this paper we have tested our hypothesis using 

a dataset containing forecasts of firms’ earnings-per-share (EPS) obtained from the I/B/E/S 

database. Using about 25,000 observations across 18 years from 1976 to 1993, we found that the 

standard deviation of forecast error was positively correlated with dispersion among experts in 

each year. However, we do not include the results of this analysis in the paper because it is well 

known that EPS data can be managed by firms to reflect analysts’ forecasts making it harder to 

interpret the results in this context. To our knowledge, no such drawbacks have been reported for 

sales data. 

Whereas we considered only two explanatory variables, dispersion and scale, it is 

possible to extend our model to a larger set of variables. Uncertainty of demand might be 

correlated with other factors such as firm-specific risk, market uncertainty, macroeconomic 

conditions, and product characteristics (e.g., basic versus fashion apparel). For example, given the 

mean forecast for an item and dispersion among experts, the standard deviation of the forecast 

error may increase with the volatility of a market index. To a certain extent dispersion among 

experts would capture uncertainties related to such factors since experts should consider all 
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available relevant information (Makridakis and Wheelwright 1987) in forecasting demand. 

However, our model can easily be augmented by including additional factors in the multiplicative 

model (4) to estimate their effects on demand uncertainty. 

One limitation of our study is that we assume all analysts to be equally capable. Thus, we 

do not consider the effects of the composition of analysts’ committees to derive our results. Given 

suitable data, it would be easy to extend our methodology to analyze the quality of predictions 

made by different analysts and, thus, compare their capabilities. This would require forecasts of 

several random variables by the same set of analysts. This research can also be extended by 

applying our model to different datasets in future to confirm the findings in this paper and analyze 

dispersion among experts’ forecasts. 
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Table 1: Summary Statistics for Demand Data from Sport Obermeyer 

(Number of items = 248, Number of experts who forecast for each item = 7) 

 

Variable Mean 
Standard 
Deviation Minimum Maximum 

Actual Sales, Yi 382.15 348.29 4.00 1720.00 
Average Forecast (Scale), Xi 367.45 214.71 60.00 1151.67 
Coefficient of variation of 
forecasts, Zi/Xi  (%) 

37.6 14.4 5.6 95.0 

Absolute Percentage Error, 
|Yi – Xi| / Xi (%) 

60.6 50.9 0.4 380.0 

 
 
 

Table 2a: Mapping of SIG codes to Retail Dataset 
 

SIG Codes Sector Name Industry Name Examples of Group Names 
40301, 40302 Consumer 

Services 
Retailing – Foods Grocery Chains, Food 

Wholesalers. 

40401 – 40406, 
40408 – 40413 

Consumer 
Services 

Retailing - Goods Department Stores, Specialty 
Retailers, Variety Chains, 
Drug Chains, Electronics 
Chains, etc. 

 
 
 

Table 2b: Sample Mapping of SIG codes to Manufacturing Dataset 
 

SIG Codes Sector Name Examples of Industry and Group Names 
30001 – 39901 Consumer Non-

Durables 
 

Apparel, Shoes, Cosmetics, Packaged foods, 
Beverages, Toys and games, etc. 

50101 – 59901 Consumer Durables Auto, Auto Parts, Home furnishings, Tools and 
hardware, etc. 
 

80101 – 80302, 
80701 – 81102 

Technology Computer manufacturers, Semiconductors, 
Electronic devices, Photo-optical equipment, etc. 
 

90201 – 90501, 
90701 – 91201 

Basic Industries Chemical, Containers, Metal Fabrication, Fertilizers, 
Steel, Textile, etc. 
 

100101 – 109901 Capital Goods Defence, Auto OEMs, Electrical, Machinery, 
Building material, etc. 
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Table 3a: Summary Statistics for Retail Sales Data 

 
Time difference between forecast date and earnings report date 

(in months) 
Variable Statistic 3 4 5 6 7 8 9 

Number of 
firms 
represented 

 215 217 217 217 217 217 215 

Number of 
observations 

 603 605 605 605 605 605 603 

Mean 5.3 5.2 5.2 5.2 5.0 4.9 4.9 
Std. 
Deviation 

3.8 3.8 3.8 3.7 3.5 3.5 3.3 

Minimum 2 2 2 2 2 2 2 

Number of 
experts per 
observation 

Maximum 24 24 27 26 25 25 22 
Mean 7761 7737 7737 7737 7737 7737 7737 
Std. 
Deviation 

21328 21296 21296 21296 21296 21296 21296 

Minimum 6.9 6.9 6.9 6.9 6.9 6.9 6.9 

Actual 
Sales, Yi 

Maximum 258681 258681 258681 258681 258681 258681 258681
Mean 7761 7754 7757 7754 7757 7755 7802 
Std. 
Deviation 

21330 21308 21339 21297 21306 21339 21550 

Minimum 8.8 9.1 9.1 8.5 7.9 7.9 9.5 

Actual 
Forecast 
(Scale), Xi 

Maximum 258201 257821 257609 257043 257782 259520 267295
Mean 2.3 2.5 2.7 2.8 3.2 3.3 3.4 
Std. 
Deviation 

3.7 3.2 3.6 3.7 4.6 5.6 5.6 

Minimum 0.02 0.04 0.06 0.02 0.0023 0.0013 0.0023 

Coefficient 
of variation 
of forecasts, 
Zi/Xi (%) 

Maximum 41.1 28.5 33.0 34.0 46.0 80.0 80.0 
Mean 2.92 3.53 4.08 4.70 5.70 6.11 6.80 
Std. 
Deviation 

4.52 4.90 5.67 6.73 8.27 8.80 9.69 

Minimum 0.000 0.001 0.007 0.001 0.001 0.011 0.0001 

Absolute 
Percentage 
Error, 
|Yi – Xi| / Xi 
(%) Maximum 47.53 49.40 49.40 65.78 80.90 83.30 83.30 
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Table 3b: Summary Statistics for Manufacturing Sales Data 
 

Time difference between forecast date and earnings report date 
(in months) 

Variable Statistic 3 4 5 6 7 8 9 
Number of 
firms 
represented 

 479 479 479 478 479 479 479 

Number of 
observations 

 1165 1165 1165 1167 1164 1165 1171 

Mean 4.03 3.94 3.88 3.52 3.76 3.72 3.38 
Std. 
Deviation 

2.54 2.46 2.39 2.20 2.37 2.33 2.08 

Minimum 2 2 2 2 2 2 2 

Number of 
experts per 
observation 

Maximum 22 22 22 24 22 21 20 
Mean 7208 7208 7208 7139 7214 7208 7264 
Std. 
Deviation 

19077 19077 19077 18918 19084 19077 19076 

Minimum 18.3 18.3 18.3 18.3 18.3 18.3 18.3 

Actual 
Sales, Yi 

Maximum 186763 186763 186763 186763 186763 186763 186763
Mean 7001 7039 7049 6964 7061 7050 7062 
Std. 
Deviation 

17593 17801 17808 17546 17857 17852 17822 

Minimum 17.40 16.73 16.73 16.73 16.73 16.73 16.73 

Actual 
Forecast 
(Scale), Xi 

Maximum 164174 164101 186763 163999 168862 168058 167798
Mean 3.1 3.2 3.3 3.5 3.7 3.8 3.9 
Std. 
Deviation 

4.9 4.6 4.7 4.8 5.0 5.0 5.0 

Minimum 0.0064 0.0049 0.0049 0.0049 0.01 0.01 0.01 

Coefficient 
of variation 
of forecasts, 
Zi/Xi (%) 

Maximum 52 52 52 52 52 52 52 
Mean 4.06 4.74 5.11 5.71 6.60 7.10 7.58 
Std. 
Deviation 

6.90 7.14 7.35 7.68 8.33 8.78 9.15 

Minimum 0.0001 0.0001 0.0007 0.0080 0.0080 0.0008 0.0007 

Absolute 
Percentage 
Error, 
|Yi – Xi| / Xi 
(%) Maximum 79 79 79 82 82 82 79 
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Table 4: Loglikelihood Values of the MLE Results for Retail and Manufacturing Sales 
Datasets 

 
Time difference between forecast date and earnings report date 

(in months) 
 3 4 5 6 7 8 9 
Retail Sales Dataset       
Full model -3574 -3666 -3715 -3882 -3987 -4016 -4050
γ1 = 0 -3657 -3735 -3810 -3905 -4011 -4047 -4082
γ1 = 0 and γ2 = 0 -4564 -4621 -4655 -4752 -4753 -4767 -4902
 
Manufacturing Sales Dataset      
Full model -7378 -7471 -7538 -7602 -7738 -7813 -7874
γ1 = 0 -7479 -7557 -7611 -7670 -7803 -7875 -7934
γ1 = 0 and γ2 = 0 -10620 -10645 -10715 -10790 -10823 -10851 -10916
 
 
 
 
 

Table 5: MLE Results for the Sport Obermeyer Data 
 

Sport Obermeyer Data 
Parameter Estimate Std. Error 

α -17.18 19.748 
β 1.09** 0.081 
λ 2.25* 0.974 
γ1 0.258* 0.121 
γ2 0.602** 0.114 

 
*,**: statistically significant at 0.05, 0.01. 
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Table 6: MLE Results for the Longitudinal Study of Retail Sales Data 
 

Time difference between forecast date and earnings report date 
(in months) 

Parameter 3 4 5 6 7 8 9 
α -0.827 

(0.526) 
-0.525 
(0.542) 

-0.427 
(0.581) 

-0.803 
(0.995) 

0.650 
(1.357) 

0.886 
(1.469) 

1.261 
(1.763) 

β 1.002** 
(0.002) 

1.000** 
(0.002) 

0.999** 
(0.002) 

1.002** 
(0.003) 

1.000** 
(0.003) 

1.000** 
(0.003) 

1.000** 
(0.003) 

λ 0.345** 
(0.058) 

0.350** 
(0.060) 

0.480** 
(0.080) 

0.322** 
(0.049) 

0.560** 
(0.090) 

0.652** 
(0.105) 

0.774** 
(0.108) 

γ1 0.282** 
(0.024) 

0.290** 
(0.027) 

0.360** 
(0.028) 

0.160** 
(0.027) 

0.143** 
(0.026) 

0.147** 
(0.025) 

0.166** 
(0.020) 

γ2 0.611** 
(0.029) 

0.615** 
(0.030) 

0.549** 
(0.030) 

0.729** 
(0.029) 

0.685** 
(0.029) 

0.670** 
(0.029) 

0.646** 
(0.026) 

Average of  
[Dispersion / 

Mean Forecast ] 
(%) 

2.3 2.5 2.6 2.8 3.2 3.3 3.4 

Average CV of 
Sales (%) 

4.7 5.4 5.9 7.0 9.3 9.5 10.2 

 
Note: (i) **: statistically significant at 0.01. (ii) Average CV (coefficient of variation) of sales is 
computed using (4) as the average of ( ) ( )1 2

i i iZ S Xγ γλ α + β  across all observations. 
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Table 7: MLE Results for the Longitudinal Study of Manufacturing Sales Data 
 

Time difference between forecast date and earnings report date 
(in months) 

Parameter 3 4 5 6 7 8 9 
α 0.085 

(0.409) 
0.349 

(0.454) 
0.341 

(0.497) 
0.182 

(0.551) 
-0.13 

(0.616) 
0.021 

(0.696) 
0.204 

(0.692) 

β 1.008** 
(0.002) 

1.008** 
(0.002) 

1.007** 
(0.002) 

1.006** 
(0.003) 

1.008** 
(0.003) 

1.008** 
(0.003) 

1.007** 
(0.003) 

λ 0.137** 
(0.016) 

0.181** 
(0.020) 

0.197** 
(0.020) 

0.210** 
(0.024) 

0.240** 
(0.029) 

0.280** 
(0.030) 

0.280** 
(0.030) 

γ1 0.178** 
(0.016) 

0.193** 
(0.018) 

0.176** 
(0.018) 

0.169** 
(0.018) 

0.167** 
(0.018) 

0.159** 
(0.017) 

0.169** 
(0.018) 

γ2 0.837** 
(0.020) 

0.800** 
(0.020) 

0.800** 
(0.020) 

0.810** 
(0.020) 

0.790** 
(0.020) 

0.790** 
(0.020) 

0.790** 
(0.020) 

Average of 
[Dispersion / 

Mean Forecast] 
(%) 

3.1 3.2 3.3 3.5 3.8 3.8 3.9 

Average CV of 
Sales (%) 

7.5 8.0 8.6 9.1 10.2 11.0 11.4 

 
Note: (i) **: statistically significant at 0.01. (ii) Average CV (coefficient of variation) of sales is 
computed using (4) as the average of ( ) ( )1 2

i i iZ S Xγ γλ α + β  across all observations. 
 


