
FUNCTIONAL DEPENDENCIES AND
INCOMPLETE INFORMATION

Yannis Vass i l i ou

Center f o r Research on Informat ion Systems
Computer Appl ica t ions and Information Systems Area

Graduate School of Business Adminis t ra t ion
New York Un ive r s i t y

Working Paper S e r i e s

CRIS 816

GBA #81-08 (CR)

Published i n VLDB '80 Conference Proceedings, Montreal , October 1980.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

Funckiond Dependencies aad Incomplete Morzrntion

Computer Systems Research Group
Lintversity of Toronto

Toronto. Canada M5S 1.41

Abstract
Functional dependencies play an important role in

relational database design. They are defined in the con-
text of a single relation which a t all times must contain
tuples with non-null entries. In this paper we examine
an extension of the functional dependency interpreta-
tion t o handle null values, that is, entries in tuples that
represent incomplete information in a relational data-
base. A compiete axiomatization of inference rules for
extended functionai dependencies is also presented.
Only after having such results is it possible to taik about
decompositions and normalization theory in a context of
incomplete information. Finally, we show that there are
several practical advantages in using nulls and a weaker
notion of constraint satisfiability.

1. Introduction
Work on relational database design started soon

after the publication of the pilot papers on the rela-
tional model [Codd 7C]. [Codd 721. Normalization, which
is a relational schema design process, centers around
the notion of data dependencies, a purely syntactic
notion, that has been introduced t o c a p t ~ r e semantics
in a relationa! database. Tnese dependencies are used
as guidelines for the design of a relational schema which
is conceptually meaningful and is free of certain update
anomalies [Date 771. The theory of dependencies, in
particular of the functional ones, has been studied in
depth [aeeri e t a1 781.

Data dependencies are defined between attributes
that belong to a single relation. As a starting point
then, we need to assume tha t the portion of the real
world that we wish to represent via the relational model
can be modelled with one relation which contains all the
attributes, This relation is called the unive?-scl relation.
Sound and complete ruies from which other dependen-
cies are logically inferred may be considered only under
this condition. Furthermore, a t the instance level, any
multi-relation database produced by a normalization
pracess can be thought of as a coilection of projections
of a universal relation. The above is called the Unavw-
s a l Relation Assumption and is present, implicitly o r
explicitly, in any work on relational database design
which uses the theory of dependencies. We note that
the assumption has two aspects. First, we have :he
requirement of the existence of a universal relation
which can mode! the real world. The second aspect is

t Author's current ad4ress Graduate School of Buslners Admxh-
tration, Computer Appllcatloos and infomiion Syerems. New York
Umversdy

the requtrement that any instance of a multi-reiatian
database which also models the real world corresp3ncs
in a precise and restrictive way to an lnstjtnce of :he
unlrersal relation.

The validity of this fundamental assumption has
been questioned both on practicai and recentiy [Bern-
stein and Goodmac 891 on theoretical grounes. Tat
theoretical attacks concentrate on the second cspect of
the assumption where it ia shown that the benefits cf
normalized schemas (e . ~ . no update anomalies) tl?e icst
when the assumption is made. From a practicai point, ir
is not realistic to assume that a universal reiarior,
instance will have ail rows filled with vaiues, either in its
initial instance or after being recovered (via joins) fror.
decompositions. I t is therefore necessary to fill t :?~
"gaps" which are created 'in the universal xelation
instance with some special values, called null vaiues.
These values are forms of iqcomplete information end
ways to t rea t thern range from ru6imentary ones j e . ~ .
zeros, values like any other) to more sophisticated ones
[Codd 791. [Lipski 79j . An overview of our work on the
subject [Vassiiiou 791 appears in section 2. I t is noted
that a!; the above reported. research considers only the
retrieval aspects of the problem. That is, how q u e r i ~ s
behave when nvil values are present iii the database.
The general approach is to extend existing functiann
and operations in order to have them defined on ~ ~ 1 1 s .
Often. tke classical two-valued logic is abandoned f o r
more appropriate n-valued logics and/or modal iogics.

The semantic rules of a database (in our case the
data depe~denc ie s) are defined in a context of no nrrlis.
In order to allow for n7;lls we must careful* redefze
dependencies (more precisely, tiieir interpretations)
together with their requirements of satisfiaSility a112
inference rules. The sat'sEability requirements give us
a pattern of allowable nulls in a (universal) relation.

In this paper, we extend the nction of a functional
dependency (F3) interpetation to app!y to nzlis. We
then present satisfiability requirements and give neces-
sary and sutficient conditions under which these
requirements are met. Finally, the properties of E'Ds
are examined and inference rilies, w.hich are s h ~ a n t 3
be sound and complete are presented. We claim thaL
only af ter having such results is it conceivable to safely
talk about deco~pos i t i ons and normalization theory
when nulls a re allowed in relation instances.

The next section briefly overviews the framework of
our work. Functional depenciencies are discussed ir
section 3. In the fourth section, the interpretations of
the dependencies are redefined to apply to nulls, and
conditions a re presented for the FDs to meet
satisfiability requirements. Section 5 examines proper-
ties of FDs, specu7cally inference rules. In this section

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

- .~ - .-
we depart from our system to work with an equivalent
but well-axiomatized propositional Iogic system. The
technique i s t he same as the one used i;i [Fagin 771.
Ways of efficiently testing for FD-satisfiabiiitjr are
presented in section 6. In addition, the notion of a
"minimally incomplete" relation instance is introduced,
and tine rules for reaching such an instance are shown
to constitute a finite Church-Rosser system. In our con-
cluding remarks we discuss the importance of our
results and outline our on-going research aimed a t
extending these results to include modification opera-
tions. The connection with the universal relation
assumption is also discussed.

2. A Treatment of Null Values

A formal treatment for two of the manifestations of
a null value was presented in [Vassiliou 791. One can use
null to represent a value which exists, but is presently
unknown t o the database. This type of null is called
missing. Null may also be interpreted as a value which
is inconsistent - it is known to the database a s more
than one value. We note that. even tho-ugh the latter
null may in general appear in a database, it has no place
in a database where certain semantic rules are reqzired
to be valid. Therefore, we do not discuss the incon-
sistent null in the present context, concentrating on the
missing null which we call simply null.

The inclusion of null in domains of database values
presents complications when we consider the behavior
of functions or operations on these domains. We use a
uniform rule to extend all the functions which has a sim-
ple intuitive explanation. Since a null is an existing
value, although unknown a t present, it must represent
one of the regular values in the domain. Any fu~c t ion ,
which is evaluated on the null, will take a particular
value in its range & if, for every non-null in the
domain, the function evaluates to the same value. That
is, for all values in the domain in turn, we substitute the
null with one value and evaluate the function as usual.
If all evaluations have the same result, it means that our
incomplete knowledge is not essential for this function -
it does not mat ter what the value represented as null
is. Otherwise. we are not able to give a precise evalua-
tion for the function.

The above intuitive idea is supported theoretically
by Scott's mathematied theory of computation [Stoy
771. It is shown in [Vassiliou 791 that the introduction of
the null in a database domain makes the domain a Ed-
t ice with an approximation ordering. Null carries less
information than all other domain values. Thus, it
approximates all the other values. The extensions of all
functions defined on these domains must be continuous
according to the theory. One of these continuous exten-
sions, called the least e z l a s i o n , is the theoretical for-
mulation of our intuitive rule. Al l values that the func-
tion takes, when evaiuated on domain values, are col-
lected and, according to the least extension rule, the
best possible approximation to the correct value (least
upper bound in the lattice of values) is returned.

As a simple illustration, consider queries (functions
from relation tuples to truth-values) on the reiation
R(name, marital-status). Assume that the domain of
marital-status has only two values "married" and "sin-
gle", and that there is a tuple ("John", null) ir an
instance of R. If ti:? query C: i:; "Is John merri,-.d?", r e
evaluate the query for each of the rnarilal-status
values and rve retirrn the least u p e r bound of the two

answers. In this case: Q("John'..
null)=tub fyes,nc j=u&noum. On the other hand, fs r
the query Q' "Is John either n w r i e d or single?", accord-
ing to our rule: Q'("John".nullj=L~b !yes, yes {=yes.

We note that the use of such an evaluation rule has
an unacceptable cornpiexity for practical cons~dera-
tions. In [Vassiliou 791. algoriLhrns were presented fo:
syntac: LIC - query transformations so that no substit~it;or.:
arc necessary for the evaluation.

3. Func t i cud Dependencies and their Interpretations

Let I? be a relation schelne and .Y,Y be sets O:
attributes in 19 (not necessarily distinct) A f : 1 - - - 7 -) - ?

(FD) denoted by f X -, Y , or s~mp-j - f As :
statement about R For example, cons~der the r e at19-
scheme 1n figure 1.1 and the statement 'Employees
have only one salary and work in only one department
The expresslon of this semantic rule ts t2e funzttond
dependency E# -r SL,D+. kccord~ngly, tne interpreta-
tton of an FD is a predzcate on Instances of R define;
as?

I jtme if for every t . t ' in r, either I [Xjr t ' [~] .
or, if t [X] = t S [X j , then f [Y] = i Z i Y]

p s e in any other case

P;e say that f holds (or is sa t i s f i ed , or is true) in rl

relation instance r if f (7) is equal to t m e . Furtner-
more, f is valid for R if it holds in all its instances. I t is
trivial to verify that the functional dependezcies
E# -+ SL,D# a ~ d D# -, CT hold in the instance T of
figure 1.2.

For convenience, we now modify our notation to
have f defined as a function m t h two arguments, a
tuple and a relation instance. Hence,

(

if for every t' in r, either t [X l t t ' [XI,
or, if f [X] = t ' [X] , then t [Y] = t ' [Y]

f (t . 7) =
l a k e in any other case

and say that f holds in r if for every i! in r
f (t , r) = Lme.

When a set of FDs hold in a relation instance r,
there are usually some other dependencies tha t arso
hold in r. More formally. a functional dependency f is
implied by a set of F T s F = [f l , f 2 , fi] if there is r,o
counterexample relation T' , such that F holds in T' bat f
does not hold in T ' . A very important result which con-
stitutes the basis for much research on FDs is
Armstrong's inference rules which are sound and com-
plete for functional dependencies.

We now make two observations commonly used for
proofs about FDs (sometimes implicitiy). Let
2 T = { s IsCr, / s / = 2] (i.e. 2T is the se t of all the
two-tuple subrelations of a relation instance T).

i 'I?lc ryrrl;:! r denotes a rclation mstanze or simply re!-tlor?, t , f '
dcnntc t ~ p f c s in r. a d t [XI is the projecbon of t on the velues of
thc attnbuics In X.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

Egux 1.1 An exwnple relation scheme h id functional
dependencies.

R (I?#. SL, D#, CT)

Attribute explanation

E# - employee serial number
SL - salary
D - department number of the employee
CT - contract type.

Functional dependencies defined, f : E# -t SL,D#, and
f2:D# -tCT

Fieure 1.2 An instance of the relation, scheme R.

Egax= 1.3 An instance of R with nulls .

FiPure 2 Examples of FDs with nulls

Consider the relation scheme R(A, B, C), the FD
f : AB -, C, and the following four instances of R (a "-"
means nul l) .

We use Proposition 1 (t i represents the first tuple in
each instance).

f (t r , r l) = t rue because of [T2]

f (t l , rz) = t rue because of [T3]

f (t l , r3) = t m e because of [T3]

Assume that for the instance r q the domain of A has only
two values: a 1, az.

f (t r4) = false because of [FZ]

[I] The functional dependency f holds r r , r LC. f holdi-
every (two-tuple) relatlon in 2T.

[Z] The functional dependency f is implied by a set of
functional dependencies F iff f is implied by F in
the world of two-tuple relations.

These observations allow us t o consider only tpi2-
tuple relations in proofs about functional depzndenc e s
vvlthout loss of gecerahty. FVe will see, however, that.
these observat~ons are not always correct when nu.!
values are allowed.

4. Functional Dependencies in Relations with Null
Values

From this point on, we assume tha t n u l l s are
allowed in relation instances. An example of scch ari
instance is figure 1.3. To extend the notion of a fur,=-
tional dependency (more precisely, i ts in terprz tc t ion as
a function) we use the least extension r u l e . 5 m c
definitions are needed first. Let t be a tuple which rnsy
have null values. We define a completion sf t as a tup:c
t' in which we substitute for all n z l l values and t' agrees
with t in all the values except ;vhere a value in i is nz:i
The se t of all completions ilP of a tupie t on a set sf
attributes R is xveli-defined. f

AP(t ,R) = f t ' j t ' 1s a completion of t j
Similarly, we define AP(r,R), the se t of all completior,~
of T projected on R.

BP(r,R) = {T' / t ' E r ' if t i is a completion o f t , t c r 1
We are now ready t o present the extens!on of the
interpretation of a functional dependency f : X-Y . Let r
be a relation and t a tuple.

if all values in
f [xy], T [X ~]
are not null

L?lb [f (t ' , ~ ') i otherwise

t' E - ~ P (is=), r' EAP (r,XY)]

We use f" to denote the extension o f f , but from now c r
we will drop the "'" for simplicity. The above de5ni t i r .
is refined on a case-by-case basis (considering the n- i i i
as one of the t [XI values or as one of the t [Y] vaiuesj t o
establish necessary and sufficient conditions for an 73
to take a particular truth vaiue. Eefore we precer.:
these conditions formaily, we give an informal esplana-
tion. Recall that the value o f f (t , ~) , with a n?;!l appear-
ing in t [X Y] . is false (t rue) only when it evaluates to
false (t m e) for n?l substitutions or' the n u l l value. Fcr
the discussion below, the concept of an attribute
domain and its size is important. Domains are Enite and
are assumed known. Further restrictions on d0rnair.s
will be presented and justified.

Assume first that the nul l appears in t [I-] and tb.2:
Y has only one attribute. Tribially, f (t . ~) = f r d e xnen-
ever t [X] appears uniquely in T. \Then t [X] is r . 0 ~
unique in T, say t [X] = t ' [X] for some tuple f' in r , 15--e

may not claim that f (t , r) = trtie. It is possible to su5-
stitute the null in t [Y] so that f (t , r) is jaise w i t h the

f Thc name AP is not. arbitrary. it comes from the fect thzt f i e
completicns of t arc the non-null tupics that i apprcztmatcs m t h e
latiicc of tuplcs.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

substituted value (e.g. any value that makes
: r Y] + t ' [Y j) . Sowever, we also may not c l a ~ m that
f (t . r) = f a l s e since we can make ~t t r u e ~f we substitute
t [Y] m t h t ' [Y] . Hence, depending on how we subshtute
for the nu11 the FD is e ~ t h e r t7-7x3 or f a l s e . Sincc we do
not know what thc actual value of the n u l l is we take the
l u b I t rue , f a l s e j = u n k n o u n as the value of the TD on t
and r.

Assume now that the n u l l appears in t [X] (X can
consist of more than one attribute). The dependency
will evaluate to t r u e in two cases. F i s t , there is no
tuple in r whose projection on X is a completion of t [X I
(i.e. anytime we substitute for the n u l l we end-up with a
unique t [X] among the tuples of r) . In this case.
f (t , r) = t r u e trivially. Second, for each tuple t' in T such
that t ' [X] is a completion of t [X] , we also have
t ' [Y] = t [Y] . There is exactly one case where the value
of the FD on t and r is f a l s e because of a n u l l in t [X I .
This case arises when we run out of domain values, while
attempting substitutions of this n u l l , while a t the same
time trying t o keep the dependency n o t fa lse , i.e. a sub-
stitution for which the dependency is t m e . For this to
happen, it must be the case, first, that all completions
of t appear in r. (Otherwise, we may substitute for the
nu11 and create a completion that does not appear in T ,
thus ensuring tha t f (t , r)* fa lse .) In addition. since for
all such completions we must ensure that the depen-
dency is f a l s e , it is required that the t [Y] value is
unique m o n g ail the f ' [Y] values where t ' is a comple-
tion of t that appears in r. This is the only case where a
n u l l in a tuple f makes the value of f (t , r) identically
equal to f a l s e . Formally:

Proposition 1
Let R be a relation scheme, X, Y S R , such tha t

XnY=qi and X V Y = R , f : X -+ Y be a functional
dependency in R. r be an instance of R. and t a tuple of
r. Assume that T - t t j has no nulls. Alternatively, con-
sider all completions of r -It { iteratively.

f (t . 7) = t r u e ift one of the following conditions holds

, [T I] t [X Y] has no n u l l s and there exists no t' in r such
tha t t l [X] = t [XI and t 8 [Y] * f [Y] .

[T2] t [Y] has a n u l l , t [X] has no n u l l s and there exists
no t' in r such that t [X] = f i [X] .

IT31 t [X] has a n u l l , t [Y] has no n u l l s and either no
completion of t [X I is in r , or if a completion of t [X I
is in 7 , say t ' [X] , then t [Y] = t ' [Y] .

f (t , r) = f a l s e ift one of the following conditions holds

[Fl] t [X Y] has no n u i l s and there exists a tuple t ' in r
such that t [X]=t ' [X I and t [Y j# t ' [Y !

[F2] t [X I has a n u l l , t [Y] has no n u l l s and both:

a.- all completions of t [X I appear in r ,

b.- t [Y] is unique among all those completions.

f (t , ~) = u n k n o w n in all the other cases.

Examples of the above are given in figure 2. We say
that a functional dependency f (s t r o n g l y) ho lds in an
instance T i f f (t . r) = t r u e for every tuple t in r. In add?-
tion, we say that a functional dependency f
weakly ho lds in an instance r if f (t ,r)* f a l s e for every
tuple t in r. The second notion of satisfiability is
justified intuitively since, in a framework of incomplete
information, it is natural to weaken our expectations
and allow for a margin of uncertainty in our semantic
rules (as long as this does not lead to a certain denial -
contradiction - of the constrailt).

We now c o n e to a separate issue which is th, con-
sideration of rules under which uncertain situatioils
take spzcific interpretations when the requirement of
satisfiability is enforced. That is, r-ales that guide us ir;
substituting n u l l s . In this section we on!y informally
discuss the rules. Their formalization and the examina-
tion of their properties is presented in section 6. A n u l l
may be substituted only if there is exactly one option
making the dependency : m e . For instance, i f the n u l l
appears among the f [Y] values, t [X I has no n u l l s ar.d
there is a tuple t' in r with t [X] = t ' [X] , we may su-bstl-
tute the t [Y] value with the t ' [Y] value. The
justification of this substitutior. is two-fold. First, the
resulting tuple has more information than the previous
one. Second, and most important, this new information
is not arbitrary - it is the only piece of information that
makes the dependency t r u e . The value which is substi-
tuted is the only value that a user can insert without the
creation of an inconsistency. For substituting n u l l s in
t [X] the rule is more complicated and, u n f ~ r t ~ a t e l y , is
domain-dependent. One of the foilowing two conditions
must be met for such a substitution to take plsce.

(1) All completions of t [XI appear in r, t [Y] is not n u l l ,
and there exists exactly one completion of t [XI in
r , say t l : X j , such that f ' [Y] = t [Y j . The n u l l in t [XI
may be substituted with the corresponding value Lz
1x1.

(2) All completions of t LX] appear in r except one, f [Y J
is not n u l l , and for all tuples t' in r , such tha t t [XI
is a completion of t [X I , t ' [Y] has no n?rlls and 1s
distinct from t [Y] . The n u l l In t [X I may be substl-
tuted wlth the value of the d o m a n of X that does
not appear In T.

Both conditions are not easy t o test. In addition
they seem unlikely to occur. For practical reasons, it
may be better to leave the database incomplete, chat is,
prohibit substitutions of n u l l s in f [X I .

Before the conclusion of this section, we discuss
the two observations we made in the previous section
about two-tuple relations. The observations allow US to
determine whether a dependency holds or is inferred by
just looking a t two-tuples. It can be trivially verified
that both observations are valid when we consider the
strong version of FD satisfiability. On the other hand.
they are both f d s e when the weak notion is considered.
A counter-example of the first observation is given in
the last instance 7-4 which appears in figure 2. Note that
any two-tuple combination in r4, considered indepen-
dently. makes the F7? f not f a t s e . But the dependency-
is f a l s e in the whole relation. To ensure tha t the obser-
vations are valid for both notions of satistiability we
require that tuples containing n u l l s , which make a
dependency f a l s e for every possibie substitution, do not
appear in r. The test to find these tuples is very hard.
being domain-dependent. On the other hand, we now
argue that, in practice, it is unlikely that such tupies
will appear in a database. For t&e simple case, where X
has only one attribute, this argument is intuitiveiy
justified. The "bad" case [FZ] of proposition 1 requires
all the domain values of the X attr ibute to be in r and
any tuple which has a n u l l for X to disagree in the Y
values with all tuples in r. This amounts t o the require-
ment that the number of actual determining objects is
smaller than the number of deterinined objects. %at
is, a company gives more salarizs than the n ~ r n b e r of
employees it actua!ly has! In a carefully designed data-
base we would expect the domain of employee numbers
to be sufficiently large - say, larger than the number of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

the maximum number of tuples that may be Inserted in
the relation. Unfortunately, wc can not apply our intul-
tion as smoothly when X has more attributes. Nter con-
s~derlng inference ruies for FLs m the next s~ctxor,, SP

present in sectton 6, ways for t e s t~ng effic~ently weak
and strong sa t~s f i ab~h ty for a set of FDs In a relation r

5. Inference Rules for Functional Dependencies
One of the major applications of FDs is in the theory

of normalization and schema design. In this section we
will show how normailzation theory and relational
schema design can be applied in the presence of incom-
plete information. The examination of inference ruies
between FDs and ir, particular the establishment of
sound and complete inference rules are oi prime impor-
tance for this purpose. For the sake of simplicity in
proofs (especially completeness proofs) we will obtain
our results by reduction to a system which is equivaient
to our system of extended FDs. We will first show an
equivalence between our system and a well-axiomatized
propositional logic system. The equivalence is between
functional dependencies in cur system and implication
statements in the propositional logic. This equivalence
will allow us to conclxds that rules which are sound an3
compiete for the impiicati.j:l statements have the same
property for functional dependencies. Our approach is
similar to that of [Fagin 771, but in a different environ-
ment.

System-C is a propositional logic system for unk-
nown outcomes [Bertram 731. It is a modal system
which is RQL truth-functional. A unary operator, V,
which reads as "necessarily true" is added to the tradi-
tional operators of negation, disjunction, etc. C has
been axiomatized. P. detailed justification and explana-
tion of the axioms is beyond the scope of this paper. We
only note that some of the axioms comprise a set of
axioms for classical two-valued logic, thus ensuring that
everything provabie in twovalued logic is also provable
in C. The rest of the axioms give to C the modal
interpretation and, in particular, the last axiom res-
tricts C to a system of "logical necessity".

C has an unusual evaluation scheme t that uses the
notion of two-valued tautologi8s. Let P (p l , pz , p x)
be a well-formed formula (wff) in C, expressed in
terms of its atomic terms, and a = {a, 1 i=1 . 2 ,..., n] an
assignment of truth values to PI, p2 . . . , p,. The
evaluation of P under a, denotes by V(P, a) or simply
V (P) where a is understood, is defined by the following
recursive rules:
1.- If P is a tautology in the classical two-valued logic

V(P)= true

2.- ~f P=p, for some i, Lhen V (P) = a,

1 m e

if V(Q) = false
V (P) =. false if V (Q) = t 7 - 7 1 ~

bnknown otherwise

t An evaluation scheme is a function Vfrom the set of prcrpariitional
variables to the set of tmth values i t m e , false, unknsunj.

if V (Q) and V (S) are frue
V (P) = alse if V (Q) rr V (S) is false

b ~ ~ t m otherwise

5.- if P = VQ, 1-i~~ if v(Q) = t rue
= aEse othemise

Rule.1 IS always appl1e6 first and ~t IS the reason
why C is not truth-functxonal Tne examcle here is p v -
p. It is a two-valued tautology, t h ~ s havlng the value
l m e m C. But d evaluated wthout rate 1 it h3s the value
unknown. %e now present a serles of ferr~rnas The
proofs are very slmllar to the one's m [Fagln 771 and
they all appear in [Vass~liou 801

Lemma 1 iVassi11ou 901

The function 'v' can be derived as the
least eztensicm of the es-aiuation function V in a classi-
cal taro-valued logic system. =

The systenx we are using and C &re equivalaf in
that they have tne s a x e ev+luatizn scheme. '

A C-tautology IS a C wf: which takes only the value
t m e (under V). A C-theorerr, is a wff that is derived from
the axioms of C In [Bertram 731 it is proven tha t , given
the particular evaluation scheme V , every C-tautoiogy 1s
a C-theorem and vlce-versa (soundness and cornplete-
ness). The reason for tntroduclng C will now become
apparent.

Implication is defined in the reguiar way: P => Q := - PV Q. We w i l l ~ o ~ s i & e r a special type of imp1ica:ional
&a@rn-ent. Let A, 3, A, denote propssitiona! vai-iables,
X, Y , Z den-ote ccnjgnctive terms _of pwosit ior .al vari-
ables, i.e. X .= A A B or simply X = -48. m e implica-
tional s t a t e ~ e n t s of interest (denoted by f) have the
form: X=>Y. Xotice the similarity with functionai
dependencies. From now on we ill use the t e rm "impli-
eational statement" for a n y statement of this form. An
implicational statement f is &gicaLly i n f erred-by a set
of implicational statements F = ff 1, f 2, . . . , Jdnj ififor
Every assignment of Lruth values a that gives t o all f, in
F the value true a (f) is also tme. Similarly, we can
define the notion of weak logical infe~ence where we
relax our requirements by having a(f j = -false.

Lernma 2 [Vassiliou 801 (ImpLicationai Completeness)

The following inference rules are sound mi: com-
plete for implicational statements in C.

[I l l if y~k ' then F=>y
[I21 i f y = > y and F=>z then X=>Z
1131 i f z = > F - - and X=>Z - - then X = > E - -
r!.?.] ifX=>YZ then X = > Y and X=>Z

As we noted before, implicational statements
resemble, syntactrcally, functions! depende2cles. Wlth
the above lemma we establish 3 set of inference rules
that produce all and only irnpiicat~onzl staterfients. We
now proceed to the major result. which IS to show that
the resemblance with iunctxonal dependencies IS not
coincidental. Rather, it is equivalence.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

Let a- be an assignment of truth values, s = j t , t '] a
two-tuple relation. X - t Y a frinctional depezclency and
X=>Y the corresponding implicatlonal statement. For
every A in Y suppose tne following holds:

t [A] = t l [A] i f f a (a = t m e
f [A] ir t ' [A] i f f a (A) = f a l s e
t [-41 o r t ' [A] = n u l l i f f a (A) = u n k n o w n
- - - -

then: X + Y s t r o ~ ~ g t y holds in s a(Xk'=>'i") = t w e .
Consider the worid of two-tuple relations. A func-

tionaJ degendency X - t Y is inferreafrom a set of FDs F
iff X=>Y is a logical inference of F. 8

The above two lemmas show that there is an
equivalence between functional dependencies (with null
values) and strong satisfiability in two-tuple relations
and ilnplicational statements in C. As '.re have shown
from the previous section the restriction "two-tuple
relations" is only necessary for technical reasons in the
case of strong satisfiability. Because of this equivale~lce
and lemma 2, the foliowing is a trivial consequence.

Theorem 1
Armstrong's inference rules arc sound and com-

plete for functional dependencies defined on relations
with n u l l s and the requirement of strong satisfiabllity. a

With this result we may safely talk about decompo-
sitions and the theory of normalization applying even
when n u l l s are allowed in relation instances. As was
demonstrated in section 4, we cannot claim theoreti-
cally the same result in the case of iveakiy satisfizble
dependencies (where -,ue accept a depcndency as long as
it is guaranteed not to bc fatss). O n thc other hand, if
we impose the state and domain-dependent condition on
allowable nulls, we show in the nest section that the
result holds for weak satisfiability in relation instances
which we call "minimally incomplete".

6. Satisfiability for a Set of Functional Dependencies
In section 4 we discussed satisfiability for a single

functional dependency. When we have a set of depen-
dencies E', no dependency in F can be tested for weak
satisfiability i n d e p e n d e n t l y from the others. Conse-
quently. Armstrong's inference rules do not ho!d. The
following example illustrates this fact. Consider the
relation scheme R (A , a, C), the FDs:
f : A -B, f : B +C, and the instance 7:

The functional dependencies f and fz evaluated
n P u-: on T take the value u n k n o w n (the:< are

weakly satisfied). This is not the case when the depen-
dencies are eva!uated simultan~o:l-iv. For B -+C to
hold in r , it must be that the two B-values in T are dis-
tinct. Therefore, A - 3 is f a l s e . Informally, when an
FD is satisfied in T , something rnorc may be k n o ~ n about
the possiblr? values that the n u l l s in T represent. Iqencc,
the assumption that a n u l l can be substitutcd with any
domain value is not valid. This section deals with thc
above shortcomings.

A parenthesis concerning our notation. Whrle X
may have several attributes. say X = [X I , X r , . , X t] , we
compare X-values d:rectly wl th n u ! i . For a tupie t,
t [X]=nu lL implies that one of the X, values is n u l l .
Similarly, t [X]*nuZl implies that no X, attribute value is
null. We introduce a new type of constramt.

Definition 1
A Nu l l -Equa l i t y -Cons t ra in t , (NEC), is a state-

ment to the effect that two null values are equal (i.e.
must take the same value in any substitution). For tu-
ples t,, t - , and attributes A. 8, a NEC is denoted as:
NEC: t , [~ j : = f , [~] . =

Null equality constraints introduce equivalence
classes for null values. We cow formalize the rules that
allow for non-arbitrary increase of knowledge about null
values in a relation where FDs are defined.

Definition 2

Given a relation 3, a functional dependency X - Y
embedded in R, and an instance r of t?, the
Nul l - S u b s t i t u t i o n -Ru le (NS-rule) corresponding to the
F'D X + Y is: If for two tuples t i , ti in r WE: have
~ f X] = t j [X] # - n u l t or the NEC: L i [X] : = f j i X] , then:

(a) if only one of ti[Y], t j [Y] is nuli, then this nuli is sub-
stituted with the non-null value of the other;

(b) if both t,[Y] and f,[Y] are null, then the nul! equality
constraint NEC:f,[Yj:=t,[Y] is introduced. m

The NS-rules can only be applied a finite number of
times on a relation instance r. To apply all rules takes
time polynomial on the size of the relation instance.

(a) Finiteness

Initially, r has a finite number of constant values and a
finite number of null values with each null participating
in a distinct equivalence ciass. The application of a rule
nevtrr iritroduces a n e w constant value. Also, it may
reduce but will never increase the number of
equivalence classes (i.e. when a NEC is introduced). In
the sequence of instances r' produced after an SS-ruie
application, all elements are d i s t i ~ c t . This suffices to
show that the rules are a finite system.

(b) Complexity Analysis

The NS-rules are applied in several passes. In each
pass, all NS-ruies are applied for as marry tuples as pos-
sible. In applying the NS-rule X-+Y the instance T may
first be sorted ir time O (z - n , l o g n) where z is the
number of attributes in X and n is the numbzr of tupies
in r. When sorting, null values have the lowest pre-
cedence and are alwzys distinct unless they belong to
the same equivalence class. In this last case they
appear together in the sorted relation. To appiy X+Y in
a pass requires the equation of Y-values in possibly
more than one tuple (same equivzlence class), Eence. a
pass over the Y-values must be made for each change.
This takes time 0 (n 2 j . Since all rules are applied in
each pass, the time required for a pass is
O f l F I . (n 2 i z . n . l o g n)) or. 0 (IF /.z2) for z substantially
smaller than n When we s t a r t in an instance with p
attributes we have a t most n . p distinct symbols (con-
stant values and nulls). Every pzss reduces the number
of distinct symbols. hence we have at most n . p passes.
Therefore, no rule can be applied zfter O (j F / . n 3 . p)
time. t
t According to a recent resuit b y P o m e y et a1 801 the t i c corn-
p ~ e r l ? y o f t h e t e s t ! s O (~ F l .n.log(iF 1.n)).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

Ghen a re la t ioc E and a s e t of ms P ernbcdsed in
,?, i.cCe s a y t h a t a n ,instaneo r of R is
rninimalEy-in,complete i f no N3-rule -an be applied on
r. The illtuitive n;eeclr-ig of a minimally incomslete reia-
tion s t a t e is t h a t not.hing rnore can be srild a b o u ~ the
nulls in this s ta te . The importacce of such ztates is
demcnstrated with t h e theorems t h a t fo?!>i.i. The first
two theorems presen t methods for testing FD-
satisfiability. The tes t is done 35th an algorithm tha t
works on raidtion instances where no nulls a re present
(Figure 3) and r u n s in time 0 (1 F j.n.logn). Tne third
theorem makes t h e connection between "uniqueness" of
a rninirnaliy incomp!eie s t a t e and satisfiability of YES.
This shows t h a t t h e set of NS-ruiss is a finite Church-
Rosser system.

Let R b e a reiatrcn scheme, F a s e t of F'Ds ernbed-
dzd m R, and r a n instance of R. Cons,der the applica-
tion of t h e aigor~thrr , TEST-FDs with t h e folloivlng con-
vention for nul! values

C o n 2 ; e n f i m Any equality comparison where a null is
involved is positive. Also, any inequslity corr,parisoc
where a null is involved is positive, ? ~ n l e s s both values
compared a r e null and they belocg to the same
equivalence class.

F is strongly - sa t i s f i ed in r iB TEST-FDs(r,F) = y e s

Eraaf.
The convention made imp!ies tha t vhen testing ;n PD
X->!- on i~:o tc:;;cs I.& and t , T;C ha-ie the :‘ol!cl-leg: if onc
of t,[X]: t : [X] is nail Lhen t h c comparis2.n jt,[.Yj=t,[..<']!
is true. If the previous comparison is t r u e then sr> :s the
comparison (t , [Z - j * t j [Y]) , unless there exis:s a
NEC:t,[I ']:=tj[?-j (aga i :~ rye assume that ar. least on? of
t , [Y] , tj[l'] is nu!!). It may s e e m tka t w1:h abovc
convention vre have a ~ r o b i e m in app!]iing i.he algorithm
TEST-rDs. f Tvro vaiues t h a t a t some point were com-
pared and found equal may a t another point be foucd
not equal. For F ne t t o b:: stror,gl:r. satisfied, it suB;ces
to find a completion of T where t h e FDs are violated. In
c o r ~ p a r i s o n s we consider all possible compietions.
Since Armstrong's rules a r e sound and complete w e can
tes t E'Ds for strong satisfiability independently. But
notice tha t for the same dependency X-+Y the same
at t r ibute values s r e never compared both for equality
and for inequality when TEST-FDs is applied.

i f -part
Tne assurn;it;on here is t h a t 2"FST-r"i7s(r.F) = yes. We
show tha t .L7 is strongly satisfied in r . Assame tka t there
is a n FD X - t Y which Is visiated in r. That is, fcr t:so
tuples t,, t j in r, t h e r e exist zompletions t',, 1": such
tha t t ' i [X] = t ' j [X] and ! ' , [Y j ; r t ' j [Y] . Triviitiiy, wken
TEST-FDs is applied on r , t h e comparisons between the
non-completed X and Y values of ti and t j a r e both posi-
tive, thus TEST -FOs (T,-?) = no. A contradiction.

only-if part
Suppose tha t F is strongly satisfied in r and that
TEST-F3s re tu rns with a n o when applied on r with our
cp--- ,,,,cnLlon for nc;:r;. The ccn:ra-liciLo:~ :.; i-lca.. . Aily
tirlzc the eqcaliiy comparison for- the >;-:-a!ucs of i.-::o
.. lu?!es . - and the i n e q ~ a l i t y coi~lparison for the Y-vaiucs o?
the same tuples a re found positive, a coinpIcti3n nl r :s

f hqo:fi~r probier. is sortine thz nrIi values undcr the nbo:-. can-.
vcntion. rjlternztivcly, another ver::ion of ?%ST--FDS n--2:: bc
used, rihcre the reidtion ?s not sorted mrl each tuple is ie::Lc2
zgvlnst every other tuple in the reiation. The r'Iilxn;: f.irr;e is now
O (i F i.na).

Z Testing for FD-setisfiabi?ity

Test a set of F D s F in T for cm~sfency; .

begin
comentr comparison 1s based on

I lexicographical o rder
c o m e n k read-nezt__tuple(7;1, r e a d s t h e ~ e s t

I
tuple m c r d e r frcm r and re turns EOF
i f rio more tuples.

for each X + Y i n F do
begin

sor t relation r on X
tPqt +~eari_nezt - - tuple (T)
a i l e t+s,,r#EOF do

begin
t,,,t +- ;-ezd-n,~zt-!upl~ (r)
while f , , i [X] ~ Z 3 . 1 . ' and :,,, iX j= t,,,jX] do

begin
if fw.rtEYl*trirstIYl

then rat-an(xo)
else f,,,,i - r e a L n e r t - t u p l e (r)

end
ffwlt tn**t
end

end
rcturn(yes)
end

Complexity Aardysis

The dgci.iChrn runs in 0 (IF 1 .n Zoyn) trrze, where n
is t h e size {n-ber of tuples) of r and i F 1 is the
number of depeadencies. Each FD is tested in t ime
d o g n , t h e ii=e t o s s r t t h e relcltion.

A d d i t i m l Ass-umpticns. If bucket sor t i o used, s o r t i q
t akes time U (n p) where p is the number of a t t r ibu tes
in X for s ciepondency X-'7. Furt ierrnore, if t k e r e :s
ody one ddpendency je.&. ECSF ~ 5 t h ope key), and thc
refation is a!rea:!- ??r ted: ch:, tcsC requires Linear
on t h c rclati3.1 s : ; : ~ .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-8 1-08

illustrated where t h e ;"D X-1Y is violated. 9

Theorem 3
Lct R be a relation scheme, r" a se t of FDs embed-

ded in R, and r a ~ + i n i m a E l y - i n c o m p l e t e instance of R.
Consider the application of the algortthm TEST-FDs

a with the following convention for nal! values:

Conmention: Any inequality comparison where a null is
involved is negative. Also, any equality comparison
where a null is involved is negat~ve, unless both values
compared are null and they belong to the same
equivalence class.

F is weak ly - s a t i s f i e d in T ifl TEST-FDs(r,Fj = yes

&Mi.

As in the previous theorem, we consider the problem
that may be introduced with our convention for null
values. It may be tha t the same two values are com-
pared and found equal a t some point and a t another
point not equal. We show that when TEST-FDs Is
applied in a minimdly incomplete state of r this never
happens. Consider two tuples t, and f, in r. Suppose
that t i [X] is null and t j [X] is not. If X appears only on
the left of dependencies, we have no problem
(TEST-FDs makes oniy equality comparisons on X
values). Similarly for X appearing oniy on the right of
dependencies. Consider the case where X appears on
the left of a dependency X-Y and on the right of a
dependency Z-iX. In testing X-rY we assume that
t ,[X]*L,[X]. In testing 2-,X, we wiil only consider X-
values when t , [Z j= t , [Z] . If the state is minimally
incomplete. rve wouldn't have t i [X] null (by application
of the XS-rule). The case of both l,[II] and t : [X] being
null is treated with similar arguments. In this case the
outcome of the evaiuation depends on whether or not
the nulls belong to the same equivalence class. We also
note that the convention allows for sorting. Null values
are considered distinct and their order is not impor-
tant. (They are never equated unless they are in the
same equivalence class in which case they appear
together.)

i f -part
The substitution of nulls with Cifferent values from the
one's appearing in r illustrates a completion of r where
all FDs are satisfied.

only-if-part

We show that if there is a completion of r where the FDs
are satisfied, then TEST-FDs (r . F) = yes. Suppose 7' is
such a completion. If TEST-FDs has a r,o answer ther.j
must exist two tuples ti and f f in r such that for a func-
tional dependency X - + Y the corcparisons (t , [X] = t j [X])
and (t i [Y] # t j [Y]) are both positive. The first compari-
son is positive under ocr convention when both fi[X].
t f [X] are equal constants, or, both are nu!ls in the same
equivalence class. In this last case. they both have the
same completions in r' (as in any other completion of r).
Similarly, for the second comparison to be positive it
must be that both t , [Y] and t j [Y] are distinct constant
values. It follovvs immediately from tht. a b v e argu-
ments that the FD X - t f * is violated for the two tuple
completions in r'. A contradiction. 9

Note that the test for strong satisfiability is less
expensive than the one for weak satisfiabiiity since it
does not require a minirnaliy incomplete instance. This
comes as no surprise - very few relation instances are
strongly-consistent.

The NS-rules applied in a different order may result
in different minimally incomplete states. This is

illust,rated nitk az example. Consider a relation R with
three ettributes, the c5epcc'lenciej A -+a, C - 8 . ma the
instance r (figure 5) . h>piyLrg the rule A -rB first we get
a minimally incornp!e*ie stake r'. On the other hand, if we
first apply C - 6 %.re get a difierent minirnaliy incomplete
state rf'.

I t

From deEr~ition 2, an NS-rule for an FD X - Y is
applied if there exist tuples t, u such that ~ [X] = U [X]
and ane or both of FEY], u [Y] is nul!. :Ye now extend
the notion of an NS-rule application and we assume that
a rule may be appiied even if none ol f [Yj, u [Y j is nul!.
but as constants they are siisiinct. in this case they are
both replaced by the i n c m i s t e n t element (the n o t h w ~ g
data value). This triggers the replacement with n o t n i n y
of all constants that are equil_i to thorn. In olii example,
if A - 9 is applied first producing r ' , th-n C-+B can be
applied on r' resulting in an ~ns t ance with ali values in
the B column equal to not i i i zg . It is easily observed
that the agplication cf the rules in reverse order wiil
produce the same i ~ s t a n c e . The theorem be!ow is pro-
ven in [Graham 801

'I'heoren; .2- [Graham 801

Given a relation scheme R, a se t of FDs F , and an
instance r of R. Then,

(a) The application of the XS-rules n-il! produce
zcnque minimally ~ncornpleke instance (the NS-
ruies constitute e Church-Rosser sys~emj .

(b) F is weakly-satisfied in r ~ f f there is no x ~ l h i n g
value in the resu!ting mln~mafly incomplete In-
stance. =
For the proof of the theorem the noticn of

congruence closure is tlsed [Dorvney e t a! 831. The con-
struction of the graph from the instance T for the pur-
pose of applyirig congruence closnre IS reversed. The
result is a relation instmce (possibly with n ~ t h i n g
vai~les). This instaincz is unrqJe znd, is esaetiy the
minimally incomplete instance prcduced froAm the :is-
ruie applications. The thecrem abcvs verifies tha t in
any minimally incomplete ~r,stacce. produced from XS-
rules application, t he test for satisfiability Kill deter-
mine correctly whether the FDs are saiissed.

7. Concluding Remarks
Functional dependencies were examined in the

light of ineomp!ete information In a databcso. O c r
results a re both encouraging and, in some rezpeci,
discouraging concerning the possibility of a!lov?ing nz;!is
with no restrictions in relations. Trro notions of i'D
saiisfiability were introduced. The first is the reg-dsr
one which requires tha t an FD takes the truth-vaiue true
when i t is ixterpreted as a predicate on reiation
instances. In addition, a weak notion of satisfiabi1l:y \;es
define6 which allorvs for uncertalntj- aabsat the vdidiiy
of zii FD a s long a s this uncertainty does not introdiicle

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

contraSictions. It was shorvn thzt a n.dl value does not
have an impact on the validity cf an i?C if it appears in
specid places. This is becausc ;hero exists a substitt~-
tion of this nu!L (possibly all substiiutions) which results
in having tf;e dependency satisfied. Furtherrizore, to
find. these cases of satisfability is not computationali}-
hard.

On the other hand, there are some extreme cases
where all substitutions of the n u l i resuit in inconsistent
states. This occurs with Lhc weak notion of satisfiability
and domain-size restrictions. The test to f k d such
cases is domain and state-rippendent. thus having an
unacceptable complexity for practical considerations.
It was argued that in practice the above extreme cases
are unlikely to appear, provided that the ciependencies
are carefully defined (e.g. on attributes \vi.i;h large
domains).

lYeak satisfiability seems to be the more important
and interesting notion from a practical point. Dats-
bases are usually "overconstrained". That is, there is a
large number of semantic constraints (rules) which
would make sense for a database. However, database
systems do not usually have the ability to maintain ail
these constraints. The test of constraint va!idity In a
database instance, apart from being probibit~vciy
expensive, results mainly in verifying that most or i.hc
data is "dirty". On the other hand, nu!! va!uej and vvi'ehii
satisfiability al!ow constraints to be valid in more
instances.

A basic result of this paper is the verification for
extended FDs of the soundness and completeness of the
same inference rules that were soand and complete for
FDs with no n t i i l s . This allows us to ccnr.!iidc that s!i - . .
v;ork on normalization, decorn;ssi;:oi;, eic. vherc YDs
are invo!ved can be applied directly in our fi.diiiev<ori; of
incomplete i~format ion .

We now discuss the importance of our results taken
together with on-going research. ils was mentione2 in
the introduction, the universal reiation assumption is
questioned both on practical and theoretics! grcunds.
With our work we have provided a partial repiy to the
practical attacks on the possibiliLy of a unis-crsal rela-
tion instance. More realistic instances may now be per-
ceived; the ones wh%rc nuLLs are ;lllo:.jed. In [Berrlsteiri
and Goodman 80) it is shown that the requirement of
having the universal relation assurnption defeats the
purpose of normalization, which is to avoid update
anomalies. [Bernstein and Goodman 80: attempted the
use of n u l l s te overcome the an=mAies, but decidoa
that for each semantic they tried, OF?-Lain bizarre
behavior ?vas forced. I t is our conjecture Chat a mi;re
careful approsch to n u t < interpretation an3 treatment.,
like the one we presented here, contribukes to tne
attempts to bridge the gap between ihe stztic (normali-
zation) and the dyaam~c (rnodificaiionj proper;.ies oi the
database [Graham and iiassil~ou 801. A "c-eal;erM version
of the universal reialion assumption is ctorct-ivatsle thct
allows for universal instances (v;ith nzilsj where the
dependencies are only wealcly-satisfied. in addiiion to
the warlc reported here, more research 1s needed on thc
semanlics of the ways a dat.abase acq3ii .e~ inio;n~atiotl.
This acquisition may be internal (non-amb;guous substi-
tution of n?xLLs), or external (n~odificaticri opera:ioA;s by
the users).

References

[seer1 e t a1 781

ilccri C., Bernsteln P X., and U.Cood-nt.r?, b
Sopbxsticatc's Introduction to Data Ease Xormdi-
zation Theory, Proceocizngs. 4th l n t e m a l z o 7 ~ c l
C o n f e r e n c e o n Very. L a r g e D a t c B a s u s , &ksl Ber lzn .
G e m a n y , S ~ p t e m b e ' r 1 9 7 8 . pp i i 3-124

[Bernstein and Goodman 801

Bernsteln P.A., Goodman 3.. T h a t Does Royce-Co6d
Normal Form Do?. Proceudin3s , G l h i n t ? . ; 7 ~ z t z o n ~ L
C o n f e r e n c e o n VET L a ~ g e D a t a B a s e s , M o s ~ i r e s l , Ca-
n a d a , October 1 9 8 s

[Bertram 731

Bertram B., A Logic for Unknown Outcomes. Dept .
of Corn'puter S c i e n c e , Rutgms, T h e State L S i i v e r s i t y
of N.J., CB%-TM-35, D e c r n b e r ?973.

[Codd 701

Codd G.F., A Relational Model of Data fo r L u g e
Shared Data Banks, C m m ACM 73, 6, JTdly- 7 97G,
pp. 3 77-3.

[Codd 721

Codd E.F., Further Normalization of the Data Base
Relatio~lai Xodel, in D z t a B a s e S y s t e v - s , C o ~ 5 r a n t
Co7n:uuter Science S y m j 3 3 s i u m 5, Prntice-Hai.1, E n -
glowood CLijjs: N. J., ; 972. pp. 33-64.

[Codd 15:

Codd E.F., Urderst,anding Ri-Iations. (z n s t a L E n e x t
no .?) , AClii SiGMOD FDT BuEle tzn 7 , 3-4, i 975,
pp.23-28

[Date 771

Date C.J., An Introduction t o Data Base Systems,
2 n d ed., Addzson-V'esiey. Fi'eacizng, MA, 7977.

Downey P., Seth1 R., Tarjan P.E.. Variatiors on the
Common Subexpression Problem, J. AC-ZI (t o a p -
p e a r j , 130'0.

[Fagin 772

Fagln R., Funct iond Dcpendencies in a Relational
database and Propos~tional Logic, iB.'d J of Res .
a n d D c v , L'oiol. 21, Ko. 6. ;L;oz>. 7977, pp. 534-541:.

[Graham 501

Graham It.. On the Church-Rosscr i'ropert? 02 tie
Tableau Chese u n p u b l u k e c i n a n u s c r i p l , 196'3.

[Graham and Vassiliou 801

Grahan~ XI., Vassiiiou Y., Vcalrenirg &tLe Uafversd
Relation Assum2tion. (worh?ng paper), I Sc?3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-8 1-08

[Lipski 791

Lipski W. Jr., On Senrantic Issues ConriecLed ~s l i j .
Incomplete Information Databases, AC.%.r Tronsac-
t i o n s On D a t ~ b a s e Sys iems , Vol 4, No. 3, Sep-
tembe?- 7979, pp 262-296

[Stoy 771
Stoy Z.E., Denotatioaal Semantics, the ScoLt-
Straychey Appraaeh in Programming Langucge
Theory, MiT prcss, 1977.

[vassiliou 791

Vassil~ou Y., Nu l l Values ia Database ?;l;rlnageffient. -
A Denotational Semantics Approach, ACf?f,'SIGII:rGD
Internct ional Symposium on L+Ca~agement of Data,
May-June 1977, pp. 162-1 69.

[Vassiliou 501

Vessillou Y.. A Formal Treatment of Imperfection
in Database hIanagerncnC, Ph D. thesis, iinzverszly
of Toronto, i 983.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-81-08

