LANGUAGES FOR DECISION SUPPORT SYSTEMS:
AN OVERVIEW

Edward A. Stohr
and

Norman H. White

June 1982

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #43

GBA #82-64(CR)

Published in, Management and Office Information Systems, S.K. Chang (Editor)
Plenum Press, New York, (1984), pp. 71-89.

Page 2

ABSTRACT

In this paper we survey some issues relating to the language
interfaces provided by DSS. We do this from the point-of-view of the
designer of generalized software for building DSS. We first describe
a fairly general architecture for such software. This is followed by
a brief examination of the language interface components. We list the
functions that must be provided through the language facilities of a
DSS together with a number of implementation issues such as
user-friendliness, degree of procedurality and interpretation versus
compilation. This provides a useful framework for the comparative
evaluation of DSS packages. Finally we discuss some possible
directions for future development including specialized formal

languages and the potential of English-1like 'semi-natural' languages.

Keywords: Decision Support Systems; user interfaces; language

facilities.

Page 3

1. INTRODUCTION

The accelerating complexity and size of modern private and public
institutions and their increasing dependence on environmental factors
such as multi-national trade, world politics, and government
regulations point to a need for computer-based decision support
systems (DSS). Several surveys (Naylor,[1976] and Hayes and
Nolan,[1974]) have indicated an increase in the use of such models
especially in applications such as pro-forma financial statement
projection and budgeting. These systems can vary widely in both scope
and objectives (see Figure 1 which is based on Lorange and Rockart,
[1976]). On the one hand a number of comprehensive corporate planning
systems have been developed that attempt to model the firm's complete
production process in time and across geographic locations. Examples
are the Potlatch Corporation (Boulden,[1975]) and Xerox (Seaberg and
Seaberg, [1973]) models. Such Systems may contain 50 or 60 submodels
and 1000's of lines of code. At the other extreme are the currently
popular micro-computer-based 'accounting spread sheet' packages that

are used in small financial and budgeting applications.

Although a number of successful DSS have been reported in the
literature there have been a number of failures as well. According to
Boulden [1975], approximately one-third of the (larger) systems fail
in the first two years after implementation and another one-third
perform indifferently. Surveys by the Financial Executive Search
Foundation (Traenkle et al,[1975] and by Hayes and Nolan, [1974]

indicate both human and technical causes for these failures. On the

Page 3a

ORGANIZATION LEVEL STRATEGIC OBJECTIVES SETTING SPECIFIC MULTI-YEAR PLANS BUDGETING
Corporate Econometric models, Pro-forma financial Financial
judgemental models statements, Capital Budgeting
investment models (top-down,
bottom-up)
Divisional Industry/Local Pro-forma financial Budgeting
Econometric models statements, Capital (financial,
investment models physical)
Project or e Marketing models, Operations
Department R&D models, Plant/ Management
Location, Capital Models
investment models (scheduling,
distribution)

FIGURE 1

TYPES OF PLANNING MODEL

Page 4

human side there was inadequate communication between managers and
developers leading to: (1) a lack of fit between the model and the
organization's planning and control procedures, and/or (2) models that
were too complicated for managers to understand and use. The
technical difficulties included inadequacy of the hardware and
software tools leading to: (1) long development times, (2) expensive
use characteristics and (3) the inability of the model to evolve in

response to rapidly changing needs.

Our objective is to examine how recent software advances can
facilitate the development of DSS systems that are more easily used by
staff personnel and managers and have increased functionality combined
with an ability to adopt to changing assumptions and needs. We will
do this by examining the language interfaces provided by generalized
DSS software. A DSS Generator is a set of tools which can be used to
build a wide variety of DSS. Some commercial examples include EMPIRE
[1983], EXPRESS [1983], IFPS [1983], PLATO [1983], SIMPLAN [1983] and
XSIM [1983]. Although there are particular environments that need a
specialized DSS possessing features not normally included in a DSS
Generator, we argue that the similarity of organizational structure

and operations makes these the exception rather than the rule.

The discussion is 1limited to a consideration of +the user
interfaces provided by DSS generators. In particular we will be
primarilly concerned with the language facilities provided. Other
aspects of the user interface such as hardware devices, communication

speed, graphics and dialogue style are covered more fully in a

Page 5

companion paper (Stohr and White, [1982]).

We attempt to define the language functions that must be provided
by a DSS. The range of these functions is broader than in most other
types of software. In addition the nature of the operations that must
be performed by users is qualitatively different. A major thesis of
the paper is that these two facts will necessitate the development of
new languages that can manipulate quite complex data objects,
processes and abstractions. At present we do not even have a coherent
and broad-based terminology for the concepts and operations involved
in interacting with a DSS. However a number of actual DSS's have
developed a limited set of special functions at the requisite level of

abstraction and aggregation.

In the next section we describe the DSS environment and derive
some general software requirements. In Section 3 we describe a
software architecture that serves as a framework for much of the
discussion. Section 4 lists the types of language that should be made
available in a DSS Generator. Section 5 discusses some of the
trade-offs involved in designing DSS languages. Finally, in Section ©
we outline the major functions that have to be performed Dby DSS
languages for data manipulation and query, model definition, model
execution, sensitivity analysis and specification of output

requirements.

Page 6

2. THE DSS ENVIRONMENT

A DSS is used to support decision-making in ill-structured or
poorly structured decision situations. A decision situation is
unstructured to the extent that cause-effect relationships are
unknown ; there 1is uncertainty with regard to the possible actions
that might be taken and their consequences; important variables are
qualitative or immeasurable; there are multiple conflicting
objectives and decision-makers can not express their trade-offs in
terms of a higher level goal. The 'support' in the above definition
implies that human judgement is a necessary ingredient in the
resolution of the decision-making process. Thus we see a division of
labor between the 'structurable' part of the process (which is

relegated to the computer in the form of data base retrievals and/or

more complex simulation or optimization models) and the
'non-structurable'’ part of the problem (which relies on human
judgement). The important point here is that the DSS Generator should

provide an environment that will facilitate both facets of the

decision process.

We will distinguish the following classes of user of a DSS
system: (1) Managers - the 'ultimate' decision-makers, (2)
Intermediaries - staff personnel who interact with +the DSS in a
hands-on mode and form a channel of communication between the manager
and the 'builder' of the DSS, and (3) Builders - technically oriented

personnel who program DSS applications (build models), perform the DSS

Page 7

data administration function and so on. It is of course possible that
all three roles might be filled by the same person. In terms of
Schneiderman's [1980] semantic-syntactic model of computer wusers the
managers can be expected to have a high 'semantic' knowledge of the
application domain and a relatively low 'syntactic' knowledge of the
DSS system itself. Conversely, the builders might have low semantic
and high syntactic knowledge. Finally, the intermediaries might 1lie
somewhere in between the managers and builders in terms of both

syntactic and semantic knowledge.

The DSS Generator should provide a variety of interfaces and
language types to suit the functions performed by all three classes of
user. Moreover, since DSS use 1is often voluntary, the interface
should not only be effective in terms of the direct benefits to the
decision- making process, it should be easy to learn and remember and
pleasant to use. Moreover, empirical evidence (Zmud [1979]), supports
the idea that individuals differ significantly with respect to their
perceptual processes and patterns of problem-solving. To support
these different 'cognitive styles' we should provide a variety of
interface styles and language types. Moreover we should provide
'extensible' languages where new terms and synonyms can easilly be

introduced.

According to Keen [1980], a DSS is characterized by an
evolutionary development process involving a three-way dialogue
between the end-user(manager or intermediary), the builder and the

system itself. To facilitate this process the DSS Generator should

Page 8

provide languages that are powerful enough to allow the rapid
development of models and efficient exploration of the consequences of
these models via sensitivity analyses. At the same time the software
code produced should be readable and well-structured to facilitate
maintenance and allow successful models (or at least certain
sub-components of them) to be used in other applications or

incorporated in the operational systems of the organization.

Finally, the language interfaces provided by the DSS Generator

(and/or built using the tools provided by the Generator) should have

the properties of any good man-machine interface namely: (1) easy to
learn, use and remember, (2) forgiving when mistakes are made, (3)
suitable for both novice and expert use, (4) provide immediate

response for most user actions and inform the user of likely time
delays on complex tasks, (5) provide a means for 'undoing' all actions
that affect the system integrity. 1In particular it is always helpful
for users of computer languages if the previously entered command is
retained and presented back to the user for on-line editing to
eliminate mistakes or to allow modification of the command in an
incremental fashion. This saves typing and provides a wuseful

short-term memory aid.

The array of DSS language requirements that has so far Dbeen
enumerated is certainly quife imposing. However we feel that there
are other aspects that get closer to the heart of the DSS design
problem. Returning to the definition of DSS at the beginning of this

section we see a need for the development of higher 1level languages

Page 9

more suitable to the problem-solving environment. These languages
would differ from conventional languages in that they would operate at
a higher 1level of abstraction manipulating global data objects and
computational processes in a manner more closely resembling human
problem-solving processes. Modern data retrieval languages are
already approaching this level of sophistication. To give another
concrete example, we «cite the DSS Generators that support the
sensitivity analysis process by providing a 'what-if' language - 'what
if x 1is increased by 10 percent', 'what does x impact?' and etc.
Other areas where there is a potential for such high 1level languages

will be mentioned below.

Borrowing from the ROMC methodology for DSS development (Sprague
and Carlson, [1982]) we obtain useful insights for DSS language
development efforts. According to this paradigm we need to provide
the user withs (1) alternative representations (eg. graphic,
textual, tabular) for a single concept, (2) a useful set of operations
to allow exploration of alternatives and the construction of yet more
complex concepts, (3) a set of memory aids to help users overcome
their own cognitive 1limitations and (4) a set of control mechanisms
that allow users to utilize the three preceding sets of tools. We

will use this framework in our subsequent discussion.

Page 10

3. AN ARCHITECTURE FOR A DSS GENERATOR

We commence with a brief description of the major software
components shown in the idealized system architecture shown in Figure
2. This is based on Stohr and White, [1982] (see also Sprague and

Watson, [19761]).

Data Conversion System (DCS): this sub-ystem is used to transfer
data between the DSS and the external environment including the
corporate transaction processing systems.

Data Base Management System (DBMS): this provides the traditional
data management and retrieval functions. In a DSS environment some
additional capabilities should be provided as discussed later.

Data Base (DB): the repository of DSS data - time-series,
productivity coefficients, geographic locations etc.

System Directory (SD): a repository of 'meta-data' concerning the
structure and contents of the data base and 'model base' as well as
intelligence about how the various software and data components
relate to each other.

Model Management System (MMS): +this system allows procedures and
models to be defined, documented, stored, retrieved, loaded and
executed. It provides an environment in which more complex models
can be constructed from primitive procedures and other models
stored in the 'model base'.

Model Base (MB): a procedure or model library containing useful
building blocks from which more complex models can be built.

User Interface System (UIS): a layer of software placed Dbetween
the user and the other components of the DSS. This provides (1)
'device independence' by relieving programmers and users of the
necessity to know anything about physical device addresses and
characteristics, line speeds and communication protocols, (2) a
uniform set of interface conventions for users, and (3) menu and
screen management facilities.

Language Interface System (LIS): a layer of software providing
translation (interpretation and compilation) services and message
switching facilities that allow the various components of the
system to communicate with one another.

EXTERNAL DATA DATA BASE DSS

CONVERSION fe—m MANAGEMENT ped—9~ DATA

BRI R SYSTEM SYSTEM BASE
\—’/

USER LANGUAGE SYSTEM

USER «§¢——»= INTERFACE pM&—3™ INTERFACE [P~ DIRECTORY

SYSTEM SYSTEM

MODEL DSS

MANAGEMENT jt—Pm MODEL

SYSTEM BASE
_______/

FIGURE 2

MAJOR COMPONENTS OF DSS GENERATORS

Page 10a

Page 11

In practice the actual division of functions between the various
components of DSS Generators will vary from case to case. One
possible design would involve a loosely coupled system in which, for
example, the DBMS and MMS have well-developed, powerful and
user-freindly languages. In this case the LIS would need minimal
translation abilities. Alternatively, the DBMS and MMS might support
only terse mathematically-oriented 'target' languages suitable for
system programmers. In this case the LIS would need to contain
language translators to provide more natural languages for the

end-user.

Our separation of the UIS and LIS serves to emphasize the many
non-language aspects of the man-machine interface. These range from
physical characteristics such as 1line speed and quality of CRT
displays to ‘'help' features, graphics and menu and screen management
facilities. Even the most powerful and user-freindly of languages
will fail to satisfy users if these aspects of the interface are

unsatisfactory (Turner et al [1982]).

A DBMS relieves programmers of many tedious and difficult data
management and manipulation chores. In a similar fashion the UIS will
provide higher-level languages for designing screens, menus, reports
and graphic displays. At present these functions can only be provided
by separate report writer, screen manager and graphic packages
purchased from separate vendors. Access from available DSS Generators
is difficult if not impossible. This results in inferior (e.g.

prompt-response as opposed to full-screen) modes of interaction in

Page 12

many DSS systems. Obviously there are many advantages to the UIS
concept. These include economies in number of lines of code required,
reduced application development times, enhanced prototyping
capabilities and the opportunity to present a coherent set of

interface conventions to users.

The UIS and LIS jointly perform many complex transformations. A
command issued by a user may be in the form of an English-1like
language, a terse formal command language or merely the touch of a
light-pen on a CRT screen. Alternatively, graphics or even voice
media may be used. All of these inputs must eventually be translated
to activate a sequence of machine-level instructions.. Conversely,
the raw output of, for example, the DBMS or MMS may be formatted into
screens, transformed into graphs or formatted and paged by a
report-writer. The LIS role in these transformations is to perform

the language translations required.

As a more advanced feature the LIS might allow DSS Dbuilders to
construct their own languages specially tailored to fit particular
applications or particular user styles. To do this the LIS would
contain a parser-generator (Aho and Ullman, 71978]). Note that some
current natural language interfaces contain this feature to allow
application specific vocabulary and grammar rules to be defined

(Lehmann, [1978]).

Page 13

Finally it is very important in terms of the flexibility and
extensibility of the DSS that access to general-purpose languages

(FORTRAN, PASCAL, APL etc.) be provided from the MMS.

4. TYPES OF DSS LANGUAGE

Figure 3 lists some applications of languages in a DSS together
with the user roles with which they are most likely to be associated.
Although many different languages are listed it should be clear that
we are only interested in the range of functions performed and that a
common syntax and style across these functions would be advantageous.
We must also emphasize that the languages in Figure 3 are those made
available by the DSS Generator. This 1list ignores both the
language(s) used by the designers of the software to build the DSS
Generator and the 'languages' (or 'interfaces') that can be constructed
using the tools provided by the Generator. 1In particular the major
role of the DSS Builder is to use the languages of Figure 3 to derive
new languages for use by intermediaries and managers. The ease with
which useful 'derived' languages can be built provides a measure of

the success of the DSS Generator.

Note that most language categories in Figure 3 have both
'definition' and 'command' languages. The definition languages
generally describe data objects - the schema for the DBMS, specific
types of graphs, reports, screen formats and so on. However in the

case of models, the model definition language (MDL) describes

LANGUAGE

CL - DSS COMMAND LANGUAGE

DATA BASE MANAGEMENT SYSTEM
DDL - Data Definition
Language
DML - Data Manipulation
Language
QL - Query Language

MODEL MANAGEMENT SYSTEM
MDL - Model Definition
Language

MCL - Model Command
Language

REPORT MANAGER
RDL - Report Definition
Language
RCL - Report Command
Language

SCREEN MANAGER
SDL - Screen Definition
Language

MENU MANAGER
MnDL - Menu Definition
Language

GRAPHICS MANAGER
GDL - Graph Definition
Language
GCL - Graph Command
Language

PURPOSE

High level control of DSS
processes

Define data and logical
relationships

Retrieval and update from
application programs

Interactive data retrieval;
limited update

Program statements defining
operations on data (the
'model"')

Link, load execute modules;
sensitivity analysis;
store and analyse results

Define report formats and
data

Display reports; interac-
tively modify formats

Define screen formats and
data; store in library

Define menus and heirar-
chical relationships;
store in library

Define graph type, scale,
axes, labels, etc.

Display graphs, interac-
tively modify formats

GPL - GENERAL PURPOSE LANGUAGE High level language

accessible from MDL;
extend model base

FIGURE 3

DSS LANGUAGE FUNCTIONS

Page 13a

PRIMARY USERS

All

Builder

Builder

Builder, intermediary

Intermediary, manager

Builder, intermediary

Intermediary, manager

Builder

Builder

Builder, intermediary

Intermediary, manager

Builder

Page 14

procedures as well as data objects. In fact MDL's may be
general-purpose programming languages with conditional branching,
looping constructs and so on. Usually they include specialized
language features that help in building models - for example financial
functions such as Present Value and Return on Investment. They tend
to be formal Kkeyword-oriented languages because of the need for
precision and expressive power. They are generally more suited for
use by DSS builders or intermediaries. If a definition language is
interpreted (as in the case with QL's and some MDL's) it becomes more
like a command language. However the latter operate at a more

aggregate, 'meta' level.

The command languages are usually interpretive and, as their name
implies, they cause processing to take place identifying both the data
objects and procedures to be used. As an example, the DSS command
language provides interactive high 1level access to other DSS
components. The simplest form of such a language would be a
query-response interface or a menu with options allowing the user to
enter various components (cause them to execute). Alternatively the
DSS command language may be a keyword language. Often these have the
format: COMMAND parameterl, parameter2,.... A useful extension of a
simple command language involves giving users the ability to store
much-used sequences of commands in 'command files' for execution on an
as-—-needed basis. Depending on the sophistication of the system it
may be possible to pass symbolic parameters to the command files to

allow for variations in data names and other specifications. Finally,

the DSS command language may support looping and branching

in which case it resembles a full programming
example of a command language 1is provided by
Language (MCL) which allows users to execute

sensitivity analyses. When an MMS is present the

sophisticated as discussed more fully below.

Often the statements of a definition language

file for later use by the DSS. When these
initiated interactively from the main DSS command
call the languages 'separate'.

languages in this sense. The DDL, MNDL, and SDL
separate languages. Since the latter three
builder, 1little is 1lost in terms of the
interface.

delays that decrease the effectiveness of the DSS.

Any DSS Generator must have the ability to perform at least

of the functions of the CL, DDL, (DML or QL),
However these may exist only in rudimentary forms.

language

interactivity

MDL,

Page 15

constructs
language. A second

the Model Command

models and perform
MCL

can be quite

must be typed in a
processes cannot be
will

interface we

Compiled MDL's are often separate

are also usually

are used only by the

of the

However separate MDL, RDL and GDL languages can cause time

some
MCL, RDL and RCL.

In many ways the

functions in Figure 3 together with the type(s) of interface

supported provide a good way of describing both the capabilities of a

DSS Generator and its ease of use.

provides a CL imbedded in a query/response type

accesses a
and GCL languages.

RDL and Command File facilities are separate

of
power ful MCL and somewhat less powerful DDL, QL,

The MDL is a separate (compiled) language and

For example one popular system

interface which

RCL, GDL
the

also. The current

Page 16

version of this system supports the standard (text, dumb terminal,
typing) interface only. No access is provided to a GPL to allow

extension of the model base.

5. LANGUAGE TRADE-OFFS

In this section we discuss some major implementation issues
concerning the form of DSS languages without regard to the domain over
which the languages are defined. The latter (semantic) issues are
addressed in Section 6 below. Our discussion is in terms of some of
the major design choices faced by DSS language designers: compilation
versus interpretation; language power versus ease of learning and
use; 'host-language' versus 'self-contained' systems; menu-driven
versus command languages; formal command languages versus 'natural'

languages.

A major consideration in DSS languages concerns the choice

between interpretation and compilation. In compiled languages the

definition and execution phases are separate processes and unless the
transition is well-handled the interface loses the immediacy property
mentioned in Section 2. Compiled software executes more rapidly but
is more time- consuming to develop. Statements in an interpretive
language on the other hand are executed as soon as they are typed
thereby providing prompt feedback to the user and aiding the
evolutionary DSS development process. Furthermore, it 1is often

possible in interpretive systems to allow users to dynamically define

Page 17

new commands and to create and store new data objects. This provides
some measure of language extensibility and allows users to develop
more personalized systems. Finally, some systems allow users to
develop and test procedures in an interpretive mode and then to
translate the developed code using a compiler to obtain an efficient

execution. This provides some of the advantages of both schemes.

A DSS is used to accomplish decision-making tasks efficiently and
effectively. The ability to do this 1is closely connected to the
'power' of the languages used. A language is powerful, with respect
to an application domain if: (1) it has high expressive power
(operations in the domain can be expressed clearly and succinctly),
(2) it has reasonable computing efficiency in terms of both response
times and computing resources used. Figure 4 is a Kiviat Star diagram
that illustrates some major language trade-offs and relationships.
Two languages, APL and FORTRAN, are plotted on the diagram as
examples. If the application involves a mathematical application such
as linear programming then the shapes of the two plots might be as
shown. Notice that the relative positions of the two languages on one
or more axes might be reversed if another application domain were

considered.

We now discuss the trade-offs associated with the quadrants in

Figure 4.

Technical Trade-off: There is a tendency for languages with high
expressive power to be less efficient in execution time and memory
usage. Thus a well-written assembler program may be more efficient
than the same program written in a high level language. Similarly

Page 17a

User Effectiveness
Potential

I\

Training

Performance
Trade-off

Trade-off

~ Interpretive
Language with
high expressive

power (e.g., APL) On<1dns
— Help
C?mpller Languagg Documentation
with low expressive Design

power (e.g., FORTRAN)

Computing Languagg .
Efficiency —t Learnability &
Retainability

Language

Hardware &
Design

Software
Design

Technical Cognitive
Trade-off Limits
Trade-off

Y

Expressive
Power of
Language

Application domain and non-language aspects of the interface design

Note:
are considered fixed.

FIGURE &
DSS LANGUAGE RELATIONSHIPS

Page 18

CODASYL DML (DBTG, {[1971]) is likely to be more efficient +than a
high level relational language for most retrieval tasks.
Interpretive languages are, ceteris paribus, less efficient than
compiled languages.

Performance Trade-off: Often higher user—-effectiveness is
associated with lower computer efficiency. Usually the
effectiveness of wusers in problem solving will be the most
important factor in a cost-benefit analysis. Potential

effectiveness will be increased with a language of high expressive
power since the necessity for detailed programming is eliminated
and prototype modifications will be faster. Again interpretive
languages give higher user effectiveness, ceteris paribus, because
they provide immediate feedback.

Training Trade-off: 1In general +the languages with the highest
performance potential will be the hardest to learn. Human factors
studies show that on-line help and documentation aids can
effectively reduce the cost and time to train users.

Cognitive Limits Trade-off: Languages with higher expressive power
have both larger vocabularies and more complex grammars; they will
therefore be more difficult to learn and retain. Reisner, [1981]
has suggested that languages should be 'layered' in difficulty.
This means that the most common functions should be expressable in
simple forms that can be easily learned by casual users while less
common functions can have more complex syntax.
The choice of the 'best' language for a given application depends
on a cost-benefit analysis taking into account computer and training

costs for different levels of user effectiveness.

The designers of a DSS generator must decide whether it is to be
constructed as an extension of an existing general purpose

'host-language' or be 'self-contained' in the sense that all 1language

interfaces and other functions are coded into the software of the DSS
itself. The simplest form of a host-language DSS Generator would
consist of a package of subroutines or procedures callable from a
language such as FORTRAN, PL/l1 or APL. A more sophisticated approach

is to extend the syntax of one of these languages to provide DSS

Page 19

functions embedded in a unified syntactic scheme. Often this is done
by precompiling the augmented language to produce intermediate code in
the original host language. Self-contained languages are specially
built for the purpose at hand and can be designed to perform
efficiently and to present a uniform interface to the |user. Their
major disadvantage in comparison with host-language systems is that
communication with other, more general purpose, programming tools may
be severely restricted. This can limit the ability of DSS builders to
develop new kinds of applications not envisaged by the designers of

the system.

As pointed out by Vassiliou and Jarke,[1982], (and as is evident
from our previous discussion), the concept of a computer language has
expanded in two directions: (1) methods of communicating with
computers are beginning to embrace more of our physical senses (touch,
hearing, etc.) and (2) formal keyword languages are becoming more
English-1like and even 'natural'. Both of these trends appear to have

potential in DSS applications.

Interfaces employing devices such as light-pens, touch-screens
and joy-sticks fall into the first of the above categories. Often
these are used to provide an alternative to typing as a means of menu
selection. For this purpose they are useful interfaces for managers
and other casual users. However the expressive power of such
interfaces 1is 1limited to a discrete set of predetermined choices.
Empirical evidence, Gilfoil ©[1982], indicates that users tend to

prefer command languages to menu-driven interfaces after they have

Page 20

gained some initial experience with a system, Furthermore, the
complex data retrieval and procedure coding tasks faced by DSS
builders require a full language capability. Thus we see a need for
both 1levels of 'language' in a DSS. Menu or simple prompt-response
interfaces can be used at the higher levels of the DSS to allow all
classes of users to select the major subsystems or modes of operation
they wish to enter. These simple interfaces can then be extended
downwards two or three levels to allow casual users to perform useful
tasks such as running predefined models and reports. Full language
capabilities must be provided for the builders and intermediaries to

build the models, format output reports and so on.

The second important trend in computer languages is the attempt
to make them more 1like English. To the extent that this can be

achieved it is generally believed that managers will be encouraged to

interact personally with the computer. In addition, learning and
retention properties should be improved. More importantly perhaps,
progress in the field of ‘'natural' computer languages will, of

necessity, pave the way for more intelligent (forgiving) interfaces
since human speech involves many short-cuts and abbreviations that
require a built-in intelligence to understand. Eventually our
progress in understanding natural language will be coupled with
voice-entry of commands and queries to give a truly different
dimension to the man-machine interface. At the present time there is
at least one successful 'natural' database query language on the

market (Harris, [1977]) and progress in voice recognition has reached

Page 21

a point where voice commands could be used for simple menu-selection

tasks and restricted forms of data-entry.

To summarize our discussion so far, we believe that DSS Generator
MDL's and QL's should be interpretive, have high expressive power, be
'layered' and be augmented by a range of help and documentation aids.
In addition all 1language functions shown in Figure 3 should be

accessible from the main DSS interface (no separate languages).

6. DSS LANGUAGE FUNCTIONS

We turn now to a brief discussion of the semantics of DSS data
retrieval and modeling languages. We are interested in what these
languages can do for DSS users or, more precisely, in the range of
functions that must be performed by DSS languages. Lists of the most
important functions are given (Figures 5 through 7), together with
some summary comments. However it 1is our intention that these
functions should be incorporated into the vocabulary of the various
DSS languages. In some cases this can be done by simply storing
callable procedures in the Model Base. In other cases, particularly
for command languages such as the MCL, the functions and the objects
on which they operate might form the verbs and nouns (respectively) of
a DSS language. The discussion will be 1limited to database and
modelling functions only since these are closer to the end user and

are also most likely to differ from conventional MIS applications.

Page 22

We will not discuss DBMS languages in great detail here since

they have been the subject of many articles and books. However DSS
databases have their own unique data management problems that

should be reflected in language facilities. First the unanticipated
nature of many requests to the DSS and the generation of new data by
DSS models implies that the DBMS should allow new data relationships
to be added dynamically at execution time. This facility is provided
most easily by relational systems (Codd, [1970]). Secondly a number
of conceptual objects and relationships occur in DSS that can not
easily be represented in a conventional DBMS. Figure 5 lists some of
these together with possible representations and operations (following

the ROMC method - see earlier).

There are a number of aspects of DSS data manipulation that need

special attention:

(1) Many, perhaps most, DSS applications involve planning and
forecasting giving rise to a need for the DSS to handle time-series.
There are a number of problems here: (a) conventional MIS wusually
maintain only recent transactions and store data on a cross-section
rather than time-series basis making data acquisition by the DSS
difficult, (b) conventional DBMS often do not handle variable time
length data well, (c) there is often a need to store many versions of

the same time series with different periodicities and ranges of time.

CONCEPT

Time-series

Multi-dimensional
Information

Hierarchical
Groups

Meta Data

REPRESENTATIONS

Variable length array

Line graph

Scatter plot

Multi-dimensional array

Trees, Confluent heirar-
chies

Dictionary format defini-
tions, cross-reference
maps

Page 22a

SPECIAL DATA BASE OPERATIONS*

Extraction from MIS or exter-
nal data bases

Periodicity Conversion
Missing values

Period ranging
Concatenation of series
Grouping of series
Aggregation over series

Aggregation
Multi-key sorts

Aggregation
Tree search

Multi-key, Partial-key and
context search;
Dictionary maintenance

*In addition to the usual retrieve, display, store, add, delete and modify operatioms

FIGURE 5

DATA MANAGEMENT FUNCTIONS

Page 23

(2) Accounting data are often conceptualized Dby managers as

having many different dimensions - for example sales-by product, by

region, by customer class. Hence there is a need to be able to store

create and manipulate multi-dimensional arrays.

(3) Hierarchical classification schemes (accounting systems,

organization structures, project task break-downs, product explosions,
etc.) are a common means for dealing with complexity. The DSS
Generator languages must therefore allow the wuser to create, and

manipulate alternative hierarchically organized data objects.

(4) The DSS System Directory (Figure 2) contains meta data
concerning the meanings and relationships of both data and model
objects. Language concepts that can be used to create and retrieve

such mete data should also be provided.

Many of the representations and operations shown in Figure 5 have
been provided by different systems. For example statistical packages
provide facilities for handling time series and some report writers
handle the concept of multi-dimensional objects well. However
research on the semantic and syntactic structure of DSS languages for

manipulating these concepts is much needed.

The concept of 'model management' has been an innovative feature
of DSS research. We have previously mentioned that the MDL (Model
Definition Language) should be (1) interpretive, (2) have capabilities
(in terms of control structures and input/output) of a full

programming language, (3) allow procedural access to a general-purpose

Page 24

programming language to allow additions to the model base to be
constructed and (4) provide a number of commonly used operations
useful in planning. Figure 6 indicates the major classes of functions
that should be provided in the MDL. Many of these can be implemented
via procedure calls. Others would be better implemented by
incorporating them into the syntax of the MDL. Ormancioglu,[1982],
describes a mathematically based high level language that provides a
number of operaticns that are useful in data retrieval and model
building and would allow DSS models to be stated in a concise form.
Another interesting possibility is to build specialized languages
containing keywords corresponding to commonly used operations such as
'Regress', 'Forecast' and 'Consolidate'. Current DSS Generators
generally provide these functions only through standard procedure or

subroutine calling conventions.

Turning now to the MCL (Model Command Language) there are a
number of concepts and operations that can be defined over models and
their inputs and outputs. Figure 7 lists these operations in three
groups: housekeeping, construction/execution and sensitivity

analysis.

The Model Base (Figure 2) contains a large number of procedures
that can be used in models (see for example Figure 6). The

housekeeping functions are concerned with the maintenance both of

these procedures and their descriptions. The construction functions

combine these building blocks into executable modules. While the

housekeeping and construction facilities are a necessary part of any

Data Transformation Operations

Simple calculations
Vector and matrix operations
Recoding of data wvalues

Page 24a

Financial Functions

Net present value, return on
investment, etc.
Accounting conventions

Concatenation Consolidation
Missing value transformations Depreciation routines,
Grouping of time-series Tax routines

Management Science Techniques

Mathematical programming
Simulation support facilities
Simultaneous equations

Statistical Functions

Descriptive statistics
Exploratory data analysis
Time-series forecasting

- Exponential smoothing
- Box-Jenkins

Sensitivity Analysis

Regression forecasting Impact analysis
- Multiple regression What-if analysis
- Simultaneous equation techniques Goal seeking

Multivariate analysis Monte Carlo analysis

FIGURE 6

ANALYTIC AND MODELING CAPABILITIES

1.

CONCEPT

HOUSEKEEPING (BUILDER):

Functions, subroutines,
and procedures as build-
ing blocks

Model dictionary

REPRESENTATIONS

Source code, object code,
data abstractions

Input-process-output
description, cross-
reference maps

CONSTRUCTION (BUILDER, INTERMEDIARY):

Model built from
building blocks

Source code referencing
library functions and
procedures

SENSITIVITY ANALYSIS (INTERMEDIARY, MANAGER):

Assumptions
Model parameters
Base case

Case

Sensitivity

Goals

Causality

Model code
Data items
File of data item values

Operations on base case
data items

How does x vary with y?

What value of y is re-

quired to obtain x = ?

What impacts x?
What is impacted by x?

FIGURE 7

MODEL MANAGEMENT FUNCTIONS

Page 24b

OPERATIONS

Store; retrieve; add;
delete; modify

Multiple key, partial
key and context search;
dictionary maintenance

Store; retrieve; add;
modify; execute (compile,
link, load, go)

Modify
Modify, range values
Store, retrieve

Execute, store,
retrieve, undo

Marginal analysis
Target analysis

Impact
Analysis

Page 25

application development system much DSS research has been aimed at
providing more powerful systems for building models. Data base
techniques have been used to coordinate the 1inputs and outputs of
cooperating models at different organization 1levels (Sprague and
Watson, [1976]). Knowledge representation techniques from Artificial
Intelligence might be used to give the system greater self-knowledge
in order (1) to assist users in learning the capabilities of the Model
Base and (2) to help builders in the construction of models (Elam and
Henderson, [1980]). Continuing this direction of research, Bonczek et
al [1982] have shown how Predicate Calculus and the resolution
principle can, in principle be used to automatically construct models
from more basic building blocks. This would allow users to state
information results in a non-procedural manner by specifying what is
to be accomplished rather than the procedural details of how the

computation is to be performed.

The ability to explore the implications of models under various
assumptions concerning their structural form and parameter values and
different management policies lies at the heart of the DSS idea. The
MCL interface should support the decision-making process by providing
short and long-term memory aids. These might help the user keep track
of sets of parameter values and assumptions cases) and their
corresponding results (Stohr and Tanniru, [1981]). In this context we
need to develop language constructs that would allow users to create
and modify 'base-cases' (trial settings of parameters and other model

elements), to retrieve the results of previous runs, to compare

Page 26

different solutions and to modify the underlying assumptions.

In the area of sensitivity analyses we have already mentioned the
emergence of languages for 'what if?' analyses. At a more advanced
level Blanning [1982], defines a formal grammar for decision-making
based on six functions commonly provided by a DSS - selection and
aggregation of data, estimation of parameters, solution of
simultaneous equations and optimization. The grammar contains four
variables: a decision to be made, a sensitivity analysis, a
per formance measure and an environment. Sentences in the language

correspond to common sequences used in problem solving tasks.

7. CONCLUSION

In this paper we developed a set of general requirements for DSS
languages. We then 1listed an array of languages that should be
included in a DSS Generator. These were differentiated both according
to the function performed (example model definition or data base
retrieval) and according to their type (derived, command, definition,
separate, etc.). Some of the major implementation issues faced by DSS
software designers were also discussed. Next we provided a detailed
analysis of some of the special functions that a DSS should perform in
the areas of data base and model management. For each area we
described the desired capabilities from the point of view of the end
user or model builder. The next step will be to design specialized,

high-level languages that will assist the user in performing these

Page 27

functions. This is seen as an important area for research and
development by behavioral scientists, operations researchers and

computer scientists.

10.

11.

12.

Page 28

REFERENCES

Aho, A.V. and J.D. Ullman, Principles of Compiler Design,
Addison-Wesley Reading, Mass., 1978.

Blanning, Robert W., 'A Decision Support Language for
Corporate Planning', Int. Journal of Policy Analysis and
Information Systems, December, 1982.

Bonczek, Robert H., Clyde W. Holsapple and Andrew B.
Whinston, 'A Generalized Decision Support System Using
Predicate Calculus and Network Data Base Management',
Operations Research, PP - 263-281, Vol. 29, No. 2,
March-April, 1982.

Boulden, J.B., 'Computer—-assisted Planning Systems:
Mangement Concept, Application and Implementation,

McGraw-Hill, 1975.

Codd, E.F., 'A Relational Model for Large Shared Data Banks',
Communications of the ACM, vol 13, no 6, June 1970.

DBTG: Data Base Task Group April 1971 Report, CODASYL
Programming Language Committee, ACM, New York, 1971.

Elam, Joyce J., John C. Henderson and Louis W. Miller,
'Model Management Systems: An Approach to Decison Support in
Complex Organizations'. Proc. 1lst International Conference

on Information Systems, Philadelphia, PA, December, 1980.

EMPIRE: Applied Data Research Inc., Princeton, N.J., 1983.
EXPRESS: Management Decision Systems, Waltham, Mass., 1983.

Gilfoil, D., 'Warming-up to Computers: A Study of Cognitive
and Affective Interaction Over Time', Proc. Conference on
Human Factors in Computer Systems, Gaithersburg, Maryland,
March 1982.

'Harris, L. R., 'User Oriented Data Base Query with the
ROBOT Natural Language Query System', International Journal
of Man-Machine Studies,Vol 9, 1977, pp 679-713.

Hayes, Robert H. and R.L. Nolan, 'What Kind of Corporate
Modeling Functions Best?', Harvard Business Review, May-June,
1974.

13,

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Page 29

IFPS: EXECUCOM Systems Corporation, Austin, Texas, 1983.

Lehmann, H., 'Interpretation of Natural Language in an
Information System', IBM Journal of Research and Development,
22, September, 1978.

Lorange, Peter and John F. Rockart, 'A Framework for the Use
of Computer-Based Models in the Planning Process', Alfred P.
Sloan School of Management, Working Paper WP 860-76, 1976.

Naylor, T.H. and H. Schauland, 'A Survey of Users of
Corporate Planning Models', Management Science, pp 927-936,
Vol. 22, No. 9, May, 1976.

PLATO DSS Reference Manual, OR/MS Dialogue, New York, 1982.

Reisner, P., 'Human Factors Studies of Data Base Query
Languages: A Survey and Assessment', ACM Computing Surveys,
13, 1981.

Schneiderman, Ben, Software Psychology: Human Factors in

Computer and Information Systems, Winthrop Publishers Inc.,
1980.

Seaberg, R.A. and Seaberg, C., 'Computer Based Decision
Systems in Xerox Corporate Planning', Management Science, pp
575-584, Vol. 20, 1973.

SIMPLAN: SIMPLAN Systems Inc., Chapel Hill, North Carolina,
1983.

Sprague, R.H. and E.D. Carlson, Building Effective Decision
Support Systems, Prentice Hall Inc., Englewood Cliffs, N.J.,
1982.

Sprague, R.H. and H.J. Watson, 'A Decision Support System
for Banks', OMEGA Vol. 4, pp. 657-671, 1976.

Stohr, E.A. and N.H. White, 'User Interfaces for Decision
Support: An Overview' Int. Journal of Policy Analysis and
Information Systems, vol 6, December 1982.

Stohr, E.A. and M. Tanniru, 'A Data Base for Operations
Research Models', Int. Journal of Policy Analysis and
Information Systems, Vol. 4, No. 4, December 198l.

Traenkle, J.W., Case, E.B., and J.A. Bullard, Jr., The Use
of Financial Models in Business, Financial Executives
Research Foundation, New York, 1975.

27.

28.

29,

30.

31.

Page 30

Turner, J., M. Jarke, E.A. Stohr, Y. Vassiliou and N.H.
White, ‘Using Restricted Natural Languages for Data
Retrieval: A Laboratory and Field Evaluation', Proc. NYU

Symposium on User Interfaces, New York, May, 1982.

User Interfaces: Proc. NYU Symposium on User Interfaces,
Graduate School of Business Adminstration, New York
University, May, 1982.

Vassiliou, Y. and M. Jarke, 'Query Languages: A Taxonomy',
in Proc. NYU Symposium on User Interfaces, Graduate School
of Business Administration, New York, 1982.

XSIM: Interactive Data Corporation, Waltham, Mass, 1983

Zmud, Robert W., 'Individual Differences and MIS Success: A
Review of the Literature', Management Science, vol 25, 1979.

