A KNOWLEDGE-BASED APPROACH TO THE ANALYSIS AND DESIGN OF
BUSINESS TRANSACTION PROCESSING SYSTEMS

Matthias Jarke
and
Jacob Shalev

May 1983

Center for Research on Information Systems
Computer Applications and Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #53

GBA #83-52(CR)

A KNOWLELGE-BASED APPROACH TO THE ANALYSIS AND DESIGN OF

BUSINESS TRANSACTION PROCESSING SYSTEMS

Abstract

In this paper, we propose a new approach to the
analysis and design of management information systems.
While previous methods were either syntactic in nature
(structured analysis and design, problem statement
languages) or focused on the user-analyst interaction
(user-controlled design, prototyping), our method - while
compatible with both - additionally incorporates the
experiential Xknowledge gained from the thousands of systems
in operation today.

This goal is achieved through providing the systems
analyst with a business systems architecture (BSA)
consisting of two parts: a set of rules representing the
knowledge about a generalized application domain, and a
domain-specific database architecture that enforces these
rules. The rules can also be used to check the design of
existing systems and to guide the analysis process for new
systems.

The paper describes a BSA for transaction processing
systems. The approach can be applied in a similar way to
other application domains such as decision support systems.

Page 1

1.0 INTRODUCTION

Three main problem areas are commonly encountered in system
development: (a) Time and cost overruns. (b) The resulting system
does not satisfy the requi;ements. Even if the desired outputs are
produced, the user interface is often not acceptable. (c) The system

is difficult and costly to maintain.

Although from a management viewpoint these are serious problems
in themselves, the system developer views them as symptoms of
underlying problems in the systems development process. It is
well-known that 40% of the development effort and up to 80% of the
error handling effort are spent in the systems analysis and design
phase of the life cycle [Alberts 1976, Boehm 1973, 1976, Brooks 1975].
Yet existing methods often fail to improve significantly the quality

of these critical steps.

In this paper, we analyze some of the underlying reasons for this
failure and propose a new method that adds the systematic use of
semantic knowledge about a generalized application domain - in this
paper: business transaction processing systems (BTPS) = to the
systems analysis phase. This knowledge is derived with relative ease
from the available experience with the development of the thousands of
systems in operation today, yet none of the available methods exploits

it systematically for the development of new systems.

We express the knowledge about BTPS in a business systems
architecture (BSA), consisting of a set of rules and of a specialized

database architecture based on these rules. The rules can be used to

Page 2

evaluate an existing design as well as to guide the analysis process

by "asking the right questions".

The BSA database architecture is described in a companion paper
[Jarke and Shalev 1983]. An important part of that architecture,
input management, has been implemented and 1is being used in the

development and operation of defense BTPS in several countries.

A further informal test of our methodology was conducted with a
group of advanced students who were asked to evaluate a design
proposed in a textbook. While they failed to detect any major
problems, the application of our rules revealed a number of grave
omissions and errors in the design. Nevertheless, no claim can be
made that the rules are complete. Therefore, a flexible structure is

required that allows extensions of the knowledge base.

The paper is organized as follows. Section 2 gives a theoretical
treatment of the inherent difficulties of systems analysis and design.
Section 3 analyzes the shortcomings of current methods with respect to
these difficulties and relates our approach to work done in other
areas, mainly abstraction mechanisms developed in artificial

intelligence, database, and programming language research.

Section 4 describes the derivation process of domain-specific
knowledge about BTPS to Dbe used in our method. As an example, two
requirements, monitoring and systems visibility/ user control, are
refined to more detailed rules. Finally, section 5 summarizes the
application of knowledge ;n our architecture and the expected impact

on the systems analysis and design process.

Page 3
2.0 SYSTEMS ANALYSIS AND DESIGN -~ A TRANSFORMATION PROBLEM

When trying to develop an information processing system (IPS),
two domains are given: the enterprise (the "real world") and the
computer environment. The IPS developer introduces new domains by

developing models of the IPS to be constructed.

The life-cycle approach to systems analysis and design is aimed
at breaking down the iengthy and expensive system development process
into manageable phases. Each phase has specified objectives and
results in the production of necessary system documents and products.
The output of each phase becomes the input to the following phase

[DeMarco 1978].

The IPS construction can be seen as successively solving a series
of +transformation problems that optimize (or satisfice) an objective
function subject to constraints. At each phase, the solution of the

problem generates constraints for the following one:

(A) The Information Requirements Analysis Problem:
Objective: Attain the enterprise's goals (profit, market share)
Constraints: Resources, environment imposed, etc.

Domain of decision variables: Technology, people, tasks,
organizational structure, IPS requirements.

Note that this formulation views the IPS as a component in the
overall structuring of an enterprise and is thus compatible with the
Organizational Behavior approach of viewing the introduction of an IPS
as a process of organizational change.

Page 4

(B) The System Analysis Problem:

Objectives: Produce an understandable, buildable and
maintainable system specification.

Constraints: The information requirements and eventually the
rest of the enterprise domain variables.

Domain of decision variables: Data flows, data structures,
processes and their data transformation specifications.
(C) The System Design Problem:

Objectives: Produce a maintainable, error free design, that
maximizes cohesion and minimizes coupling.

Constraints: Data flows, data structures, transformation specs,
physical computer environment.

Domain of decision variables: System structure, program modular
structure, module specifications, file structure, data structures.
(D) The System Construction Problem (programming):

Objectives: Produce a maintainable, error £free and efficient
system.

Constraints: System structure, program modular structure, module
specifications, file structure, data structures, available programming
tools and the computer environment.

Domain of decision variables: program constructs (if.. then..
else.., segquence, iteration, etc.), internal data structures,
algorithms.

Figure 2-1 summarizes the above description. The IPS developer
is faced with a large combined gap - from the enterprise's real
variables to the end result of programming language constructs and
program data structures. He tries to cross the gap by iteratively

solving the above problems. An error in an earlier phase may have

profound implications for the later phases.

Page 4a

Figure 2-1I The Transformation Problems
CONSTRAINTS OBJECTIVE DECISION VARIABLES
(START)
i I | IRA | [|
i Resources | | === I | IPS |
! Environment | —————— >1 attain |————— >l requirements |
H | | enterprise’s | I I
i i | goals | | |
1 1 L] L Jd
|
I
T i
1
Y
e A R T il r Bl
! i | SYSTEM ANALYSIS| | DFD’s, [
! IPS i | ===] | Transformations]
! reguirements [——————— »} Produce "good"|-—————- >l specs, I
i | | logical design | | Data structures|
! ! i | | :Logical Designl
L A J L] L J
[
|
r 1
|
v
		SYSTEM DESIGN		Module specs +
i	= ======		structure.	
Legical Design	——————— >	Max cohesion	——————— > File and data	
} i i Min coupling I	structure:			
I	I	Physiacl Design		
L I L ! L 1				
I				
r 1				
i				
v				
l	CONSTRUCTION		Algorithms, I	
]		======		Lanquage cons—
Physical Design	-————— »	Produce maintain	—-—————— >l tructs, inter—	
!	lable, error freel	nal data		
i I fefficient progs.		structures. I		
S 1 1 L]				

4

(END)

Page 5

The development time of a large IPS is long. User requirements
change over time, at a rate that may be faster than that of
development. These changes do not only have to go through the same
transformations but may seriously impact the current solution at each
phase. Thus the inherent difficulty of the development process
becomes almost obvious. We need ways to speed up the process and

increase its flexibility and "tolerance" for change.

3.0 REVIEW OF SYSTEMS ANALYSIS APPROACHES

In this section, we review the solutions of three groups of
methods concerned with systems development (life cycle methods,
prototyping, abstraction mechanisms), and contrast them with our

approach.

3.1 Life Cycle Methods

The MIS literature provides us with life cycle oriented methods.
We will focus on the structured analysis methods [DeMarco 1978, Ross
1977, Orr 1977;1981, Yourdon and Constantine 1978, Gane and Sarson

1979, Warnier 1981].

Some methods designed for information requirements analysis
extend into system analysis. BSP [IBM 1981], BIAIT [Carlson 1979,
Burnstine 1979;1980] and BICS [Kerner 1979, Zachman 1982] seek to
perform an enterprise level analysis of the information needs, and to
facilitate a smooth transfer to the detailed 1levels of subsystem

analysis and data base design.

Page 6

Another group of methods are the problem specification languages
(PSL) . The early PSLs of the 50's and 60's [Young and Kent 1958,
Grindley 1956] were motivated by the need to accurately capture user

requirements, linking all the components in a comprehensive way.

PSLs served as the foundation upon which a very ambitious
approach was attempted - ISDOS. This method tried to automate the
overall system development process from a problem specification in PSL
through specification analysis (PSA) and physical design (SODA) to
code generation [Teichroew 1970, Teichroew and Sayani 1971, Nunamaker

1971, Nunamaker and Konsynski 1976].

The expectations that ISDOS will become EEE system development
method did not materialize [Couger et al. 1982]. However, a less
ambitious method, PLEXSYS, emerged from the ISDOS approach that
supports the development effort by providing a workbench environment

for system development [Nunamaker and Konsynski 1982].

Like any other system development methodology, the 1life cycle
approach cannot avoid the basic transformation problem: from the
enterprise's objectives to a set of working machine language programs.
However, additionally the life cycle phases have been criticized for
being too difficult to be actually carried out with acceptable

quality, and for taking too much time [Freeman 1980, McCracken 1980,

Martin 1982].

Page 7

3.2 Prototyping

The failure of the life cycle methods to significantly reduce the
development time and assure acceptable system quality, prompted a call
to abandon them in favor of prototyping. Rather than developing a
large 1IPS in phases, prototyping calls for implementing a sequence of
systems, each time refining the current "coarse" version in accordance
with user feedback. The approach shortens the time needed to produce
initial versions by relying on high level languages (HLLs) and data

base management systems [McCracken 1980, Zmud 1980, Martin 1982].

If the performance of the last prototype is poor, or if the
application will be run frequently, the heavy time consumers will be
rewritten in a more efficient language, or, if that is not possible,
the system serves as the specification for the target application to

be developed using conventional languages and DBEMS.

Our perception is that this approach makes a number of hidden
assumptions. We summarize them in the following list to explain our
belief that prototyping (at least alone) may not be suitable for

building large backbone BTPS.

1. The application is built upwards and never has to restart. This
assumption 1is very optimistic. Design decisions made when only a
small portion of the system requirements are known may have to be
severely modified requiring extensive reprogramming.

2. Users use the prototype long enough to provide good feedback.
This assumption may not be realistic for a BTPS environment. Data
may be output of another subsystem not yet built, the user may be
busy doing his regular work. The effort of producing the
necessary variety of situations so as to make user sessions
realistic may approach that of detailed design, but now we also
have to program and very probably modify. The effort inveolved may
inadvertently limit the scope of the analysis.

Page 8

3. The difference in the end may only be that of efficiency. This
assumption hides the fact that current HLLs use different
environments from common BTPS. An incompatible environment is a
serious disadvantage: 40% of package buyers indicated that
environment compatibility has a major influence on choosing a
package (Datamation software rating, March 1983).

4. The application can serve as a specification for conventional
program development. However remember that we do not have a
documented statement of the requirements, no DFDs and no data
dictionary. Program conversion experience shows that a working
program is a very poor specification tool.

5. Prototyping presents a process of improved wuser requirements
elicitation. The above study found that an overwhelming 87% out
of 2387 users based their decision to buy a package heavily on the
features and functions provided. It is not clear whether
prototyping produces more features and functions than a systematic
analysis.

3.3 The Knowledge-Based Approach

We will not concentrate on the sometimes unsatisfactory results
of the above methods but rather on the inadequate inputs to the
process. Tens of thousands BTPS have been implemented, and still,
when we examine the phases of the methods we make the following
observations:

1. They neither incorporate past experience nor do they draw upon a
common base of knowledge. They require experienced people but do
not support knowledge accumulation.

2. They do not use standard requirements, even for "standard"
applications (like Accounts Payable, General Ledger, Personnel,
etc.). In standards here we mean standards that apply to the
application itself and not to the methods of its specification

(like Data Flow Diagrams, structure charts, etc.).

3. They do not use pre-fabricated application-oriented components at
the design level or at the software level.

4. They do not recognize standard operations (e.g. error checking)
and thus may not use pre-fabricated components even if they exist.

Page 9

The lack of these features forces the designer and the user to
refine their design to a very detailed level, making it wvirtually
impossible to cover all details and aspects of the system. The
current methods do not ensure reproducible designs. Rather we find
"ad-hoc" designs that are internally inconsistent. Designs are even
less consistent across (sub)systems leading to extensive debugging and

modifications.

Even the structured methods do not directly address the above
problems. In a way one could regard them as "syntactic", whereas we
point out the lack of a "semantic" knowledge base, and of tools based
on application knowledge. Application generators can be seen as an

ad-hoc answer to these issues but lack an underlying theory.

The central idea of our approach is that such a knowledge base
cannot be developed for IPS in general. It is necessary to focus on a
specific generalized application domain such as business transaction
processing to capture knowledge that is specific enough to really
support the systems analysis process. To understand this point, the
reader should consider for a moment how the knowledge domain is
enriched if one zooms in from a requirements analysis of editors in
general to one for word processors in an office environment: many
necessary features of word processors (e.g., spelling correction,

letter formatting) are meaningless for editors in general.

Page 10

3.4 Relationship To Other Disciplines

Fig. 3-1 summarizes the existing methods and shows which 1life
cycle phases are covered by each methodology. The bottom of the
figure introduces two other disciplines, data base management systems
(DBMS) and programming languages (PL). These disciplines are mainly
concerned with tools for the system construction phase and not for
analysis. However, the development of high 1level programming

languages (HLL) and of powerful data manipulation languages (DML)

actually changes the physical environment that the analyst sees.

The main advances in the PL discipline that will impact system
analysis are abstraction mechanisms [Shaw and Wulf 1977, Schmidt and
Mall 1983]. Abstractions support a methodology in which programs are
developed by means of problem decomposition. At each stage of the
program development, lower level abstractions are used to implement
the current abstraction, thus isolating use from implementation.
Abstractions seem to be a vehicle that can move programming languages

from a mere construction tool to the earlier phase of analysis.

A similar path has been taken by the database researchers who
have developed conceptual modelling that encompasses both data
modelling and behavior modelling [Brodie and Zilles 1980, Schmidt and
Mall 1983]. In the BTPS context, the concept of database transactions
as a behavior modelling construct is of particular importance [Gray
1981, Rolland and Richard 1982]. A recent attempt to integrate these
concepts into a complete system for IPS specification and
implementation through compilation into a database programming

language [Schmidt et al. 1982] is TAXIS [Mylopoulos et al. 1978].

The Life Cycle Phases

Information
Requirements

Analysis

Logical Design
(Systems Analysis)

Physical Design

System Construction

e e o -

Program. DBMS
Languages

Page 10a

FIGURE 3-1: System Development Methods

T

PSLs

DMBs | Modelling |

Maintenance

Data Bases

ISDOS

Prototyping Packages

1

HLLs | Abstractions

Programming Languages

Page 11

4,0 KNOWLEDGE STRUCTURE FOR BTPS

In this section, a domain-specific knowledge structure for BTPS
is developed. First, the fundamental concept of a business program
governing the business transactions is introduced. Within this
framework, the specific constraints and requirements of
transaction-level processing are derived. The requirements are
further refined into specific rules to be considered in order to
arrive at a satisfactory BTPS design. For space reasons, only two

requirement areas can be discussed in detail.

4.1 The Concept O0f Business Transactions.

At the operational level, a business is set up to carry out
certain business transactions. The special property of this level is
that there is usually a large number but only a small wvariety of
business transactions. Speaking in programming language terms, one
can define a small number of transaction types. Such a type

definition will be called a business program. Essentially, the

business program defines a script together with the associated planned
processes. A planned process can be further refined into a collection
of planned activities. Activities of the same type may occur in

multiple process definitions.

Each instance of a business program 1is called a business
transaction. Corresponding to the components of a business program, a
business transaction is composed of (actual) processes Wwhich can be

further described by (actual) activities. In contrast to database

Page 12

transactions, business transactions are long-lived (take weeks rather

than seconds) and nested (contain major subtransactions) [Gray 1981].

As an example, consider an Aécounts Payable department that
receives invoices, approves and pays them. In the invoice approval
activity, an approver enters the invoice data. It is checked by the
computer against the purchase order (P.0.) data. If approved, the
total-amount-approved for the P.O. is increased, as is the
total-amount-approved for the vendor. Also, a payment voucher is
prepared, and a record that will be sent to Headquarter's central

computer. -

This activity is part of the payment process that includes the
activities of printing the check on the voucher's due date, and later
on, the check reconciliation. The payment process 1is part of the
overall business program set up to handle purchasing. Note, that once
a check is out and paid, there is little chance to get the money back

(= reset the payment sub-transaction) without major corrective action.

4.2 Business Constraints And Requirements

A business program must be designed as to achieve the business
goal (performing the transaction) while complying with certain
constraints and practices. We have developed a hierarchy of business
constraints using the process sketched in Figure 4-1. We identify
these constraints and practices and show their implications for the

design of detailed rules in two areas.

Page 12a

Complexity
and
Parallelism Cl1
Business Processor
Constraints Constraints
11 - I4 P1 - P2
.
General
Requirements
R1 - R7

¢

Detailed

Business Rules

Figure 4-1 : The Derivation Process of Business Requirements and Rules

Page 13

I1. Quality of the program's outputs. The business program has
to make sure that all necessary outputs are produced, and are correct
and precise. This is an issue of major importance not only because
customer relations are at stake, but because serious errors can
threaten the business' existence. Hence the commonly found business
rules, signature regquirements, authorizations and other business
quality control devices.

I2. Timeliness. A transaction may be long-lived, but has to be
completed within a predetermined time period. The time period is
either determined contractually (e.g. delivery dates, net 30 payment,
etc.), or by laws and regulations (e.g. tax returns), or as a
performance goal of the business (e.g. fast service). The business
may also elect to establish time constraints for processes and
critical activities.

I3. Accountability. The business is held accountable for its
activities by 1its clients, the law, and its shareholders. We can
distinguish between short term (current transactions) and 1long term
(reporting and audit) accountability.

I4. Responsiveness. We define responsiveness as the business’
willingness to accommodate a changing environment. In the short run,
the business will accept and act on requests for change in a current
transaction. Long run changes will induce the business to change the
business program itself.

The above business issues are not the only constraints imposed on
the business program. Besides satisfying constraints originating from
the environment, such as limits on the use of external resources, we
must also note that two types of processors perform the activities of
the business program: people (the human processor) and computers (the

machine processor).

P1. The human processor. People make mistakes when processing
documents. They err in performing decision rules and routing tasks.
Their document storage and retrieval abilities are limited, causing
lost and misplaced documents.

P2. The computer. Computers bring a new source of errors into
the business program. They lack the integral (limited) quality
control capacity of humans: common sense. Transformations of data
into and out of the computer are required. This man-machine interface
is an additional cause of errors and difficulties. The computer
provides only that flexibility and data access that has been designed
into it, thus inadequate design may severely limit user control and
data visibility.

Page 14

The complexity and parallelism of the business program
(constraint C1), coupled with the above constraints (I1-I4,P1-P2)
identify requirements that the design of every BTPS must resolve. We
briefly describe a set of general requirements that a good business

program must satisfy and then discuss two of them in more detail.

R1. Monitoring is the ability to know for each transaction, in
what process/activity it is and conversely, what is a certain activity
doing. This must be compared against deadlines set by the business or
outside constraints.

R2. Scheduling and control is the ability to alter the direction
of flow, or the order in which transactions are processed. A business
program lacking these features is inflexible.

R3. Queue management: As the activities are performed in
parallel, it is probable that activity B will not be ready to
immediately process the results (output) of activity A. This gives
rise to input and output queues, and the need for their management as
an integral part of the business program (e.g. can we recover a gqueue
of input documents?).

R4. Error handling: Whereas in other system types an error may
just prevent successful completion, in a business environment it may
have additional adverse effects. The business processes must
therefore be designed to actively detect and eliminate errors, with an
emphasis on effective error presentation and correction.

R5. Quality control takes into account the inability of the
business program processors (P1-P2) to detect all In high risk
situations, quality control activities will check outputs, and may
require compensating transactions and amendment capabilities to be
added to the business program.

R6. System visibility and user control: The business program
should have tools that will answer at least the same user questions
that could be answered in a manual system.

R7. Auditability is the ability to take a certain database
state, or some output, and trace back. How was it arrived at? What
activities modified it? Who did what, and when?

Page 15

Business Contraints Requirements BSA Services
I1. Output Quality [R1. Monitoring
——12. Timeliness R2. Scheduling Input Mgmt
--13. Accountability --R3. Queue Mgmt ;r--;utput Mgmt -
--;;:-;;;;;;;;;;;;;;-— I R4. Error Hdlg Transf Mgmt
--P1. Hu;;n Limits ; R5. Quality Ct Control DB
--Pz. Computer Limits --;;. Visibility Audit Trail
TN T

Figure 4-2: Derivation of Business Requirements and BSA Services

The left half of figure 4-2 describes which of the business
constraints discussed previously give rise to each of these
requirements. The right side says how, in turn, the requirements lead
to the business architecture services to be described in section 5.
For space reasons, we cannot discuss all these relationships in
detail. However, two examples (R1 and R6) may illustrate the process.
They also indicate how the general requirements can be broken down
into more detailed rules to be used in the design process. Since the
first use of such rules is typically design checking, the rules are

mostly stated as questions any BTPS design should have an answer for.

4.3 Monitoring

Consider the issue of timeliness (I2). The business transaction
has to be completed within a predetermined time period. We view that
as an objective of the business program. The question that arises is:

If we design the business program to just do the data transformations

Page 16

of the transaction, will the transaction actually complete in time?
Stated differently, do we need to add some components to the design of
the business program so as to make sure that we attain the timeliness

objective?

The complexity of the business program (C1) and the limitations
of the human processor (P1) provide an obvious answer. The business
program is a complex network of activities that are performed
asynchronously and in parallel and it is therefore highly probable
that a transaction will not complete on time in such an environment.
This probability is even higher if we consider the slowness and the

propensity to err of the network's human processors.

We therefore conclude that monitoring capabilities must be
designed into the business program to ensure the attainment of the
timeliness objective, or in other words: the relationship of I2, P1
and C1 yields the general requirement of monitoring (R1). Specific
monitoring rules are aimed at satisfying the timeliness objective in
the presence of complexity and processor imperfections. The following

monitoring questions should be answerable in any well-designed BTPS:

1. In which process and activity is transaction X?
2. What is activity Y processing?

3. What transactions do not meet time limits imposed on activity X,
or on process Y, or on the whole program?

4. What transaction or activity is in a special status (hold,
urgent)?

Page 17

4.4 System Visibility And User Control

Consider the issue of accountability (I3). The business has to
be able to answer outside questions and explain its actions while the
transactions are in progress or later. We also know from the need to
be responsive (I4), that some questions may be connected with requests
for change. We again view accountability (I3) as an objective and ask

if it can be attained without specifically designing for it.

When we relate this objective to the attributes of the computer
processor (P2), we note that one of the most elementary ways of
providing accountability: reviewing all documents and paperwork
related to the reguest, is possible only if designed for. The limited
storage and retrieval abilities of humans (P1), and the multitude of
activities and transaction instances (C1) add to the inherent
difficulty of attaining the accountability objective. We thus derive
the need to actively design the business program for accountability by
providing tools for system visibility and the following user action

which we term as user control.

To achieve system visibility and user control, a business program
should be designed so as to enable answering the following user

questions and requests:

1. What actions did I request (submit)?
2. Was an action successful? If successful:
1. What were the results of the action?

2. I want to amend the results.

Page 18
3. I want to reproduce the output (without re-applying the
action!).
If unsuccessful:
1. Where was I wrong?

2. I want to correct my request.
3. How was a certain result generated?

The last Qquestion may seem similar to the auditability
requirement (R7). In a sense we may think of it as a short-term
"local" auditability = tracing the recent actions to effect the result
of interest. This rule supports the user's immediate control

capability.

5.0 APPLYING THE KNOWLEDGE TO IMPROVE BTPS DEVELOPMENT

The BSA provides a three-faceted knowledge base: (a) the
business program mecdel, (b) the general rules and requirements, and
(c) the design architecture. In this section, we outline the

application of this knowledge to improved systems development.

5.1 A Database Architecture For BTPS

Some requirements take application-specific forms when actually
used. The others provide a common denominator for all BTPS. A
specialized database architecture described in [Jarke and Shalev 1983]
provides an envelope of business program services to support those
requirements, leaving the developer only with the design and

impleméntation of an application-specific kernel.

Page 19

The constructs of this architecture include general services that
can be mapped to pre-fabricated data flow diagrams or parametrized
software modules along with their supporting data structures (or data

bases). We briefly summarize the components.

An input management service provides the capability to handle

erroneous input documents without interrupting processing or requiring
unnecessary data re-entry. For this purpose, all documents are stored

in an input database.

Output of database transactions can be used in multiple different
forms and may have to be reproduced later (without repeating all the

processing). Output management provides the service of maintaining

and presenting output data using an output database.

Between input and output, transformation management roughly

covers the functions of conventional database transaction execution
and supervision, with functions added for modifying the status of the
input, output, and control databases when the main database has

changed.

In addition, there are sub-databases for the control and later

audit of transactions. The control database offers the user system

visibility through access services, and a limited amount of interrupt

facilities through control services. The audit database permits

ex-post tracing of transactions.

Taken together, these standard components enforce the use of many
of the business requirements and rules as indicated in figure 4-2.

For example, one of the main purposes of the control database 1is to

Page 20

satisfy the requirements presented in sections 4.3 and 4.4. The
services can be described on the design level by standardized data
flow diagrams, or they can be implemented as parameterized software
packages. In both cases, they relieve the application designer from

the task of reinventing standard operations.

5.2 Impact On The Structured Analysis And Design Process.

The knowledge-based approach can enhance both the 1life-cycle
methods and the prototyping approaches. In this subsection, we
briefly analyze the impact of the approach when added to the
structured 1life cycle as described in sections 2 and 3.1. The
knowledge structure outlined in section 4 can be used in several

phases of the life cycle.

The general model of a business program aids in the earlier
phases of detailed requirements analysis to structure the problem at
hand. Additionally, also the rules and requirements can be wused as
issues for discussion and analysis within the project group, and as an

aid in eliciting user requirements and priorities.

In later stages, the BSA provides pre-fabricated components of
the overall logical design to which the analyst adds the
application-specific kernel. Furthermore, requirements and rules can
be used to evaluate a proposed systems design as demonstrated in the

informal experiment mentioned in section 1.

Page 21

Analysis and design are not atomic phases. They are broken down
into more than ten interrelated activities [DeMarco 1978, ch. 2], and
one can study the BSA's impact on each. A complete discussion is
beyond the scope of this paper but will be a logical next step in our

work.

6.0 CONCLUSION

The BSA was derived as a result of focusing on a subset of IPS,
BTPS. It provides tools that improve the detailed requirements
definition and logical design of a BTPS. It then proceeds to provide
standard designs that address themselves to the common denominator of

most BTPS, assuring acceptable quality and lower implementation costs.

Considering the future, it is conceivable that BSA-based software
packages can provide "tailored environments" (for a certain machine,
DBMS and on-line monitor) for BTPS implementation. The business will
then be able to tailor an application to its specific needs while

still enjoying many of the benefits of packages.

Another obvious extension of our approach is to incorporate part
of the BTPS knowledge structure into an artificial intelligence-based
expert system [Nau 1983] that supports design checking and is 1linked
to information about the special-purpose database structure. The
problem of linking expert systems to databases has been studied in
[Jarke and Vassiliou 1983]. However, it should be noted that a major
additional effort would be required to encode the knowledge captured

in our rules in a useful computerized form.

Page 22

Finally, the portability of our approach beyond the domain of
BTPS will be investigated. For example, in [Jarke 1982] we show the
usefulness of time concepts, input and output management mechanisms in
an operational level decision support system. On the other hand, the
purpose of these services is quite-different from those in BTPS, and
in general, many BTPS requirements (e.g., timeliness, accountability)
do not play a major role in other system types while others (e.g.,

flexible user interfaces) may be more important in those than in BTPS.

References

1. D.S.Alberts: The Economics of Software Quality Assurance,
Proceedings National Computer Conference, 1976.

2. B.W.Boehm: Software and Its Impact: A Quantitative Assessment,
Datamation, May 1973.

3. B.W.Boehm: Software Engineering, IEEE Transactions on Computer,
December 1976, 225-240.

4. M.L.Brodie, S.N.Zilles (Eds.): Proceedings of the Workshop on
Data Abstraction, Databases and Conceptual Modelling, Pingree
Park, Colorado, June 1980.

5. F.F.Brooks: The Mythical Man-Month: Essays on Software
Engineering, Reading,MA: Addison-Wesley, 1975.

6. D.Burnstine: The Theory Behind BIAIT, Business Information
Analysis and Integration Technique, BIAIT International Inc.
1979.

7. W.Carlson: BIAIT - The New Horizon, Database, Spring 1979.

8. D.J.Couger: Evolution of Business System Analysis Techniques,
Computing Surveys, September 1973.

9. D.J.Couger, R.W.Knapp: System Analysis Techniques, New York,NY:
Wiley, 1974.

10. D.J.Couger, M.A.Colter, R.W.Knapp: Advanced System Development /
Feasibility Techniques, New York, NY: Wiley, 1982.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Page 23

T.DeMarco: Structured Analysis and System Specification, Yourdon
1978.

P.Freeman: Why Johnny Can't Analyze, Conference System Analysis
and Design: A Foundation for the 1980's.

C.Gane, T.Sarson: Structured Systems Analysis: Tools and
Techniques", Englewood Cliffs,NJ: Prentice-Hall,1979.

J.Gray: The Transaction Concept: Virtues and Limitations, Proc.
7th VLDB Conf., Cannes 1981, 144-154.

C.B.Grindley: SYSTEMATICS - A Nonprogramming Language for
Designing and Specifying Commercial Systems for Computers,
Computer Journal, 1956, 124-128.

IBM Corp.: Business Systems Planning - Information Systems Guide,
Application Manual,IBM, GE20-0527, July 1981.

M.Jarke: Developing Decision Support Systems: A Container
Management Example, Int. Journal of Policy Analysis and
Information Systems 6 (1982), 351-372.

M.Jarke, J.Shalev: A Database Architecture for Supporting
Business Transactions, NYU Working Paper Series CRIS#51, GBA 83-27
(CR), March 1983, submitted for publication.

M.Jarke, Y.Vassiliou: Coupling Expert Systems with Database
Management Systems, NYU Symposium on Artificial 1Intelligence
Applications for Business, New York, May 1983.

D.Kerner: Business Information Characterization Study, Database,
Spring 1979.

J.Martin: Application Development Without Programmers, Englewood
Cliffs, NJ: Prentice-Hall, 1982.

D.D.McCracken: A Maverick Approach to Systems BAnalysis and
Design, Conference System Analysis and Design: A Foundation for
the 1980's.

J.Mylopoulos, P.A.Bernstein, H.K.T.Wong: A Preliminary
Specification of TAXIS: A Language for Designing Interactive
Information Systems, Technical Report, CCA-78-02, January 1978,
Computer Corporation of America.

D.Nau: Expert Computer Systems, Computer, February 1983, 63-85.
J.F.Nunamaker: A Methodology for the Design and Optimization of
Information Processing Systems, Proceedings AFIPS Conference, Vol.

38, May 1971, 283-293.

J.F.Nunamaker, B.R.Konsynski: Computer-Aided Analysis and Design
of Information Systems", CACM, Vol. 19,No. 12, December 1976.

27.

28.

29.

30.

31.

32.

33.

34.

35‘

36.

37.

38.

39-

40.

41.

Page 24

J.F.Nunamaker, B.R.Konsynski: Plexsys: A Systems Development
System, in Couger et al. (eds.): Advanced System Development /
Feasibility Techniques, New York,NY: Wiley, 1982.

K.Orr: Structured Requirements Definition, Orr&Associates 1981.

C.Rolland, C.Richard: Transaction Modelling, Proc. ACM-SIGMOD
Conf., Orlando 1982, 265-275.

D.T.Ross: Structured Analysis: A Language for Communicating
Ideas, IEEE Transactions on Software Engineering, Vol. SE-3, No.
1, January 1977.

J.W.Schmidt, M.Mall, J.Koch, M.Jarke, "Database Programming
Languages", Proceedings Database User Interface Workshop,
Philadelphia, October 1982.

J.W.Schmidt, M.Mall: Abstraction Mechanisms for Database
Programming, Proc. ACM SIGPLAN Conference, San Francisco, June
1983.

M.Shaw, W.A.Wulf: Abstraction and Verification in Alphard:
Defining and Specifying Iteration and Generators, CACM, Vol. 20,
No. 8, August 1977, 553-564.

D.Teichroew: Problem Statement Languages in MIS, Proceedings,
International Symposium of BIFOA, Cologne, July 1970, 253-270.

D.Teichroew, H.Sayani: Automation of System Building, Datamation,
August 1971, 25-30.

J.Warnier: Logical Construction of Systems, Van Nostrand Reinhold
1981.

R.Welke, K.Kumar: An "ERA"-Based Analysis Support System for
BIAIT, ISRAM Working Paper WP-8010-2, McMaster Univ., Ontario,
October 1980.

J.W.Young, H.K.Kent: Abstract Formulation of Data Processing
Problems, Journal of Industrial Engineering, Nov. 1958, 471-479.

E.Yourdon, L.L.Constantine: Structured Design, New York, NY:
Yourdon Press, 1978.

J.Zachman: Business Systems Planning and Business Information
Control Study: A Comparison, IBM Systems Journal 21, 1 (1982).

R.W.Zmud: Management of Large Software Development Efforts, MIS
Quarterly, June 1980.

