
A DATABASE ARCHITECTURE FOR SUPPORTING BUSINESS TRANSACTIONS

Matthias Jarke

Jacob Shalev

Revised November 1983

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS if51

GBA #83-27 (CR)

To appear in Journal of Management Information Systems
Vol. 1, No. 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

A Database Architecture For Supporting Business Transactions

Abstracts

The central hypothesis of this paper is that database design and
systems design in general can be simplified considerably by tailoring
the design methods to a suitable range of applications. Domain-specific
knowledge can be incorporated into a specialized database architecture
that leaves the designer with the task to specify only the application-
specific parts. Based on an analysis of business constraints, we propose
such an architecture for the domain of business transaction processing.

The architecture offers several data and transaction management
services, special-purpose sub-databases, and design checking rules
to be used by the application designer. Two services, input management
and audit and control services, are described in more detail.

Keywords :

transaction processing, semantic database modelling, database
architecture, knowledge-based systems design methods

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 2

1.0 INTRODUCTION

Large-scale transaction processing has become the backbone of

many business information systems. Therefore, it is of paramount

importance that business transactions are processed in a safe,

efficient, and traceable manner.

Often, transaction processing relies on the use of database

management systems (DBMS) for storing and retrieving data. However,

many generalized DBMS do not support this application very well,

Unnecessary amounts of input have to be retyped in case of errors,

processing must be repeated if output gets lost, and auditing

facilities have to be hand-programmed instead of being part of the

DBMS, It is our perception that one of the main reasons for these

problems is a deficiency of dynamic and domain-specific concepts in

current database management systems.

Traditionally, database research has focused on the essentially

static view of a database as a collection of state descriptions, Only

recently, a number of researchers have been trying to incorporate a

more dynamic perspective into database systems, either by embedding

the concept of history (a sequence of states) into database models

[Ariav and Morgan 1982, Clifford and Warren 1983, De Antonellis and

Zonta 1981 I , or by modelling change directly using transaction

concepts [Borgida et a1 . 1982, Gray 1981, Rolland and Richard 1982 1.

Furthermore, systems analysis and design methods for business

transaction processing systems seem to suffer from a lack of semantic

knowledge about their application domain. Tens of thousands BTPS have

been implemented, yet design methods display striking weaknesses:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

1. They neither incorporate past experience nor do they draw upon a
common base of knowledge. They require experienced people but do
not support knowledge accumulation.

. They do not use standard requirements, even for l1standardl1
applications (like Accounts Payable, General Ledger, Personnel,
etc.). Note, that l1standardsl1 here applies to the application
itself and not to the methods of its specification (like data flow
diagrams, structure charts, etc.).

3. They do not use pre-fabricated application-oriented components at
the design level or at the software level.

4. They do not recognize standard operations (e.g. error checking)
and thus may not use pre-fabricated components even if they exist.

The lack of these features forces the designer and the user to

refine their design to a very detailed level, making it virtually

impossible to cover all details and aspects of the system

consistently. Even the structured methods (e .g. , [~ e ~ a r c o 1978 1) do

not directly address the above problems. In a way one could regard

them as l1syntacticW, whereas we point out the lack of a l1semanticl1

knowledge base, and of tools based on application knowledge.

The central idea of our approach is that such a knowledge base

cannot be developed for information systems in general. It is

necessary to focus on a generalized application domain (such as

business transaction processing) to capture knowledge that is specific

enough to really support the systems analysis process. To understand

this point, consider how the knowledge domain is enriched if one zooms

in from a requirements analysis of editors in general to one for word

processors in an office environment: many necessary features of word

processors (e .g. , spelling correction, letter formatting) may be

meaningless for editors in general.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 4

In this paper, we outline a DBMS architecture that overcomes some

of the limitations by introducing dynamic concepts and semantic

knowledge about a generalized application domain, business transaction

processing systems (BTPS). This semantic restriction allows much more

specific design guidelines and supporting software systems to be used

than in a general operations database having just a broad process

concept such as described, e.g., in [Bradley 19781.

In the proposed architecture, the state-describing database is

augmented by a transactions base, consisting of sub-databases for

input, output, control, and audit of transactions, and of generalized

services that allow the various sub-databases (and the human users) to

communicate efficiently. In addition to these structural components,

the architecture contains business rules derived from the specific

purposes of business transaction processing; they serve as guidelines

and checking procedures for the design of specific applications.

The paper is organized as follows. Section 2 defines the concept

of business transaction and studies some domain-specific requirements

from which business rules can be derived. Section 3 presents an

overview of the proposed architecture. Two major components, input

management and control are described in more detail. The conclusions

report some preliminary experience and outline future research

directions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 5

2.0 REQUIREMENTS FOR BUSINESS TRANSACTION PROCESSING

2.1 Business Transactions

At the operational level, a business is set up to carry out

certain business transactions. An important property of the

operational level is that there are usually a large number but only a

small variety of business transactions. Speaking in programming

language terms, one can define a small number of transaction types.

Such a type definition will be called a business program to stress the

fact that it is governed by the specific rules of business transaction

processing to be detailed later. Essentially, the business program

defines (planned) processes together with a script that defines the

relationship among these processes. A planned process can be further

refined into subprocesses; atomic subprocesses are called activities.

The distinction between processes and activities is left to the

discretion of the system designer. Processes of the same type may

occur in multiple higher-level processes.

Each business transaction -- instantiation of the business

program -- is composed of (actual) processes which can be further

refined downto the level of (actual) activities. In contrast to

transactions in the conventional database sense, business transactions

may contain parallel processes, are long-lived and nested [Gray 19811:

there may be sub-transactions that have to commit before the end of

the business transaction since an activity gives up control over an

important resource that cannot be reclaimed without explicit

counter-transactions if at all.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 6

As an example, consider an Accounts Payable department that

receives invoices, approves and pays them. In the invoice approval

process, an approver enters the invoice data. It is checked by the

computer against the purchase order (P.O.) data. If approved, the

total-amount-approved for the P.O. is increased, as is the

total-amount-approved for the vendor, Also, a payment voucher is

prepared, and a record that will be sent to Headquarter's central

computer,

This subprocess is part of the payment process that includes the

activities of printing the check on the voucher's due date, and later

on, the check reconciliation. The payment process is part of the

overall business program set up to handle purchasing, Note, that once

a check is out and paid, there is little chance to get the money back

(= reset the payment sub-transaction) without major corrective action.

2.2 Related Research

The concepts of business transaction and business program are

related to some recent work on semantic data models [Hammer and

McLeod 19781, abstract data types [Borgida et al. 19821, transaction

modelling [Rolland and Richard 19821, and data modelling in

transaction-based decision support systems [Jarke 19821 which also

stresses the importance of general transaction knowledge. However,

our concept is more general in that it assumes the combined use of

human and computerized processors, and it is more specialized in the

sense that it incorporates knowledge about the requirements of

operational level business systems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 7

Time-related concepts as referred to in the introduction can

serve important purposes in a BTPS but are not yet sufficiently

developed in practice. A history of states is a useful tool for

time-stamp based concurrency control and for providing a description

of previous states of the business. But a BTPS also needs a history

of changes (what are they? who made them? when? why?).

The transaction concept offers consistency of mapping a single

transition between two states of the real world. It also ensures

atomicity and durability of the changes made to the database [Gray

19811. However, it does not cover the fact that business transactions

are a joint venture between human and computerized processors, or that

they are long-lived and nested. Research in nested transactions is

just in the initial stages [Ries and Smith 19821.

Some enterprise-level requirements analysis methodologies such as

BIAIT [Burnstine 1979, Carlson 1979, Welke and Kumar 19801, and BICS

[Kerner 1979, Zachman 19821 attempt to use prior knowledge to find out

what information processing subsystems an enterprise may need. This

is done by analyzing the types of orders the business handles and can

be viewed as high-level business transaction analysis. The detailed

systems analysis, however, charged with specifying each of the chosen

information systems, uses syntactic tools such as data flow diagrams

[DeMarco 19781, assembly line diagrams, and WarnierfOrr diagrams

[Warnier 198 1 , Orr 198 1 1. The basic units of analysis on this level

are data flows (structures) and data transformations, No attempt is

made to exploit the transaction concept and the domain-specific

knowledge of operational level systems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

FIGURE 2-1: THE DERIVATION PROCESS OF BUSINESS REQU: Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 8

2.3 Requirements Analysis For BTPS

A base of knowledge can be generated by analyzing common

requirements of BTPS in a top-down procedure such as indicated in

Figure 2-1. The underlying idea is that a BTPS is a tool for mass

production of information which has to be efficient and precise

(business constraints 11-14) despite the presence of error-prone human

and computer processors (processor constraints PI-P2). From these

conflicting constraints, a set of general requirements (R1-R6) can be

derived that each BTPS should satisfy (not necessarily other types of

application systems, e.g., decision support systems).

***** INSERT FIGURE 2-1 ABOUT HERE *****

The requirements can be further refined to detailed rules to be

used for checking a proposed design [Jarke and Shalev 19831.

Furthermore, an extended database architecture will be introduced that

systematically enforces satisfaction of some of the requirements.

Similar to all "knowledge engineeringtf tasks, the derivation of

requirements and detailed rules from business and processor

constraints is not easily formalizable but rather represents a

collection of aquired experience similar to the one used in an expert

system [Clifford et al. 19831. Figure 2-2 displays the main

relationships presented in [Jarke and Shalev 19831. In the sequel, a

brief summary of the main business constraints, processor constraints,

and general requirements will be given.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 9

Business constraints:

11, Quality of the transactions' outputs, In a BTPS
environment, the business program design has to make sure that
all necessary outputs are produced, and are correct and precise.
This is more central to BTPS than, e.g., to decision support
systems, not only because customer relations are at stake, but
because serious errors can threaten the business' existence.
Hence the commonly found business rules, signatures requirements,
authorizations, and other quality control devices.

12. Timeliness. A business transaction may be long lived, but
has to be completed within a predetermined time period. The time
period is either determined contractually (e.g. delivery dates,
net 30 payment, etc.), or by laws and regulations (e.g. tax
returns), or as a performance goal of the business (e.g. fast
service). An overall transaction performance goal may not be
sufficient. The business may elect to establish time constraints
for critical processes. These need to be monitored, and the
business program must contain elements of follow up and exception
handling.

13. Accountability. The business is held accountable for its
activities by its clients, personnel, the law, and the
shareholders. In the short term, the business will have to
explain its actions regarding current transactions in process
(for instance, when it pays less then the amount invoiced it will
have to explain the deduction). Thus, the business program must
be designed to provide the capability for answering outside
questions. The long term accountability for the operational
level business system is primarily manifested in reporting and
auditability requirements. Also related to accountability are
security and privacy requirements.

14, Responsiveness. BTPS must be designed in a way that
actively supports the accomodation to changing requirements.
While the changes may be less rapid than in a decision support
system the business program must still contain enough flexibility
in itself to adapt to minor aberrations. In the long term, the
supporting software tools must be powerful enough to support
changes to the business program itself.

The above business issues are not the only constraints imposed on

the business program. Once it is recognized that transactions are

processed by two types of processors: people and computers, their

specific strengths and weaknesses have to be taken into account.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

CONSTRAINTS REQUIREMENTS

.....................
12. Timeliness R2, Scheduling ------------**-------

13. Accountability R3. Error handling
14. Responsiveness R4. Quality Control
PI. Human Limits R5. User Visibility
P2. Computer Limits

L

Figure 2-2: Deriving Requirements from Business
and Processor Constraints

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 10

Processor constraints:

PI. The human processor. People make mistakes when processing
documents. They err in performing decision rules and routine
tasks. Their document storage and retrieval abilities are
limited, causing lost and misplaced documents.

P2. The computer. Computers bring a new source of errors into
business transactions. They also lack the (limited) integral
quality control capacity of humans: common sense.
Transformations of data into and out of the computer are an
additional cause of errors and difficulties. The computer
provides only that flexibility and data access that has been
designed into it, thus inadequate design may severely limit
users' control and data visibility.

***** INSERT FIGURE 2-2 ABOUT HERE *+***

In their combination, the above constraints (11-I4,Pl-P2) lead to

general requirements the design of any BTPS must resolve to compensate

for these constraints, as indicated in Figure 2-2. For example, the

limitations of human processors (PI) in a complex environment will

endanger the satisfaction of the need for timeliness (12) unless some

specific action is taken to ensure it; this leads to the requirement

of monitoring (R1) in any BTPS. Note once more, that this need is

less urgent in decision support systems working typically with a

single user without stringent time constraints.

Specific monitoring design checking rules would be aimed at

satisfying the timeliness objective in the presence of complexity and

processor imperfections. For example, the following monitoring

questions should be answerable in a BTPS: in which process and

activity is transaction X? what information is activity Y processing?

what transactions do not meet time limits imposed on activity X, or on

process Y, or on the whole program? what transaction or activity is

in a special status (hold, urgent)?

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 1 1

General requirements:

R1. Monitoring is the ability to know for each transaction, in
what process/activity it is and conversely, what a certain
activity is doing. This must be compared against deadlines set
by the business or outside constraints. Aspects of monitoring
databases have been studied in [Buneman and Clemons 1979 1.

R2. Scheduling and control is the ability to alter the direction
of flow, or the order in which transactions are processed. A
business program lacking these features is inflexible. Since
transactions are performed concurrently, input and output queues,
and the need for their management as an integral part of the
business program arise (egg. can we recover a queue of input
documents?), Problems of scheduling have been addressed both in
the operational research and computer science literature;
however, the application of this collected knowledge requires an
appropriate systems environment.

R3. Error handling: Whereas in other system types an error may
just prevent successful completion of a transaction, in a
business transaction environment it may have additional adverse
effects. The processes must therefore be designed to actively
detect and eliminate errors, with an emphasis on effective error
presentation and correction,

R4, Quality control takes into account the inability of the
business program processors (PI-P2) to detect all errors. In
high risk situations, quality control activities will check
outputs, and may require compensating transaction types to be
added to the business program.

R5. System visibility and user control: The business program
should have tools that will answer at least the same user
questions that could be answered in a manual system. Besides the
well-known need for a user-visible data dictionary, similar
devices are also required for the dynamic aspects of the system.

R6. Auditability is the ability to take a certain database
state, or some output, and trace back. How was it arrived at?
What activities modified it? Who did what, and when?

The next step in Figure 2-1 would be the derivation of detailed

rules (see examples of monitoring questions, above). We skip this

step here and proceed directly to the description of a database

architecture for supporting the general requirements.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 12

3.0 OVERVIEW OF THE DATABASE ARCHITECTURE

Conventional database design models data and transactions often

independent of the information use outside the computer [Rolland and

Richard 19821. Design is typically a tiresome iterative process many

details of which are repeated for each application of similar type.

In the previous section, an attempt was made to describe a

knowledge structure of requirements for BTPS. Some of these take an

application-specific form when actually used in design -- there are

application-dependent answers to the design checking questions.

However, a major portion is common to all BTPS. In this section, this

common denominator will be exploited for developing an extended

database architecture that allows the system designer to concentrate

on details of the remaining application system. We thus propose an

improved design process that will be comprised of two parts:

1. the use of a design environment of generalized business program

services and sub-databases that will support the general

requirements outlined in the previous section, and will be

available for any business program.

2. the design of application-specific elements unique to each

business program; here, business rules can be used only to

evaluate the design.

In the remainder of this section, an overview of the design

environment is given. Two major subsystems will be analyzed in more

detail in subsequent sections.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 13

One of the main problems of a BTPS is to get work done in the

presence of errors. An input management service provides the

capability to handle input documents without interrupting processing

requiring unnecessary data re-entry. The documents are stored in an

input database.

Output of a database transaction can be used in multiple

different forms and may have to be reproduced later. Output

management provides the service of maintaining and presenting output

data using an output database. This sub-database can be seen as a

generalization of the idea of storing computed relations for future

reference in query optimization [Finkelshtein 19821.

Between input and output, transformation management roughly

covers the functions of conventional database transaction execution

and supervision, with a few functions added for modifying the status

of the sub-databases when the main database has changed. In addition,

there are sub-databases for the control and later audit of

transactions. The control database offers the user system visibility

and a limited amount of interrupt facilities through control services.

The audit database permits ex-post tracing of transactions. Access

services must be provided to all of the sub-databases with appropriate

restrictions (e.g., no changes to the audit database).

The architecture is summarized in figure 3-1. In the subsequent

sections, the designs of input management services and of the control

database are investigated in more detail and the function of these

services to support crucial business requirements is shown.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

INPUT
MANAGEMENT

I

ACCESS SERVICES

CON'IVOL TRANSFORMATION
SERV ICES MANAGEMENT u u

OUTPUT
MANAGEMENT

Figure 3-1: Transaction-Oriented Database Architecture

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 14

***** INSERT FIGURE 3-1 ABOUT HERE **%**

4.0 INPUT DATABASE AND INPUT MANAGEMENT

4.1 Input Document And Error Checking

A BTPS input document can be defined as a hierarchy of record

types. Purchase orders, invoices, receipts, checks, packing lists,

and vouchers can all be described as hierarchical data structures,

typically with few levels and record types. This model can be

expanded by a representation of possible errors in a document, Our

architecture would recognize four types of error checking.

1. identify: Check if this document is of the expected type.
Otherwise it cannot be identified nor further processed by the
sys tem .

2. verify: check the attribute values against their data types and
other domain restrictions (e.g., amount not greater than 10,000).

3. cross verify: check the relationship of attributes to other
attributes in the same document (e.g., balance totals),

4. validate: check attributes against the database and update rules
(e.g., referential integrity).

In the input document definition, a list of error codes extends

each record type. A cross verify error type will be defined for the

lowest common predecessor in the hierarchy of the attributes involved.

Consequently, the place for identification error codes is in the root

record type of the hierarchy. The root also contains a document

number and a user identification.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

INVOICE-NEADER

Type/ User ID/ Serial no/ Account/ Salesman/ Date/ Delivery
Errors: attr types/ ID/ Total cost/ total qty/ status/ time

PRODUCT-LINE

Product code/ Qty/ Unit/ Price
Errors: attr types

Figure 4-1: Invoice Data Structure -- Example of a
Hierarchical Input Document Description
with Attached Error Codes

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 15

***** INSERT FIGURE 4-1 ABOUT HERE *****

An example o f t h e general ized input document d a t a s t r u c t u r e is

provided i n f i g u r e 4-1. Note, t h a t t h e e r r o r s f o r t o t a l c o s t and

quan t i ty i n t h e TOTAL-LINE record type are v e r i f y e r r o r s (e.g., d a t a

is not numeric) whereas the corresponding c r o s s v e r i f y e r r o r s

(computed t o t a l does not match the value given i n TOTAL-LINE) are

defined i n t h e INVOICE-HEADER.

4.2 Input Document S t a t e s

The management o f input documents is a ided by de f in ing states of

input documents, and by s t o r i n g them along with time stamps. The

states are s t o r e d i n t h e r o o t of the document o r i n t h e c o n t r o l

database. The s t a t u s of a document s e r v e s as a b a s i s f o r decid ing

what should be done next with t h e document, as well as what should no t

be done with it. A document can be one of i n t h e fo l lowing states:

1. New document - The document was entered but n o t checked y e t .

2. Modified document - The document was modified. Previous s t a t u s is
not re levant . No checking took place (a f t e r modif ica t ion) .

3. Verif ied document - Document i d e n t i f i e d , v e r i f i e d and c r o s s
v e r i f i e d success fu l ly .

4. Ver i f i ca t ion e r r o r - Document f a i l e d v e r i f i c a t i o n . E r r o r s codes
are s to red i n the document.

5. Selected document - For update by the t ransformat ion processor.

6. Updated - The document d id success fu l ly update. I t is re ta ined
f o r a u d i t t r a i l .

7. Update e r r o r - Update f a i l e d due t o v a l i d a t i o n e r r o r s , Error
codes are s t o r e d i n the document.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

UPDATE ERROR

VERIFY ERROR

Figure 4-2: Transition Graph for Input Document States

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 16

Figure 4-2 describes the state transition graph. The arcs are

labelled with numbers of explanation notes:

1) New document passes verification.
2) Verified document is selected for processing.
3) Selected document updates successfully.
4) New document fails verification.
5) Selected document fails update

due to validation errors.
6) User modifies invalid document.
7) User modifies a verified document

before it is selected for update.
8) Modified document passes verification.
9) User corrects a document that

had verification errors.
10) Modified document fails verification.

***** INSERT FIGURE 4-2 ABOUT HERE *****

4.3 Input Management Services

We conclude this section with a summary of the services input

management provides the user with for working on the input database.

An input document editor facilitates entry and modification of

input documents. It performs identification, verification, and cross

verification. The results (inputs and errors), are stored in the

input database document structure. The editor may be batch, online,

or it may be located at an intelligent remote unit.

Error reporting presents an erroneous document to the user, This

takes the place of error messages distributed along program code and

allows for standard error presentation in both batch and online

environments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

MAIN DATABASE OUTPUT DATABASE

INPUT DATABASE

results

OUTPUT DATABASE

new

Figure 4-3: Prototype Data Flow Diagraia for Input Management

updated
update error

Explanation of symbols:
capital letters - databases, document transformations
small letters - external activities, document states

v

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 17

Note t h a t these s e r v i c e s o f f e r a br idge between o f f i c e automation

and d a t a processing by al lowing each d i s c i p l i n e t o r ece ive and d i s p l a y

the con ten t s (and e r r o r s) o f documents.

Two o the r s e r v i c e s l i n k input management t o t ransformat ion

management. The s e l e c t i o n funct ion chooses input documents f o r

database update based on t h e i r s t a t u s . The r e s u l t s func t ion r e t u r n s

t h e r e s u l t s from transformation management t h a t are r e l e v a n t f o r inpu t

management, namely v a l i d a t e e r r o r messages and new document s t a t u s e s .

We can now t i e each input management s e r v i c e t o t h e r e l a t e d

states. Each s e r v i c e has al lowable input states and p o s s i b l e output

states. Figure 4-3 summarizes t h i s d iscuss ion by providing a

prototype da ta flow diagram f o r input management s e r v i c e s . This

proposed state space can be f u r t h e r expanded t o suppor t inpu t

management i n the var ious environments o f batch, d a t a e n t r y ,

i n t e r a c t i v e and d i s t r i b u t e d input management.

***** INSERT FIGURE 4-3 ABOUT BRE *****

5.0 CONTROL DATABASE AND SERVICES

5.1 The Control Database

The con t ro l database con ta ins d a t a about the bus iness program

(with its planned processes and planned a c t i v i t i e s) , and t h e bus iness

t r ansac t ions (with t h e i r a c t u a l processes and a c t i v i t i e s) . F igure 5-1

g ives a p a r t i a l e n t i t y r e l a t i o n s h i p diagram.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

BUSINESS-PROCRAM TRANSACTION
1 1 M I

N

PLANHED-ACTIVITY ACTIVITY

tv Attributes:

BUSINESS-PROGRAM (Name, Performance goals, Responsible user)
PLANNED-PROCESS (Name, Performance goals, Responsible user)
PLANNED-ACTIVITY (Name, Performance goals, User, Predecessors, Successors)
TRANSACTION (<as BUSINESS-PROGRAM>, States, Timestamps, Priority, Flags)
PROCESS (<as PLANNED-PROCESS, States, Timestamps, Priority , Flags)
ACTIVITY (<as PLANNED-ACTIVITY> , States, Timestamps, Priority , Flags)

Figure 5-1: Control Database: Partial Entity-Relationship
Diagram and Entity Attributes

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

BUSINESS TRANS-
PROGRAM ACTION

PLANNED USER
PROCESS 1

M

N

PLANNED
ACTIVITY 1 DB SUBSET

Figure 5-2: Control Database: Structure and Relat ionship
t o other Sub-Databases

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 18

***** INSERT FIGURE 5-1 ABOUT HERE *****

Note that a planned a c t i v i t y relates t o its predecessors (whose

completion enables i t) and t o its successors (t h e ones i t enables) .

The t ransact ion-contro l database records t h e a c t u a l occurences o f t h e

t r a n s a c t i o n s , processes and a c t i v i t i e s . The states are def ined per

a p p l i c a t i o n and r e f l e c t measures o f completion and except ion

s i t u a t i o n s . They are updated along with timestamps as t h e

t r a n s a c t i o n s go through execution.

We now extend the i n i t i a l model o f Figure 5-1 t o a complete

e n t i t y r e l a t i o n s h i p model of the c o n t r o l da tabase (see Figure 5-2).

The a c t i v i t y e n t i t y becomes the f o c a l po in t o f t h e c o n t r o l da tabase ,

as i t is related t o t h e input documents (i n t h e inpu t da tabase) and

the output documents (i n the output data base) t h a t took p a r t i n t h e

execution o f t h i s a c t i v i t y instance. These r e l a t i o n s are e s t a b l i s h e d

and maintained a t input e n t r y (and e d i t) , and a t output genera t ion

time .

***** INSERT FIGURE 5-2 ABOUT HERE *****

Each a c t i v i t y ins tance is related t o a "userw i d e n t i f i e d by a

p a i r of names: one f o r the person respons ib le f o r t h e a c t i v i t y , and

the o the r f o r the processor. In the case o f a computer processor , t h e

latter may be a computer i d e n t i f i e r (we may have d i s t r i b u t e d

processors) and a program name. Although i t is no t shown i n Figure

5-2, one can expand the user e n t i t y i n t o a model of t h e o rgan iza t ion

and t h e processor network.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 19

5.2 Control Services

These services are necessary to satisfy the requirements of user

visibility and control, monitoring and scheduling, and supporting

quality control.

We first observe that the attributes of the business program

database are repeated in the transaction control database. This

allows inheriting the general plan as a default, but at the same time

provides the flexibility of modifying the plan, by tailoring it for

each transaction whenever necessary. We can thus handle exceptional

situations like "rushe, llhold", meet unexpected deadlines, while

preserving the same control structure and promoting the use of uniform

monitoring tools.

This model allows the assignment of activities to other than the

normally planned processors (people or computer) without losing sight

of who is doing what. This may be necessary for work load balancing

or situations of unavailable processors. Entities may be assigned

special flags to characterize special, application specific

situations, and to alert the processors.

An activity will inherit the predecessors and successors from its

corresponding planned activity. However, these relationships may be

modified. The main reason for this feature is to support quality

control and risk-reduction activities. Thus if certain conditions

arise (e.g. an invoice for over $5,000), the normal activity sequence

will be altered (e,g, the invoice is routed to an auditor for

verification). These routing changes can be initiated by computer as

well as by people, and they remain documented.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 20

The c o n t r o l database can facilitate automatic schedul ing of

a c t i v i t i e s . People can g e t "act ion itemsw a t t h e i r work s t a t i o n s , and

computer programs can be i n i t i a t e d , as both input and output da tabases

(which s e r v e as queues) are a v a i l a b l e and known, as are t h e topology

o f the bus iness program and t h e performance goals .

5.3 The Audit Trail Database

Our b r i e f d iscuss ion of a u d i t a b i l i t y requirements was business

program or iented . Rather than t h e d a t a o r i en ted approach taken by

logging and time-domain address ing, w e concentra te on t h e dynamic

aspects : how did we a r r i v e a t a c e r t a i n value, what a c t i v i t y modified

it, who d i d , when, what output was produced, etc.

We the re fo re propose a simple y e t powerful a u d i t t ra i l database

which relates some c e n t r a l da tabase o b j e c t s of i n t e r e s t t o a c t i v i t y

records i n t h e con t ro l database. By t e l l i n g t h e DBMS what e n t i t i e s

and r e l a t i o n s are t o be t racked, and what a c t i v i t y every database

a l t e r a t i o n belongs t o , the a u d i t - t r a i l can relate a modified d a t a

value t o the record (i n t h e c o n t r o l da tabase) o f the a c t i v i t y t h a t

modified it. These new r e l a t i o n s comprise t h e a u d i t t ra i l database .

A s shown i n the previous subsect ion , the a c t i v i t y is r e l a t e d t o

its inpu t s and outputs s o t h a t a f u l l p i c t u r e o f t h e bus iness

a c t i v i t i e s behind the evolut ion o f a database state emerges.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 21

6.0 CONCLUDING REMARKS

In this paper, we outlined a semantically enriched database

architecture for business transaction processing systems that combines

the ideas of dynamic (transaction-oriented) database management, and

of domain-specific information systems structures found in some modern

approaches to information requirements analysis. An early version of

an important part of the proposed architecture, input management, has

been implemented and is being used in the development and operation of

defense BTPS in several countries.

For the systems developer, such an architecture provides a way to

bridge the gap that still exists between high-level information

requirements analysis and detailed systems design methods such as

structured design and programming. Since many business-oriented

services will be provided with the DBMS, the size of application

programs can be expected to shrink considerably. Also, a set of

detailed business rules can be derived from the general requirements

described in this paper to check systems design on a high level (where

the most serious errors occur!).

An informal test of our design methodology was conducted with a

group of graduate students who were asked to evaluate a order entry

system design proposed in a textbook. While they failed to detect any

major problems, the application (by the same students) of BTPS design

checking rules developed independently of that example revealed a

number of grave omissions and errors in the design. A more formal

evaluation of the method will be required once the design methodology

is sufficiently developed and the database architecture implemented.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 22

From this point, three research directions are pursued, First is

the formalization, detailed design, and prototype implementation of

the proposed database architecture. Second, a systems analysis and

design procedure using the architecture is developed; a flexible

structure is required that allows extensions of the knowledge base,

Finally, we are researching the language definition and implementation

of generalized access services that offer visibility not only of the

static data and their histories, but also of the changes and

transaction states.

Acknowledgments

Thanks are due to Ted Stohr for helpful discussions during the
early phases of this work, and to the anonymous referees for their
detailed comments that greatly helped improve the presentation.

References

1. Ariav, G,, Morgan, H . L . : MDM: Handling the time dimension in
generalized DBMS, Working Paper, Department of Decision Sciences,
The Wharton School, University of Pennsylvania, May 1981.

2. Borgida, A., Mylopoulos, J., Wong, H.K.T.: Generalization as a
basis for software specification, in M. Brodie, J. Mylopoulos,
J.W. Schmidt (eds.): Perspectives on Conceptual Modelling,
Springer 1983.

3. Bradley, J.: Operations data bases, Proceedings - 4th - VLDB
Conference, Berlin 1978.

4. Buneman, O.P., Clemons, E.K.: Efficiently monitoring relational
databases, $3J Transactions on Database Systems 4, 3 (1979).

5. Burnstine, D.: The theory behind BIAIT, Business Information
Analysis and Integration Technique, BIAIT International Inc.
1979-

6 . Carlson, W.: BIAIT - the new horizon, Database, spring 1979.

7. Clifford, J., Jarke, M., Vassiliou, Y.: A short introduction to
expert systems, Database Engineering 6, 4 (1983).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

Page 23

Clifford, J., Warren, D.S.: Formal semantics for time in
databases, - ACM Transactions - on Database Systems 8, 2 (1983).

De Antonellis, V,, Zonta, B.: Modelling events in data base
applications design, Proceedings -- 7th VLDB Conference, Cannes 1981.

DeMarco, T.: Structured Analysis and - System Specification,
Yourdon 1978.

Finkelshtein, S.: Common expression analysis in database
applications, Proceedings ACM-SIGMOD Conference, Orlando 1982.

Gray, J.: The transaction concept: virtues and limitations,
Proceedings -- 7th VLDB Conference, Cannes 1981.

Hammer, M., McLeod, D.: The Semantic Data Model: A modelling
mechanism for database applications, Proceedings ACM-SIGMOD
Conference, Austin 1978.

Jarke, M.: Developing decision support systems: a container
management example, International Journal of Policy Analysis and
Information Systems 6, 4 (1982).

Jarke, M., Shalev, J.: A knowledge-based approach to the analysis
and design of business transaction processing systems, May 1983,
NYU Working Paper Series, CRIS #53, GBA 83-52 (CR) .
Kerner, D.: Business Information Characterization Study,
Database, Spring 1979,

Orr, K.: Structured Requirements Definition, Orr&Associates 1981.

Ries, D.R., Smith, G.C.: Nested transactions in distributed
systems, - IEEE Transactions?* Software Engineering 8, 3 (1982).

Rolland, C., Richard, C.: Transaction modelling, Proceedings
ACM-SIGMOD Conference, Orlando 1982,

20. Warnier, J.: Logical Construction - of Systems, Van Nostrand
Reinhold 1981.

21. Welke, R., Kumar, K.: An "ERAw-based analysis support system for
BIAIT, ISRAM Working Paper WP-8010-2, McMaster Univ., Ontario,
October 1980.

22. Zachman, J.: Business Systems Planning and Business Information
Control Study: a comparison, - IBM Systems Journal 21, 1 (1982).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-27

