
ACCESS TO SPECIFIC DECLAR,ATIVE KNOWLEDGE

BY EXPERT SYSTEMS: THE IMPACT OF LOGIC PROGRAMMING~

Yannis Vassiliou
James Clifford

and
Matthias Jarke

Information Systems Area
Graduate School of Business Administration

New York University
90 Trinity Place

New York, N.Y. 10006

March 1983

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #50
GBA #83-26 (CR)

 his paper appears in Decision Support Systems 1 (1985) 123-141.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-83-26

Abstract

As part of the operation of an Expert System, a

deductive component accesses a database of facts to help

simulate the behavior of a human expert in a particular

problem domain. The nature of this access is examined, and

four access strategies are identified. Features of each of

these strategies are addressed within the framework of a

Logic-based deductive component and the relational model of

data.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 2

1.0 INTRODUCTION

Decision Support Systems (DSS) require the simultaneous

management of data, models, and dialogues [Sprague and Carlson 19821.

DSS research has placed particular emphasis on providing consistent

user views of models and data [Bonczek et a1 1982 1, and on supporting

-access to databases by decision models [Donovan 19761. The emergence

of practically usable Artificial Intelligence (AI) techniques over the

last few years impacts these problems in at least two ways. On one

hand, the interaction between DSS components, and between DSS and user

can be handled more smoothly using A1 methods for model management

[Bonczek et a1 1983; Elam and Henderson 19831 and user interfaces

[Blanning 19831. On the other hand, the addition of knowledge-based

decision models, in particular expert systems, to the model base of a

DSS presents new challenges for DSS implementation. It is this latter

problem that is the focus of this paper.

An Expert System (ES) is a problem-solving computer system that

incorporates enough knowledge in some specialized problem domain to

reach a level of performance comparable to that of a human expert.

Expert Systems differ from exact or heuristic optimization procedures,

as used in conventional DSS, in that they mostly base their

recommendations on informal and qualitative decision rules acquired

from a human expert, rather than on a complete mathematical

formalization of a decision problem [Clifford et a1 19831.

In the heart of an ES lies the program that wreasonsw and makes

deductions, the inference engine. To reason, both general knowledge

(rules), e.g. if a person works for a company then he/she gets

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

employee benefits, and specific declarative knowledge (data), e .go

John works for NYU, is needed. The knowledge is usually represented

in such formalisms as frames [Minsky 19751, conceptual dependency

graphs [Schank 19751, production rules [waterman and Hayes-Roth 1979 I ,

semantic networks [Brachman 19791, or in standard first-order logic.

Many of these formalisms can represent both general and specific

knowledge. Current Expert Systems differ in sophistication,

conceptual complexity, and computational complexity; for instance,

the knowledge base may or may not include such concepts as causality,

intent, physical principles, and simple empirical associations.

A scenario for consulting an ES using production rules for

knowledge representation starts with a presentation of a goal or

desired conclusion. The inference engine chains through (forward or

backward) a set of production rules to link the conclusion with the

assumptions, or known nfactsfl. The system's conclusion is then

presented to the user, who can ask for an explanation of the Ifchain of

reasoning" used to arrive to the given result.

This paper is primarily concerned with the organization and

access of simple declarative knowledge in the knowledge base of ESs.

To organize these data, two dimensions are considered: variety and

population. For instance, in a logic-based representation, "variety1'

refers to the number of different predicates required, and

tlpopulationft to the number of instances of these predicates.

In early ESs, which are mostly prototypes and are characterized

by a large variety and a small population of specific knowledge, the

inefficiency of data handling is not a critical issue. Therefore,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 4

with very few exceptions, little attention has been given in ES design

to the handling of very large populations. The mechanism to retrieve

the specific facts does not reach the sophistication and performance

of database management systems (DBMS), systems that deal effectively

with large volumes of data [Date 19821,

This paper investigates the technical issues of enhancing Expert

Systems with database management facilities, The motivation for such

enhancements is provided by the rapid advent of ES and the

increasingly promising impact that they will have in the business

applications sector - an environment that often implies the presence

of large databases, usually under the control of a DBMS.

In Section 2, four database access strategies are identified and

developed in stages. Tools developed at an earlier stage are often

necessary in each subsequent stage. The framework is illustrated with

the use of first-order logic and relational database management. In

particular, the logic programming language Prolog [Clocksin and

Mellish 1981 1 is presented in Section 3, and its uses as a programming

language, a relational database system, and an ES deductive component,

are outlined. The my Prolog fits into the proposed framework of

access strategies is the topic of Sections 4 and 5 . The last section

presents a summary and some problems for further research.

2.0 DATABASE ACCESS STRATEGIES BY EXPERT SYSTEMS

Tuo general architectures are envisioned for the combination of

the deductive and the database access components of an expert system.

These two components can either be integrated into one system (the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 5

Es), or be independent systems with a defined protocol for

communication [Vassiliou, Clifford, and Jarke 19831.

Depending on the level of sophistication for the database access

facility, integration suggests two distinct access strategies:

elementary database access, and generalized database management. A

major distinguishing characteristic between these general strategies

is their respective ability to deal with secondary storage management,

and therefore, their capability to deal with large populations of

specific facts.

With the advent of ESs in the business environment, a strong

motivation for coupling an ES with an external DBMS has emerged [Jarke

and Vassiliou 19831. The investment of an enterprise in two different

types of systems, both intended to assist decision making and smooth

the flow of operations, is greatly justified if the two systems are

able to communicate effectively. Thus, the large amounts of data

managed by a DBMS can be accessed by the ES in the reasoning process.

Moreover, the ES can offer an intelligent interface to a DBMS (in

addition to query languages, report generators, 'etc.). Depending on

the nature of communication between the two independent systems (ES

and DBMS), two more access strategies are identified: loose, and

tight coupling.

Figure 1 illustrates a natural sequence in the development of

access strategies. An overview is given in the rest of this section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 6

I
I THE DECLARATIVE KNOWLEDGE ACCESS REQUIFEMEXTS OF ES
I I
I I
I I I
I I f I
I I I I
i I I I
I INTEGRATION OF ES AND DBMS COUPLING OF ES WITH EXTERNAL DBMS 1
I 1 I I
I I I I

I I I I I I
I I I I I I
1 ELEMENTARY-ACCESS GENERALIZED-DBMS LOOSE-COUPLING TIGHT-COUPLING I
I I
I - - -> - - -> - - -> - - -> - - -> - - -> - - -> - I -> I
I I I I
I I I I

- - - > - - - > - - - > - - - > I I
I I

Development i n Stages

I Figure 1: STRATEGIES FQR DATABASE ACCESS BY AN ES I
I I

2.1 Elementary Database Access Within An Expert System = S t r a t e g y - 1

On t he s imples t l e v e l , t h e whole populat ion ofL s p e c i f i c

d e c l a r a t i v e knowledge can be represented d i r e c t l y i n t h e knowledge

base formalism provided by t h e Expert System. Mechanisms such as

semantic networks and frames, d a t a s t r u c t u r e s where al l knowledge

about an ob jec t is c o l l e c t e d toge the r , are commonly used i n ESs.

Furthermore, s e v e r a l languages have been developed t o access and

manipulate frames and semantic networks, e -g . NETL, KRL, and KLONE

[Nau 19831.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 7

The first strategy in the manipulation of these data structures

is based on the assumption that during the ES operation they reside in

main storage. This simplifies the development of access routines, but

presents an obvious limitation on the size of the declarative

knowledge population.

2.2 Generalized DBMS Within - An Expert System - - Strategy 2

As the domains to which ES technology is applied increase, a very

large population of specific knowledge is often required. Such Expert

Systems have elementary database ' management facilities as separate

processes [Nau 19831. The minimum requirements for this access

strategy are secondary storage management and indexing schemes. This

seems to be the norm for current ESs, even though not all such systems

exhibit the same level of sophistication.

Moving a step further, a generalized DBMS may be implemented as a

sub-process of the ES. The quest for "generalizedw database

operations in the ES, rather than application-specific database

access, may not be cost-effective in many cases. A case where

generalization is effectively justified, is when the ES uses it as

stepping stone to one of the coupling mechanism described in Sections

2.3 and 2.4.

The major limitation in this stage is that often an existing very

large database may be needed in the Expert System application.

Assuming a generalized commercial DBMS managing this database, it may

be prohibitively costly to maintain a separate copy of the whole

database for the ES. As an example, [Olson and Ellis 19821 report

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 8

exper iences with an Expert System used t o determine problems with o i l

wells where data from a very l a r g e IMS database was needed bu t could

n o t be made ava i l ab le .

2.3 Loose Coupling O f The With An External DBMS - st rate^ 3

Conceptually t h e s imples t s o l u t i o n t o the problem of using

e x i s t i n g databases managed by an ex te rna l DBMS is t o e x t r a c t a

snapshot o f the required d a t a from the DBMS when t h e ES begins t o work

on a set o f r e l a t e d problems. This por t ion of the database is s to red

i n the i n t e r n a l database o f the ES as described i n t h e previous

sec t ion . For t h i s scenar io t o work, the fol lowing mechanisms are

required :

1. Link t o a DBMS with unload f a c i l i t i e s ;

2. Automatic generat ion of an ES database from t h e ex t rac ted
database ;

3. An " in te l l igencew mechanism t o know i n advance which por t ion
o f the database is required f o r ex t rac t ion .

Such a s t r a t e g y p resen t s s e v e r a l p r a c t i c a l advantages and could

be used i n combination with any of the two previous access s t r a t e g i e s .

However, loose coupling is no t s u i t a b l e i f the p o r t i o n o f t h e database

t o be ex t rac ted is no t known i n advance. This refers t o t h e t h i r d o f

the required mechanisms which is c l e a r l y the hardest t o automate.

When t h i s mechanism is n o t automated, the d e c i s i o n s have t o be made

l l s t a t i c a l l y w wi th human in tervent ion . Furthermore, l o o s e coupling is

i n e f f i c i e n t when d i f f e r e n t por t ions of t h e database are needed f o r t h e

Expert System a t d i f f e r e n t times. This leads t o t h e need f o r t h e

f i n a l s tage: t i g h t coupling of the ES with a DBMS.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 9

Tight Coupling Of The -- With - External DBMS -

For this access strategy it is assumed that a very large database

exists under a generalized DBMS, and the ES needs to consult this

database at certain points during its operation. Under this script,

an online communication channel between the ES and the DBMS is

.required, Queries can be generated and transmitted to the DBMS

dynamically, and answers can be received and transformed into the

internal knowledge representation. Thus in tight coupling the ES must

know - when and how to consult the DBMS, and must be able to understand

the answers.

The naive use of the communication channel will assume the

redirection of all ES queries to the DBMS. Any such approach is bound

to face at least two major difficulties:

A.- Number of Database - Calls

Since the ES normally operates with one piece of information at a time

(record), a large number of calls to a database may be required for

each ES goal. Assuming that the coupling is made at the query

language level, rather than an internal DBMS level, such a large

number of DBMS calls will result in unacceptable system performance.

The number of calls at the query language level could be reduced, if

these calls result to a collection (set) of records.

B.- Complexity of Database - Calls

Database languages usually have limited coverage. For instance, the

majority of query languages do not support recursion. For reasons of

transportability and simplicity, it may not be desired to include in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 10

the coupling mechanism the nembeddingff programming language (e.g.

PL/1, COBOL), a language that would solve the discrepancies in power

between the ES and DBMS representations and languages.

Therefore, to attain tight-coupling, particular care has to be

given to global optimization in using the communication channel, and

.to the representation and language translation problems. To the

authorsf knowledge, tight-coupling to an existing DBMS has not yet

been implemented in actual systems. It appears that the impact of

logic programming and the commercialization of relational database

systems will have a profound effect for tight-coupling in future

system architectures. Prolog is currently the most widely known

programming language; it has been announced as the basis of the 5th

Generation Computer Project in Japan [Feigenbaum and McCorduck 1983 1 .
It is becoming clear that logic-based programming languages like

Prolog will be highly influential in the ESs of tomorrow. In the

remaining sections of this paper, Prolog and a research effort to

develop a formalism for coupling a Prolog-based Expert System with a

relational DBMS are described.

A PROLOG INTRODUCTION -

3.1 Prolog & Programming Language

Prolog is a programming language based on a subset of first-order

logic, the Horn-clauses. Roughly, this amounts to dropping

disjunction from logical consequents, and talking only about definite

antecedent-consequent relationships.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 11

Statements.- There are three b a s i c s ta tements i n Prolog (t h e symbol c-

denotes impl ica t ion , and t h e symbol & denotes the l o g i c a l AND):

c- P. means P is a goal

A. means A is an a s s e r t i o n

P C - Q & R & S . means Q and R and S imply P

A c l ause has both a d e c l a r a t i v e and a procedural i n t e r p r e t a t i o n .

Thus,

P C - Q & R & S

can be read declara t ive ly :

P is t r u e - i f Q and R and S are t r u e

o r , procedural ly (s imi la r t o nstepwise refinementw [Wirth 1971 1) :

To s a t i s f y P first s a t i s f y Q and R and S.

Programs.- A Prolog program is a sequence o f c l auses whose v a r i a b l e s

are considered t o be u n i v e r s a l l y quant i f ied . Logic p r e d i c a t e s are

represented with Prolog programs, and s i n c e more than one c l a u s e may

be needed t o def ine a p r e d i c a t e (g o a l) , t h e r e is a corresponding

AND/OR graph f o r each predica te . The execution of a program involves

a dep th - f i r s t search with backtracking on these graphs, and uses t h e

u n i f i c a t i o n process based on t h e r e s o l u t i o n p r i n c i p l e [Robinson 1965 I .

A s an example of a Prolog program, cons ider t h e appending o f two

lists t o form a t h i r d . I n t h i s Prolog system no ta t ion , p r e d i c a t e

names are i n upper-case, v a r i a b l e s are i n lower-case, cha rac te r

s t r i n g s t h a t start with upper-case denote denote cons tan t va lues ,

brackets enclose lists, [I is t h e empty list, and t h e opera to r I "
s e p a r a t e s the first element o f t h e list from t h e rest.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 12

IIPPEND([I, Y, Y).
IIPPEND([xly], z, [xlwl) c- APPEND(y, z, w).

Clause one asserts that appending the empty list to any list

leaves the list unchanged (stopping the recursion). Clause two states

that if y appended to z results in w, then a list with first element x

and remainder y, when appended to z, results in a list with first

element x and remainder w.

Given the goal: "<- APPE?$D([A], [B,C], new)", Prolog tries to

instantiate the variable new to whatever value makes the predicate

true. The first clause cannot be used the first time around ([A] is

not [I) If the instantiation x=[A], y=[], z=[B,C], and new=[Alw] is

made then the second clause applies. This requires the evaluation of

the right-hand side goal: "c- APPEND([], [B,c], w) " . For this goal

the first clause applies, w is instantiated to [B,C] and through

recursion, new is instantiated to [A ,B,CI.

An important characteristic of Prolog programs is that there need

be no distinction between input and output parameters. Thus, one can

also ask for the combination of lists that result in a specific list

when appended to each other:

c- APPEND(x, y, [A,B,C]).

3.2 Prolog And Relational Database Management

To clarify Prologts approach to relational database management, a

short description of two different views of relational databases is

required. The traditional view of relational databases [Codd 1970 1 is

that of a collection of tables. Formally, a relational database is a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 13

relational structure [Kowalski 1981 1. Queries on the database are

expressed in languages having the power of first-order logic and are

evaluated in the relational structure (evaluational approach). In

contrast, a proof-theoretic view would look at a database as a

collection of sentences - - a theory. A database query is answered by

proving it to be a logical consequence of the theory (non-evaluational

approach). This distinction is described in detail in (~inker and

Gallaire 1978 1. Essentially , it amounts to the difference between

theories and their interpretations.

[Kowalski 198 1 1 shows that, under certain conditions, this

distinction is irrelevant. In particular, it can be shown that all

queries in first-order logic evaluate to the same value whether the

relational database is interpreted as a structure or as a logic

database, provided that:

1. There are finitely many variable-free atoms;

2. The database is described by Horn clauses;

3. The axioms of equality and domain closure are present; and,

4. Negation is interpreted as finite failure.

Relational databases can therefore be represented directly in

Prolog as a listing of all instantiated predicates corresponding to

relation tuples. For instance, consider the database-oriented view of

the world of Suppliers-and-Par ts [Date 1982 1.

The relations (scheme) are:

SUPPLIER(sno, sname, status, city)
PART(pno , pname , color, city)
SUPPLY (sno , pno , q ty)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 14

An instance of the database would be represented in Prolog as:

In addition to database representation, Prolog can be used

directly as a database query language.

Each query may have the format [Kowalski 1981 1 :

c- QUERY (<target-variables) .
QUERY(ctarget-variables>) <- GOAL - A & GOAL - B &. . . & GOAL-N

where <target-variables is a list of variables (corresponding to

attribute names). The interpretation is that the user wants to

retrieve all instantiations satisfying the goal statements. Thus,

<target-variables> corresponds to the target list in conventional

query languages. For instance, consider the Prolog statements:

/* For all suppliers,
list the supplier number and the city they live in */

<- ~1VES(sno, city). /* where */
LIVES(sno, city) <- SUPPLIER(sn0, any - sname, any - status, city).
/* List the supplier number

for those suppliers who supply more than one parts */
<- SUPPLIES-MANYfsno). /* where */
SUPPLIES-MANY(sno) c- SUPPLY(sno,pl,ql) &

SUPPLY(sno,p2,q2) & NOT(pl=p2),

* List the supplier number
for those suppliers who do not supply more than one parts,
and live either in London or in Paris */

c- SPECIAL SUPPLIER(sno). /* where */
SPECIAL-S@PLIER(S~O) c- NOT(SUPPL1ES MANY(sno)) &

OR(LIVES(sno, L O ~ N) , LIVES(sno, PARTS) \ .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 15

These examples can be used to i l l u s t r a t e both t h e query

c a p a b i l i t i e s of the Prolog formalism, and the powerful mechanism f o r

"general ized" views. Such views d i f f e r from t h e t r a d i t i o n a l DBMS

views i n t h a t with t h e use o f v a r i a b l e s they can accept parameters.

I n essence , views al low f o r a f l e x i b l e d a t a r ep resen ta t ion .

[Kowalski 19811 a l s o details t h e use of Prolog f o r i n t e g r i t y

c o n s t r a i n t s , database updates and h i s t o r i c a l databases.

3.3 Prolog And Expert Systems -

A knowledge base can be represented i n f i r s t - o r d e r l o g i c i f t h e

formulas are s u i t a b l y in te rp re ted . Therefore, Prolog may be used f o r

t h e knowledge representa t ion . Furthermore, Prolog has t h e advantage

t h a t i t a l ready has a very powerful inference engine i n p lace

(automatic theorem prover) . The u n i f i c a t i o n algori thm used i n Prolog

is more genera l than a simple p a t t e r n matching algori thm (common i n

product ion rule-based s y s terns [Nau 1983]) .

A s an i l l u s t r a t i o n , a small "toyw Expert System i n Prolog is

presented. The area of i n t e r e s t is t h e well-known world of s u p p l i e r s ,

parts, and supp l i e s . I n t h i s s imple example, the "expertw is supposed

t o recommend where t o order by applying t h e fol lowing r u l e s :

1. Order only from s u p p l i e r s who have suppl ied the same p a r t and

a l l its subpar t s before.

2. Suppl i e r s from southern Europe are usua l ly cheaper than those

from northern Europe. No s u p p l i e r s o u t s i d e Europe should be

considered.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 16

3. Display a l l poss ib le choices within t h e noptimalw category.

A Prolog exper t f o r t h i s Job would obviously need a represen ta t ion

both o f t h e above r u l e s and of t h e da ta they requ i re , such as loca t ion

and previous supply f o r each part, and t h e c l a s s i f i c a t i o n o f loca t ions

i n t o nor thern and southern Europe. A sketch of a poss ib le Prolog

knowledge base follows.

F i r s t , t he database of s p e c i f i c f a c t s is presented. It is noted

t h a t only binary o r unary r e l a t i o n s are used i n t h i s example, but t h i s

is no t l i m i t i n g i n t h a t t h e r e is a simple way t o move between binary

rep resen ta t ions and t e rna ry rep resen ta t ions [Kowalski 19791.

/* Simple d e c l a r a t i v e f a c t s (da tabase) */

PART(NuT) .
PART(W1DGET).
PART(GIZM0).
PART(SCREW),
PART(GADGET).
PART(TH1NGUM).
PART(SUPERTHINGUM).

SUBPART(NUT, WIDGET).
SUBPART(SCREW, GADGET).
SUBPART(GADGET, GIZMO).
SUBPART(THINGUM, SUPERTHINGUM).

HAS SUPPLIED(SMITH, NUT).
HAS-SUPPLIED(SMITH, WIDGET).
HASSUPPLIED(SMITH, GIZMO).
HASSUPPLIED(SMITH , THINGUM) .
HAS-SUPPLI ED (JONES, SCREW) .
HASSUPPL I ED (JONES, rwr) .
HAS-SUPPLIED (JONES, w I D G ~) .
HAS-SUPPLIED (JONES, GADGET 1.
HAS-SUPPLIED(JONES , GIZMO) .
HASSWPL IED(JONES, SUPERTHINGUM) .
HAS-SUPPLIED(- BRAKD , SCREW 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 17

LIVES(SMITH, ROME).
LIVES(JONES, L0NIX)N).
LIVES(BRAND, OSLO).

NORTH(LOND0N).
NORTH(OSL0).
SOUTH (ROME) .
SOUTH(ATHENS) ,

Second, the part of the knowledge base containing the general

rules is presented.

/* General Rules */
SUGGEST ORDER(supplier, part) c-

GOOD - AND - CHEAP (supplier, part) .
/* if no good and cheap suppliers exist, then: */

SUGGEST ORDER(supplier, part) c-
NOT~OOD AND CHEAP (any supplier, part)) &
NORTH EUROPEAIJ(supplier)&
POTE~AL-SUPPLIER(supplier, part) .

GOOD - AND CHEAP(supplier,part) c-
POTENTIAL SUPPLIER(supplier, part) &
SOUTH - E ~ P E A N (supplier) .

MISSING SUBPART(supplier, part) c-
N O T ~ H A S S U P P L I E D (~ ~ ~ ~ ~ ~ ~ ~ , part)) ,

MISSING SUBPART(supplier, part) c-
SUB PART(^^^ part, part) &
MISSING - ~ u ~ P ~ ~ T (s u ~ ~ l i e r , any - part).

NORTHEUROPEAN(supp1ier) c- LIVES(supplier, city), NORTH(city).
SOUTH-EUROPEAN(supp1ier) c- LIVES(supplier, city), SOUTH(city).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 18

To i l l u s t r a t e the use o f t h e above simple Expert System, some

examples are given below. I t is noted t h a t the user p laces a goal

(des i red conclus ion) a t t h e n l ?-" prompt and t h e system r e t u r n s with

a %ow answer if the goal can not be proven, and with an assignment of

va lues t o the v a r i a b l e s used otherwise. If t h e goal has more

s o l u t i o n s (o t h e r va r i ab le assignments e x i s t) , they are obtained with

t h e typing o f a semi-colon u n t i l t h e answer "noH is returned.

/* Example Execution * /
1 ?- SUGGEST - ORDER(x,WIW;ET).
x = SMITH ;
no

I ?- SUGGEST ORDER(x,GIZMO). -
x = JONES ;
no

I ?- SUGGEST - ORDER(x,SCREW).
x = JONES ;
x = BRAND ;
no

PROLOG AS MECHANISM FOR INTEGRATION

4.1 Prolog - And Access S t r a t e g y - 1

A s ou t l ined i n t h e previous s e c t i o n , elementary database

management corresponds t o a d i r e c t use o f Prolog. The l i m i t a t i o n s i n

t h i s s t r a t e g y are:

(a) Large Databases

Executing Prolog programs i n the manner descr ibed above r e q u i r e s t h a t

the a s s e r t i o n s r ep resen t ing t h e database (i n s t a n t i a t e d p r e d i c a t e s) be

i n main s torage . Even when the database can f i t i n main s t o r a g e , and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 19

despite the fact that Prolog implementations are very efficient, there

are limitations in secondary indexing. For instance, the Prolog

DEC-10 compiler, which is considered to be the most efficient

implementation, has only one index for the internal database. In

short, both external and internal data management are needed for large

databases.

(b) Generality

Simple-minded use of Prolog can only offer elementary data management

facilities. For instance, there is no data dictionary, no database

schema, and no generalized set-oriented relational operations. It may

be argued that lack of generality is a matter of convenience rather

than an issue of substance. On the other hand, it is closely related

to the first limitation, and in the next stage a uniform mechanism to

deal with both is used.

4.2 - A Generalized Database System - In Prolog - - Access Strategy - 2

Generalized DBMSs gain much of their power by abstracting from

specific query predicates to generalized retrieval mechanisms such as

the set-oriented relational algebra operators or the SQL nesting

mechanisms. One advantage of using these abstractions in Prolog is

that they allow generalized selection of predicates instead of forcing

the database programmers to define such predicates separately for each

class of data.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 20

Therefore, we could take a further step towards integrating the

deductive capabilities of Prolog with database management capabilities

by implementing a general purpose DBMS directly in Prolog. This can

be done quite easily, and provides a means of adding flexible and

general data access mechanisms to the inference engine.

In order to effect this stage in ES enhancement with data

management facilities, the first requirement is the definition of an

internal representation of a relational database. The following

Prolog version is a simple and direct strategy for this purpose.

DBSCHEMA = [DB-NAME, [relations I, [constraints 1 1

REL-i = [REL-NAME, [scheme], [domains] 1
/* for each REL-i, l<=i<=n */

SCHEME = [a-1, ..., a-k] /* a list of attributes */
DOMAINS = [d-1, ..., d-k] /* a list of domains with */

/* DOM(a-I) = d-i */
CONSTRAINTS = [[list-of-fds] , /* functional dependencies */

[list-of-vds], /* value dependencies */
[list-of -sds]] /* subset dependencies */

FD = [REL-NAME, LHS, RHS 1 /* corresponds: LHS --> R H S */
LHS = [a-it, a-12, a-il I /* a list of attributes */
RHS = [b-jl, b-32, b-jm 1 /* a list of attributes */
VD = [REL-NAME, ATTR-NAME, LOWER-BOUND, UPPER-BOUND]

/* The values for ATTR-NAME must be within the bounds */
SD = [REL-NAME 1 , ATTR-NAME1 , REL-NAME2, ATTR-NAME2]

/* The values in ATTR-NAME1 must also be in ATTR-NAME2 */

DBINSTANCE = [DB-NAME, [relation-instances 1 1
RELATION-INSTANCE = [REL-NAME, [tuples]]
TUPLE-i = [V-1, ..., V-k] /* V-i is. in d-i, l<=i<=k */

This strategy provides a straightforward implementation of the

structure of a relational database as seen by the user (in this case

the ES). The Suppliers-and-Parts database of Section 3.2, represented

in this format, is given in Appendix 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 21

Given such a representation scheme, one can define any number of

generalized operations to provide the facilities of a DBMS. The

feasibility of this has been demonstrated in [Kunifuji and

Yokota 19821. The basis for the implementation is the predicate

W3"Ffl built into most Prolog versions, SETOF(x,c,r), returns in the

-set r all such elements of x that satisfy condition c, For instance,

the projection of a relation R on scheme (xl,x2,,.,,xn) onto the

attributes xjl,xj2,...,xjk will have the form:

SETOF((xj1 ,xj2,. . . ,xjk), ((xi1 ,xi2,. . . ,xim)̂ R(xl,x2,. . . , xn)), s)

where m=n-k, and (xi1 ,xi2,. . . ,xim)̂ denotes the existential

quantification of these variables.

As a specific example, the projection of a relation R on scheme

(a,b,c) onto the attribute c is ltcomputedH by the following Prolog

program :

I ?- SETOF(c, ((a,b)̂ R(a,b,c)), s).

Note, however, that this view of the projection operator requires

the user to know the entire scheme of each relation and the order of

the attributes in the scheme; this may be too much to ask in general.

The approach taken here (details are given in Appendix 1) by contrast,

provides a simple way to specify projection as a generalized operator

acting on any relation and set of attributes. Prolog programs map

from this simpler, user-oriented view of the operations, to their

implementation for the particular database and representation scheme

chosen. This provides a degree of logical data independence as in the

traditional levelled architecture of DBMSs [Date 19821.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 22

Another feature provided by many DBMSs is the ability to define a

"viewtt of the database for particular applications. These views

define only that portion, or rearrangement, of the database of

interest to a particular user community, effectively screening out the

rest of the database from their sight. For example, users interested

-only in the set of suppliers without any of their attributes, could

define the following view:

SUPPLIES(s) c- PROJECT(SUPPLY, [SNAKE 1, result - tuples).

The user (typically the ES) has a choice between set-oriented and

tuple-at-a-time retrieval operations. This is accomplished with the

introduction of an evaluable predicate called "SIMCALLN. This

predicate simulates Prolog's calls of predicates corresponding to

relations (i.e. returns a tuple instantiation). Thus, each call of

the predicate SUPPLY, defined below, will return one tuple of the

relation SUPPLY (stored in the format described in this Section).

SUPPLY (sno , pno , qty) c- SIMCALL(SUPPLY, [sno , pno , qty 1) .

Another issue for the implementation of a generalized DBMS within

Prolog is that of efficient secondary storage management. For the

latter, it is reasonable to devise a more sophisticated storage

strategy (e.6. , B-Trees) , and perhaps to use auxiliary indexing

schemes, hashing, etc. The use of some of these storage structures

for implementing a simple business database in Prolog is described in

[Pereira and Porto 19821, and some general Prolog data structures and

accessing programs are formalized in [Tarnlund 19781.
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 23

The work reported i n [Pereira and Porto 19821 demonstrates that

f o r s p e c i f i c applications, indexing schemes that guide decisions about

which portions of external files should be read in to the in te rna l

database can be devised, Furthermore, the basic data access predicate

(rou t ine) of Prolog can be changed t o d i r e c t data searches of

secondary storage. Such Prolog modifications have been c r i t i c i z e d as

providing only temporary solut ions , while complicating Prolog's basic

s t ruc tu re and fur ther divorcing t h e language system from formal logic.

5.0 PROLOG RELATIONAL -- DBMS AS INDEPENDENT SYSTEMS

5.1 Loose Coupling Of Prolou With A Relational - DBMS

Loose coupling can eas i ly be implemented using Prolog and a

r e l a t i ona l DBMS, under the assumption tha t a generalized f a c i l i t y as

described above ex i s t s . A portion of the external database is loaded

off- l ine (before the s t a r t of the E x p e r t System session) . A superset

of the data required by the ES can ac tua l ly be extracted, but the

s t ra tegy may prove infeasible i f the superset is too la rge or not

known i n advance (too many parameters).

5.2 Tight Coupling O f Prolog With - A Relational DBMS

5.2.1 Overview -
Tight coupling r e f e r s t o a dynamic use of the communication

channel between the two systems. Essent ia l ly , the ex te rna l database

becomes an "extensionw of the in te rna l Prolog database. A s i n the

general case, the same tno basic problems must be resolved:

optimization of database calls, and complexity of quer ies . unnantra*

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 24

such a coupling system requ i res dynamic decision-making about t h e

l o c a t i o n o f t h e d a t a needed t o s o l v e the c u r r e n t problem, and an

e f f e c t i v e s t r a t e g y f o r managing i n t e r n a l s torage .

The b a s i c scenar io f o r t i g h t l y coupling a Prolog-based ES with a n

e x i s t i n g r e l a t i o n a l DBMS is as follows. The use r consu l t s t h e ES with

a problem t o be solved o r a decis ion t o be made; t y p i c a l l y t h i s w i l l

be expressed i n some s o r t of user- f r iendly language i n t e r f a c e , but f o r

our purposes we can assume t h a t it is expressed d i r e c t l y as a Prolog

predica te . Rather than eva lua te t h i s user r eques t d i r e c t l y , i n a

t ightly-coupled framework the p red ica te would be massaged (c f .

nREFLECT," Sect . 5.2.3) i n t o a s l i g h t l y modified form whose

evaluat ion can be delayed while var ious transformations are performed

upon it. This process is analogous t o a "pre-processing" s t a g e i n

language t r a n s l a t i o n . The a l t e r e d p red ica te is then wmeta-evaluatedw

(5.2*3) This involves analyzing t h e r eques t i n its Prolog

formulation and dynamically determining whatever DBMS q u e r i e s are

required at t h a t s t a t e 9 t he ES execution f o r ob ta in ing t h e so lu t ion .

In our case, t h i s involves formulat ing t h e q u e r i e s i n t h e r e l a t i o n a l

language SQL [Astrahan et a1 19761, performing c e r t a i n opt imizat ions

upon the o r i g i n a l SQL quer ie s s o generated, i s s u i n g t h e SQL q u e r i e s t o

t h e DBMS along a communication channel, r ece iv ing t h e r e s u l t o f t h e

query from t h e DBMS along t h i s same channel, and re-formulat ing t h a t

r e s u l t wi th in t h e i n t e r n a l database s t r u c t u r e o f the ES. A t t h a t

point , t he wmeta-evaluationw of t h e u s e r ' s r eques t is completed, and

the Prolog inference engine can eva lua te t h e r e q u e s t with t h e requi red

data i n its working memory.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 25

A s an example of t h e need f o r opt imizat ion , consider a naive

channel u s e (a l l Prolog goa l s are d i r e c t e d t o the e x t e r n a l DBMS), and

t h e d e f i n i t i o n of the Prolog clause:

SECOND - LEVEL-SUBPART(subpno,pno) c- SUBPART(subpno,pnol) (1
SUBPART(pno1,pno).

where it is assumed t h a t "SUBPARTw is a s t o r e d r e l a t i o n f o r d i r e c t

(f i r s t - l e v e l) sub-re la t ionships between p a r t s .

In eva lua t ing t h i s goal , Prolog w i l l call t h e l e f tmos t WSUBPARTfl

(r e d i r e c t e d t o the DBMS as an a t tempt t o eva lua te i t) f o r a database

tup le . subpno and pnol w i l l be i n s t a n t i a t e d t o some cons tan t values.

Then Prolog w i l l call t h e r ightmost "SUBPARTw with pnol a l r eady

i n s t a n t i a t e d . Such a lfollow-upt call w i l l be made f o r each

success fu l i n s t a n t i a t i o n o f pno. Moreover, t h e process is repeated

f o r each t u p l e of subpart . If no second-level subpar t e x i s t s i n t h e

database, a l l these 'follow-up' goa l s w i l l fa i l . Thus t h e minimum o f

2n+l number of database c a l l s is required , where n is t h e number o f

tup les . (The e x t r a call is t h e unsuccessful a t tempt t o i n s t a n t i a t e

t h e le f tmost "SUBPART" when a l l t u p l e s have been looked a t) . I f t h e r e

are k second-level subpar t s , then Zn+k+l da tabase calls are needed.

This naive approach w i l l thus genera te a p a r t i c u l a r l y i n e f f i c i e n t

vers ion of a "nested i t e r a t i o n N query eva lua t ion a lgor i thm and w i l l

no t make use of any query opt imizat ion procedures o f t h e DBMS.

This d i f f i c u l t y can be overcome by c o l l e c t i n g and j o i n t l y

executing database c a l l s r a t h e r than execut ing them s e p a r a t e l y

whenever issued by the ES. In essence , t h i s r ev i sed technique

rep laces the pure d e p t h - f i r s t approach o f Prolog by a combination o f a

depth-f i rs t reasoning and a b read th - f i r s t da tabase call e x e c ~ 1 t ~ n n

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 26

In practice, an amalgamation of the ES language with its

meta-language is used, based on the 'reflection principlet

[Weyhrauch 1980 1, This allows for a deferred evaluation of predicates

requiring database calls, while at the same time the inference engine

(theorem prover) of the ES is working, Since all inferences are

performed at the meta-level (simulation of object-level proofs), it is

feasible to bring the complex ES queries to a form where some

optimization and direct translation to a set of DBMS queries is

feasible.

The queries are directed to the DBMS, and the answers obtained

are transformed to the format accepted by the ES for internal

databases. Then, the ES can continue its reasoning at the

object-level. Each invocation of predicates corresponding to database

relations now amount to an ES internal database goal, rather than a

call to an external DBMS. The theoretical basis and a detailed

description of this approach are presented in Sections 5.2.2 and

5.2.3.

The second difficulty in successfully coupling a Prolog-based ES

with a relational DBMS is that Prolog goals, considered as queries,

can be substantially more complex than queries expressed in a database

query language such as SQL. For example, most DBMS query languages

are not able to handle a recursive call such as the Prolog program:

ANY - LEVEL - SUBPART(subpno,pno) <- SUBPART(subpno,pno).

ANY - LEVEL - SUBPART(subpno,pno) <- SUBPART(subpno,pl) &
ANY - LEVEL-SUBPART(p1,pno).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 27

Much resea rch e x i s t s on t h e i s s u e of recurs ion i n databases. An

important d i s t i n g u i s h i n g c h a r a c t e r i s t i c is t h a t t h e depth o f r e c u r s i v e

calls t o da tabases f s usua l ly r e l a t i v e l y shallow. For i n s t a n c e ,

cons ider ing again the example o f subpar t s , recurs ion may only go t o a

few l e v e l s deep before subsequent r ecurs ive calls r e s u l t i n "nullss

answers (no tup les qua l i fy ing) . This impl ies an immediate s t r a t e g y

wi th in t h e framework o f language amalgamation discussed above: t o

translate a recurs ive Prolog goal t o SQL, genera te a series of calls

that can be t r a n s l a t e d d i r e c t l y t o SQL, execute the SQL calls, and

s t o p when recurs ion ends (SQL c a l l s r e t u r n n u l l r e s u l t s) . The major

problem with t h i s s t r a t e g y is t h a t i t is not poss ib le t o know i n

advance how many such goa l s must be generated (t h e t r a n s l a t i o n t a k e s

place i n t h e ES). Therefore, it is no t f e a s i b l e t o j o i n t l y execute

these SQL calls. In o the r terms, l i t t l e can be done f o r t h e

t r a n s l a t i o n a t compile time, s i n c e the end o f recurs ion can only be

determined a t execution time.

Even under these r e s t r i c t i o n s , much opt imizat ion can be done

within the proposed framework. For example, r e s u l t s (t u p l e va lues)

from i n i t i a l SQL calls are used f o r subsequent SQL calls. Other

approaches (e .g. [Henschen and Naqvi 1982 1) handle r ecurs ion

e legan t ly and i n a genera l way a t compile time us ing a method t h a t

replaces recurs ion by i t e r a t i o n . S ince Prolog has no i t e r a t i v e

statements, and it was no t des i red t o use an embedded query language

h e r e i t e r a t i o n can be expressed i n t h e h o s t language, t h i s method is

i n f e a s i b l e i n t h e framework proposed here.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 28

5.2.2 The Theoretical Basis For Language Amalgamation -

In order to be able to talk about a language L, the use of a

meta-language ML is required. The amalgamation of an object language

with its meta-language refers to the ability to move between the two

languages whenever it appears more convenient or efficient to use one

rather than the other.

Suppose that a goal G is to be proven from a set of assumptions

(hypotheses) A in a first-order language L. There are two ways to do

this :

(a) Use the proof procedure of L.

(b) Simulate the proof procedure of L in ML as follows: Use a

"reflectw relationship that names the assumptions A and goal G of L as

Meta-A and Meta-G in ML. The provability of G from A is represented

by the provability of the predicate rfmetaevaluate(Meta-A, Meta-G)"

from sentences in ML.

Implementing amalgamation of L and ML requires the definition of

the metaevaluate predicate and the naming relationship. In addition,

it requires a link (reflection principle) between the two languages.

In this specific case, Horn clause logic (Prolog) is used as the

object language. The meta-language is Prolog itself - with the
restriction that all sentences are variable-free. This allows to

remain in first-order logic. Thus, the naming relationship maps

variables to special-form constants which simulate a variable in

meta-Prolog.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 29

This implementation of amalganation is based on the high level

description of the DEMO predicate presented in [Bowen and

Kowalski 19821, and is similar to the implementation of [Kunifuji and

Yokota 1982 I. The work reported here ex tends the above approaches by

providing a more general treatment of evaluable predicates. For

instance, finite negation (not) and disjunction (or) are treated with

no restrictions. In addition, the issue of its use in the context of

the general ES-DBMS coupling mechanism is addressed.

Linking Prolog and meta-Prolog is accomplished with the

introduction of a binary predicate called ttMETA1t. For each Prolog

clause, a corresponding instantiation of the "METAN predicate exists.

The first term of "METAI1 is a list of predicates; the head of

the list is the head of the corresponding clause, and the other list

elements are the terms in the body of the clause. All variables in

these predicates are translated into constants with a special prefix

(1 . The second term of "METAN allows for the grouping of meta

instantiations in a program. For example, the corresponding meta

predicate for:

ATHENS-SUPPLIER(sno,sname) <- SUPPLIER(sno,sname,status,ATHENS).
is

META ([ATHENS SUPPLIER (V sno , V sname) ,
SUPPLIER(V-sno , V-kame ,f-s ta tus , ATHENS) 1 , PR1) .

where PR1 is the name of the program (group of "METAW instantiations).

Since the objective of this approach is to defer the evaluation

of predicates which correspond to database relations, all such

predicates are in a delayed evaluation form. In particular, these

predicates are defined in Prolog as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 30

SUPPLY (sno , pno , qty) <- DBCALL (SUPPLY, [sno , pno , q ty 1) .

using the non-evaluable binary predicate "DBCALLW. Other predicates

whose evaluation depends on the database values (e.g. equal, not

equal) are treated in the same way.

The implementation of the predicate nbETAEVALUATEH is described,

together with examples of its use, in Appendix 2. Only a high-level

description is given here.

Given a set of assumptions A and a set of goals G to be proven in

the object language, prove the meta-Prolog predicate:

METAEVALUATE(assumptions, meta-goals, control, new-goals).

in the meta-language, where ffassumptionsft is the collection of the

original assumptions A in the meta-language, and meta - goals is the
meta-language name of the goals G. Control is a parameter which

specifies either a bound in the proof of metaevaluate or an action to

be taken later (e.g. optimization, translation to relational algebra

or SQL). The result, new - goals, is a series of Prolog predicates in a
deferred evaluation state (a series of DBCALLs and other non-evaluable

predicates).

5.2.3 - The Mechanism For Tight-Coupling. -

This section describes the overall mechanism that allows for

deferred database calls. The mechanism is presented pictorially in

Figure 2. The use of a simple but complete example will illustrate

the concepts involved.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 31

EXPERT SYSTEM DBMS

OBJECT LEVEL META LEVEL DATABASE LEVEL

I
I
I

Reach a goal G that
requires db calls METAEVALUATE

I

REFLECT I
I OPTIMIZE
I
I

GENERATE I
I
I SQL-TRANSLATE
I

REFLECT

DBMS I
Query I
Evaluation 1

I
FORMAT-DATABASE I

I

I
Goal G may now be proven with
calls to an internal ES database

I
I
I

Figure 2: THE MECHANISM FOR METAEVALUATIONS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 32

(A) REELECT(object-assumptions, meta - assumptions, program-name).
This function produces "METAH predicates as described in the previous

section from a set of Prolog statements. It also groups the meta

predicates by providing a unique program-name, The REnECT function

is invoked once before the start of a session.

(B) METAEVALUATE(program - name, meta - goals, control, new-goals).
Described in Section 5.2.2.

(B.l) GEERATE(new-goals, results).

This program is activated by metaevaluate when the control parameter

assumes a particular value. Given a series of new - goals, it creates
an internal database relation (result). In doing so, it uses and

controls the execution of the sub-programs "OPTIMIZEw,

"SQL - TRANSLATE", "SQL - CALL", and "FORMAT - DATABASEM. Details of the

implementation of these procedures will be given in a forthcoming

paper

(B. 1.1) OPTIMIZE(new-goals, optimized-goals),

This program performs some optimization to the goals generated in

metaevaluate. One optimization is the removal of redundant goals.

Another optimization identifies cases where a series of DBMS queries

is required (e.g., in recursion). By imposing an ordering on the

goals, *OPTIHIZEfl makes it possible that a query result can be used

for answering the next query more efficiently.

(B.1.2) SQL-TRANSLATE(optimized-goals, sql-query).

This generates SQL queries from optimized goals, First, the procedure

identifies the database relations involved from the predicate names in

optimized-goals and its knowledge about the database schema (SQL's

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

FROM clause). Next, it identifies target attributes (SQLts SELECT

clause) from the universally quantified variables of the original

goals, and ignores all other variables in the goals unless they serve

as join fields (e . g . , re1 1. field 1 = rel2. field2). All constant values

are translated to restrictions on field values (e,g., fieldname =

constant).

(B. 1.3) SQL-CALL(sq1-query , answer-location) .
This is another program activated by "GENERATEu. It invokes the

existing DBMS by sending an sql-query, with the result redirected to a

file identified by answer - location. Each answer to a query

contributes to the eventual result of "GENERATEft.

(8.1.3.1) FORMAT-DATABASE(answer - location, internal-db) .
Since the existing DBMS cannot be expected to deliver the result in

the format required by Prolog, this function produces an internal

Prolog sub-database from the file identified by sql calls. Each such -
database contributes then to the eventual result of the calling

function, GENERATE.

As an illustration of the process outlined above consider the

following example. The actual Prolog execution and a more detailed

description can be found in Appendix 2. Assume an ES that uses a

series of informal, heuristic and exact rules, together with a large

database of Suppliers-and-Parts managed by an external DBMS. The

portion of this external database which is necessary for the example

is assumed to contain the stored relations: SUPPLY and SUPPLIER. The

hypothetical ES has the schema descriptions of the external database

and several rules concerning this database. No actual tuples are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 34

stored in the internal ES database. Assme further, the ES rule

(goal) wP~RFORM_PRDER", which among other predicates involves the

predicate (generalized view) : "GOOD - BET - SUPPLIERn, based on the
9

stored relations and other generalized views.

PERFORM - ORDER(sname , price, delivery) - COLLECT-REQUIREMENTS (w p r ice, la tes t-del , pno) &
GOOD BET SUPPLIER(sno,pno) &
MAKE-ADJ~s~'MENTs(- sno , new-delivery) & ...

where "GOOD - BET-SUPPLIER" is defined as:

GOOD - BET-SUPPLIER(sno,pno) c- NORTH EUROPEAN(sno) &
MA JOR-SUPPLIER(- sno , pno 1.

NORTH-EUROPEAN(sno) <- OR (SUPPLIER(sno , n , st ,LONDON) &
SUPPLIER(sno,n,st,PARIS)),

MAJOR - SUPPLIER(sno,pno) c- SUPPLY(sno,pno,qty), &
CREATER(qty, 300).

Since an instantiation of "GOOD - BET - SUPPLIERw would require

database calls, "METAEVALUATEW as the subgoal immediately preceding it

is used:

PERFORM ORDER(sname , price, delivery)
c- C~LLECT REQUIREMENTS(max price, latest del, pno) &

METAEVA~UATE (PR 1 , [GOOD-~ET-SUPPLIER(V-sno - , V - pno) 1 , 5 , newgoals) &
! &
GOOD BET SUPPLIER(sno,pno) &
MAKE-ADJ~STMENTS(- sno , new-delivery) & . . .

Note that the 'cut" (I) subgoal assures that the metaevaluate predicate

will only be executed once.

The first result from "HETAEVALUATE" is (see also Appendix 2):

newgoals = [OR(DBCALL(SUPPLIER, [V sno ,V n ,V st ,LONDON]) ,
DBCALL (SUPPLIER, [~ s n o , VZn, V ~ S t ,PARIS 1)) &

DBCALL(SUPPLY, [v-s~o,~ pno,V qtyl) &
DBCALL(GREATER, [V - qty ,3001) 1-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 35

Given t h e s p e c i f i c value f o r t h e c o n t r o l parameter of

nMETAEVALUATEw, t h e program *'GENERATE" w i l l be invoked. F i r s t , its

sub-programs Hoptimizelt and ltsql-translatefl w i l l transform t h e new

g o a l s t o t h e SQL-query:

SELECT sno, pno
FROM SUPPLIER, SUPPLY
WHERE ((SUPPLIER.city = 'LONDON') OR (SUPPLIER.city = 'PARIS'))

AND (SUPPLY.qty > 300)
AND (SUPPLY.sno = SUPPLIER.sno);

The call w i l l be made t o t h e e x t e r n a l DBMS (program: SQL-CALL) , and

t h e answer w i l l be r e t r i e v e d from answer-location (program:

FORMAT-DATABASE) , Fina l ly , a new i n t e r n a l database w i l l be generated

with t h e descr ip t ion:

GOOD - BET - SUPPLIER(sno, pno)

After t h i s process, the next s ta tements i n t h e Expert System clause

can use "GOOD-BET-SUPPLIER1' i n t h e usual Prolog way. No a d d i t i o n a l

e x t e r n a l database c a l l s are needed.

In essence, ins tead of c a l l i n g the DBMS each time a t u p l e is

needed, a l l "qualifyingw t u p l e s are brought i n t o t h e i n t e r n a l

database. I t should be noted t h a t the above s t r a t e g y is s i m i l a r t o

the "query modif i c a t i o n w algorithm [Stonebraker 19751 used i n some

commercial DBMSs f o r view processing. Poss ib ly , t h e s i n g l e most

important advantage i n using the theorem prover f o r query modificat ion

is t h a t the whole mechanism is in tegra ted smoothly and n a t u r a l l y i n t o

an ES implementation as a general ized too l .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 36

6.0 CONCLUDING REMARKS - - FURTHER RESEARCH

I n t h i s paper a number o f s t r a t e g i e s f o r e s t a b l i s h i n g a

coopera t ive communication between t h e deductive and d a t a components o f

an Expert System were out l ined. I t was shown t h a t t h e spectrum o f

p o s s i b l e mechanisms t o l i n k these two components is e f f e c t i v e l y a

continuum from, a t one extreme, a s i n g l e logic-based system t h a t

implements components, t o , a t the o t h e r extreme, two completely

separate systems with a s t rong channel of communication.

A number of i n t e r e s t i n g research ques t ions are r a i s e d by t h e

spectrum o f poss ib le mechanisms f o r coupling these two e s s e n t i a l

components o f an Expert System. Among t h e ques t ions examined are:

what is a genera l a r c h i t e c t u r e f o r t h e communication channel between

these two components? how can t h e ES DBCALLs be t r a n s l a t e d i n t o t h e

query language of the DBMS? when and how should t h e s e q u e r i e s be

optimized? A research top ic under i n v e s t i g a t i o n is t h a t o f i n t e r n a l

ES database space management. How does one manage t h e amount o f free

space f o r s t o r i n g the r e s u l t s o f e x t e r n a l da tabase calls? When space

has t o be f r e e d , how is the decis ion reached and optimized as t o which

por t ion of the i n t e r n a l database need be de le ted? A longer range

research quest ion concerns t h e i n t e g r a t i o n o f t h e s e four a c c e s s

s t r a t e g i e s i n t o a s i n g l e , meta-expert system t h a t combines t h e

e x p e r t i s e of t h e problem domain with e x p e r t i s e about these four

connection types. Given a p a r t i c u l a r type o f problem i n t h e domain o f

the expert, t h i s meta-expert system would decide which type o f

coupling is most appropr ia te .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 37

Finally, a research question of particular interest to the

database community is the use of an ES as a DBMS *interfacew [Jarke

and Vassiliou 19831. Could an ES be used as a sophisticated access

mechanism (e.g. high-level optimization, understanding of user

intent)? How could an ES assist in the implementation of language

constructs that allow one to formulate arbitrary predicates with

relation variables? Such constructs may be used for integrity

checking and improved locking mechanisms. A tight-coupling mechanism,

like the one described in this paper, may be required by such a

nDBMS-exper t ".

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 38
*

References

1. Blanning, R.W., "Natural Language Query Processing for Model
Managementw, Communications --- of the ACM, forthcoming.

2. Bonczek, R.H., Holsapple, C.W., Winston, A.B., "The Evolution
from MIS to DSS: Extension of Data Management to Model Managementt1,
Decision Support Systems, Ginzberg, M.J., Reitman, W.R., Stohr, E.A.
(eds.), North-Holland, 1982, pp. 61-78.

3. Bonczek, R.H., Holsapple, C.W., Uhinston, A.B., nSpecification of
Modelling Knowledge in DSSn, Processes and Tools for Decision Support,
Sol, H.G. (ed.), North-Holland, 1983.

4. Bowen, K.A., and Kowalski, R.A., "Amalgamating Language and
Metalanguage in Logic Programmingw, Lo ic Programming, K. Clark and
S.A. Tarnlund, eds., Academic Press, -3- 19 2.

5 . Brachman, R., "On the Epistemological Status of Semantic
NetworksN, Associative Networks: Representation and Use of Knowledge
b~ Computer, N.V. Findler, ed., Academic Press, 1977, pp.3-50.

6. Clifford, J., Jarke, M., and Y. Vassiliou, "A Short Introduction
to Expert Systemstt, - IEEE Database Engineering Bulletin, Volume 8,
No. 4, December 1983 (to appear) .
7. Clocksin, W.F., and Mellish, C.S., Pro~ramming - in Prolog,
Springer-Verlag, 1981.

8. Codd, E.F., "A Relational Model for Large Shared Data Bases, CACM,
Vol.13, No.6, June 1970, pp.377-387.

9. Date, C.J., An Introduction - to Database Systems, (3rd edition),
Addison-Wesley, 1982.

10. Donovan, J.J., "Database System Approach to Management Decision
Supporttt, - ACM Transactions - on Database Systems 1, 4 (1976), 344-369.

11. Elam, J.J., Henderson, J.C., "Knowledge Engineering Concepts for
Decision Support System Design and Implementationl1, Information and -
Management 6 (1983), pp. 109-114.

12. Feigenbaum, E.A., and P. McCorduck, The - - Fifth Generation
Artificial Intelligence and Japan's Computer Challenge To the World,
Addison-Wesley, 1983.

13. Callaire, H., and Minker, J., Logic and - Databases, Plenum, 1978.
14. Henschen, L., and S.Naqvi, "On Compiling Queries in Recursive
First-Order Databasesv, Proc. Workshop on Logical --- Bases for Data
Bases, Toulouse, December 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 39

15. Jarke, M., and Vassiliou, Y., "Coupling Expert Systems with
Database Management Systemsn, Artificial Intelligence Applications for
Business (W. Rei tman, ed.) , Ablex , to appear 1983.
16. Kowalski, R.A., Logic % Problem Solving, North-Holland
Elsevier, New York, 1979.

17. Kowalski, R.A., "Logic as a Database Languagett, unpublished, July
1981.

'18. Kunifuji, S., Yokota, H., wProlog and Relational Databases for
Fifth Generation Computer Systemsw, Proc. Workshop on Logical Bases
for Data Bases, Toulouse, December 1982.
_ c . _ _ _

19. Minsky, M., "A Framework for Representing Knowledgew, The -
Psycholog~ of Computer Vision, P.H. Winston, ed., McGran-Hill, New
York, 1975, pp.211-277.

20. Nau, D., "Expert Computer Systems", Computer, February 1983,
pp. 63-85.

21. Olson, J.P., and Ellis, S.P., *PROBWELL - An Expert Advisor for
Determining Problems with Producing Wellsw, IBM Scientific/Engineering
Conference, Poughkeepsie, New York, November, 1982.

22. Pereira, L.M., and Porto, A , , "A Prolog Implementation of a Large
System on a Small Machine", Departmento de Informatics, Universidade
Nova de Lisboa, 1982.

23. Robinson J.A., **A Machine Oriented Logic Based on the Resolution
PrincipleH, JACM, 1965, Vol.1, No.4, pp.23-41.

24. Schank, R.C., Conceptual Information Processing, North-Holland,
New York, 1975.

25. Sprague, R.H., Carlson,E.D., Building Effective Decision Support
Systems, Prentice Hall, 1982.

26. Stonebraker, M., "Implementation of Integrity Constraints and
Views by Query Modification1', Proceedings ACM-SIGMOD Conference, 1975,
pp.65-77

27. Tarnlund, S-A., "Logical Basis for Data Bases", unpublished,
1978.

28. Travis, L., and C. Kellogg, "Deductive Power in Knowledge
Management Systems: Ideas and Experiments", Proc. Workshop - on
Logical Bases for Data Bases, Toulouse, December 1 9 8 2 .
29. Vassiliou, Y., Clifford, J., Jarke, M., ftHow does an Expert
System Get Its Data?", NYU Working Paper CRISI50, GBA 82-26 (CR) ,
extended abstract in Proc. 9th VLDB Conf., Florence, October 1983.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 40

30. Waterman, D., and Hayes-Roth, F. (eds), Pattern Directed
Inference Systems, Academic Press, 1979.

31. Weyhrauch, R., "Prolegomena to a Theory of Mechanical Formal
Reasoning", Artificial Intelligence, Vo1.13, 1980, pp.133-170.

32. Wirth, N., nProgram Development by Stepwise Refinementw, M,
Vo1.14, No.4, 1971, pp.221-227.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 41

Appendix 1

/* This is t h e database used as t h e example i n s e v e r a l s e c t i o n s of t h e */ /* paper. It has been copied from Date, and it d e a l s with t h e world */
/* of SUPPLIERS AND PARTS. * /
/**************~***iT*********************************ff******************/

DBSCHEMA(SUPPLIERS-AND-PARTS,

[[SUPPLIER,
[SNO,SNAME,STATUS,CITY],
[DSNO,DSNAME,DSTATUS,DCITY] 1,

[PART,
[PNO,PNAME,COLOR,WEIGHT,CITY],
[DPNO,DPNAME,DCOLOR,DWEIGHT,DCITY] 1,

[SUPPLY,
[SNO,PNO,QTYI,
[DSNO,DPNO,DQTY] 1 1,

[[FD, SUPPLIER, [sNO], [SNAME,STATUS,CITY] 1,
CFD, SUPPLIER, [sNAME 1, [sNO,STATUS,CITY 1 1,
EFD, PART, [PNO], [PNAME,COLOR,WEIGHT,CITY] 1,
[FD, SUPPLY, [PNO, SNO], [QTY] I,
[FD, SUPPLIER, [CITY], [STATUS] 1,
[FD, PART, [PNAME , COLOR I, [CITY 1 1,
CVD, SUPPLIER, STATUS, 10, 60 1,
ESD, SUPPLY, [sNO], SUPPLIER, [SNO] 1,
[SD, SUPPLY, [PNO], PART, LPN01 1 1).

The envisioned use of the a database is as follows.
A pred ica te "openN is used t o i n i t i a t e the database name.

OPEN(database-name)

For ins tance , t h e Prolog statement

I ?- OPEN(SUPPL1ERS - AND - PARTS).
w i l l i n s t a n t i a t e the database-name. No other mention of t h i s
name need be made i n t h e sequel . Some small examples of poss ib le
quer ies on t h i s database scheme follow.

I ?- RELNAME(re1).
re1 = SUPPLIER

I ?- SCHEME(SUPPLIER, scheme).
scheme = [SNO , SNAME ,STATUS, CITY 1
I ?- SHOWKEY (SUPPLIER, key) .
key = [SNO] ;
key = [SNAMEI

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 42

I ?- SHOWSD(relation, sds) .
relation = [SUPPLY, SUPPLIER]
sds = [sno, snol ;

RELATION = [supply, part]
IDS = [pno, pno]

./* An instance of the database */

DBINSTANCE(SUPPLIERS AND-PARTS,
[E SUPPLTER. - -

[[Sl ,SMITH,~O,LOND~N],
[S2,JONES, lO,PARIS],
[S3, BLAKE, 30, PARIS I,
[S4,CLARKl20,L0NDON],
[S5,ADAMs,30,A~NSl 1 I ,

[PART,
[[PI ,NUT,RED, 12,LONDoN],
[P~,BOLT,GREEN, 17,PARIS],
[P3,SCREW9BLUE, 17,ROMEl,
[P4,SCREW,RED, 14,LONDON],
[PS,CAM,BLUE, 12,PARIS],
[P~,COG,RED, ~~,LONWN] 1 I,

[SUPPLY,
r rs1 ,PI ,3003,
is1 ,P2,2001,
IS1 ,P3,4001,
[Sl ,P4,2001,
[Sl ,P5,1001,
[Sl ,P6,1001,
~S2,P1,3001,
[S2,P2,4001,
ES3,P2,2001,
[S4,P2,2001,
IS4,P4,3001,
[S)I1P5,400l 1 1 1 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 43

...
/* These examples illustrate a subset of a relational DBMS, built */
/* upon the representation scheme discussed in Section 4. The * /
/* variable and predicate names have been chosen so as * /
/* to make the meaning clear. * / ..
/* Project ion * /
/* General form: PROJECT(re1name ,attrlist ,projection) * /
f ?- PROJECT(SUPPLIER, [CITY], cities).

cities = [LONDON], [PARIS], [PARIS], [LONDON], [ATHENS] 1

/* Select ion. */
/* General Form: SELECT(relname,attrs,ops,vals,res) */

/ ?- SELECT(SUPPLIER, [CITY, STATUS], [=,>I, [PARIS, 201, result).

result = [[S3, BLAKE, 30, PARISH

/* Natural Join. */
/* General Form: NATJOIN(relnamel,relname2,result,scheme) */

I ?- NATJOIN(SUPPLY, PART, result, scheme).

result = [[S~,P~,~~O,LO~N,RED,HOT,~~],[S~,P~,~OO,LONDON,WD,HOT,~~],
[Sl ,P2,200,PARIS,GREEN,BOLT, 171 ,[S~,P~,~OO,PARIS,GREEN,BOLT, 171,
[S~,P~,~OO,PARIS,CREEN,BOLT, ~~],[!%,P~,~OO,PARIS,GREEN,BOLT, 171,
[Sl ,P3,400,ROME,BLUE,SCREW, 17],[S1 ,P4,20O,LONDON,RED,SCREW, 141,
[S~,P~,~OO,LONDON,RED,SCREW, 141, [Sl ,P5,1OO,PARIS,BLUE,CAM, 121,
[S4,P5,400,PARIS,BLvE,CAM, 12]],[S1 ,P6, ~OO,LONDON,RED,COG,~~]I,

scheme = [SNO, PNO , QTY ,CITY, COLOR, PNAME , WEIGHT 1 ;

/* The following statement simulates the tuple-at-time */
/* treatment of Prolog for relational databases defined as * / /* predicates with the form: */
/* supply(s1 ,PI, 100) */
/* ..* */ ..

I ?- SUPPLY(sno, pno, qty).

pno = PI,
sno = St,
qty = 300

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 44

Appendix 2

/* **++******************************+++*++***********+++++************ */
/* * /
/* The predicate metaevaluate has four parameters: * /
/* */
I* metaevaluate(Assumptions, Goals, Control, NewGoals) */
/* * / /* Given Assumptions and a set of Goals to be proven, using Control, */
/* return a new set of goals (NewGoals) - all in a non-evaluable form */
/* */
/* Algorithm: */
/* 1.- Select a Goal (first one). * /
/* 2.- Select an appropriate Assumption (clause) with meta */
/* 3.- Rename the variables in the clauses * /
/* 4.- Match the renamed variables * /
/* 5 . - Add the body of the clause to the rest of */
/* the goals producing intermediate goals * /
/* 6.- Apply the variable differences to the above goals */
/* 7.- Use metaevaluate recursively. * /
/* */
/* Recursion stops when: * /
/* - no goals exist, or */
/* - all remaining goals are DBCALLs, or */
/* - the arguments of "orw and "notw are all DBCALLs */
/* */ /* * * + + + * + * * + + + * + * * * + * 1 c * * * * * * * * * * * * * * n * * * * * */

METAEVALUATE(-,goal ,control ,goal) <- STOPEVALUATINC(goa1) & 1 .
METAEvALUATE(~~~~, [goal 1 rest 1, control,newgoals) <-

META (clause, me ta) &
RENAMEVARS(clause,[goallrest],[car(consl) &
MATCH(goal,car,diff) &
ADD(meta,cons,rest,intergoals) &
APPLY(intergoals,diff,othergoals) &
METAEVALUATE(meta,othergoals,control,newgoals).

* Description of an external database (stored relations)
/* This database will be used in the examples that follow

SUPPLY (sno,pno, qty) <- DBCALL(SUPPLY, [sno ,pno ,qty 1) .

PART(pno,pname,color,weight,city) <-
DBCALL(PART, [pno ,~name ,color, weight, city I 1.

SUBPART(subpno , pno) <- DBCALL (SUBPART, [subpno , pno 1) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

Page 45

/* Some generalized views of the external database-(used internally) */
ANY LEVEL-SUBPART(spno,pno) <- SUBPART(spno,pno).
ANY-LEVEL-SUBPART - (spno , pno) <- SUBPART (spno , p 1) &

ANY-LEVEL-SUBPART(p1,pno).

SUPPLIES-MANY(sno1 <- SUPPLY (sno ,pno1 , qtyl) &
SUPPLY (sno , pno2, qty2) &
NOTEQUAL (pno 1 , pno2) ,

SPECIAL-SUPPLIER(sno) <- NOT(SUPPL1ES MANY (sno)) &
NORTH-EUROPEEN (S ~ O) .

MAJOR-SUPPLIER(sno , pno) <- SUPPLY (sno , pno, qty) & GREATER(qty , 300).
GOOD - BET-SUPPLIER(sno,pno) <& NORTH EUROPEAN(sno) &

MAJOR~SUPPLIER(S~O, pno) .

* Meta predicate instantiations corresponding to the stored * /
/* relations and views. Note the use of PR1 as a program name. */

NETA ([PART(V pno, vgname ,V-color ,V-weight, V-city 1,
DBCALLTPART, [V-pno,V-pname,V-color ,V-weight ,V-city]) 1 ,PR1) .

META ([SUPPLY (V-S~O, V pn0 , V-qty) ,
DBCALL (SUPPLY, Tv-sno , V-pno , V-qty I) I , PR 1 .

META ([SUBPART(V-subpno , V-pno) , DBCALL(SUBPART, [v-subpno , V-pno 1) 1 ,PR1).

META ([ANY LEVEL-SUBPART (V-spno , V-pno) , SUBPART (V-spno , V-pno) 1 , PR 1) .
META ([ANYZEVEL-SUBPART (V-spno , V-pno) ,

SUBPART(V-spno,V-pl),ANY-LEVEL-SUBPART(Vgl,V-pno)], PR1).

META([SUPPLIES-MANY(V-~~~),SUPPLY(V-~~~,VJ~O~,V-~~~~),
SUPPLY (V sno , V-pno2, V-qty2) ,
NOTEQUAL~V-pno 1 , V-pno2) I , PR 1) .

META ([SPECIAL - SUPPLIER(V-sno) , NOT (SUPPLIES MANY (V-sno)) ,
NORTH-EUROPEEN (V-sno) 1 , PR 1) .

META ([MAJOR_SUPPLIER(V-S~O, V - pno) , SUPPLY (V-sno , V-pno , V-qty) ,
GREATER(V-qty , 300) 1 , PR 1) .

META ([GOOD-BET-SUPPLI ER (V - sno , V - pno) , NORTH-EUROPEAN (V-sno)
MAJOR - SUPPLIER(V - sno,l Center for Digital Economy Research

Stem School bf Business
IVorking Paper IS-83-26

Page 46

/* Examples of the execution of w~etaevaluaten. The Control */
* value is 1, specifying no extra action (e.g. optimization) */
1 2- #ETAEVALUATE (PR 1 , GOOD-BET-SUPPLIER(V-sno , GADGET) 1 , 1 , newgoals) .
newgoals = [OR(DBCALL(SUPPLIER,[V-S~O,V-N,V-~~,UINWI),

DBCALL(SUPPLIER, [V-sno, V-N, V-st, PARIS]) 1,
DEAL& (SUPPLY, [V-S~O , GADGET, V-qty 1) ,
DEALL(GREATER, V-qty ,300 1) 1 ;

I ?- METAEvALUATE(PR 1 , [SPECIAL - SUPPLIER(V - sno) I, 1 , newgoals) .
newgoals = [NOT(DBCALL (SUPPLY, [V sno , V>o 1 , V-qty 1 1) ,

DBCAU(SWPLY, [V-S~O,VJ~O~,V qty211,
DBCALL (NOTEQUAL, T V - ~ ~ O 1 , V pnoz I ,

OR(DBCALL(SUPPLIER,[V sno,V N ~ V S~,LONDON]),
DBCALL(SUPPLIER, [Vlsno, V ~ N , VSst, PARIS 1) 1

/* A Recursive call. Recursion stops after three levels, */

newgoals = [DBCALL (SUBPART, [BOLTS, V-sup 1) 1 ;

newgoals z [DBCALL (SUBPART, [BOLTS , V-P 1 I) ,
DBCALL (SUBPART, [V-p 1 , V-Sup 1) 1 ;

newgoals = [DBCALL (SUBPART, [BOLTS, V p 1 I) ,
DBCALL(SUBPART,[V pi,~-~iilf,
DBCALL (SUBPART, [VIP 1 1 , V-SUP 1) 1

I ?- UETAEVALUATE(PR 1 , [SUPPLIES - MANY (V-who) , NORTH-EUROPEAN (V-uho) 1 , 1 , ng) .
ng = [DBCALL (SUPPLY, [V-who , V-pno 1 , V-qty 1 1) ,

DBCALL (SUPPLY, [v who, v-pno2, V-qty2 I) ,
DBCALL (NOTEQUAL, TV pno 1 , V-pno2 I) ,
OR(DBCAU(SUPPLIER~[V who,V n,V S~,LONDON]),

DBCALL(SUPPLIER, [VIuho,v>,VIst ,PARIS] 1) 1

1 ?- UETAEVALUATE(PR1, [OR(SUPPLIES MANY (SMITH),
NOT(NOR~~-E~ROPEAN(%ITH))) I, 1 ,ng) .

ng = [OR(DBCALL(SUPPLY,[SMITH,V-pnol ,V-qtyl]),
DBCALL(SUPPLY, [SMITH,V-pno2,V_qty21),
DBCALL (NOTEQUAL, [V pno 1 , V pno2 1) ,
NOT(OR(DBCAU(SUPPISIER, [&ITH,v n,V st,LONDON] 1,

DBCALL(SUPPLIER,[SHI~,V~,V~~~,PARIS])))) 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-83-26

