
EXTERNAL SEMANTIC QUERY SIMPLIFICATION:

A GRAPH-THEORETIC APPROACH AND ITS IMPLEMENTATION IN PROLOG

Matthias Jarke

June 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #75

GBA #84-51 (CR)

Published in Proceedings ofFirst International Workshop on Expert
Database Systems, Kiawah Island, South Carolina, October 1984, pp.467-482.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

EXTERNAL SEMANTIC QUERY SIMPLIFICATION:

A GRAPH-TmORETIC APPROACH AND ITS IMPLEMENTATION IN PROLOG

Abstract

Semantic query simplification utilizes integrity constraints enforced
in a database system for reducing the number of tuple variables and
terms in a relational calculus query. To a large degree, this can be
done by a system that is external to the DBMS. The paper advocates
the application of database theory in such a system and describes a
working prototype of an external semantic query simplifier implemented
in Prolog. The system employs a graph-theoretic approach to integrate
tableau techniques and algorithms for the syntactic simplification of
queries containing inequality conditions. The use of integrity
constraints is shown not only to improve efficiency but also to permit
more meaningful error messages to be generated, particularly in the
case of an empty query result. The paper concludes with outlining an
extension to the multi-user case.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 2

1.0 INTRODUCTION

A research project at New York University [Jarke and Vassiliou

1984; Vassiliou et al. 19831 investigates the integration of

logic-based expert systems into existing management information

systems. Several prototype expert systems in life insurance [Jarke

and Sivasankaran 19841 and management science are being built which

rely heavily on access to large databases containing, e.g., model

input, actuarial data, customer data, or health scoring information.

The interaction between expert systems and existing databases

requires coupling two independent software systems: the expert

system, e.g., written in Prolog, and a database system accessible

through a relational query language, e.g., SQL, Rather than writing

application-specific access routines as customary in the expert

systems area, it was decided to build a generalized software tool that

provides information to the expert system as and when required for the

expert's deduction, much in the same way a human expert might consult

a database for certain facts [Vassiliou et al. 1984; Jarke et

al. 19841.

While the original motivation for building sueh a tool was its

use as a data management backend to an expert system, it is not hard

to see that the other direction of interaction is at least equally

desirable. Very high-level user interfaces to databases make use of

deductive components but often lack an efficient interface between

these components and an existing database. So-called deductive

database systems partially solve this problem but stress a very deep

integration with the underlying database (BDGEN [Nicolas and Yazdanian

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

19831) o r attempt t o build one in tegra ted system (e.g., DADM [Kellogg

19821). In con t ras t , our approach assumes independent e x i s t i n g

systems and a t t aches the t r a n s l a t i o n procedure t o the exper t systems

language ra the r than t o the DBMS (which may be used f o r many o the r

purposes i n addi t ion t o its use as an expert system backend),

A second aspect of enhancing DBMS with semantic knowledge has

been worked upon t o a lesser degree s o far: the knowledge-based

execution of conventional database operat ions [Hammer and Zdonik 1980;

King 19811. Current DBMS a r e t y p i c a l l y good i n evaluat ing a l t e r n a t i v e

s t r a t e g i e s fo r processing a query on the physical l eve l . They are

o f t e n less s t rong i n transforming a query submitted by the user i n t o a

(poss ib ly d i f f e r e n t) representa t ion which lends itself t o t h e c r e a t i o n

of more e f f i c i e n t processing a l t e r n a t i v e s , i n p a r t i c u l a r when q u e r i e s

t o views a r e concerned [Ott and Horlaender 19821, Moreover,

processing a sequence o r set of r e l a t e d quer ies is r a r e l y supported.

A coupling mechanism al lows the crea t ion o f an ' exper t systemf

e x t e r n a l - t o the DBMS t h a t might employ s y n t a c t i c and semantic

knowledge about the database schema, as well as about s t r e n g t h s and

weaknesses of the query optimizer o f the underlying DBMS, t o rephrase

and organize a query o r set of quer i e s i n the most e f f i c i e n t way.

While i n theory i n f e r i o r t o a f u l l y in tegra ted i n t e l l i g e n t DBMS query

optimizer (which would have f u l l access t o a l l i n t e r n a l da ta

s t r u c t u r e s and f u l l information about the database state a t any given

t ime), such an ex te rna l 'database programming e x p e r t t may well b e n e f i t

many ex i s t ing databases i n which the code o f t h e DBMS is no t

access ib le or should not be touched f o r r e l i a b i l i t y reasons.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 4

The purpose of the present paper is twofold. Firstly, it tries

to clarify the concept of semantic query simplification, as compared

to other approaches to utilizing general laws (or A 1 rules) in DBMS,

In particular, it is argued that results obtained by database theory

research should be employed as a crucial part of the knowledge bases

and inference mechanisms in knowledge-based query evaluation methods

although there is additional knowledge that has to be captured and

utilized in a less structured manner, both in the application domain

and in the query optimization domain itself.

Secondly, the paper reports preliminary experience with a working

prototype of a semantic query simplifier implemented in Prolog whose

knowledge base may contain key dependencies, general functional

dependencies, certain types of domain and inclusion dependencies, and

some 'expert' rules added to the system to reduce optimization time

(although these may in rare cases prevent optimality of the result).

An overall algorithm has been described in [Jarke et al. 19841. This

paper presents a more efficient, integrated method that is based on a

graph-theoretie representation of tableau techniques and handles

arbitrary conjunctive queries with inequalities. The paper concludes

with an outline of extensions currently under study, in particular

with the concept of a multi-user querying front end.

2.0 SEMANTIC QUERY OPTIMIZATION, DATABASE THEORY, AND PROLOG

Rules in database systems. While the main purpose of most --
current DBMS is the management of large amounts of formatted specific

facts, some DBMS support general rules that govern which data can be

stored in the database (inte~rity constraints) or how to derive new

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 5

facts from the stored ones; the latter are called deduction rules if

applied at query time and generation rules if used to store derived

facts explicitly. In other words, deduction and generation rules

increase the number of facts retrievable from the database beyond the

originally inserted facts, whereas integrity constraints reduce the

number of facts that can be stored and retrieved.

Semantic query optimization employs integrity constraints for

transforming queries, in the extreme to the degree that they can be

answered without looking at the stored facts at all, The underlying

principle of semantic query optimization is that one can add to each

query predicate, P, an arbitrary number of integrity constraints, C1,

..., Cn, to form a new predicate:

P AND C1 AND ... AND Cn

without changing the result of the query (since all integrity

constraints are always true by definition). The new predicate can

then be converted -- by syntactic transformations (e.g., idempotency

laws of the relational calculus [Jarke and Koch 19831) -- into a form
that lends itself to more efficient evaluation. We speak of semantic

query simplification if the query resulting from this process never

has more terms or tuple variables in its predicate than the original

one, This will be the case if a subpredicate of P is implied by the

added integrity constraints (i.e., the subpredicate is redundant and

can be omitted) or contradicts them (i.e., the query result will be

empty by definition). Interestingly, the basic ideas underlying this

kind of optimization appeared almost simultaneously in a database

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 6

theory [Aho et al, 19791 and in an A1 context [Hammer and Zdonik 1980;

King 19811. However, it seem that the connection between the two

approaches has not generally been recognized. Demonstrating the

practicality of this relationship is one of the goals of the present

paper

Knowledge bases for semantic guery optimization. A major issue

in semantic query optimization has been the reduction of the search

space for applicable integrity constraints and efficiency-enhancing

query transformations [King 1981; Du 19831. It is our perception

that the type of integrity constraints existing in the system has a

substantial influence on how this reduction can best be achieved.

In particular, there may be a discrepancy between the scope of

typical integrity constraints in a relational database system and in

AI-based knowledge representation (e.g., a semantic net or a set of

Prolog view definitions), With few exceptions (e.g., [~iug 1980 1) ,
database theory has concentrated on those types of general laws that

are applicable to all elements of one relation (e.g., domain or

functional dependencies), or to a combination of relations (e .g. ,
inclusion dependencies), It is therefore (relatively) easy to

recognize the applicability of an integrity constraint to a particular

query, and to develop powerful -- sometimes provably optimal --
inference mechanisms. The task may be further simplified by the fact

that the same laws are also used in the database design process to

structure the database.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 7

In c o n t r a s t , published work i n semantic query opt imizat ion has

focused on more s p e c i f i c cons t ra in t s t h a t capture chunks o f knowledge

about smaller sets of da ta ; simple examples o f such c o n s t r a i n t s

include: "only tankers have more than 400,000 tdwn [King 19871 o r

" a s s i s t a n t professors do not have tenureff. Here, it is no t s u f f i c i e n t

t o look a t a r e l a t i o n name i n the c o n s t r a i n t d e f i n i t i o n , s i n c e the

a p p l i c a b i l i t y of a cons t ra in t t o a c e r t a i n t u p l e depends on membership

i n a - subre la t ion . Moreover, the number of c o n s t r a i n t s is p o t e n t i a l l y

very l a r g e and tends t o be a funct ion of t h e number of t u p l e s

(database s i z e) r a t h e r than of the number o f a t t r i b u t e s (schema s i z e) .

F ina l ly , i t is of ten not c l e a r whether, how, and t o what degree the

add i t ion of an i n t e g r i t y cons t ra in t w i l l improve the e f f i c i e n c y o f

query evaluat ion: the r e s u l t i n g query may conta in fewer o r more terms

than the old one. A r t i f i c i a l In te l l igence- type h e u r i s t i c s and

i n f o r m t i o n about the database state a t query execution time are

f requent ly required f o r making these decis ions .

Ultimately, the f e a s i b l e ex ten t o f semantic query opt imizat ion

depends on two fac to r s : (a) what types of i n t e g r i t y c o n s t r a i n t s are

enforced by the DBMS? and (b) what amount of search f o r opt imizat ion

s t r a t e g i e s is j u s t i f i e d by t h e expected savings i n query execution

time? For an ex te rna l semantic query opt imizer , the heavy r e l i a n c e on

database theory and general ly app l i cab le laws has the advantage t h a t

t h e number of i n t e g r i t y cons t ra in t d e f i n i t i o n s (t o be kept c o n s i s t e n t

between the optimizer and the DBMS) is r e l a t i v e l y small and t h a t

l i t t l e knowledge is required about the c u r r e n t database state; t h e

latter type of knowledge is assumed t o be handled by t h e DBMS query

optimizer (t h i s d is t inguishes t h i s approach from Warren's El9811 who

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 8

duplicates DBMS functions in his optimizer). Additionally, although

there is a trend towards more sophisticated integrity assertions

[Blaustein 19801, most current database systems do not go beyond

relatively simple concepts, such as bounds for numerical attribute

values, key or at most general functional dependencies, and certain

types of inclusion dependencies, e.g. , unary ones [Cosmadakis and

Kanellakis 1984 1 or referential constraints [Jarke et al. 1984 1.

As demonstrated in the sequel, these constraints can be employed

quite efficiently in integrated query simplification algorithms that

rely heavily on partial results provided by database theory. Such an

algorithm has been implemented in DEC20-Prolog. Runtimes for a set of

74 test queries with four to six tuple variables and 5 to 20 join and

restrictive terms were in the range between .5 and 1.2 seconds,

including the times for translating from the Prolog form to the

internal representation used by the optimizer, and from the optimized

internal form to the DBMS query language, The usage of additional

'expert rules', obtained by observing systems behavior and intended to

cut off less promising searches, even at the expense of guaranteed

optimality, further reduces these times and, in particular, their

growth rate with respect to the size of queries and the number of

integrity constraints.

The semantic query simplifier consists of two translation

mechanisms, a knowledge base, and the simplifier inference engine

working on it, using a 'blackboard' [Erman and Lesser 19751 for

intermediate results accessed and altered by multiple, largely

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 9

independent algori thms (Figure 1) . Thus, mul t ip le ' exper t s ' can be

c rea ted f o r d i f f e r e n t kinds of i n t e g r i t y cons t ra in t s .

input query language (e,g. , Prolog)
I
I METAEVALUATE
i$.

dbca l l language
I
1 GENERATE TABLEAU
alr

-
i n t e r n a l graph representa t ion <------------------

on 'blackboard' SIMPLIFY
I
I NLTRANSLATE +

DBMS query language (e.g., SQL)

> knowledge
base

Figure 1: St ruc tu re of t h e External Semantic Query S i m p l i f i e r

The knowledge - base is s p e c i f i c t o a p a r t i c u l a r database; it

conta ins a schema d e f i n i t i o n and p red ica tes desc r ib ing the i n t e g r i t y

cons t ra in t s . The current system w i l l u t i l i z e [I] key dependencies

(one per r e l a t i o n) , general funct ional dependencies (s tandardized so

t h a t they have only one a t t r i b u t e on the right-hand s i d e) , value

bounds f o r numerical a t t r i b u t e s , and r e f e r e n t i a l i n t e g r i t y

cons t ra in t s , i .e. , inc lus ion dependencies, i n which the s u p e r s e t s i d e

must be a key and i n which each a t t r i b u t e appears i n a t most one

r e f e r e n t i a l cons t ra in t on t h e subset s i d e [~ a r k e e t a l , 19841.

Referent ia l c o n s t r a i n t s were se lec ted s i n c e they are c e n t r a l t o the

r e l a t i o n a l da ta model, y e t have e a s i e r in fe rence a lgor i thms than

general inclusion dependencies. Key dependencies have been

implemented separa te ly from o the r func t iona l dependencies f o r t h r e e

111 Additional c o n s t r a i n t s can be spec i f i ed but w i l l be ignored by the
s impl i f i e r , s ince -- i n t h i s r e spec t -- Prolog is pure ly d e c l a r a t i v e .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 10

reasons. First, many systems support keys but much less handle

general functional dependencies, Thus, being able to state key

dependencies directly may be convenient for a user. Second, in

tableau optimization, equal keys mean that two complete rows become

equal and one of them can be removed, leading to the removal of one

join operation in query evaluation. Finally, the use of key

dependencies speeds up the simplification algorithm in comparison to

the usual representation in which a functional dependency would have

to be defined for each non-key attribute.

In summary, the knowledge base would be roughly appropriate for a

database in Fagin's [I9811 domain/key normal form, except that we

allow the use of general functional dependencies. Figure 2 contains

the Prolog description of the knowledge base for a two-relation

database describing employees and their departments. There is a value

bound on the salary attribute of the employee relation; note that the

bounds could be defined either by the domain type, or they could

represent the actual maximum and minimum value for the current

database state if those are maintained [Blaustein 19801. The two

referential integrity constraints say that employees work only in

departments that exist, and that managers are employees.

schema(emp1oyee , [eno , ename , salary, dno 1) .
keydep (employee, [en0 1) .
funcdep(employee, [ename 1 , [eno 1) .
valuebound(employee, salary, 1000, 9000).

schema(depar tment , [dno , dname , mgr 1) .
keydep(department , [dno 1) .
f uncdep(depar tment , [mgr 1 , [dno 1) .
refint(employee, [dno], department, [dnol).
refint(department, [mgr], employee, reno]).

Figure 2: Example of a knowledge base for the simplifier

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 11

The two translation mechanisms make the core simplifier more or less

independent of its input (from the user) and output (to the DBMS)

query languages. There are currently experimental interfaces for

Prolog input [Vassiliou et al. 19841, and for relational algebra and

SQL output. The simplifier itself expects its input in a tableau-like

subset of Prolog [Jarke et al. 79841. Essentially, each query is a

list of "dbcall" predicates corresponding to the rows of a tableau:

or to the inequality comparisons:

dbcall(Operator, Left - operand, Right - operand)

where the operator may be one of: equal, notequal, lessequal,

greaterequal, less, greater, and the operands are either domain

variables appearing as tableau entries or constants. The simplifier

does a limited amount of input checking by comparing the form of the

input to the schema information, and constant values to the value

bounds stored in the knowledge base, Domain variables are expected to

be indicated syntactically by beginning with '*t - " (for target

variables) or with '@v - @' (for nondistinguished variables).

Figure 3 presents an example input query. If Prolog is used as

the user query language, such queries are derived by processing

deduction rules (view definitions) defined by Horn clauses [Vassiliou

et al. 1984; Jarke et al. 19841. For instance, the query in Figure 3

could have been derived from a view definition and Prolog query as

given in Figure 4.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 12

[dbcall(employee , [v Eno 1, t-X , v-Sall , v-D 1 1,
dbcall(department, rv D, v Fct2, v MI),
dbcall (employee, [v-MY smiley, v-Sl3, v Dno3 1) ,
dbcall(employee, [v-Eno, t X, v-S, v-~noT),
dbcall(greaterequa1, v S, TOOO),
dbcall (lessequal, v sax1 , v-Sal3),
dbcall (lessequal, vISal3, 4000) 1

Figure 1: An example dbcall query

/* example view definitions in Prolog: it is known that no manager
makes more than 4000, but nobody makes more than his manager */

works - directly for(X, Y) :-
employeeT~no 1 , X , Sal 1 , D) ,
department(D, Fct2, M),
employee(M, Y, Sa13, Dno3),
Sall =< Sa13,
Sa13 =< 4000.

/* Prolog query: who works directly for smiley and makes at least 4000? */

:- works - directly - for (X, smiley) , employee(Eno, X, S, Dno) , S >= 4000.

Figure 4: Original Prolog query from which Figure 3 is generated
by METAEVALUATE mechanism

The principle of the inference engine has been described in

[Jarke et al. 19841 :

1. For each tableau variable that has a value bound constraint,

add two inequalities to the query.

2, Set the Boolean variables REPEAT and FIRSTTIME to true.

3 . Apply an inequality simplification algorithm; if a

contradiction is detected, stop with an empty query result;

if variables have to be renamed due to newly detected

equality conditions or if FIRSTTIME, set REPEAT to true and

FIRSTTIME to false, else set REPEAT to false.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 13

4. If REPEAT then do the following: apply a functional

dependency chase algorithm with deletion of duplicate rows;

if a contradiction is detected, stop with an empty query

result; if variables have been renamed return to 3.

5. Remove tableau rows that serve no other purpose than

establishing the existence of certain tuples in a relation

which can already be inferred from referential integrity

constraints.

A shortcoming of this procedure is the complete separation of

processing inequalities and functional dependencies which leads to

substantial superfluous work. In the subsequent section, a new

algorithm is described that integrates these two steps and results in

less overall complexity (and real time savings, as shown by the

comparison of the two implementations). In this method, a blackboard

is used for managing predicates that are inserted for temporary,

shared use by both subalgorithms and erased later, The overall

algorithm always starts and ends with an 'clean' blackboard,

4.0 A GRAPH-BASED ALGORITHM AND ITS IMPLEMENTATION IN PROLOG

4.1 Two Graph Representations

The query simplifier uses two interacting graph representations:

a query graph for representing a query containing inequalities, and an

FDfKD graph for representing the application of functional and key

dependencies. The former ex tends ideas by [Rosenkrantz and Hunt 19801

whereas the latter is based on concepts introduced in [Downey et

al. 19801 who also proposed a fast congruence closure algorithm for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 14

determining the lossless join property of a tableau, a variation of

which is used as part of the algorithm presented here. Both graphs

share a common set of nodes but differ in edge semantics.

var-1 <= const

var-1 < const

var-1 > eonst

cons t
var-1 --------- > O(integer1

cons t - 1
var-1 > O(integer)

-const
var-1 <--------- Ofinteger)

-cons t - 1
var-1 <--------- Ofinteger)

Figure 5: Construction of query graph from inequalities
[Rosenkran tz and Hunt 1 980 1

The query graph is a labelled directed graph. The node set

conkins all entries appearing in the tableau (i.e., the dbeall

predicates that reference relations), plus a node O(d) for each

ordered domain d 121. Ares represent inequality conditions. There

are two types: those representing lessequal conditions, and those

representing notequal conditions. Equality terms are handled by

renaming; the remaining three operators are converted to lessequal

arcs, as indicated in Figure 5 .

m r r e n t implementation allows only integer as this domain,
Moreover, DEC20-Prolog allows only integers up to about +/- 131,000.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 15

In Prolog, tableau element nodes a r e represented as 4-ary

p red ica tes a s s e r t e d i n the blackboard:

i n - tableau(Tab1eat.t-entry, Level, Tableau-row-no, A t t r i b u t e - name).

The latter two parameters cha rac te r i ze the pos i t ion o f a tableau e n t r y

i n t h e input query. The Level parameter provides information when the

e n t r y was crea ted with r e spec t t o the s i m p l i f i c a t i o n process ; i t is

necessary because t h e app l i ca t ion of e i t h e r o f t h e two a lgor i thms

working on the blackboard can change tableau e n t r i e s . Edges a r e

represented by 5-ary predica tes :

i n e q u a l i t y (I d e n t i f i e r , Operator, L e f t - node, Right - node, Length) ,

where the I d e n t i f i e r is used f o r f a s t r e t r i e v a l on the blackboard

(e ,g , , f o r e rasure o r change of operand names) and Length is

determined as indicated i n Figure 5.

In the F D l K D graph, a bundle of d i rec ted edges connects each node

whose a t t r i b u t e name appears on t h e right-hand s i d e of a func t iona l o r

key dependency i n the knowledge base, t o a l l t h e nodes corresponding

t o the left-hand s i d e of t h a t dependency. An example o f a combined

query and FD/KD graph is given i n Figure 6 f o r t h e example i n Figure

3. The FD/KD edges are not s t o r e d e x p l i c i t l y bu t der ived when needed,

u t i l i z i n g Prolog's e f f i c i e n t p a t t e r n matching c a p a b i l i t i e s .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 16

inequality edges

------------------ 0 (integer)
1 4-

v En01 v M v En0 t X smiley v S v Sall ---> v-Sal3 v D v Dno3 v Dno - 4 -+ TbcI 4\ - - - - -
I I I 1 \ I
I I I i \ I
I I I I I
I f 1 KD I I\ FD
I I ledges I I \ edges
I I I I I \
I I I 1 I \

Row1 Row3 Row4 v - En01 v - M v - Eno Right-hand sides of FDs/ KDs

Figure 5: A functional and key dependency graph overlayed
with the inequality graph for the query example

4.2 Two Graph Algorithms And Their Integration

The two representations could now be used as in section 3 to

simply implement a repeated execution of two separate algorithms until

nothing changes any more. Instead, we shall first describe each of

the algorithms and then present a better integration. The two

algorithms below are extensions and adaptations of work by

[Rosenkrantz and Hunt 19801 for the query graph, and by [Downey et

al. 19801 for the FDlKD graph. They can be summarized as follows:

1. Inequality optimization: The algorithm can be summarized by the

following Prolog rule:

process inequalities :-
remove mult iedges ,
compute shortest paths,
pos tprocess - graph(0) .

Remove - multiedges succeeds after removing multiple redundant

comparisons between any pair of nodes. A (deliberately extreme)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 17

example is given in Figure 7. Note, that the first inequality

(greater, v-S, 200) is removed since it is implied by the

valuebound on the salary attribute. (The output of the simplifier

does not really have the same format as its input; the example

has been translated back to the dbcall language for readability,)

/* a query with redundant inequality comparisons */
[dbcall(employee, [v Enol, t X, v-Sall, v - Dl),
dbcall(department, rv D, v Fct2, v MI),
dbcall (employee, [v-M, v M%I , v~al3, v Dn03 1) ,
dbcall(employee, [v-Eno ,-t-~, v-S, v-~no]) ,
dbcall(greater, v S, 200),
dbcall (equal, v an, smiley) ,
dbcall (lessequai, v S , 4000) ,
dbcall (no tequal , v 5 , 6000 ,
dbcall(no tequal , V ~ S , 6000) ,
dbcall (lessequal, v S , 6000) ,
dbcall(no tequal , v - 3, 4000) 1

/* an equivalent query after removal of redundant inequalities */
[dbcall(employee, [v Enol, t X, v Sall, v - Dl),
dbcall(department , rv D, v Fct2 ,-v M] 1 ,
dbcall (employee, [v-MY smiley, v g 1 3 v Dno3 3) ,
dbcall(employee, Cv Eno, t X, v - 5 , v - ~noJ),
dbcall(lessequal, V ~ S , 39@) 1

Figure 7: Example for removal of multi-edges

Compute - shortest-paths creates, on the blackboard, a Prolog

representation of the shortest paths between all pairs of nodes,

using a simple algorithm of cubic (in the number of nodes)

complexity , as described , e. g. , in [Reingold et al. 1977 1 . The
algorithm has been enhanced in the sense that it stops with an

error message and an empty query result as soon as a negative

length cycle (meaning ' A < A t for any node A on the cycle -- see

the example in Figure 8) is detected, and that it considers only

nodes that actually appear in inequalities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 18

I ?- query8(Q), generate tableau(0 ,Q) , Process inequalities* - -

warning: contradiction among inequalities

Q = [dbcall(employee,[v Eno1,t X,v Sal1,v - Dl),
dbcall(department ,rv D, v Pct2Sv MI) ,
dbcall (employee, [v - M ~ v - M ~ ~ , v-Sai3, v-Dno3 1) ,
dbcall (employee, [v-Eno , t-X , v-S , v-Dno 1) ,
dbcall(lessequal,v S,4000),
db~all(~reatere~uaZ, v Sa13,5000),
dbcall(greater , v-S, v - %13) 1

Figure - 8: Prolog log and query graph showing a contradiction
between inequalities by a negative length cycle.

Postprocess-graph (the parameter corresponds to the

previously mentioned Level parameter in the in - tableau predicates)
follows the cycles with a total length of 0 and renames all

variables appearing on such cycles, either to a single variable

name or -- if any node O(d) is on the cycle -- to a constant

corresponding to the total length of the path from each node on

the cycle to node O(d). In the query graph, renaming leads to the

removal of nodes and all their related arcs and shortest paths,

FD/KD optimization: A fast chase algorithm computes the 2. -
congruence closure of the FD/KD graph in a breadth-first fashion,

using the Level parameter to prescreen the tableau entries to

which an FD or KD might be applicable at a given point in time,

The algorithm terminates when, at a given level, there are no

further in - tableau predicates with that level. In other words,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 19

the algorithm tries first to apply all directly applicable

FDs/KDs; afterwards, only such FDs/KDs can be applicable that

have as their left-hand side tableau elements changed in the

previous step, KDs are tried before FDs since their application

leads to the deletion of a row and therefore renders the

application of further FDs superfluous. As an example, consider

the preprocessed query in Figure 7. At level 0, only one

functional dependency is applicable, leading to the new query:

Edbcall(employee, [v Enol, t X, v Sall, v-Dl),
dbcall(department, rv D, v Fctz,-v MI),
dbcall(employee, [v-M, smirey, v-gl3, v Dno31) ,
dbcall(emp1oyee , [v-Eno 1 , t X , v - S, v - ~ n o j) ,
dbcall(lessequal, v-S , 39997 3

At level 1, the key dependency for the employee relation becomes

applicable, leading to the deletion of the fourth row and to

renaning of v - Sall to v - S in the first row, Another example is

given in Figure 9; here, the notequal predicate prevents

successful application of the key dependency and the query result

will be empty.

I ?- query lO(Q), generate tableau(0,~), simplify. -
warning: contradiction by \= condition:
v Dno cannot be equal to v D
as required by a functionay or key dependency

Q = [dbcall(employee,[v Eno1,t X,v Sal1,v-Dl),
dbcall (depar tmen t , rv-D , v-Fc ~ ~ T v - M 1 1 ,
dbcall(employee, [v M, smiley , v Sal3, v ~ n o 3 1) ,
dbcall (employee, [v- no , t X ,4080, v no 1) , -
dbcall (no tequal , v 5 , v no) 1 - -

Figure 9: Example of a contradiction detected by application
of functional and key dependencies

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 20

A closer look at the interplay of these two algorithms shows that

the results of each algorithm can be expressed in the notion of the

other by integrating the two graph representations as shown in Figure

6; this in turn leads to a better integration that avoids full

repetition of both algorithms at each stage of the algorithm given in

section 3.

The most important observation concerns the application of a

functional dependency by the second algorithm, Its result is that two

tableau entries are made equal. If both entries, say X and Y, are

variables, this corresponds to introducing zero-length edges from X to

Y and from Y to X [31. If previously there was a negative-length

shortest path in either direction, this leads immediately to a

negative length cycle and thus to a contradiction in the query,

Otherwise, all of the shortest paths must be recomputed to look for

new zero length cycles which could lead to variable renaming, using

the postprocess-graph predicate at the current Level. However, the

complexity of this recomputation is at most quadratic (rather than

cubic as originally), since only each of the previous shortest paths

has to be compared with a path through the new edges between X and Y.

For an example for the integrated procedure, consider again

Figures 3 and 6. Adding zero length edges between v - S and v - Sall in

Figure 6 through the application of a functional (level 0) and a key

(level 1) dependency simplifies the query of Figure 3 to:

131 If one entry (say Y) is a constant of domain d, the same procedure
will follow but the edges to be added to the graph will be one from
node X to node O(d) with length Y, and one from O(d) to X with length
-Y. When X and Y are (different) constants, there is again a
contradiction leading to a message and an empty query result,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 21

[dbcall(employee, [v Enol, t X, 4000, v Dl),
dbcall(department, rv D, v ht2, v MI);
dbcall (employee, [v-MY .$mirey , 4008, v-Dno3 I) 1) .

Vice versa, changes in the tableau caused by the inequality

algorithm will be indicated by the Level parameter of the in-tableau

predicates on the blackboard, such that they can be exploited by the

FD/KD algorithm in the same way as changes caused by previous FDlKD

applications, The implementation of this interplay makes use of the

recursion features of Prolog. A sketch of some of the high-level

predicates follows (the system currently has about 200 clauses):

simplify :-
process-inequalities,
one relation simplify(O),
remove - dele t a b l e - danglers,

one - relation-simplify(Levef) :-
rowrel(Row1, Rel9, rowrel(Row2, Rel), Row2 > Rowl,
prescreen-and-simpliEy(Level, Row!, Row2, Rel),
fail.

one - relation-simplify(Levef) :-
Level1 is Level + 1, in - tableau(-, Levell, -, -) 9

! ,
one relation-simplify(Leve1l).

one - relatron - simplify(-),
prescreenand-simplify(0, Rowl, Row2, Ref) :-

one level simplify(0, Rowl, ROW~, Rel), !.
prescreenand-sTmplify (level, Row 1 , Row2, Rel) : -

(in - tableau(-, Level, Row1 , -); in - tableau(-, Level, Row2, -)) ,
! ,
one - level-simplify(Leve1, Rowl, Row2, Rel),

one - level-simplify(Leve1, Rowl, Row2, Rel) :-
equal-key(Leve1, Rowl, Row2, Rel), schema(Re1, Schema),
!,
coerce(Leve1, Schema, Rowl, Row2),
delete row(Schema, Row2).

one~level~si~plify(~evel, Row 1 , Row2, Rel) : -
equal LHS(Leve1, Rowl , Row2, Rel, RHS) ,
coerce(~eve1, RHS, Row 1, Row2),
fail.

one - level-simplify(-, -, -, -).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 22

The predicate, coerce, tries to make the values of the attributes in

the list RHS equal between rows Row1 and Row2, gives appropriate error

messages should this prove impossible due to contradictions, and

indirectly activates the recomputation of shortest paths.

5.0 CONCLUSIONS AND EXTENSIONS

The practical relevance of tableau-oriented simplification

techniques inspired by database theory has repeatedly been questioned

by practioners, as evidenced by the fact that they are hardly

implemented in any of the well-known relational systems, Our

preliminary experience with an actual integration of these concepts

into a working system seems to refute this negative opinion. On one

hand, the need for semantic simplification invariably arises when

higher-level interfaces such as natural language [Ott and Horlaender

19821 are to be implemented that rely heavily on view mechanisms,

An important if trivial observation in this context is that -- in
contrast to integrity checking in update operations -- the query
simplifier has complete freedom to use just as many constraints as

justified by the expected benefit. The modular implementation enabled

by logic programming in connection with the blackboard concept is

particularly flexible in allowing the easy addition of 'expert rules'

for which constraints to use in a given environment. For example, the

current implementation tries to avoid the exponential search incurred

by full handling of notequal conditions [Rosenkrantz and Hunt 19801 by

ignoring certain notequal-related simplification strategies,

Similarly, the initial shortest-path procedure currently appears to be

the major performance bottleneck. We are therefore experimenting with

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 23

'expert rulesf that reduce the number of inequalities based on

valuebound conditions, and thus the number of nodes in the algorithm

based on 'reasonable' -- but not failproof -- assumptions.

On the other hand, the implementation of the simplifier has

demonstrated another, quite surprising advantage (although it may seem

obvious in hindsight): the capability of the system to provide

meaningful warnings in cases where previous query evaluation

subsystems would just return an empty result. The need for such

enhanced feedback was especially felt during our earlier work on

empirically evaluating a natural language query system where users

were often helpless when the system returned an unexpectedly empty

result [~arke et al. 19851,

Apart from our work on an improved interface from Profog to the

simplifier (handling recursion and buffer management [Jarke e t

al. 1984]), two extensions to the simplifier itself seem particularly

promising. The first is the analysis and optimization of predicates

handling arbitrary functions over database data which should lead to

improved database interfaces to decision support systems, statistical

databases, recursive databases, etc.

Additionally, work is underway to extend the simplifier to the

multi-user case. This idea is presumed to have several advantages.

First, since all users would be read-only, the simplifier requires

only rudimentary concurrency control and can thus be a relatively

small and simple system. Second, since the simplifier is external, it

can interact with the DBMS as a single user, thus reducing DBMS

concurrency control problems. Third, as a consequence of the previous

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 24

two, the simplifier has full freedom to perform common subexpression

analysis to share query evaluation costs and to create common

temporary access paths [Jarke 19841. Finally, as a consequence of its

global architecture (section 3) , the simplifier can easily accept

multiple input languages, although, from the viewpoint of error

messages and efficient common access path analysis, a single input

language, e.g., Prolog, may be more desirable since it would allow the

addition of view definitions to the knowledge base.

In summary, it appears that narrowing the scope of semantic query

optimization to database theory-based simplification -- while keeping
the general idea in mind -- has some benefits of simplicity and

efficiency. This should by no means be constructed as a criticism of

general semantic query optimization, On the contrary, we see our

approach as a kernel around which more sophisticated knowledge bases

can be constructed, whose corresponding inference techniques work on

the same blackboard data structure, hopefully with little interference

with existing algorithms. Further classification of integrity

constraints may be desirable for such extensions; in particular,

those types of constraints should be investigated for which the range

of applicability is easily detectable and does not, in itself, require

answering a complex query.

Acknowledgments. The concept of the external semantic query
simplifier builds on earlier work with Juergen Koch and Joaehim
~chmidt on query transformation strategies in database programming
languages, and with Jim Clifford and Yannis Vassiliou on interfacing
Prolog with relational database systems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 25

References

Aho, A.V., Sagiv, Y., Ullman, J.D., "Equivalences among
relational expressionsw, SIAM Journal of - Computing 8, 2 (1979),
218-246.

Blaustein, B.T., "Enforcing database assertions: techniques and
applicationsM, Ph.D. thesis, Harvard 1981.

Cosmadakis, S.S., Kanellakis, P.C., "Functional and inclusion
dependencies: a graph-theoretic approachv, Proceedings ACM-PODS
Conference, Waterloo 1984, 29-37.

Downey, P.J., Sethi, R., Tarjan, R.E., "Variations on the common
subexpression problemu, Journal of the ACM 27,4 (1980), 758-771.

Du, G.D., "Search control in semantic query optimizationw, TR#
83-09, University of Massachusetts, Amherst 1983.

Erman, L.D., Lesser,V.R., ttA multi-level organization for problem
solving using many diverse, cooperating sources of knowledge",
Proceedings 4th IJCAI Conference, 1975, 483-490.

Fagin, R., "A normal form for relational databases that is based
on domains and keysv 9 - ACM Transactions - on Database Systems 6, 3
(1981), 387-415.

Harmmer, M., Zdonik, S.B., "Knowledge-based query processingf*,
Proceedings -- 6th VLDB Conference, Montreal 1980, 137- 147.

Jarke, M., "Common subexpression isolation in multiple query
optimization", in W.Kim, D.Reiner, D-Batory (eds.): Query
Processing - in Database Systems, Springer-Verlag, to appear 1984.

Jarke, M., Clifford, J., Vassiliou, Y,, itAn optimizing Prolog
front-end to a relational query systemw, Proceedings ACM-SIGMOD
Conference, Boston 1984, 296-306.

Jarke, M., Koch, J., "Range nesting: a fast method to evaluate
quantified queriesu, Proceedings ACM-SIGMOD Conference, San Jose
1983, 196-206.

Jarke, M., Siwasankaran, T., "Knowledge-based model management in
an actuarial consulting systemsw, Proceedings 6th European
Conference - on Artificial Intelligence, Pisa, ~e~tember7984.

Jarke, M., Turner, J.A., Stohr, E.A., Vassiliou, Y., White, N.,
Michielsen, K,, ''A field evaluation of natural language for data
retrievalff, IEEE Transactions - on Software Engineering, to appear
1985.

Jarke, M., Vassiliou, Y., "Coupling expert systems with database
management systems", in Reitman, W. (ed.), Artificial

Applications - for Business, Ablex, Norwood, NJ, 1984,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

Page 26

15. Kellogg, C,, "A practical amalgam of knowledge and data base
technology", Proceedings National Conference on Artificial
Intelligence, Pittsburgh 1982.

16. King, J. J. , "QUIST: A system for semantic query optimization in
relational data basesu, Proceedings -- 7th VLDB Conference, Cannes
1981, 510-517.

17, Klun, A., ffCalculatin~ constraints on relational expressionsw,
ACM-Transactions ata abase Systems 5, 3 (1980), 260-290. -

18. Nicolas, J.-M., Yazdanian, K,, IfAn outline of BDGEN: A deductive
DBMSw, in R.E.Mason (ed.) , Information Processing 112,
North-Holland 1983, 711-717.

19, Ott, N., Horlaender, K., ffRemoving redundant join operations in
queries involving viewsu, IBM Scientific Center Heidelberg
Technical Report TR-82,02.003 (1982).

20. Reingold, E.M., Nievergelt, J., Deo, N,, Combinatorial
Algorithms. Theory and - Praxis, Prentice Hall 1977.

21, Rosenkrantz, D-J., Hunt, M.B. ifProcessing conjunctive predicates
and queriesn, Proceedings - - 5th VLDB Conference, Montreal 1980,
64-74.

22. Vassiliou, Y., Jarke, M., Clifford, J., "Expert systems for
business applications: a research project at New York
University'" , Database 6 , 4 (19831, 50-55.

23. Vassiliou, Y., Clifford, J. , Jarke, M., "Access to specific
declarative knowledge by expert systems: the impact of logic
programmingv, Decision Support Systems 1, 1 (1984).

24. Warren, D.H.D., "Efficient processing of interactive relational
data base queries expressed in iogici?, Proceedings -- 7th VLDB
Conference, Cannes 1981, 272-282.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-5 1

