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ABSTRACT 

The formulation of complex planning models, such as linear 

programming (LP) systems, is a difficult task that enjqs little support 

by current decision support systems tools. It is aypothesized that 

current artificial intelligence technology is insufficient to build 

generalized formulation tools that would be usable by OR-naive end 

users. As an alternative, this paper presents a domain-specific 

approach to knowledge-based model formulation which combines the use of 

"syntactic" knowledge about linear programming with ltsemantic*t guidance 

by knowledge specific to some application domain. As a prototype of this 

approach, a model formulation tool for LP-based production management is 

under development at New York University. 

1. INTRODUCTION 

A Decision Support System (DSS) is a computerized system which 

utilizes knowledge about a particular application area to help decision 

makers working in that area to solve ill-structured problems [~onczek, 

et al, 19841. DSS need a number of content abilities [Holsapple and 

Moskowitz, 19831 to support the three stages of the decision making 

process (intelligence, design, and choice) identified by [Simon, 19601. 

In this paper, we examine the content ability of model formulation 

required mostly in the process phase of design which involves the 

processes to: clarify and understand the problem; to invent, develop and 

analyze potential solutions to the problem; and to test the solutions 

for feasibility. In particular, we are interested in the question how 

general (i.e., application-independent) a DSS tool for model formulation 

can and should be made. 

DSS generators attempt to offer generalized modelling tools that 

help managers formulate and solve decision problems. However, the kinds 

of models offered by such systems tend to be quite simple, involving, 

e-g., spreadsheet systems but no automatic solution-seeking. As shown in 

[Dhar, 19841, however, even the formulation and maintenance of large 
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spreadsheet models may require substantial use of complex Artificial 

Intelligence (AI) tools. 

The difficulties increase if the problem at hand requires ;he use 

of asore sophisticated goal-seeking models, such as linear Fogramming 

(LP). Managers typically use an intermediary to get such models built. 

With this approach, the process of formulating and executing a decision 

model tends to get quite lengthy and indirect, and the risk of 

misunderstandings increases. Therefore, it seems desirable to provide 

the manager with automatic model building tools usable by him directly, 

rather than through an intermediary. 

The approach to model formulation we present in this paper combines 

structural knowledge about management science models, with application- 

specific knowledge about a particular domain of interest. The general 

case for this approach is made in section 2. Section 3 describes a 
knowledge base structure for the example model formulation tool we have 

chosen for this research: linear programming models for production 

management. The capabilities of such a combined knowledge representation 

technique are illustrated by a detailed example in section 4. Section 5 

summarizes the discussion and points out future research directions. 

2. MODEL FORMULATION TOOLS IN MODEL MANAGEMENT 

As pointed out in [Bonczek, et al. , 1984 I ,  as well as in a recent 
survey by Hwang C 1985 I, research in automatic or computer-aided model 
building is still in its early stages. Research in this area is 

typically described in the broader context of model management [Elam et 

al., 19811. 

Three levels of model management capability can be distinguished 

[Bonzcek, et al, 19823. With the first modelling level, a user 

procedurally specifies the model's algorithm, As pointed out earlier, 

this option requires an intermediary if models become complex. 
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Under the second alternative, a user is familiar with a colle~tion 
' .  

of pre-specified models available to the DSS and selects one of these 

for execution- User-friendly model manipulation languages can support 

this task. For example, Blanning [I9821 presents a theory of model 

management where the user views a model as a virtual relation 

representing a mapping from input attributes to output attributes. Using 

relational operations, the user can then synthesize more complex models 

out of existing ones. 

Under the third alternative, a user does not directly formulate or 

select a model; he or she may even be unaware that the DSS uses models 

in generating responses. Upon receipt of the user's problem description, 

an appropriate model is selected or composed by the DSS itself. For 

example, Sivasankaran and Jarke [I9851 describe a system called the 

Actuarial Consulting System (ACS) that composes models in actuarial 

science (life insurance mathematics) from a library of stored elementary 

formulas using A1 techniques to search through a relational structure 

similar to Blanningfs. Another system -- outside the DSS area -- based 
on this design principle of "formulation by configurationw is the well- 

known expert system R1 [McDermott , 19841 which configures VAX computers. 
If the set of problems under consideration is too broad or unstructured 

to permit the definition of such a library, models must be formulated 

from scratch. 

Model formulation from scratch consists of two steps: (a) 

identifying the appropriate modelling technique (e.g., LP, dynamic 

programming, etc.) and application domain boundaries, and (b) 

formulating the model within the chosen modellingfdomain combination. 

This paper is concerned with model formulation, i.e,, task (b) , for LP 
models; automatic model selection has also been studied recently (see 

E~oik and Konsynski , 1984; Goul et a1 . , 1984; Hwang , 1985; Sivasankaran 
and Jarke , 1985 1, among others ) 
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There are at least two approaches to building model formulation 

tools. The first approach relies on structural knowledge about a 

particular modelling tool. For example, Murphy and Stohr [ 1985 I propose 
a LP model formulation tool based on a decomposition approach, relying 

on the inherent network structure of major portions in almost every 

large linear program. This tool is chiefly intended to support an 

operations research specialist in building very large LP models. For a 

managerial end user, such a system has the drawback that it does not 

remind the user of application domain-specific knowledge he may have to 

employ. In other words, the "structural knowledgew approach supports you 

in formulating a constraint but it does not tell you which constraint to 

formula te . 

Experience with knowledge-based systems ( Ifexper t systemsw) in A 1  , 
the rapid growth of the market in tailored domain-specific software 

packages (i.e., databases for real-estate rather than generic DBMS), and 

recent work on the definition of Knowledge Base Management Systems 

[Mylopoulos and Brodie , 1985 1 all suggest that more model formulation 
support can be provided if the structural knowledge base component is 

augmented by an application knowledge base that guides the user not only 

in the syntactic but also in the semantic aspects of model formulation. 

In the remainder of this paper, we describe a formulation tool that 

combines structural LP knowledge with application knowledge about 

production management. A PROLOG implementation of such a system is being 

developed at NYU within the context of a long-range research effort that 

studies the role of artificial intelligence in management information 

systems and decision support systems [Jarke and Vassiliou, 19843. 

3. LP MODELS IN PRODUCTION MANAGENENT: KNOWLEDGE REPRESENTATION 
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3.1. Knowledge Base Structure and Systems Architecture 

Linear programming is one of the most successful operations 

research aethods for solving very large optimization problems. Figure 1 

illustraks the typical life cycle of linear program development and 

usage. In this paper, we are concerned with the first step of this life 

cycle, the conceptual development and symbolic (as contrasted to 

numeric) formulation of the model. The result of this model formulation 

step can then be turned over to any of a number of commercially 

available matrix generators, e.g., LINDO or OMNI. Computerized tools are 

available for the checking and sensitivity analysis of existing models 

[Greenberg, 19831. In contrast, the model formulation step has 

frequently been considered too fuzzy to be computerized effectively. 

This is m e  of the reasons why we propose the combined use of 

methodological and application knowledge to support this process. 

The system architecture is summarized in Figure 2, Tt divides the 

model formulation problem into three steps or levels, using different 

kinds of knowledge bases. 

The context identification step accepts the input problem 

description, and identifies the problem area within a knowledge base for 

the business application (here: production management). It then refines 

-- interactively if necessary -- the problem description by identifying 
all the relevant business objects and the relationships among them. 

The problem formulation ss&ig instantiates the context identified in 

the previous stage, determines the decision variables using an 

additional knowledge base of structural knowledge, assigns indices to 

the variables, and constructs the format of the constraints and the 

objective function, using dummy parameter values. 

Finally, the model building step selects and accesses (or computes) 

the parameters that go with the constraints and objective function. 
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First, each parameter is semantically identified by analyzing the left-" 

hand side and right-hand side components of the constraint. Then, its 

unit of measure is determined syntactically based on the units of the 

components, This uses a third knowledge base for the transformation of 

units of measure and similar relationships, 

The idea behind this hierarchical design of the problem solving 

steps is to approach the problem with a wholistic view [Stefik, 19801, 

This will help formulating the problem without optimizing any subpart of 

it at the expense of the whole. The information at any level determines 

and coordinates the activities in the next level without preventing 

return to the upper levels if previous decisions turn out to be wrong. 

A blackboard is used to store intermediate results, and access to a 

matrix generator will be provided in case the user wants to see the 

solution to a partially formulated problem. 

In the following subsections, a brief overview of the two knowledge 

sources of the system will be given. Then, a knowledge representation 

scheme tailored to the integration of these knowledge sources will be 

described. 

3.2. LP Knowledge Bases 

Mathematical models are symbolic representations which incorporate 

the essential features of actual problems. In particular, a linear 

programming (LP) problem is a problem of minimizing or maximizing a 

linear function in the presence of linear constraints. It can be 

represented mathematically [ Bazaraa and Jarvis , 1977 ; Charnes and 

Cooper, 19671 as: 

'3 'jxj 

Subject to: 

bi for each i 
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Xj >= 0 for each j 

where: j = 1, ..., n 
i = 1, ..., m 

The decision variables, or activity levels, to be determined are 

represented by XI, X2, . . . , Xn. c1, c2, . . . , en represent the cost or 
return coefficients that these variables take. The coefficients ai,j are 

called the technological coefficients. 

Mathematically speaking, the problem of model formulation is the 

problem of determining the index sets i and j, the decision variables, 

and the coefficie~t values. There are many ways to formulate such 

models. As Charnes and Cooper [ 19671 point out it is possible for models 

to be inadequate, to overlook essentials, or to incorporate extraneous 

features and thereby misrepresent the situation. 

In a model, each variable offers a range of possibilities so that 

the omission of a variable generally eliminates the corresponding 

opportunities from explicit consideration. The reverse mistake can also 

be made. Certain conditions may be omitted despite their critical 

importance. Each additional condition, in general, restricts the range 

of opportunities. Thus the omission of any constraining condition may 

allow opportunities to appear which are not relevant to the actual 

situation. 

There are two knowledge bases associated with LP knowledge. The 

first one will contain knowledge about defining index sets, naming and 

selecting variables, etc. The second one will be more concerned with the 

actual procurement and correct interpretation of parameter values. 
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3.3. Application Knowledge Base 
The system's domain is resource allocation and production planning. 

This covers a broad range of problems, such as the selection and 

allocation of resources, t h ~  relative composition and distribution of 

marketable products, the allcation of resources to products, or any 

combination of them. If we want a D S S  tool to understand business at 

the level that it can formulate management science models we have to 

equip it with real-life knowledge about business. 

The system has to know the types of resources, their properties, 

the type of actions that operate on these resources, and all the 

possible relationships among these components, Some of these 

relationships may take the f3rm of equations. Therefore, the general 

pattern of object properties, and of relations among the objects should 

be identified and represented. 

Managerial decisions are based on careful use of resources while 

achieving the firm's objectives. On a very high level of abstraction, 

these resources are employees, space, machines, money, and material. The 

firm plans the allocation of these resources to various activities, 

Basically, resources have a 'statet and there are some 'actions' which 

change the states of these resources. For instance, 'hire' and 'fire1 

are actions which both operate on resource temployeesf, where the former 

increases, the latter decreases the level of employees. 

Actions such as procurement of materials or hiring/firing 

employees, production of products, etc. are governed by the firm's 

policies. Some possible policies are: limiting overtime to a certain 

proportion of regular production hours, maintaining a smooth production 

by not allowing the fluctuations between the periods to be more than a 

certain percentage, allowing backorders, maintaining a service level of 

at least a certain proportion of demand, maintaining only a certain 

fraction of estimated sales for inventories for some tine periods, etc. 
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Actions and changes of the state of the resources should not violate the 

firm's policies. 

Figure 3 summarizes the conceptual relationships xtween the object 
types mentioned in this subsection. In the se-1, a knowledge 

representation scheme tailored to this kind of knowledge will be 

presented. 

3.4. Knowledge Representation Scheme 

Knowledge representation can be viewed at twc levels [Newell, 

19811. The "Symbol Levelw involves looking at knowledge in terms of how 

it is held, for instance, collection of nodes, or routines for indexing 

and inheritance. The "K?owledge Levelqt does not distfnguish among the 

different ways of capturing the same information or even between 

explicit and implicit information storage. It only considers what the 

entire body of information says about the world, that is, how well the 

knowledge base provides a clear picture of the world that it represents 

[~rachman and Levesque, 19841. In this paper we will briefly review the 

representation at the knowledge and symbol levels. Details of the 

representation and its implementation will be discussed in a forthcoming 

paper 

The scheme has to represent business knowledge about resources, 

possible actions on resources and policies that govern these, in the 

context of planning with LP. Concepts like MACHINE, EMPLOYEE, MONEY, 

WAREHOUSE, PRODUCTION, SALES, DEMAND, FLOW-EQUATION,... are represented 

with their possible attributes within the domain of production planning 

and resource allocation. In addition to the attributes, relationships to 

other objects will also be specified. These could be resources, actions, 

equations or relations on and among the resources. For example, MACHINE 

and PRODUCT have a relation of the form <Product-name, Machine-name, 

Machine capacity required to produce a unit of product>. We have to 

define this relation separately from MACHINE and PRODUCT, because it is 
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not an attribute unique to any of them. However, the relationship object 

should be pointed to by both parent objects. 

To be able to represent business knowledge, we need to have at 

least Zive different types of conceptual objects: resocrces, 

relatio~ships among the resources, actions, policies, and equations. We 

will represent them by using abstraction methods such as aggregation and 

generalization discussed in Smith and Smith [I9771 and Jarke [19821. 

In the domain of production management, the highest level af 

abstraction is BUSINESS, an aggregati~n of resources, relationships 

anong resources, actions, policies, and equations. The latter are the 

most generic object types in the businss knowledge base. Objects st 

any given level of abstraction are related to more generic ones through 

an IS-A hierarchy. For example, the instantiations of the concept 

*resourcesf, namely, EMPLOYEE, MONEY, MATERIALS,... are linked to 

RESOURCES via IS-A links. 

At the symbol level, a common use of this hierarchy is to minimize 

conceptual and storage redundancies by allowing properties associated 

with general object types to be inherited by more specialized ones, as 

well as providing the means for the overall organization and management 

of a large knowledge base [ M ~ ~ O ~ O U ~ O S  and Levesque, 19841. We view 

property inheritance as a default which the description of the 

specialized class can override. 

Objects will be represented as 'framest [Minsky, 19751 where all 

the facts about the given object are attached to slots provided by the 

frame structure. Some of these slots will be used to describe the 

properties unique to the given object, others will employ procedural 

attachments to use when some facts are not explicitly provided. The 

above-mentioned generalization hierarchy will be achieved by a slot 

called "is-a" which will store the name of the next generic object the 
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given object is related to. Depending on the characteristics of the 

object to be described, the number of slots and the values that are 

stored in them may vary. All the objects in Figure 3 will be defined 
using frame representations, except for the "relationships among 

resourcest1 which will be represented as tables. In addition to these 

explicit representations of relationships, rules of inference will be 

employed to derive implicit facts. 

Figure 4 illustrates the different knowledge representation 

techniques used at the symbol level. The knowledge representation scheme 

is being implemented in PROLOG with added object-oriented capabilities. 

4. LP MODELS FOR PRODUCTION MANAGEMENT: MODEL FORMULATION EXAMPLE 

In this section, the use of the combined structural and application 

knowledge base will be illustrated by means of a concrete model 

formulation example. The interaction syntax will loosely follow a 

PROLOG syntax. Figure 5 shows an extract of the knowledge base to be 

used in this example. 

4.1. Context Identification Step 

The interaction alternates between user-driven and system-driven 

dialog, depending on the level of initial knowledge the user can 

express. The function of the context identification step is to locate 

the relevant area of the knowledge base from which a more detailed 

analysis of the formulation problem at hand can be initiated. 

Consider the production process in a bakery shop. The baker 

initially has a vague idea that some planning is needed in the area of 

cookies production, and the purchasing of associated raw materials. 

Moreover, he suspects that there are constraints on sales, the minimum 

required service level, the availability of his mixer, and raw material 

budgets. The initial problem statement would look as follows: 

?- problem(production(cookies ) , purchase(raw - material ) ) , 
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constraints(mixer, sugar, service level(cookies), 
sales - limi ts(cookies)). 

The system tries to associate the fnformation given to it with 

certain nodes and arcs in the kncgledge base. For example, 

production(cookies) will be associated with the node wproduction". Since 

the system does not know the term "cookiesw, it has to disambiguate 

among the possible classes "final product" and "intermediate productw. 

This can be done quite easily since there is a constraint on sales for 

"cookiesH; therefore, cookies must be a fisal product, However, it might 

be one final product or a whole class of them (some of which may be 

stored in the knowledge base already). Thus, the system displays the set 

of known products and asks the user to ckeck those that belong to the 

class of cookies: 

:- WHICH OF FOLLOWING 
FINAL PRODUCTS 
ARE "COOKIES"? 
1 - ICE CREAM 
2 - PEANUT BUTTER-COOKIE 
3 - WHOLE- AT ROLL 
4 - DANISH-BUTTER-COOKIE 
5 - CHOCOLATE-CHIP-COOKIE 
... 
OTHERS (LIST) ? 

The user answers with 2, 4, and 5. Since there is more than one product 

in the group, the system infers that there is a product mix problem. The 

knowledge base is amended by the new class definition, as shown in 

Figure 6. 

The system knows that "sugar" is a kind of raw material (in the 

bakery) and infers that there is a constraint on sugar availability by 

looking at the node for "raw material1' and then further at the node 

"resourcew where it finds out that resources tend to be limited. 
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Figure 5: IniUill Knowledge Base 
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On the other hand, the system doesn't know the term All 

it knows is that **mixerw refers to a constraint. A system-driven dialog 

with the user is initiated to determine the meaning more precisely, The 

system knows that most constraints are associated with resources and can 

thus follow dow- the IS-A hierarchy of resources, using menu selection: 

:- IS *'MIXERw 
- EMPLOYEE ( 1) 
- MACHINE (2) 
- RAW MATERIAL (3) 
- . . 
- NO RESOURCE 

The user could answer this by selecting (2). The system infers that 

the constraint is a capacity constraint; furthermore, it can continue 

the dialog to find out whether *'mixern is a synonym for some machine 

instance appearing in the knowledge base. If that is not the case, it 

would have to request units of capacity measure, the capacity itself, 

etc., in order to fill the machine-type slots. 

By now, the system has marked all the nodes mentioned in the 

original problem statement. The next step is to check for incompleteness 

of the problem statement. Incompleteness is detected in two ways. 

First, the system asks the user whether certain neighbors of the marked 

nodes are also of interest. For example, it may ask whether there are 

employee problems (coming from the production node). Similarly, it may 

suggest the existence of storage problems (coming from cookies via its 

generalization, final products). Assume that the user answers the latter 

affirmatively. 

The second method of detecting incompleteness identifies 

disconnected components of the knowledge base and tries to establish 

additional nodes that connect these components. For example, since there 

is a storage problem associated with the saleslproduct mix problem, the 

system hypothesizes that the problem is really a multi-period problem. 

Indeed, this is confirmed by the user. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-85-59 



FINAL PRODUCT 

( Ice cream I I Cookies 1 / Whale- I 

P t r n u t  

Cootie 

Figure 6: Knorledge Base after problem statement is disambiguated 

- I Wheat  
RQU J 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-85-59 

Dsnish, 
Buttar, 
Cookie 

ChocolUe, 
Chip, 
Coo t i e  

1 



In summary, the context identification step has produced the 

following result. The problem was originally stated as a production 

problem of cookies, with purchasing of raw material sugar. Using the 

application-specific knowledge base, the system refined the problem 

definition to a multi-period, product-mix, and purchasing problem with 

storage considerations. 

4.2. Problem Formulation Step 

After identifying the boundaries of the problem context, the system 

proceeds to assist the user in determining the necessary constraints, as 

well as specifying the format of these constraints and of the objective 

function. 

The first step in this process is the choice of a suitable problem 

decomposition. Metarules for this step essentially follow the principle 

of minimal coupling and maximum cohesion among subproblems known from 

structured design [DeMarco, 19781. These metarules are applied both to 

the initial decomposition of the problem, and to the later integration 

of submodels. The example problem is initially decomposed as shown in 

Figure 7 into two subproblems: product-mix (problem-I) and raw material 

purchasing (problem-11). Note, that both problems are coupled only via 

the decision variables to be associated with raw material. 

Next, the decision variables and their position in relevant 

constraints and in the objective function are determined for each 

subproblem. The relevant constraints are retrieved from the knowledge 

base using the "in-equationf1 slots of the object frames identified in 

the Context Identification Steps (see Figure 4). However, the system can 

ask the user to confirm their relevance in a particular case. 

The KB for structural knowledge is now employed to construct the 

actual constraints and objective function. This step is shown for some 

example equations of the bakery example, below. We shall consider the 

following constraints for problem-I. 
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Figurs 7: Problem Decomposition 
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(1.1) Machine availability constraint 
(1-2) Raw material availability anstraint 
(1.3) Market limitation (Demand) 
(I .4) Service level 
(1-5) Objective function. 

A major problem in LP formulation is the choice of the decision 

variables and their index sets. The following rule can be used to 

determine the decision variable: "IF the aim is to determine the 

production level of final products THEN the decision variable, P, is the 

level of final product to be produced." Another rule says that "IF the 

problem type is product-mix THEN an index for product (say i) is 

needed." Now consider the actual formulation of the equations for 

subproblem I. 

(1.1) Machine Availability Constraint: 

The stored form of this constraint looks as follows: 

where : 
capusagei,j = Units of tine each unit of product i 

requires on machine j. 

Using the knowledge acquired during the Context Identification 

Step, this standard form can be specialized, Since the problem is 

product mix, the index i is required and takes the values defined in the 

set Mcookies", i.e., "PEANUT - BUTTER-COOKIE, DANISH-BUTTER - COOKIE, 
CHOCOLATE - CHIP-COOKIEw. On the other hand, the system knows that there 
is only one machine which could be a bottleneck, namely the 

Therefore, the index j can be dropped, Thus, we get the specialized 

constraint: 

In a similar way, the other constraints can be specialized: 
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(1.2) Raw Material Availability Constraint: 

i CM)I(IES ramsagei, SUGARP~ '' Availability SUGAR 

(1.3) Market Limitation (Demand) 

Pi <= Demandi 

(1.4) Service Level Equations 

Pi >= MinimumSalesi 

(1.5) Objective Function 

Maximize CieCOOKIES PiContributioni 

In equal fashion, we determine constraints and objective function in 

problem-11: 

(11.1) Meet the Internal Demand: 

Purchasesu~~~ > = C i E~M)I(~ ES FawUSagei , suGARP i 

(11.2) Objective Function: 

Minimize ~ ~ ~ t ~ ~ ~ ~ ~ P ~ r ~ h a s e ~ ~ ~ ~ ~  

Note that in (11.2) the C sign has been removed from a standard 

formula since there is only one summand. 

When the system combines the two subproblems, it cannot simply use 

the existing equations but has to modify them. While equations 1.1, 1.3, 

and 1.4 will be used as they are, equation 1.2 will be merged with 11.1: 
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Moreover, the global objective function will include components 

from both subproblems. A new contribution margin is computed for the 

products which does not include the SUGAR costs. This chage in 

contribution margin is necessary because the combined model taks care 

of raw material cost explicitly. 

The combination of the subproblems must also take into account that 

the problem is multi-period. We can purchase raw materials earlier to 

use in production in later periods or produce final products earlier to 

meet the future demand, Therefore, IF the problem is a multi-period 

problem THEN it is necessary to distinguish the quantities of each raw 

material bought, used and stored and the quantities of each final 

product produced, sold and stored at each time period. Moreover, there 

is a rule that "IF a problem is multiperiod THEN add an index t to all 

variablest1. (There are also additional, more complex rules which are 

skipped here for simplicity of exposition.) 

All the previous equations should be indexed by t to accomodate the 

time feature in multi-period analysis. Equation 1.3. has to be changed 

to reflect the fact that Sales for any period -instead of production- 

must be less than the Demand for the period. The objective function has 

to be modified and balance flow equations have to be added. 

Demand i, 

We assume here (realistic in a bakery) that all demand not satisfied in 

the period is lost. If backorders are allowed sales will be a function 

of current demand and previously unfilled demand. In addition, another 

rule states that multi-period problems require balance flow equations 

( cf . ~iguie 4) : 
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where iaCOOKIES. 

The new ob jec t ive  func t ion  w i l l  use the  sales l e v e l  i n s x a d  o f  t h e  

production l e v e l ,  and w i l l  accomodate the  minimization o f  s t m g e  cos t s .  

The f i n a l  vers ion  has the  fol lowing form: 

Maximize 

It Ei (Salesi  tNewContributioni t - Storagei,  tStorCosti,  t )  

4.3. Model Building S tep  

After the  completion of t h e  model s t r u c t u r e ,  t h e  next  and f i n a l  

s t e p  o f  model formulation is the  i n s t a n t i a t i o n  of  t h e  right-hand-side 

and c o e f f i c i e n t  values. If these  values are a v a i l a b l e  e x p l i c i t l y  i n  t h e  

knowledge base they are j u s t  r e t r i eved .  If the re  are "if-needed" s l o t s  

i n  the  r e l a t e d  frames ( e f .  F igure  4), t h e  values are computed using t h e  

formulas i n  these  s l o t s .  Otherwise, t h e  user is requested t o  supply t h e  

missing values. 

This completes the  formulat ion o f  the  model. The r e s u l t  is now 

converted i n t o  a s u i t a b l e  matrix generator  format and submitted f o r  

computation. I n  the  d i scuss ion  above, we have neglec ted  t h e  important 

i s s u e  o f  consistency checking, Although some of the  cons is tency problems 

present  i n  model formulation are removed by t h e  knowledge-based approach 

presented here,  o the r  i s s u e s  w i l l  remain. S t r u c t u r a l  l i n e a r  programming 

knowledge w i l l  be required t o  do the  associa ted  checks; see [ ~ u r p h y  and 

Stohr ,  19851 f o r  a d e t a i l e d  discussion.  
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5 .  CONCLUDING REMARKS 

The example in the previous section should have demonstrated the 

usefulness of domain-specific aowledge in model formulation. Without 

such knowledge, little guid-e can be expected from a formulation 

support tool. Instead, the 2001 will have to focus on problem 

structuring and consistency crhecking. Both are extremely important, 

especially in the formulation of very large models, such as envisioned 

by the syntactic tool developed by Murphy and Stohr f 19851 in a parallel 

effort. However, if model formulation by end users is intended, semantic 

guidance must also be offered. This confirms a similar result of Dhar . 

[ 1984 1 who developed a spreadsheet formulation system in a manufacturing 
environment which also relies heavily on domain-specific knowledge. 

A system incorporating the capabilities described in this paper is 

being implemented in a version of PROLOG [Clocksin and Mellish, 19811 

enhanced by object-oriented features that facilitate the implementation 

of frame representations, as in Figure 4. In further research, we shall 

try to integrate this knowledge-based tool with the more structurally 

oriented method of [Murphy and Stohr, 19851. 

Another question of substantial interest is the construction of a 

meaningful domain knowledge base. Bouwman f 19831 describes a way to 

extract a knowledge base (in financial analysis) from experienced 

analysts, essentially modelling the psychological structures of the 

analysts as objects of the knowledge base. Our initial solution is based 

more on textbook knowledge of the firm. Experience with the actual 

system will have to show whether that level of knowledge is sufficient, 

and what will be the optimal scope of the application domain. Finally, 

as shown in the cookie example, the interaction with the end user can 

also lead to incremental enhancement of the knowledge base through 

limited machine learning features. 
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