
A MATHEMATICAL PROGRAMMING GENERATOR SYSTEM

Edward A. Stohr

October 1985

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #96

G B A #85-41

An earlier version of this paper is contained in Stohr, Edward A., 'A
Mathematical Programming System in APL', Discussion paper Number 348,
The Center for Mathematical Studies in Economics and Mathematical Science,
Northwestern University, Evanston, Illinois, 1979.

The revisions were carried out as part of a jointly-defined research project
on expert systems with the IBM Corporation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 2

ABSTRACT

This paper describes a mathematical programming generator
that interprets problem statements written in the algebraic
notation found in journal articles and text-books and outputs
statements in the 'MPS formatf used by IBMfs MPSX mathematical
programming system. The system has been implemented in the APL
programming language. Although originally designed for
stand-alone use, it is currently being used as a component in an
expert system that will help users formulate large linear
programming models, The paper describes the syntax of the problem
definition language and gives some illustrative examples. There
are several unique features. First, the user can define objective
function, constraint and right-hand-side coefficients as APL
expressions. This leads to concise problem statements and also
reduces data storage and processing requirements. Second, the
system supports an integrated data base query language. Finally,
there are a number of aids for model maintenance and sensitivity
analysis. The last section of the paper describes the use of
MPGEN in the expert system context.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

A MATHEMATICAL PROGRAMMING GENERATOR SYSTEM -

1. INTRODUCTION

The manual generation of the data for mathematical
programming algorithms is a tedious task which lends itself well
to automation. In fact, for the large linear programs often found
in practice (which may have thousands of constraints and
variables), it is hard to imagine that the required data could be
generated by hand within a reasonable amount of time and with
reasonable accuracy. To assist in this task a number of 'tableau
generators' have been developed that can interpret the problem
statement and produce the data required by the mathematical
program, [4], E81, [121. These are often combined with special
report writers for the analysis and display of data and results,
[71.

The Mathematical Program Generator System (MPGEN) described
in this paper accepts a problem statement written in the algebraic
notation found in journal articles and textbooks, This is
interpreted and the data for the tableau is generated as 'data
triples' in the form (i, j, v) where i is the row index, j the
column index and v the associated tableau value. The conventions
adopted in generating the data triples are those used by IBMfs
MPSX mathematical programming system, [9 1. The generated data
triples can be used by mathematical programming algorithms coded
in APL, [61, or output to an external problem solver. In the
latter case, the system also supplies correctly formatted commands
to activate the relevant algorithms and report options.

MPGEN has been implemented on two different computers at New
York University:

(1) A DEC-20 computer where it supplies inputs to the LINDO
mathematical programming system, [15 1

(2) An IBM 4341 where it interfaces with the MPSX mathematical
programming package, [9 1.

The original motivation for MPGEN was to provide an input
format that would allow a direct transcription from the
mathematical statement of the problem to its tableau
representation. In fact, the problem statement can, almost
literally, be an abstract from the journal article, textbook or
model builder's notebook in which the problem structure was
originally defined. It is not necessary to know anything about
APL in order to use MPGEN. However, a knowledge of APL syntax
allows one to take advantage of many powerful features. The goal
of the LPFORM expert system now being developed at NYU is to
provide a front-end to MPGEN that will eliminate the need for
users to understand any form of mathematical notation, Figure 1
shows the overall architecture of LPFORM. An important objective

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 4

of this paper is to explain the role of MPGEN in this expert
system context .

Problem Problem MPSX
Inputs +FORMUL +Statement + MPGEN+Statement YSTEM+Solution

ATOR (Sigma form) (MPS Format) (Solver)

Figure 1
Design of LPFORM System

The expert formulator (LPFORM) allows users to define the
structure of the LP problem using a graphical interface, [Ill.
Special icons are used to represent real world objects such as
physical locations, flows, resources, inventories and activities.
Users can decompose their problem into successive layers of detail
and utilize problem templates (e.g. transportation, product-mix
and blending LPs) as components in a larger problem. The
knowledge base in LPFORM uses all of these different kinds of
information to perform a number of consistency checks and to
generate an algebraic formulation suitable for input to MPGEN,

The sigma-notation syntax used by MPGEN provides a
row-oriented viewpoint of a linear program, By way of contrast,
OMNI, E81, and several other popular ' tableau-generatorsf , have an
factivityl or column-oriented approach in which the formulation is
organized in a column-by-column fashion. Since activities
generally have only a few non-zero coefficients this can sometimes
simplify the formulation task. However, column-oriented problem
statements are longer than row-oriented ones and may be less easy
to read and debug.

The idea of using algebraic notation appears also, for
example, in [51 and [121. One innovation here is that the
variable coefficients, right-hand-side constants and variable
indices can be specified as expressions in the APL host language.
As the problem statement is interpreted, values are substituted
for these expressions using the APL fExecutel function, 4 (which
executes APL instructions written as character strings). In
effect, each value in the initial tableau for the mathematical
program can be expressed as a complicated, real-valued function of
the underlying data or as a logical function of its row and column
position. Using APL in this way helps to provide a concise
problem statement and also reduces the need to preprocess the
data. As a result data storage requirements can be greatly
reduced and (perhaps more importantly) less time and effort is
involved in developing the initial model and in performing
sensitivity analyses.

A second innovation in MPGEN is a database query language
(similar to IBMts SQL, [I]) and data manipulation functions that
assist in the computation of the data required by mathematical
programs. The database interface allows the system to retrieve

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 5

and process the values of LP data coefficients at the time the
problem is run.

This paper focuses on the problem definition language and
especially on features of the implementation that help users form
concise and readable problem statements, These same features
simplify the task of building the artificial 'expertf in LPFORM.
The syntax of the language is illustrated in Section 2 and
described more fully in Section 3. Section 4 provides an example
that uses the database query language. The way in which the APL
language can help form concise problem statements is described in
Section 5. Section 6 describes the user ' s interaction when
running the system and outlines other features including the
provisions made for data entry and display, revision of problem
statements and storage of the output of the algorithms. Finally,
Section 7 describes the interface with the LPFORM expert system.

2. ILLUSTRATIVE EXAMPLES

We first illustrate the use of the MPGEN system in the
solution of a small linear programming problem:

Minimize 3X + 6Y

subject to: 4X + 2Y 2 10
2X + 5Y 2 13

This problem can be defined in MPGEN using the system editor as
follows:

*SAMPLE 1 - EXTENSIVE ALGEBRAIC FORM *
*VAR= X(I), I IN 1 THRU 2 *
MINIMIZE

* 3X(1) + 6X(2)

4X(1) + 2X(2) L 10 *

Figure 2
Algebraic Format - Extensive Form

This is an algebraic form similar to that used by LINDO and a
number of other linear programming generators. In Figure 2,
statements beginning with an asterisk are COMMENTS. The VAR=
statement is a VARIABLE DECLARATION which is used by the system to
assign columns to variables. The THRU function is used to
indicate that the index set for X is 1, 2. Obviously, the above
problem definition is only useful for the particular problem data

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 6

shown. More generally, the standard form of a linear programming
problem :

Minimize CjXj

subject to: AijXj - > Bi, 1 - < i - < M
Xj 2 0

can be defined in MPGEN using 'sigmaf notation as follows:

*SAMPLE 2 - SIGMA NOTATION *
DATA= M,N,A(MxN),B(M),C(N) *
VAR= X(J), J IN 1 THRU N *
MAXIMIZE
s C[JIX(J)
J IN 1 THRU N *
FOR I IN 1 THRU M
S A[I;J]x(J) 5 B[II
J IN 1 THRU N *

Figure 3
Standard Form of an LP in 'Sigma' Notation Format

The 'standardf form of an LP in Figure 3 obviously applies to
any linear program; it is only necessary to define the
appropriate cost and right-hand-side (RHS) coefficient vectors and
the constraint coefficient matrix, A , Thus the algebraic notation
has two great advantages: (1) it is a very compact notation which
corresponds almost exactly to the format used in the statements of
operations research models, (2) the problem definition is general
in the sense that it is independent of the dimensions of the
problem (number of variables and constraints involved).

The disadvantage of the standard format for a linear program
is that it ignores any special structure which might apply to a
particular class of problem. Thus, the user is required to
construct the complete A matrix which can be a laborious and
error-prone task. This also requires the input and storage of
unnecessary data since, in practical problems, the matrix is
generally quite sparse, As illustrated in the following sections,
MPGEN allows each group of constraints to be defined separately
allowing the matrix, A, to be built implicitly from its component
parts thereby eliminating the need to build a massive tableau.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 7

THE PROBLEM DEFINITION LANGUAGE 3. -
Before proceeding to some more comprehensive examples, we

outline the rules for defining a linear programming problem.

The MPGEN system interprets the problem statement in one
pass. The order in which the user must define the problem
statement is indicated below:

(1) One or more DATA DECLARATION lines (optional)
(2) One VARIABLE DECLARATION for each decision variable

in the problem (required)
(3) An OBJECTIVE GROUP (optional)
(4) One or more CONSTRAINT GROUPS

COMMENT and EXEC statements (see below) can be interspersed freely
in the text of the problem statement. Comment lines start with an
'*' in column 1.

Data Declaration Lines -
The DATA= line in Figure 3 is a Data Declaration statement.

It is used by the system to check that the required data
(variables M, N, A, B, C) are present in the APL workspace and
that the variables (A, B, C) have the indicated dimensions (i.e,
A is an MxN matrix and B and C are M- and N-dimensional vectors).
If either of these conditions is false, the system will ask the
user either to input the required data or to halt the problem
interpretation. Execution of this statement for a new problem
also stores the values of all declared variables in a random
access file. When the problem is run a second time these values
are automatically restored to the workspace.

Variable Declaration Lines

Variable Declaration lines are used to identify the decision
variables and to specify the columns associated with these
variables in the tableau. In general, there must be one such line
for each decision variable in the problem statement. A Variable
Declaration line consists of the keyword 'VAR=' followed by the
variable name complete with (dummy) index variables enclosed by
parentheses. This is followed by one INDEX TERM for each index
variable with a comma separating each sucn term. An Index Term
has the form:

The SET-EXPRESSION may be any APL expression that returns a
positive integer scalar or vector result. This specifies the full
range of values that the index will take on in the problem
statement. In Figure 3 the Index Term is J IN 1 THRU N indicating
that J takes on the values 1, 2, .., N. If more than one Index
Term is present in a Variable Declaration Line the order in which
they appear determines the order of the decision variable columns
in the tableau with the right-most decision variable index varying

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 8

the fastest.

Objective and Constraint Groups

A GROUP consists of one or more lines of the problem
statement. An OBJECTIVE GROUP consists of a line containing the
word MAXIMIZE (or MINIMIZE), the OBJECTIVE DEFINITION LINE, and,
(if the latter contains one or more summation symbols) the
associated SUMMATION INDEX LINE.

A CONSTRAINT GROUP consists of one or more FOR INDEX LINES,
the CONSTRAINT DEFINITION LINE, and, if required, a SUMMATION
INDEX LINE. A Group and its associated data triples form a basic
unit of data in the MPGEN system. All Groups must be preceded and
followed by one or more Comment lines. The user is free to write
any desired descriptive material in the comment lines.

Objective and Constraint Definition Lines

An 'Sf followed by a blank in an Objective or Constraint
Definition line represents the algebraic symbol, '. The range
for the summation is indicated in the following Summation Index
Line. In Figure 3 we have: J IN 1 THRU N, meaning that J takes
values in the SET 1, 2,.,, N. The rows in the tableau for which a
Constraint Definition is defined are given by one or more For
Index Lines (see below).

Objective and Constraint Definition lines differ only in that
the latter contain one of the relational operators 5 , =, or 2 ,
together with a RHS COEFFICIENT EXPRESSION. The Objective and
Constraint Definitions contain one or more VARIABLE TERMS
separated by '+' or - operators. A Variable Term has the
following form:

[One or more [Variable Coefficient Varname ({Variable Index
Summation Expression] Expression))
Symbols 1

where the square brackets indicate optional components and the
braces represent repetition. For example, the second constraint
in Figure 2 has two Variable Terms (X(1) and 2X(2)), while the
Constraint Definition in Figure 3 has only one (S C[J]X(J)). Note
that the summation symbols 'Sf apply to only one variable; if
more than one decision variable appears in an Objective or
Constraint Definition line, then each must have its own summation
symbols and appear in a separate Variable Term. The 'Varnamet in
the definition of a variable term represents a user-chosen name
for a linear programming decision variable Note that the indices
for the decision variables in the above were enclosed in
parentheses in the problem statement--X(1), X(2), X(3) in Figure 2
and X(J) in Figure 3. The MPGEN System uses the names in the
Variable Declarations plus the parentheses to recognize decision
variables when interpreting Constraint and Objective Definitions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 9

In the current implementation, a decision variable can be
indexed by up to five VARIABLE INDEX EXPRESSIONS separated by
commas. Each such expression can be a constant, a variable
appearing in a Summation Index or For Index Line, or any
non-parenthesized APL expression that returns a scalar result.
During interpretation, the MPGEN system evaluates each Variable
Index expression separately using the APL Execute function.

The VARIABLE COEFFICIENT EXPRESSION component of a Variable
Term may be any valid APL expression that returns a scalar result.
Examples are constants, variables and the complex expressions
containing inner product operations illustrated in Section 6.
Similar remarks apply to the RHS Coefficient Expressions appearing
in constraint definition lines.

Summation Index Lines --

If an objective or constraint definition line contains one or
more summation signs, it must be followed by a Summation Index
Line in which the corresponding index variables and the values
they are to assume are defined by one or more Index Terms
separated by commas. As above, the Set-Expression in the Index
Term may be any APL expression which returns a positive integer
scalar or vector result, e.g. 1 THRU N, in Figure 3, The result
of the Set Expression defines the values taken on by the INDEX
variable during the summation. Examples of Summation Index Line's
with more than one Index Term are shown in Figure 6. There must
be the same number of Index Terms as there are summation signs in
the preceding line, The correspondence between summation signs
and Index Terms is obtained from the order (from left-to-right) in
which the latter appear in the Summation Index Line.

The indices in the Index Terms corresponding to a Variable
Term in the preceding Objective or Constraint Expression are
executed in oedometer order with the right most index varying the
fastest. Note that the desired result of a Set Expression may
depend on the value of a previously defined index. Thus, in the
example in Section 5, we have K IN K, I IN IP[K;] where K is an
APL vector of index values for K and - IF is an ~ P L matrix in which
the rth row contains the index values for I when K=r. Since
trailing zeroes in an index vector are ignored by MPGEN, it is
possible for the number of values assumed by the I index to vary
with the value of K, An alternative way to define an index, I, as
a function of another index, K, is to use the notation IEK) and to
store the associated values of I in APL vectors, 11, 12, ... For
example, we could include the EXEC statements:

at the beginning of the problem statement, Here, '<- ' , is the APL
assignment function. Subsequent execution of the index
expression, I IN IEK) , will assign the index values 2 and 4 to I
when K=2.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 10

For Index Lines ---

The rows i n the tableau f o r which a Constraint Def in i t ion
a p p l i e s a r e defined by one o r more preceding For Index Lines.
These c o n s i s t of the word 'FORf followed by an Index Term as
defined above. In Figure 3 t h e r e is one such statement spec i fy ing
M c o n s t r a i n t rows (I l i e s i n t h e set 1, 2,. , . , M.) I f t h e r e is
more than one For Index Line the ind ices are evaluated i n
oedometer order with the index f o r the l a s t l i n e varying fastest.
Again, t h e Se t Expressions can be dependent on previously defined
ind ices .

EXEC Statements -
I n add i t ion t o the s ta tements which def ine the mathematical

program itself the user may i n s e r t o the r commands i n t h e problem
statement by the use of the MPGEN EXEC statement. This has the
form :

E v a l i d APL expression.

An example of the use of the EXEC statement t o a s s ign values t o
da ta va r i ab les was given above. Other uses are t o open, read and
c l o s e f i les , t o process the problem d a t a and t o erase d a t a
v a r i a b l e s t h a t a r e no longer requi red .

General

The d a t a va r i ab les and cons tan t s t h a t de f ine a p a r t i c u l a r
ins t ance of the problem a r e imbedded i n the S e t Expressions,
Variable Index Expressions and Variable and RHS Coef f i c i en t
Expressions. With the exception o f c e r t a i n reserved names, t h e
user may employ any va l id APL v a r i a b l e names f o r t h e Decision
Var iables , Index Variables and APL d a t a va r i ab les .

Any statement can be continued i f necessary on a succeeding
l i n e prefaced by a colon as shown i n Figure 4 below.

MPGEN can automat ica l ly recognize v a r i a b l e s with upper and/or
lower bounds and w i l l f l a g them on the MPS problem s ta tement t o
al low the so lve r t o u t i l i z e a more e f f i c i e n t v a r i a n t o f t h e
simplex method.

The problem da ta is contained i n t h e Variable and RHS
Coeff ic ient expressions while t h e s t r u c t u r e is represented by t h e
Variable Index Expressions and t h e S e t Expressions i n the Var iable
Declarat ion, For Index and Summation Index Lines. The f a c t t h a t
a l l o f these items a r e expressed using APL s ta tements (inc lud ing
funct ion calls where necessary) means t h a t t h e problem s ta tement
is 'bound1 t o its da ta only dur ing t h e i n t e r p r e t a t i o n process.
This adds a new dimension of power and f l e x i b i l i t y by a l lowing t h e
user :

(1) t o reduce da ta s to rage requirements

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 1 1

(2) to eliminate the preprocessing steps necessary to compute
the Cj and Aij coefficients required by the mathematical
programming algorithm.

(3) to perform sensitivity analyses by directly modifying the
'natural', disaggregated, unprocessed data elements of the
real world problem.

The danger in allowing this freedom is that error detection
may become more difficult because MPGEN does not check the syntax
of the Set, Variable Index and Coefficient Expressions. This is
done by the APL processor during the evaluation. This potential
drawback is mitigated, if not eliminated, however by (1)
'trapping1 any such error and providing an error message which
displays the expression where the error occurred, and (2) by
checking the presence and dimensions of all required data when the
Data Declaration statement is parsed.

4. EXAMPLE OF DATABASE USAGE

The retrieval power of a modern relational database query
language (such as IBM1s SQL, [I]) can greatly facilitate the
specification and maintenance of LP models, Such languages allow
a concise and readable specification which is advantageous both
for the initial development and subsequent documentation of LP
models. Further, they allow the logical statement of the problem
to be independent of particular values in the database and thus
prevent the model from becoming out of date. The example in
Figure 4 shows the use of the MPGEN query facility for a small
problem. The example is based on the following relational schema:

Profits(Prodname, Factory, Profit)
Production(Prodname, Factory, Prodamt)
Resources(Prodname, Factory, Resname, Resamt)
Reslimits(Resname, Factory, Reslimit)

Here, Profits, Production, Resources and Reslimits are database
relations (files) containing information on marginal profit
contributions, amount of each product produced for the last 12
months, the resources used during the last 12 months in producing
these products, and the limits on the available resources for the
next time period. The problem is to determine the optimal product
mix for the next time period.

The GET database function is a shorthand for 'SELECT ALL
FOR'. It retrieves all columns for rows that satisfy the logical
qualification FROM the indicated stored relation. The result is a
relation with the same columns but fewer rows (in this case only
the rows for the northern factory). The TABLE function transforms
this relation into a numeric array with dimensions depending on
the number of items in its left argument. The latter contains a
list of column names from the original relation. The last column
name

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 12

*SAMPLE 3 - DATABASE FACILITY *
E PROF <- (PRODNAME,PROFIT)TABLE GET 'FACTORY=NORTHERNf

FROM PROFITS
E PRODUCED <- (PRODNAME,PRODAMT)TABLE GET 'FACTORY=NORTHERN1

FROM PRODUCTION
E USED - (PRODNAME, RESNAME , RESAMT ITABLE GET FACTORY =NORTHERN 1

FROM RESOURCES
E LIMIT c- (RESNAME ,RESLIMIT) TABLE GET 'FACTORY =NORTHERN '

FROM RESLIMITS
E NUMPRODUCTS <- NUMROWS PRODUCED *
E NUMRESOURCES <- NUMROWS LIMIT *
DATA= NUMPRODUCTS, NUMRESOURCES, PROF, PRODUCED, USED, LIMIT *
VAR= X(J), J IN 1 THRU NUMPRODUCTS *
MAXIMIZE
S PROF[J] X(J)
J IN 1 THRU NUMPRODUCTS *
FOR I IN 1 THRU NUMRESOURCES
S (USED[I;J] - PRODUCED[JI) X(J) 5 LIMITEI]
J IN 1 THRU NUMPRODUCTS *

Figure 4
Database Example

specifies the column in which the numeric data is contained;
preceding column names each specify a dimension of the resulting
array. For example, the USED array in the above example, will
have rows corresponding to the unique values of PRODNAME and
columns corresponding to the unique values of RESNAME, The
numeric values for the northern factory are obtained from the
RESAMT column of the RESOURCES relation and placed into this
2-dimensional array. Default values of zero are provided if there
is no data in the relation for particular product-resource
combinations.

Continuing the above example, NUMROWS is an MPGEN function
that returns the number of rows in an array. NUMPRODUCTS and
NUMRESOURCES are computed for later use in specifying the index
sets for the problem. The DATA statement checks that all the data
are present and also saves it in the random access file (as
JUNEPRODDAT, if JUNEPROD is the name of the problem statement).
The arithmetic expression appearing in the constraint definition
uses USED and PRODAMT values to compute technology coefficients
corresponding to the amount of resource used per unit of product.
Note that the problem statement will be valid again next month
(even though the data may have changed) and that a record is
automatically maintained of the data used to compute each month's
production plan.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 13

As another example, suppose that unit profit margins are
calculated from the prices of the products (which are invariant
over factory and market) and their standard costs (which depend on
both the product and the factory where it is produced). Then the
Profits relation might be replaced by the following two relations:

Prodprices(Prodname , Price)
Prodcosts(Prodname, Factory, Stdcost)

and the unit profits array above could be calculated as follows:

E PRICECOSTS <- GET 'FACTORY=NORTHERNt FROM
JOIN 'PRODPRICES*PRODCOSTS OVER PRODNAME'

E PROF <- ((PRODNAME,FACTORY,PRICE)TABLE PRICECOSTS)
- (PRODNAME,FACTORY,PRICE)TABLE PRICECOSTS)

where the temporary relation, Pricecosts, resulting from the
relational join operation consists of a concatenation of the rows
of Prodprices with those of Prodcosts where the Prodname values
are equal:

Pricecosts(Prodname, Price, Factory, Stdcost)

5. USING & TO FORM CONCISE PROBLEM STATEMENTS

There are many situations in which the power of the APL
language can help develop a very concise problem statement. A few
examples are described below.

Logical Conditions

Suppose that the index variable, I, appears in one of the For
Index lines in a Constraint Group and that the RHS coefficient
should equal one when I = 1 and should equal zero otherwise.
Instead of generating a data vector for the RHS of zeroes and
ones, the RHS Coefficient Expression can be stated simply as the
logical expression, I = 1 (APL returns a '1' if a logical
expression is true and a ' O f if it is false).

Figure 5 is an example of the use of logical conditions to
specify constraint coefficients in a network problem. The data is
generated in the first few lines of the problem statement. The
SHAPE function generates a matrix with 13 rows corresponding to
the arcs and two columns specifying, respectively, the 'from1 and
'to1 nodes for the arcs. T(A) represents the amount to be
transported on the Ath arc. The logical expression I = ARCSEA; 11
will evaluate to 1 if arc, A, emanates from node, I. This will
place a '1' in the Ith row and Ath column of the tableau. The
other constraint coefficient is interpreted similarly. Finally,
the last line in the problem statement erases all of the data.

Finally, consider the constraint set:

jfi

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 14

* GENERALIZED NETWORK PROBLEM FORMULATION
* SAMPLE TRANSSHIPMENT PROBLEM (FROM SCHRAGE, PAGE 125) *
E NODES <- 1 THRU 9
EARCS<- 132SHAPE 1 3 1 4 2 3 2 4 2 5 3 6 3 7 4 6 4 7 4 8 5
: 7 5 8 5 9
ECOST<- 1 2 3 1 2 5 7 9 6 7 8 7 4
E EXOG <- 9 8 0 0 0 -3 -5 -4 -5 *
E NARCS <- NUMROWS ARCS *
VAR=T(A), A IN 1 THRU NARCS *
MINIMIZE
S COSTLA] T(A)
A IN 1 THRU NARCS *
FOR I IN NODES
S (I=ARCS[A;~]) T(A) - S (I=ARCS[A;~]) T(A) = EXOG[I]
A IN 1 THRU NARCS, A IN 1 THRU NARCS *
E)ERASE NODES ARCS NARCS COST EXOG NARCS *

Figure 5
Use of Logical Conditions to Specify Coefficients

The index set for j varies with the value of i. It can be
written in MPGEN as:

(- (1 THRUN) = I) / 1 THRU N

where I - ' is logical NOT and ' / ' is the APL 'compression' operator
(see E61).

Other APL Expressions and User Defined Functions

Any APL statement that returns a scalar result can be used as
an objective function, constraint or RHS coefficient. As a
non-trivial example, consider the following term which appears in
the objective function of a problem in [21:

This can be modelled in MPGEN as:

Here the APL 'inner product1 operator, +.x, is used to perform the
multiplication of the pfs and qls and the summation of the
resulting products over r.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 15

The model in [2] is concerned with the optimal assignment of
programs and datasets to storage devices. The following
constraint ensures that each program and dataset is assigned to
only one device:

Here, for example, Uk(i) is the collection of data sets required
by program i in usage class k. This is represented in MPGEN bv:

FOR L IN L
FOR K IN K
FOR I IN E[K;]
S S X(U,J~K,L) - (+/O<U[K;I;])Y(I,K,L)=O
U IN - U[K;I;], J IN - J[L;I

Here, U is a three dimensional array in which the positive
elements in each vector, u[K; I ; I, represent the datasets used by
program i in usage class k Trecall that zeros are ignored in index
expressions). The APL expression, + / 0 < UCK; I; I, computes the
cardinality of Uk(i). The expression, 0 < X, returns a vector of
0's and 1's where the 1's correspond to positive elements in X.
This vector is then summed by the 'sum reductionf operator, +/
(usually pronounced 'plus over ') .

Finally, users who are knowledgeable in APL can code their
own functions for inclusion in the problem statements. This can
lead to extremely elegant and powerful model definitions.

Interactive Input of Data

If objective function, constraint or right-hand side
coefficient expressions vary from run to run (perhaps for
sensitivity testing purposes) this data may be input interactively
during problem interpretation. The user simply types the word
'ASKt in place of the relevant Variable or RHS Coefficient
Expression. As it interprets the problem MPGEN will prompt the
user for the data items after displaying the current Objective or
Constraint Definition Line and the appropriate index values.

INTERACTING WITH THE SYSTEM

There are two modes of interaction with the system. One is
to sign-on to APL, load the MPGEN workspace, type 'RUNPROBLEM' and
interact with the system via a menu-driven interface as shown in
Figure 6. The second is to define the problems externally and to
pass them as files to APL using a system command file. This is
the method used by the LPFORM expert system as explained more
fully in the next section.

In the interaction shown in Figure 6, the data dictionary of
previously stored problem definitions is listed and the TRANSPORT
problem is chosen and parsed. This generates data triples in MPS
format. Before running the problem the results of the parse are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 16

first displayed in both 'extensivet algebraic form and as a LP
tableau. The final step shown in the example generates a file
containing the problem statement in MPS format for input to the
LINDO system.

RUNPROBLEM

OPTION? (OR TYPE HELP) *** MPGEN **%

HELP

TO SELECT AN OPTION TYPE THE FIRST 3 LETTERS:

NAM: SET PROBLEM NAME
DBS: USE THE DATA BASE SYSTEM
DAT: EDIT DATA
DEF: DEFINE PROBLEM STATEMENT
DIC: VIEW PROBLEM DICTIONARY
PAR: PARSE PROBLEM STATEMENT
SHO: SHOW RESULTS OF PARSE IN ALGEBRAIC FORM
TAB: DISPLAY LP TABLEAU
LIN: GENERATE LINDO STATEMENT
APL: EXECUTE APL STATEMENTS
STO: STOP EXECUTION

OPTION? (OR TYPE HELP) *** MPGEN ***
DIC
PROBLEM/DATA NAME

AIRLINE
AIRLINEDAT
ALGEBRAIC
DBASE 1
DBASE 1 DAT
MULTD I V
MULTDIVDAT
TRANSARCA
TRANSARCB
TRANSPORDAT
TRANSPORT

OPTION? (OR TYPE HELP) *** MPGEN **+
NAME

PROBLEM NAME? TRANSPORT

Figure 6
Sample Interaction with the MPGEN System

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 17

OPTION? (OR TYPE HELP) *** MPGEN ***
PARSE

RESTORING VALUES FOR: M N COST S D -------- PARSING PROBLEM STATEMENT = TRANSPORT
* SAMPLE TRANSPORTATION PROBLEM FROM WAGNER PAGE 215

VAR= X(I,J), I IN 1 THRU M, J IN 1 THRU N *
MINIMIZE
S S cOST[I;J] X(I,J)
I IN 1 THRU M, J IN 1 THRU N *
FOR I IN 1 THRU M
S X(I,J) < S[Il
J IN 1 THRU N *
FOR J IN 1 THRU N
s X(I,J) L D[JI
I IN 1 THRU M *
LP TRIPLES (ROW,COL,VALUE) HAVE BEEN FORMED.
TABLEAU SIZE: ROWS = 6 COLS = 7 TRIPLES = 23

STORED VALUES IN FILE FOR: M N COST S D
ERASED VALUES FROM WS FOR: M N COST S D

OPTION? (OR TYPE HELP) *** MPGEN ***
SHOW

MINIMIZE
XI1 + 2x12 + 2x21 + 3x22 + 3x31 + 4x32

Figure 6
Sample Interaction with the MPGEN System (conttd)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 18

OPTION? (OR TYPE HELP) *** MPGEN ***
TABLEAU

Xll XI2 X21 X22 X31 X32 RHS

OPTION? (OR TYPE HELP) *** MPGEN ***
LINDO

-------------- START OF GENLINDO -----------------
TRANSPORT - FROM APL WS AT 8/17/1986 1:06:23 ____---__------ END OF GENLINDO ------------------

OPTION? (OR TYPE HELP) *** MPGEN ***
STOP

Figure 6
Sample In te rac t ion with the MPGEN System (c o n t f d)

Correct ions and modificat ions t o t h e problem s ta tement are
made using a s p e c i a l e d i t o r accessed by the DEF menu command.
Simi lar ly the d a t a c o e f f i c i e n t s can be input and modified using
the same e d i t o r v i a the DAT menu command. When a newly defined
problem is parsed the problem d e f i n i t i o n is automat ica l ly added t o
the random access f i le . A s each DATA= statement is executed, t h e
system f irst checks i f the declared d a t a items are i n the
workspace. If they are, then t h e i r dimensions a r e checked. I f a
da ta item is missing, the user is asked t o input its values
(note t h a t t h i s is usual ly the most convenient method f o r
i n i t i a l l y en te r ing problem d a t a) . The values of the d a t a items
a r e then s t o r e d i n the random access f i le . A s i l l u s t r a t e d i n
Figure 6 , i f a previously defined problem is accessed its
associa ted d a t a is automat ica l ly r e t r i e v e d from the random access
f i l e a t the start o f the parse s t ep . The da ta (which may have
been modified by EXEC s ta tements i n the problem s ta t ement) is
automatical ly s t o r e d back i n t o the f i l e and erased from t h e
workspace a t t h e end of the parse. These d e f a u l t s can be ad jus ted
by the user t o a s s i s t i n generat ing and c o n t r o l l i n g many d i f f e r e n t
vers ions of the same problem f o r exp lo ra t ion o f management
a l t e r n a t i v e s .

The DBS menu option al lows the user t o i n t e r a c t wi th t h e
database system t o de f ine the schema and t o input and maintain
da ta i n the r e l a t i o n a l database. Note t h a t the da tabase r e t r i e v a l
f a c i l i t y is always a c c e s s i b l e from t h e MPGEN parse r s o no s p e c i a l
s t e p s need be taken by the user .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 19

7, USE OF MPGEN WITH THE LPFORM EXPERT SYSTEM - ------- -
A s indicated i n Figure 1, LPFORM genera tes a l g e b r a i c

s ta tements i n the MPGEN format and writes them t o a f i l e f o r
subsequent processing by MPGEN. MPGEN then genera tes t h e MPS
statement f o r input t o MPSX o r LINDO. A s a l l of t h i s is achieved
i n one s t e p by use of a command f i l e , the presence o f MPGEN is
t ransparen t t o the user . An exception t o t h i s occurs i f the d a t a
items r e f e r r e d t o i n the symbolic s tatement a r e not defined. A s
explained above, MPGEN w i l l then reques t t h a t the user de f ine them
i n t e r a c t i v e l y before i t proceeds with the parse.

The use of MPGEN i n t h i s way has g r e a t l y s impl i f i ed the
development of a working exper t system. The major advantage has
been t h a t i t is poss ib le t o avoid developing a complex a r i t h m e t i c
c a p a b i l i t y i n PROLOG. A s we have seen, the use of the APL
language within the context of MPGEN is use fu l i n forming very
concise and general problem statements.

LPFORM is concerned with the generat ion of symbolic problem
statements. There a r e two forms. In 'symbolic mode1, the system
makes no attempt t o l i n k the da ta c o e f f i c i e n t symbols i n t h e
problem statement with da ta values (un less these are input
d i r e c t l y by the use r) . In ' da ta mode1, the symbols i n the
a lgebra ic statement are l o g i c a l l y l inked t o d a t a values e i t h e r
e x p l i c i t l y , o r through reference t o e x t e r n a l t a b l e s o r through
database r e t r i e v a l s tatements.

Currently, the physica l l inkage o f the symbols f o r sets and
d a t a coe f f i c i en t s is handled through the MPGEN system i n a number
of ways:

(1) I f t h e problem statement is generated i n symbolic mode,
the assignment o f da ta t o the symbols is handled e n t i r e l y
through MPGEN. The s imples t way is simply t o inpu t t h e d a t a
values when prompted during the parse of the problem statement.
Al ternat ive ly , t h e da ta may be s t o r e d d i r e c t l y i n t h e workspace
by the user p r i o r t o running LPFORM.

(2) The exper t system accepts d a t a i n p u t s d i r e c t l y from t h e user
and t r a n s l a t e s these i n t o EXEC s ta tements a t t h e beginning o f
the MPGEN problem statement. This is normally t h e way i n
which s e t s are defined.

(3) Users provide the names of the r e l e v a n t e x t e r n a l d a t a t a b l e s
during t h e i r i n t e r a c t i o n with LPFORM. LPFORM then maps the
da ta items i n the t a b l e s t o the symbolic names i n the problem
statement and genera tes EXEC s ta tements t h a t cause MPGEN t o
access the f i l e (s) containing t h e t a b l e s and t o read them i n t o
appropr ia te ly named APL var iables .

(4) Users provide database r e t r i e v a l s ta tements t h a t are w r i t t e n
d i r e c t l y by LPFORM as EXEC s ta tements as i n Example 3.

(5) Users provide a r i t h m e t i c s ta tements (o r a mixture of da ta

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 20

retrieval and arithmetic statements) during their interaction
with LPFORM. LPFORM simply passes these through for execution
in MPCEN. Note that much can be done with only the
rudimentary commands illustrated in Section 2.

A current research and development objective is to develop
the expertese necessary to allow LPFORM to automatically generate
the database retrieval and arithmetic expressions necessary to
perform (4) and (5) automatically.

8. SUMMARY

The problem definition language described in this paper
provides a convenient and concise means for defining linear and
integer programming problems. Because of its labor saving
characteristics, it allows the model builder to implement models
more easily and to experiment with alternative formulations. This
is most useful in a DSS environment since it allows one to quickly
form a 'data baset of models in a wide range of areas such as cash
management, capital budgeting, production planning and scheduling,
transportation, facilities location, marketing and so on.

MPGEM1s concise algebraic statements are suitable target
outputs for current AI-based languages such as PROLOG and it is
proving to be a very useful tool in the development of the LPFORM
system for formulating LPs. In the long run, however, the
objective is to integrate all the components shown in Figure 1 and
to include additional components for reporting, analysing and
explaining the results of model runs.

References

1. Astrahan, M. M., and Chamberlin, D. D., 'Implementation of
a Structured English Query Language1, Communications of the
ACM, Vol. 18, No. 10, October, 1985, pp. 580-588.
P

2. Balachandran, V. and Edward A. Stohr, "Optimal Pricing
of Computer Resources in a Competitive Environment,*' Working
Paper No. 268, Center for Mathematical Studies in Economics
and Management Science, Northwestern University, 1978.

3. Clocksin, W. F. and C. S. Mellish,
Springer-Verlag, New York, 1981.

4, Creegan, J. P., 'DATAFORM: A Model Management System',
Working Paper, Ketron, Inc., Arlington Va., 1985.

5. Fourer, R,, Modelling Languages versus Matrix Generators
for Linear Programmingf, ACM Transactions on Mathematical
Software, Vol. 8, No. 2, June 1983.

6. Gilman, L. and A. J. Rose, 9

John Wiley & Sons Inc., New YorK, 1984 (3rd edition).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

Page 21

7. Greenberg, Harvey J., 'A Functional Description of ANALYZE:
A Computer-Assisted Analysis System for Linear Programming
Modelst, ACM Transactions on Mathematical Software, Vol 9,
No. 1, March 1983, pp. 18-56.

8. Haverly Systems Inc., OMNI Linear Programming System: User
Manual and Operating Manual, Denville, N.J., 1977.

9. IBM Mathematical Programming Language Extended/370
(MPSX/370), Program Reference Manual, SH19- 1095, IBM
Corporation, Paris, France, 1975.

10. Ma, Paichun, 'An Intelligent Approach Towards Formulating
Linear Programsf, Unpublished Dissertation Proposal, Graduate
School of Business Administration, New York University, 1985.

11. Ma, P., F. H. Murphy and E. A. Stohr, 'Design of a Graphics
Interface for Linear Programst, Working Paper 11 1 , Center for
Research in Information Systems, Graduate School of Business
Administration, New York University, 1985.

12. Meeraus, A., 'General Algebraic Modelling System (GAMS),
User's Guide, Version 1.0, Development Research Center,
World Bank, 1984,

13. Murphy, F. H. and E. A. Stohr, 'An Intelligent System for
Formulating Linear Programs1, International Journal of
Decision Support Systems, Vol 3, No. 2, 1986.

14. Murphy, F. H. and E. A. Stohr, 'The Science and Art of
Formulating Linear Programs', Working Paper 110, Center for
Research in Information Systems, Graduate School of Business
Administration, New York University, 1985.

15. Schrage, Linus, Linear, Integer, and Quadratic Programming
with LINDO, The Scientific Press, Palo Alto, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-85-41

