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ABSTRACT 

This paper describes a mathematical programming generator 
that interprets problem statements written in the algebraic 
notation found in journal articles and text-books and outputs 
statements in the 'MPS formatf used by IBMfs MPSX mathematical 
programming system. The system has been implemented in the APL 
programming language. Although originally designed for 
stand-alone use, it is currently being used as a component in an 
expert system that will help users formulate large linear 
programming models, The paper describes the syntax of the problem 
definition language and gives some illustrative examples. There 
are several unique features. First, the user can define objective 
function, constraint and right-hand-side coefficients as APL 
expressions. This leads to concise problem statements and also 
reduces data storage and processing requirements. Second, the 
system supports an integrated data base query language. Finally, 
there are a number of aids for model maintenance and sensitivity 
analysis. The last section of the paper describes the use of 
MPGEN in the expert system context. 
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A MATHEMATICAL PROGRAMMING GENERATOR SYSTEM - 

1. INTRODUCTION 

The manual generation of the data for mathematical 
programming algorithms is a tedious task which lends itself well 
to automation. In fact, for the large linear programs often found 
in practice (which may have thousands of constraints and 
variables), it is hard to imagine that the required data could be 
generated by hand within a reasonable amount of time and with 
reasonable accuracy. To assist in this task a number of 'tableau 
generators' have been developed that can interpret the problem 
statement and produce the data required by the mathematical 
program, [4], E81, [ 121. These are often combined with special 
report writers for the analysis and display of data and results, 
[71. 

The Mathematical Program Generator System (MPGEN) described 
in this paper accepts a problem statement written in the algebraic 
notation found in journal articles and textbooks, This is 
interpreted and the data for the tableau is generated as 'data 
triples' in the form (i, j, v) where i is the row index, j the 
column index and v the associated tableau value. The conventions 
adopted in generating the data triples are those used by IBMfs 
MPSX mathematical programming system, [ 9 1. The generated data 
triples can be used by mathematical programming algorithms coded 
in APL, [61, or output to an external problem solver. In the 
latter case, the system also supplies correctly formatted commands 
to activate the relevant algorithms and report options. 

MPGEN has been implemented on two different computers at New 
York University: 

(1) A DEC-20 computer where it supplies inputs to the LINDO 
mathematical programming system, [ 15 1 

(2) An IBM 4341 where it interfaces with the MPSX mathematical 
programming package, [ 9 1. 

The original motivation for MPGEN was to provide an input 
format that would allow a direct transcription from the 
mathematical statement of the problem to its tableau 
representation. In fact, the problem statement can, almost 
literally, be an abstract from the journal article, textbook or 
model builder's notebook in which the problem structure was 
originally defined. It is not necessary to know anything about 
APL in order to use MPGEN. However, a knowledge of APL syntax 
allows one to take advantage of many powerful features. The goal 
of the LPFORM expert system now being developed at NYU is to 
provide a front-end to MPGEN that will eliminate the need for 
users to understand any form of mathematical notation, Figure 1 
shows the overall architecture of LPFORM. An important objective 
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of this paper is to explain the role of MPGEN in this expert 
system context . 

Problem Problem MPSX 
Inputs +FORMUL +Statement + MPGEN+Statement YSTEM+Solution 

ATOR (Sigma form) (MPS Format) (Solver) 

Figure 1 
Design of LPFORM System 

The expert formulator (LPFORM) allows users to define the 
structure of the LP problem using a graphical interface, [Ill. 
Special icons are used to represent real world objects such as 
physical locations, flows, resources, inventories and activities. 
Users can decompose their problem into successive layers of detail 
and utilize problem templates (e.g. transportation, product-mix 
and blending LPs) as components in a larger problem. The 
knowledge base in LPFORM uses all of these different kinds of 
information to perform a number of consistency checks and to 
generate an algebraic formulation suitable for input to MPGEN, 

The sigma-notation syntax used by MPGEN provides a 
row-oriented viewpoint of a linear program, By way of contrast, 
OMNI, E81, and several other popular ' tableau-generatorsf , have an 
factivityl or column-oriented approach in which the formulation is 
organized in a column-by-column fashion. Since activities 
generally have only a few non-zero coefficients this can sometimes 
simplify the formulation task. However, column-oriented problem 
statements are longer than row-oriented ones and may be less easy 
to read and debug. 

The idea of using algebraic notation appears also, for 
example, in [51 and [ 121. One innovation here is that the 
variable coefficients, right-hand-side constants and variable 
indices can be specified as expressions in the APL host language. 
As the problem statement is interpreted, values are substituted 
for these expressions using the APL fExecutel function, 4 (which 
executes APL instructions written as character strings). In 
effect, each value in the initial tableau for the mathematical 
program can be expressed as a complicated, real-valued function of 
the underlying data or as a logical function of its row and column 
position. Using APL in this way helps to provide a concise 
problem statement and also reduces the need to preprocess the 
data. As a result data storage requirements can be greatly 
reduced and (perhaps more importantly) less time and effort is 
involved in developing the initial model and in performing 
sensitivity analyses. 

A second innovation in MPGEN is a database query language 
(similar to IBMts SQL, [I]) and data manipulation functions that 
assist in the computation of the data required by mathematical 
programs. The database interface allows the system to retrieve 
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and process the values of LP data coefficients at the time the 
problem is run. 

This paper focuses on the problem definition language and 
especially on features of the implementation that help users form 
concise and readable problem statements, These same features 
simplify the task of building the artificial 'expertf in LPFORM. 
The syntax of the language is illustrated in Section 2 and 
described more fully in Section 3. Section 4 provides an example 
that uses the database query language. The way in which the APL 
language can help form concise problem statements is described in 
Section 5. Section 6 describes the user ' s interaction when 
running the system and outlines other features including the 
provisions made for data entry and display, revision of problem 
statements and storage of the output of the algorithms. Finally, 
Section 7 describes the interface with the LPFORM expert system. 

2. ILLUSTRATIVE EXAMPLES 

We first illustrate the use of the MPGEN system in the 
solution of a small linear programming problem: 

Minimize 3X + 6Y 

subject to: 4X + 2Y 2 10 
2X + 5Y 2 13 

This problem can be defined in MPGEN using the system editor as 
follows: 

*SAMPLE 1 - EXTENSIVE ALGEBRAIC FORM * 
*VAR= X(I), I IN 1 THRU 2 * 
MINIMIZE 

* 3X(1) + 6X(2) 

4X(1) + 2X(2) L 10 * 

Figure 2 
Algebraic Format - Extensive Form 

This is an algebraic form similar to that used by LINDO and a 
number of other linear programming generators. In Figure 2, 
statements beginning with an asterisk are COMMENTS. The VAR= 
statement is a VARIABLE DECLARATION which is used by the system to 
assign columns to variables. The THRU function is used to 
indicate that the index set for X is 1,  2. Obviously, the above 
problem definition is only useful for the particular problem data 
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shown. More generally, the standard form of a linear programming 
problem : 

Minimize CjXj 

subject to: AijXj - > Bi, 1 - < i - < M 
Xj 2 0 

can be defined in MPGEN using 'sigmaf notation as follows: 

*SAMPLE 2 - SIGMA NOTATION * 
DATA= M,N,A(MxN),B(M),C(N) * 
VAR= X(J), J IN 1 THRU N * 
MAXIMIZE 
s C[JIX(J) 
J IN 1 THRU N * 
FOR I IN 1 THRU M 
S A[I;J]x(J) 5 B[II 
J IN 1 THRU N * 

Figure 3 
Standard Form of an LP in 'Sigma' Notation Format 

The 'standardf form of an LP in Figure 3 obviously applies to 
any linear program; it is only necessary to define the 
appropriate cost and right-hand-side (RHS) coefficient vectors and 
the constraint coefficient matrix, A ,  Thus the algebraic notation 
has two great advantages: (1) it is a very compact notation which 
corresponds almost exactly to the format used in the statements of 
operations research models, (2) the problem definition is general 
in the sense that it is independent of the dimensions of the 
problem (number of variables and constraints involved). 

The disadvantage of the standard format for a linear program 
is that it ignores any special structure which might apply to a 
particular class of problem. Thus, the user is required to 
construct the complete A matrix which can be a laborious and 
error-prone task. This also requires the input and storage of 
unnecessary data since, in practical problems, the matrix is 
generally quite sparse, As illustrated in the following sections, 
MPGEN allows each group of constraints to be defined separately 
allowing the matrix, A, to be built implicitly from its component 
parts thereby eliminating the need to build a massive tableau. 
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THE PROBLEM DEFINITION LANGUAGE 3. - 
Before proceeding to some more comprehensive examples, we 

outline the rules for defining a linear programming problem. 

The MPGEN system interprets the problem statement in one 
pass. The order in which the user must define the problem 
statement is indicated below: 

( 1 ) One or more DATA DECLARATION lines (optional) 
( 2 )  One VARIABLE DECLARATION for each decision variable 

in the problem (required) 
(3) An OBJECTIVE GROUP (optional) 
(4) One or more CONSTRAINT GROUPS 

COMMENT and EXEC statements (see below) can be interspersed freely 
in the text of the problem statement. Comment lines start with an 
'*' in column 1. 

Data Declaration Lines - 
The DATA= line in Figure 3 is a Data Declaration statement. 

It is used by the system to check that the required data 
(variables M, N, A, B, C) are present in the APL workspace and 
that the variables (A, B, C) have the indicated dimensions (i.e, 
A is an MxN matrix and B and C are M- and N-dimensional vectors). 
If either of these conditions is false, the system will ask the 
user either to input the required data or to halt the problem 
interpretation. Execution of this statement for a new problem 
also stores the values of all declared variables in a random 
access file. When the problem is run a second time these values 
are automatically restored to the workspace. 

Variable Declaration Lines 

Variable Declaration lines are used to identify the decision 
variables and to specify the columns associated with these 
variables in the tableau. In general, there must be one such line 
for each decision variable in the problem statement. A Variable 
Declaration line consists of the keyword 'VAR=' followed by the 
variable name complete with (dummy) index variables enclosed by 
parentheses. This is followed by one INDEX TERM for each index 
variable with a comma separating each sucn term. An Index Term 
has the form: 

The SET-EXPRESSION may be any APL expression that returns a 
positive integer scalar or vector result. This specifies the full 
range of values that the index will take on in the problem 
statement. In Figure 3 the Index Term is J IN 1 THRU N indicating 
that J takes on the values 1, 2, .., N. If more than one Index 
Term is present in a Variable Declaration Line the order in which 
they appear determines the order of the decision variable columns 
in the tableau with the right-most decision variable index varying 
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the fastest. 

Objective and Constraint Groups 

A GROUP consists of one or more lines of the problem 
statement. An OBJECTIVE GROUP consists of a line containing the 
word MAXIMIZE (or MINIMIZE), the OBJECTIVE DEFINITION LINE, and, 
(if the latter contains one or more summation symbols) the 
associated SUMMATION INDEX LINE. 

A CONSTRAINT GROUP consists of one or more FOR INDEX LINES, 
the CONSTRAINT DEFINITION LINE, and, if required, a SUMMATION 
INDEX LINE. A Group and its associated data triples form a basic 
unit of data in the MPGEN system. All Groups must be preceded and 
followed by one or more Comment lines. The user is free to write 
any desired descriptive material in the comment lines. 

Objective and Constraint Definition Lines 

An 'Sf followed by a blank in an Objective or Constraint 
Definition line represents the algebraic symbol, '. The range 
for the summation is indicated in the following Summation Index 
Line. In Figure 3 we have: J IN 1 THRU N, meaning that J takes 
values in the SET 1, 2,.,, N. The rows in the tableau for which a 
Constraint Definition is defined are given by one or more For 
Index Lines (see below). 

Objective and Constraint Definition lines differ only in that 
the latter contain one of the relational operators 5 ,  =, or 2 ,  
together with a RHS COEFFICIENT EXPRESSION. The Objective and 
Constraint Definitions contain one or more VARIABLE TERMS 
separated by '+' or - operators. A Variable Term has the 
following form: 

[One or more [Variable Coefficient Varname ({Variable Index 
Summation Expression] Expression)) 
Symbols 1 

where the square brackets indicate optional components and the 
braces represent repetition. For example, the second constraint 
in Figure 2 has two Variable Terms (X(1) and 2X(2)), while the 
Constraint Definition in Figure 3 has only one (S C[ J]X(J)). Note 
that the summation symbols 'Sf apply to only one variable; if 
more than one decision variable appears in an Objective or 
Constraint Definition line, then each must have its own summation 
symbols and appear in a separate Variable Term. The 'Varnamet in 
the definition of a variable term represents a user-chosen name 
for a linear programming decision variable Note that the indices 
for the decision variables in the above were enclosed in 
parentheses in the problem statement--X(1), X(2), X(3) in Figure 2 
and X(J) in Figure 3. The MPGEN System uses the names in the 
Variable Declarations plus the parentheses to recognize decision 
variables when interpreting Constraint and Objective Definitions. 
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In the current implementation, a decision variable can be 
indexed by up to five VARIABLE INDEX EXPRESSIONS separated by 
commas. Each such expression can be a constant, a variable 
appearing in a Summation Index or For Index Line, or any 
non-parenthesized APL expression that returns a scalar result. 
During interpretation, the MPGEN system evaluates each Variable 
Index expression separately using the APL Execute function. 

The VARIABLE COEFFICIENT EXPRESSION component of a Variable 
Term may be any valid APL expression that returns a scalar result. 
Examples are constants, variables and the complex expressions 
containing inner product operations illustrated in Section 6. 
Similar remarks apply to the RHS Coefficient Expressions appearing 
in constraint definition lines. 

Summation Index Lines -- 

If an objective or constraint definition line contains one or 
more summation signs, it must be followed by a Summation Index 
Line in which the corresponding index variables and the values 
they are to assume are defined by one or more Index Terms 
separated by commas. As above, the Set-Expression in the Index 
Term may be any APL expression which returns a positive integer 
scalar or vector result, e.g. 1 THRU N, in Figure 3, The result 
of the Set Expression defines the values taken on by the INDEX 
variable during the summation. Examples of Summation Index Line's 
with more than one Index Term are shown in Figure 6. There must 
be the same number of Index Terms as there are summation signs in 
the preceding line, The correspondence between summation signs 
and Index Terms is obtained from the order (from left-to-right) in 
which the latter appear in the Summation Index Line. 

The indices in the Index Terms corresponding to a Variable 
Term in the preceding Objective or Constraint Expression are 
executed in oedometer order with the right most index varying the 
fastest. Note that the desired result of a Set Expression may 
depend on the value of a previously defined index. Thus, in the 
example in Section 5, we have K IN K, I IN IP[K;] where K is an 
APL vector of index values for K and - IF is an ~ P L  matrix in which 
the rth row contains the index values for I when K=r. Since 
trailing zeroes in an index vector are ignored by MPGEN, it is 
possible for the number of values assumed by the I index to vary 
with the value of K, An alternative way to define an index, I, as 
a function of another index, K, is to use the notation IEK) and to 
store the associated values of I in APL vectors, 11, 12, ... For 
example, we could include the EXEC statements: 

at the beginning of the problem statement, Here, '<- ' ,  is the APL 
assignment function. Subsequent execution of the index 
expression, I IN IEK) , will assign the index values 2 and 4 to I 
when K=2. 
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For Index Lines --- 

The rows i n  the  tableau f o r  which a Constraint  Def in i t ion  
a p p l i e s  a r e  defined by one o r  more preceding For Index Lines. 
These c o n s i s t  of  the  word 'FORf followed by an  Index Term as 
defined above. In Figure 3 t h e r e  is one such statement spec i fy ing  
M c o n s t r a i n t  rows ( I  l i e s  i n  t h e  set 1, 2,. , . , M.) I f  t h e r e  is 
more than one For Index Line the  ind ices  are evaluated i n  
oedometer order  with the  index f o r  the  l a s t  l i n e  varying fastest. 
Again, t h e  Se t  Expressions can be dependent on previously defined 
ind ices .  

EXEC Statements - 
I n  add i t ion  t o  the  s ta tements  which def ine  the  mathematical 

program itself the  user  may i n s e r t  o the r  commands i n  t h e  problem 
statement by the  use of  the  MPGEN EXEC statement. This has  the  
form : 

E v a l i d  APL expression.  

An example of the  use of  the  EXEC statement t o  a s s ign  values  t o  
da ta  va r i ab les  was given above. Other uses are t o  open, read and 
c l o s e  f i les ,  t o  process the  problem d a t a  and t o  erase d a t a  
v a r i a b l e s  t h a t  a r e  no longer requi red .  

General 

The d a t a  va r i ab les  and cons tan t s  t h a t  de f ine  a p a r t i c u l a r  
ins t ance  of  the  problem a r e  imbedded i n  the  S e t  Expressions, 
Variable Index Expressions and Variable and RHS Coef f i c i en t  
Expressions. With the  exception o f  c e r t a i n  reserved names, t h e  
user  may employ any va l id  APL v a r i a b l e  names f o r  t h e  Decision 
Var iables ,  Index Variables and APL d a t a  va r i ab les .  

Any statement can be continued i f  necessary on a succeeding 
l i n e  prefaced by a colon as shown i n  Figure 4 below. 

MPGEN can automat ica l ly  recognize v a r i a b l e s  with upper and/or 
lower bounds and w i l l  f l a g  them on the  MPS problem s ta tement  t o  
al low the  so lve r  t o  u t i l i z e  a more e f f i c i e n t  v a r i a n t  o f  t h e  
simplex method. 

The problem da ta  is contained i n  t h e  Variable and RHS 
Coeff ic ient  expressions while t h e  s t r u c t u r e  is represented  by t h e  
Variable Index Expressions and t h e  S e t  Expressions i n  the  Var iable  
Declarat ion,  For Index and Summation Index Lines. The f a c t  t h a t  
a l l  o f  these  items a r e  expressed using APL s ta tements  ( inc lud ing  
funct ion  calls where necessary)  means t h a t  t h e  problem s ta tement  
is 'bound1 t o  its da ta  only dur ing t h e  i n t e r p r e t a t i o n  process.  
This adds a new dimension of  power and f l e x i b i l i t y  by a l lowing t h e  
user  : 

( 1 )  t o  reduce da ta  s to rage  requirements 
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(2) to eliminate the preprocessing steps necessary to compute 
the Cj and Aij coefficients required by the mathematical 
programming algorithm. 

(3) to perform sensitivity analyses by directly modifying the 
'natural', disaggregated, unprocessed data elements of the 
real world problem. 

The danger in allowing this freedom is that error detection 
may become more difficult because MPGEN does not check the syntax 
of the Set, Variable Index and Coefficient Expressions. This is 
done by the APL processor during the evaluation. This potential 
drawback is mitigated, if not eliminated, however by (1) 
'trapping1 any such error and providing an error message which 
displays the expression where the error occurred, and (2) by 
checking the presence and dimensions of all required data when the 
Data Declaration statement is parsed. 

4. EXAMPLE OF DATABASE USAGE 

The retrieval power of a modern relational database query 
language (such as IBM1s SQL, [I]) can greatly facilitate the 
specification and maintenance of LP models, Such languages allow 
a concise and readable specification which is advantageous both 
for the initial development and subsequent documentation of LP 
models. Further, they allow the logical statement of the problem 
to be independent of particular values in the database and thus 
prevent the model from becoming out of date. The example in 
Figure 4 shows the use of the MPGEN query facility for a small 
problem. The example is based on the following relational schema: 

Profits(Prodname, Factory, Profit) 
Production(Prodname, Factory, Prodamt) 
Resources(Prodname, Factory, Resname, Resamt) 
Reslimits(Resname, Factory, Reslimit) 

Here, Profits, Production, Resources and Reslimits are database 
relations (files) containing information on marginal profit 
contributions, amount of each product produced for the last 12 
months, the resources used during the last 12 months in producing 
these products, and the limits on the available resources for the 
next time period. The problem is to determine the optimal product 
mix for the next time period. 

The GET database function is a shorthand for 'SELECT ALL 
FOR'. It retrieves all columns for rows that satisfy the logical 
qualification FROM the indicated stored relation. The result is a 
relation with the same columns but fewer rows (in this case only 
the rows for the northern factory). The TABLE function transforms 
this relation into a numeric array with dimensions depending on 
the number of items in its left argument. The latter contains a 
list of column names from the original relation. The last column 
name 
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*SAMPLE 3 - DATABASE FACILITY * 
E PROF <- (PRODNAME,PROFIT)TABLE GET 'FACTORY=NORTHERNf 

FROM PROFITS 
E PRODUCED <- (PRODNAME,PRODAMT)TABLE GET 'FACTORY=NORTHERN1 

FROM PRODUCTION 
E USED - ( PRODNAME, RESNAME , RESAMT ITABLE GET FACTORY =NORTHERN 1 

FROM RESOURCES 
E LIMIT c- ( RESNAME ,RESLIMIT) TABLE GET 'FACTORY =NORTHERN ' 

FROM RESLIMITS 
E NUMPRODUCTS <- NUMROWS PRODUCED * 
E NUMRESOURCES <- NUMROWS LIMIT * 
DATA= NUMPRODUCTS, NUMRESOURCES, PROF, PRODUCED, USED, LIMIT * 
VAR= X(J), J IN 1 THRU NUMPRODUCTS * 
MAXIMIZE 
S PROF[J] X(J) 
J IN 1 THRU NUMPRODUCTS * 
FOR I IN 1 THRU NUMRESOURCES 
S (USED[I;J] - PRODUCED[JI) X(J) 5 LIMITEI] 
J IN 1 THRU NUMPRODUCTS * 

Figure 4 
Database Example 

specifies the column in which the numeric data is contained; 
preceding column names each specify a dimension of the resulting 
array. For example, the USED array in the above example, will 
have rows corresponding to the unique values of PRODNAME and 
columns corresponding to the unique values of RESNAME, The 
numeric values for the northern factory are obtained from the 
RESAMT column of the RESOURCES relation and placed into this 
2-dimensional array. Default values of zero are provided if there 
is no data in the relation for particular product-resource 
combinations. 

Continuing the above example, NUMROWS is an MPGEN function 
that returns the number of rows in an array. NUMPRODUCTS and 
NUMRESOURCES are computed for later use in specifying the index 
sets for the problem. The DATA statement checks that all the data 
are present and also saves it in the random access file (as 
JUNEPRODDAT, if JUNEPROD is the name of the problem statement). 
The arithmetic expression appearing in the constraint definition 
uses USED and PRODAMT values to compute technology coefficients 
corresponding to the amount of resource used per unit of product. 
Note that the problem statement will be valid again next month 
(even though the data may have changed) and that a record is 
automatically maintained of the data used to compute each month's 
production plan. 
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As another example, suppose that unit profit margins are 
calculated from the prices of the products (which are invariant 
over factory and market) and their standard costs (which depend on 
both the product and the factory where it is produced). Then the 
Profits relation might be replaced by the following two relations: 

Prodprices(Prodname , Price) 
Prodcosts(Prodname, Factory, Stdcost) 

and the unit profits array above could be calculated as follows: 

E PRICECOSTS <- GET 'FACTORY=NORTHERNt FROM 
JOIN 'PRODPRICES*PRODCOSTS OVER PRODNAME' 

E PROF <- ((PRODNAME,FACTORY,PRICE)TABLE PRICECOSTS) 
- (PRODNAME,FACTORY,PRICE)TABLE PRICECOSTS) 

where the temporary relation, Pricecosts, resulting from the 
relational join operation consists of a concatenation of the rows 
of Prodprices with those of Prodcosts where the Prodname values 
are equal: 

Pricecosts(Prodname, Price, Factory, Stdcost ) 

5. USING & TO FORM CONCISE PROBLEM STATEMENTS 

There are many situations in which the power of the APL 
language can help develop a very concise problem statement. A few 
examples are described below. 

Logical Conditions 

Suppose that the index variable, I, appears in one of the For 
Index lines in a Constraint Group and that the RHS coefficient 
should equal one when I = 1 and should equal zero otherwise. 
Instead of generating a data vector for the RHS of zeroes and 
ones, the RHS Coefficient Expression can be stated simply as the 
logical expression, I = 1 (APL returns a '1' if a logical 
expression is true and a ' O f  if it is false). 

Figure 5 is an example of the use of logical conditions to 
specify constraint coefficients in a network problem. The data is 
generated in the first few lines of the problem statement. The 
SHAPE function generates a matrix with 13 rows corresponding to 
the arcs and two columns specifying, respectively, the 'from1 and 
'to1 nodes for the arcs. T(A) represents the amount to be 
transported on the Ath arc. The logical expression I = ARCSEA; 11  
will evaluate to 1 if arc, A, emanates from node, I. This will 
place a '1' in the Ith row and Ath column of the tableau. The 
other constraint coefficient is interpreted similarly. Finally, 
the last line in the problem statement erases all of the data. 

Finally, consider the constraint set: 

jfi 
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* GENERALIZED NETWORK PROBLEM FORMULATION 
* SAMPLE TRANSSHIPMENT PROBLEM (FROM SCHRAGE, PAGE 125) * 
E NODES <- 1 THRU 9 
EARCS<- 132SHAPE 1 3  1 4 2 3 2 4 2 5 3 6 3 7 4 6 4 7 4 8 5  
: 7 5 8 5 9  
ECOST<- 1 2 3 1 2 5 7 9 6 7 8 7 4  
E EXOG <- 9 8 0 0 0 -3 -5 -4 -5 * 
E NARCS <- NUMROWS ARCS * 
VAR=T(A), A IN 1 THRU NARCS * 
MINIMIZE 
S COSTLA] T(A) 
A IN 1 THRU NARCS * 
FOR I IN NODES 
S (I=ARCS[A;~]) T(A) - S (I=ARCS[A;~]) T(A) = EXOG[I] 
A IN 1 THRU NARCS, A IN 1 THRU NARCS * 
E )ERASE NODES ARCS NARCS COST EXOG NARCS * 

Figure 5 
Use of Logical Conditions to Specify Coefficients 

The index set for j varies with the value of i. It can be 
written in MPGEN as: 

(-  ( 1  THRUN) = I) / 1 THRU N 

where I - '  is logical NOT and ' / '  is the APL 'compression' operator 
(see E61). 

Other APL Expressions and User Defined Functions 

Any APL statement that returns a scalar result can be used as 
an objective function, constraint or RHS coefficient. As a 
non-trivial example, consider the following term which appears in 
the objective function of a problem in [21: 

This can be modelled in MPGEN as: 

Here the APL 'inner product1 operator, +.x, is used to perform the 
multiplication of the pfs and qls and the summation of the 
resulting products over r. 
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The model in [2] is concerned with the optimal assignment of 
programs and datasets to storage devices. The following 
constraint ensures that each program and dataset is assigned to 
only one device: 

Here, for example, Uk(i) is the collection of data sets required 
by program i in usage class k. This is represented in MPGEN bv: 

FOR L IN L 
FOR K IN K 
FOR I IN E[K;] 
S S X(U,J~K,L) - (+/O<U[K;I;])Y(I,K,L)=O 
U IN - U[K;I;], J IN - J[L;I 

Here, U is a three dimensional array in which the positive 
elements in each vector, u[K; I ; I, represent the datasets used by 
program i in usage class k Trecall that zeros are ignored in index 
expressions). The APL expression, + / 0 < UCK; I; I, computes the 
cardinality of Uk(i). The expression, 0 < X, returns a vector of 
0's and 1's where the 1's correspond to positive elements in X. 
This vector is then summed by the 'sum reductionf operator, +/ 
(usually pronounced 'plus over ' ) . 

Finally, users who are knowledgeable in APL can code their 
own functions for inclusion in the problem statements. This can 
lead to extremely elegant and powerful model definitions. 

Interactive Input of Data 

If objective function, constraint or right-hand side 
coefficient expressions vary from run to run (perhaps for 
sensitivity testing purposes) this data may be input interactively 
during problem interpretation. The user simply types the word 
'ASKt in place of the relevant Variable or RHS Coefficient 
Expression. As it interprets the problem MPGEN will prompt the 
user for the data items after displaying the current Objective or 
Constraint Definition Line and the appropriate index values. 

INTERACTING WITH THE SYSTEM 

There are two modes of interaction with the system. One is 
to sign-on to APL, load the MPGEN workspace, type 'RUNPROBLEM' and 
interact with the system via a menu-driven interface as shown in 
Figure 6. The second is to define the problems externally and to 
pass them as files to APL using a system command file. This is 
the method used by the LPFORM expert system as explained more 
fully in the next section. 

In the interaction shown in Figure 6, the data dictionary of 
previously stored problem definitions is listed and the TRANSPORT 
problem is chosen and parsed. This generates data triples in MPS 
format. Before running the problem the results of the parse are 
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first displayed in both 'extensivet algebraic form and as a LP 
tableau. The final step shown in the example generates a file 
containing the problem statement in MPS format for input to the 
LINDO system. 

RUNPROBLEM 

OPTION? (OR TYPE HELP) *** MPGEN **% 

HELP 

TO SELECT AN OPTION TYPE THE FIRST 3 LETTERS: 

NAM: SET PROBLEM NAME 
DBS: USE THE DATA BASE SYSTEM 
DAT: EDIT DATA 
DEF: DEFINE PROBLEM STATEMENT 
DIC: VIEW PROBLEM DICTIONARY 
PAR: PARSE PROBLEM STATEMENT 
SHO: SHOW RESULTS OF PARSE IN ALGEBRAIC FORM 
TAB: DISPLAY LP TABLEAU 
LIN: GENERATE LINDO STATEMENT 
APL: EXECUTE APL STATEMENTS 
STO: STOP EXECUTION 

OPTION? (OR TYPE HELP) *** MPGEN *** 
DIC 
PROBLEM/DATA NAME 

AIRLINE 
AIRLINEDAT 
ALGEBRAIC 
DBASE 1 
DBASE 1 DAT 
MULTD I V 
MULTDIVDAT 
TRANSARCA 
TRANSARCB 
TRANSPORDAT 
TRANSPORT 

OPTION? (OR TYPE HELP) *** MPGEN **+ 
NAME 

PROBLEM NAME? TRANSPORT 

Figure 6 
Sample Interaction with the MPGEN System 
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OPTION? (OR TYPE HELP) *** MPGEN *** 
PARSE 

RESTORING VALUES FOR: M N COST S D -------- PARSING PROBLEM STATEMENT = TRANSPORT 
* SAMPLE TRANSPORTATION PROBLEM FROM WAGNER PAGE 215 

VAR= X(I,J), I IN 1 THRU M, J IN 1 THRU N * 
MINIMIZE 
S S cOST[I;J] X(I,J) 
I IN 1 THRU M, J IN 1 THRU N * 
FOR I IN 1 THRU M 
S X(I,J) < S[Il 
J IN 1 THRU N * 
FOR J IN 1 THRU N 
s X(I,J) L D[JI 
I IN 1 THRU M * 
LP TRIPLES (ROW,COL,VALUE) HAVE BEEN FORMED. 
TABLEAU SIZE: ROWS = 6 COLS = 7 TRIPLES = 23 

STORED VALUES IN FILE FOR: M N COST S D 
ERASED VALUES FROM WS FOR: M N COST S D 

OPTION? (OR TYPE HELP) *** MPGEN *** 
SHOW 

MINIMIZE 
XI1 + 2x12 + 2x21 + 3x22 + 3x31 + 4x32 

Figure 6 
Sample Interaction with the MPGEN System (conttd) 
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OPTION? (OR TYPE HELP) *** MPGEN *** 
TABLEAU 

Xll XI2 X21 X22 X31 X32 RHS 

OPTION? (OR TYPE HELP) *** MPGEN *** 
LINDO 

-------------- START OF GENLINDO ----------------- 
TRANSPORT - FROM APL WS AT 8/17/1986 1:06:23 ____---__------ END OF GENLINDO ------------------ 

OPTION? (OR TYPE HELP) *** MPGEN *** 
STOP 

Figure 6 
Sample In te rac t ion  with the  MPGEN System ( c o n t f d )  

Correct ions and modificat ions t o  t h e  problem s ta tement  are 
made using a s p e c i a l  e d i t o r  accessed by the  DEF menu command. 
Simi lar ly  the  d a t a  c o e f f i c i e n t s  can be input  and modified using 
the  same e d i t o r  v i a  the  DAT menu command. When a newly defined 
problem is parsed the  problem d e f i n i t i o n  is automat ica l ly  added t o  
the  random access  f i le .  A s  each DATA= statement is executed,  t h e  
system f irst  checks i f  the  declared d a t a  items are i n  the  
workspace. If they are, then t h e i r  dimensions a r e  checked. I f  a 
da ta  item is missing, the  user  is asked t o  input  its values  
(note  t h a t  t h i s  is usual ly  the  most convenient method f o r  
i n i t i a l l y  en te r ing  problem d a t a ) .  The values of  the  d a t a  items 
a r e  then s t o r e d  i n  the  random access  f i le .  A s  i l l u s t r a t e d  i n  
Figure 6 ,  i f  a previously defined problem is accessed its 
associa ted  d a t a  is automat ica l ly  r e t r i e v e d  from the  random access  
f i l e  a t  the  start o f  the  parse s t ep .  The da ta  (which may have 
been modified by EXEC s ta tements  i n  the  problem s ta t ement )  is 
automatical ly s t o r e d  back i n t o  the  f i l e  and erased from t h e  
workspace a t  t h e  end of  the  parse.  These d e f a u l t s  can be ad jus ted  
by the  user t o  a s s i s t  i n  generat ing and c o n t r o l l i n g  many d i f f e r e n t  
vers ions  of  the  same problem f o r  exp lo ra t ion  o f  management 
a l t e r n a t i v e s .  

The DBS menu option al lows the  user  t o  i n t e r a c t  wi th  t h e  
database system t o  de f ine  the  schema and t o  input  and maintain 
da ta  i n  the  r e l a t i o n a l  database. Note t h a t  the  da tabase  r e t r i e v a l  
f a c i l i t y  is always a c c e s s i b l e  from t h e  MPGEN parse r  s o  no s p e c i a l  
s t e p s  need be taken by the  user .  
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7, USE OF MPGEN WITH THE LPFORM EXPERT SYSTEM - ------- - 
A s  indicated i n  Figure 1, LPFORM genera tes  a l g e b r a i c  

s ta tements  i n  the  MPGEN format and writes them t o  a f i l e  f o r  
subsequent processing by MPGEN. MPGEN then genera tes  t h e  MPS 
statement f o r  input  t o  MPSX o r  LINDO. A s  a l l  of  t h i s  is achieved 
i n  one s t e p  by use of  a command f i l e ,  the  presence o f  MPGEN is 
t ransparen t  t o  the  user .  An exception t o  t h i s  occurs i f  the  d a t a  
items r e f e r r e d  t o  i n  the  symbolic s tatement a r e  not  defined. A s  
explained above, MPGEN w i l l  then reques t  t h a t  the  user  de f ine  them 
i n t e r a c t i v e l y  before i t  proceeds with the  parse. 

The use of MPGEN i n  t h i s  way has  g r e a t l y  s impl i f i ed  the  
development of a working exper t  system. The major advantage has 
been t h a t  i t  is poss ib le  t o  avoid developing a complex a r i t h m e t i c  
c a p a b i l i t y  i n  PROLOG. A s  we have seen,  the  use of  the  APL 
language within the  context  of  MPGEN is use fu l  i n  forming very 
concise and general  problem statements. 

LPFORM is concerned with the  generat ion of  symbolic problem 
statements.  There a r e  two forms. In  'symbolic mode1, the  system 
makes no attempt t o  l i n k  the  da ta  c o e f f i c i e n t  symbols i n  t h e  
problem statement with da ta  values (un less  these  are input  
d i r e c t l y  by the  use r ) .  In  ' da ta  mode1, the  symbols i n  the  
a lgebra ic  statement are l o g i c a l l y  l inked t o  d a t a  values e i t h e r  
e x p l i c i t l y ,  o r  through reference  t o  e x t e r n a l  t a b l e s  o r  through 
database r e t r i e v a l  s tatements.  

Currently,  the  physica l  l inkage o f  the  symbols f o r  sets and 
d a t a  coe f f i c i en t s  is handled through the  MPGEN system i n  a number 
of  ways: 

( 1 )  I f  t h e  problem statement is generated i n  symbolic mode, 
the  assignment o f  da ta  t o  the  symbols is handled e n t i r e l y  
through MPGEN. The s imples t  way is simply t o  inpu t  t h e  d a t a  
values when prompted during the  parse  of  the  problem statement.  
Al ternat ive ly ,  t h e  da ta  may be s t o r e d  d i r e c t l y  i n  t h e  workspace 
by the  user p r i o r  t o  running LPFORM. 

(2) The exper t  system accepts  d a t a  i n p u t s  d i r e c t l y  from t h e  user  
and t r a n s l a t e s  these  i n t o  EXEC s ta tements  a t  t h e  beginning o f  
the  MPGEN problem statement.  This  is normally t h e  way i n  
which s e t s  are defined. 

(3 )  Users provide the  names of  the  r e l e v a n t  e x t e r n a l  d a t a  t a b l e s  
during t h e i r  i n t e r a c t i o n  with LPFORM. LPFORM then maps the  
da ta  items i n  the  t a b l e s  t o  the  symbolic names i n  the  problem 
statement and genera tes  EXEC s ta tements  t h a t  cause MPGEN t o  
access  the  f i l e ( s )  containing t h e  t a b l e s  and t o  read them i n t o  
appropr ia te ly  named APL var iables .  

(4) Users provide database r e t r i e v a l  s ta tements  t h a t  are w r i t t e n  
d i r e c t l y  by LPFORM as EXEC s ta tements  as i n  Example 3. 

(5) Users provide a r i t h m e t i c  s ta tements  ( o r  a mixture of  da ta  
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retrieval and arithmetic statements) during their interaction 
with LPFORM. LPFORM simply passes these through for execution 
in MPCEN. Note that much can be done with only the 
rudimentary commands illustrated in Section 2. 

A current research and development objective is to develop 
the expertese necessary to allow LPFORM to automatically generate 
the database retrieval and arithmetic expressions necessary to 
perform (4) and (5) automatically. 

8. SUMMARY 

The problem definition language described in this paper 
provides a convenient and concise means for defining linear and 
integer programming problems. Because of its labor saving 
characteristics, it allows the model builder to implement models 
more easily and to experiment with alternative formulations. This 
is most useful in a DSS environment since it allows one to quickly 
form a 'data baset of models in a wide range of areas such as cash 
management, capital budgeting, production planning and scheduling, 
transportation, facilities location, marketing and so on. 

MPGEM1s concise algebraic statements are suitable target 
outputs for current AI-based languages such as PROLOG and it is 
proving to be a very useful tool in the development of the LPFORM 
system for formulating LPs. In the long run, however, the 
objective is to integrate all the components shown in Figure 1 and 
to include additional components for reporting, analysing and 
explaining the results of model runs. 
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