LPSPEC: A Language

for

Representing Linear Programs

Pai-chun Ma
Graduate School of Business Administration
New York University
New York, New York

Frederic H. Murphy

School of Business

Temple University
Philadelphia, Pennsylvania

and

Edward A. Stohr
Graduate School of Business Administration
New York University
New York, New York

October 1986

Center for Research on Information Systems
Information Systems Area
Graduate School of Business Administration
New York University

Working Paper Series

CRIS #139
GBA #86-104

This work was carried out as part of a jointly-defined research
study on expert systems with the IBM Corporation.

Table of Contents

1. Introduction
2. The Role of LPSPEC in the LPFORM System
3. Using LPSPEC: A Complete Example
3.1. The Transportation Problem
3.2. Running LPFORM in File Mode
3.3. Running LPFORM in Interactive Mode
4. Further Examples of LPSPEC
4.1. Model Mapping Approach: Using Call model
4.2. First Principles Approach: Using Def _Activity
4.3. A More Elaborate Example
5. LPFORM Ultilities
5.1. LPSPEC Support Facilities
5.2. LPFORM Help Facility
6. Conclusion
References
I. Appendix: LPSPEC Language Statements
I.1. Listing of LPSPEC Commands
I.2. Detailed Definitions of LPSPEC Statements
II. Appendix: LPFORM Commands
III. Appendix: Model Template Library

alem
Worl

-1 © =~ W =

—
©

19

for Digital Economy Research

Paper [8§-86-104

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 5-1:
Figure 5-2:
Figure I-1:
Figure I-2:

Figure I-3:
Figure I-4:
Figure I-5:
Figure I-6:
Figure I-7:
Figure I-8:
Figure I-9:
Figure I-10:

List of Figures

Linear Program in matrix notation

Integrated LP System Diagram

LPFORM System Diagram

Create-Block Screen

Graphical View of the Transportation Problem
LPSPEC Statements for Transportation Problem
Communication between Systems

Picture of an Activity Set

Graphic View of Energy Problem

Mathematical Formulation of Energy Problem
LPSPEC Statements for Model-Mapping Approach
Internal tableau Representation of Energy Model
Data Dictionary for Energy Model

Formulation Statements for APL Tableau generator
Main Help Sereen

Template Maintenance Facility

Defining Inputs and Outputs of a Block

Mapping a Transportation Model on to the Sources - Conver-
sions Link

Create Blocks at subsequent levels

Define Production Activity
Defining a source set

Defining the Commodities to be Transported
Link Blocks at Set Level

Linking common commodities among Blocks
Define Optimization Direction

Defining transportation cost data Table

il

[ST I ST C T T s I S
gﬂmm.&ww»—aommmaw»—-

W o
W O

35

38
42
43
45
47
48

1. Introduction

Linear programming (LP) has had many successful applications in production
planning, logistics, finance and marketing [13]. An LP model involves the maximization
(or minimization) of a linear objective function subject to the satisfaction of linear equa-

tions and inequalities [2]:

Max e
Subject to
Az < b
z >0

Figure 1-1: Linear Program in matrix notation

Significant progress has been made in the development of algorithms and software
for solving large LPs where the matrix, A, may have thousands of rows and columns.
However, building such large scale models for real world problems is a time-consuming
and error-prone task. The objective of the research described in this paper and in [6],

[11] and [7], is to develop an intelligent software system that will help expert and non-

expert users formulate LPs.

The process of formulating and solving an LP has five stages: problem investiga-
tion, model formulation, data binding, algorithmic solution and analysis of the solution.
Various types of knowledge and reasoning processes are used at each stage. The
problem investigation and model formulation stages are currently accomplished by
human experts because of the high degree of ambiguity and complexity involved. By
data binding we mean the assignment of data values to the symbols in the model state-
ment. Modeling languages such as OMNI, [12] and GAMS, [8] are helpful, but this

stage is still quite difficult and error-prone. Advances in computer technology and op-

Center for Digntal
Sterm School of Bus

Working Paper [S-8

Econonn

2

timization theory have made the fourth stage, solving the LP, relatively routine even for

very large problems. Finally, a number of systems now exist to help users analyze the

results of LP models [4].

Our research is directed towards the relatively neglected formulation stage of LP

modeling. The LPFORM system is based on the following design principles:

(]

. Change the representation used for stating an LP away from the traditional

mathematical or tableau-oriented approaches and towards a more visual
form, [6].

. Support a number of problem-solving strategies to reduce the cognitive com-

plexity of the task. Examples include hierarchical decomposition of the
problem, inheritance of properties from more general objects, and a non-
procedural approach that allows users to define their problems piece-by-piece
in an arbitrary order.

. Allow large models to be built from combinations of smaller models.

Provide a model library with standard models and allow users to add their
own model templates.

. Provide many different problem representations, each of which is suitable for

a different user task.

. Check for consistency at all stages in the development of the model. In cur-

rent systems, one has to run the model to discover errors and then under-
take a difficult investigation to determine the cause. This is done by ex-
amining the structure of the LP tableau either manually, or preferably, using
sophisticated software [4].

The examples in Section 3 and 4 illustrate some of these ideas.

The purpose of this paper is to describe the current interface to the LPFORM sys-

tem which consists of a command language, LPSPEC, rather than the graphics interface

mentioned above and discussed in detail in [6]. Section 2 describes the role of LPSPEC

in the LPFORM system. Section 3 shows a complete example of the use of LPFORM to

enter for Digntal

Econd

M1

3
formulate and execute a small LP. Section 4 provides more examples of the use of

LPSPEC to define LP models. Section 5 discusses some technical features of LPSPEC,
together with the online "Help" facility. Finally, the three Appendices constitute a ref-
erence manual for the system. These describe respectively, the LPSPEC language, the
LPFORM interactive commands and the standard model templates provided by the sys-

tem.

2. The Role of LPSPEC in the LPFORM System

Figure 2-1 shows the architecture of the LPFORM system. The design resembles

the stages for formulating and solving LP problems given above.

| Integrated LP

DATA BASE SYSTEM
[] : Process
{ } : Data or Knowledge Base

|

| system ANALYZER [

| . >[] e 2 |

I | | |

| | | |

| I | |

| | LF FORMULATOR TABLEAU LP | |
LA v (LPFORM) GENERATOR LP SOLVER v | u
8 <==> @raphic ~——=>[]-—==== > Algebraic -->[]----> Matrix ----->[]----> Solution --> §
E Dialogue - Statements - Statements | E
R | [(*Case") | R

Data Data |

Knowledge Values |

I | |

|

]

I

|

|

I
!
[
!
[
[e >{ Pmmmmmmman -
|
|
|
|

Figure 2-1: Integrated LP System Diagram

Currently, the LP Generator is composed of three sub-systems loosely coupled via

communicating files:

1. The LPFORM system, ([10], [5]) which translates from a graphics represen-
tation to an algebraic representation.

2. A Tableau Generator, MPGEN [15], which is similar in function to the
GAMS system [8] (both take an algebraic approach).

3. IBM’s MPSX system for solving linear and integer mathematical programs
[9] (or the LINDO system [13]).

School of Business
Paper [8§-86-104

mter for Dienal Economy Research

Another two systems will be added later:

1. IBM’s SQL database management system (DBMS) [1]. This will provide
meta information on the structure and contents of the database to the
LPFORM system which will generate the SQL queries [1] to obtain the data
needed by the tableau generator.

2. A tableau solution analyzer (ANALYZE [4]) which will analyze the solution
and provide useful management reports.

The user first defines the problem using the graphics interface. This interaction is
then translated into statements in the LPSPEC language described in this paper.
LPSPEC is the first of five internal representations that can be viewed by the user (see

Figure 2-2).

[1 : Process
{ } : Data or Knowledge Base

LPSPEC Model &
Definition Fragment Data Base
Base { } Library { }<-—-———--——- . System { }
- i | 2
| | | |
| LPFORM | | | | |
| | | | ALGEBRAIC | | A
| | | | FORM | | 1
| | | | GENERATOR [(8) | g
| | | | e > e
| | | I < ” | b
| | | [| | | r
| | | (4) Model Pieces & | | a
| I | Data Dictionary | I 4
| [| I | | ¢
I | | DATA DICTIONARY [J<----" |
| | | GENERATOR . |l s
[| | | |t
G | v v Model Pieces assembled | a
r | GRAPHICAL LPSPEC BLOCK into constraints | t
a | INTERFACE (1) PARSER (2) ANALYZER 3 I | e
p === >[]----> LPSPEC --->[]----> Pictorial --->[]J----> Model --->[] | m
h Language Problem Pieces (PUZZLER) | e
i statements representation MODEL | =
c SYNTHESIZER | ©
s | s
|
|
I

I
I
!
|
|
|
I
I

v
(1) Compilation
Message

Figure 2-2: LPFORM System Diagram

The second representation involves the internal data structures that record the

enter for Diettal Economy Research

-

5
network structure of the problem. The third consists of the "model-pieces" that are

generated by the inference rules in LPFORM. These will be needed in the algebraic
statement of the problem. Each model-piece represents a term in a constraint or objec-

tive function expressed in summation notation. For example:

a. X. .
t4 %)
F

In the fourth representation, the model-pieces are assembled into a ’'picture’ of the
tableau obtained by arranging the algebraic terms in rows and columns. This is accom-
panied by a model data dictionary defining all variables, coefficients and indices. This
representation is useful both for on-line checking and as permanent documentation of
the model. The fifth representation is written in the input language of whatever
tableau generator is being used. It is obtained simply by reformatting the internal

tableau.

The development work so far has involved the construction of an intelligent sys-
tem to translate between representations (2) and (4). The LPSPEC language to be
described in this paper is a formal, command-oriented language intended ultimately to
be an internal representation only. At the present stage of development of the
prototype however it is the only user interface. After the graphics interface has been
developed, LPSPEC will remain: (1) as an intermediate language generated by the inter-

face (see Figure 2-2) and (2) as an alternate input medium.

The current version of LPSPEC is preliminary in nature. It is capable of
representing only a subset of LP models relating to production planning and logistics.

Much work will be required to determine its completeness as a language for defining

LPs.

Center for Digital Econom
stem school of Busine

Working Paper [S-86-1

Research

6
LPSPEC is a collection of declarative statements rather than a programming lan-

guage. Each statement is a collection of data items that result from an interaction with
the user in the graphics interface. The screen shown in Figure 2-3 shows the relation-
ship. Each of the menu items on the right of the screen (REL though OPT) has a cor-
responding LPSPEC statement. There are two classes of commands. The "Data" com-
mands in the upper right of the screen declare the relations, tables, parameters and sets
that will be required. The "Structure" commands in the lower right of the screen,

define the structure of the LP as illustrated below.

| PROBLEM: energy_model VERSION: 1 LAST UPDATE: 10/01/86 | DATA:
| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT|
| | MODE: SYMB
LEVEL: 2 GRAPH: 1 CURRENT OP: CREATE BLOCK REL: T
TAB: t
PAR: p
source conversion sink SET: {s}
residential STRUCTURE:

]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ENTER BLOCK NAME: industrial
|

domestic refineries c-B: [I
[F 3 L-B: —>
L=0=I% 3-—3
ransportation | B-I10: =[]=
] | D-I: .:
foreign eTegtric-utilit | p-Cc: i_I
] | D-R: 0=0
industrial | D-T: ___
] | D-A: =|-
| Cc-M: < |
| REP: 111 |
BACK [1 FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE [1 | OPT: ~/v |
| |
| |

Figure 2-3: Create-Block Screen

Users will interact with the graphics syétem to build network representations of
their models by pointing to one of these commands and then to the position in the cen-
ter of the screen upon which the command is to act. In LPFORM, a "block" represents
an arbitrary collection of activities at a point in space or time. The user will be able to
place an icon representing a "block" in the center of the screen by selecting "C-B" on

the right and then indicating the desired location in the center of the screen. The user

7
will then be asked to supply relevant descriptive information and the corresponding

CREATE-BLOCK LPSPEC command will be generated by the graphics subsystem.

There are two formulation modes in LPSPEC. In "Symbolic Mode", no attempt
is made by LPFORM to link the symbols in the problem statement to their values. In
other words, the Data Commands in Figure 2.2 are not used (except for SET). In
"Data Mode", LPFORM links the algebraic symbols to their values in database rela-

tions, tables and parameter lists. Only Symbolic Mode has been implemented so far.

The design proposed for the graphics interface is presented in [6].

3. Using LPSPEC: A Complete Example

In this section we show how to define and run a simple LP problem in full detail.
We define the problem to be solved, explain the LPSPEC formulation and then give an
annotated example showing all steps in the use of LPFORM. There are two ways to
run LPFORM. In "file mode", the user enters the LPSPEC statements in an external
file and specifies the file name when prompted by the system. In "interactive mode",
LPSPEC statements are entered one-at-a-time in response to prompts from the system.
The example problem is explained in Section 3.1, solved using the file mode in Section

3.2 and solved interactively in Section 3.3.

3.1. The Transportation Problem

Assume that the user wishes to develop an optimal pattern of distribution between
vendors located at New York and Boston and warehouses at Buffalo, Houston, and Den-
ver. There is only a single commodity to be transported. In mathematical notation this

transportation problem is:

MIN X te; X ;
1 € vendor,j € warehouse
SUBJECT TO
Z X:',j < sy Y 1 € vendor
7€ warehouse
Z Xz',j > dj’ Y j € warehouse

1 € vendor

Here we have two indices, 7 and j, representing vendor and warehouse, a decision
variable, Xi,j’ representing the transportation activity between vendors and warehouses,
and three coefficients, tcz',j’ S and dj’ representing the unit transportation cost between
¢ and 7, the amount of the commodity supplied by vendor ¢, and the amount of the

commodity demanded by warehouse j. Figure 3-1 provides a graphical view of the

problem.
Top Level:
Vendors —-— = > Warehouses
Second Level:
Buffalo
Boston
Denver
New York
Houston

Figure 3-1: Graphical View of the Transportation Problem

This graph could be constructed on a graphics screen as discussed above and in
more detail in [6]. The LPSPEC statements that would be generated as a result of this

interaction are shown in Figure 3-2.

create _block(examplel, [vendor,warehouse]).
link_block(space,explicit,[vendor,warehouse],x).
create block(vendor, [newyork,boston]) .

create block(warehouse, [buffalo,houston,denver]).
optimize (min,examplel,cost,symbolic) .

Figure 3-2: LPSPEC Statements for Transportation Problem

9
The first CREATE-BLOCK statement defines a 'block’ (in this case, "examplel")

and associates with it its children blocks ("vendor" and "warehouse"). The highest
block in the hierarchy automatically becomes the problem name. The LINK-BLOCK
statement defines a flow from vendors to warehouses. This completes the representation
at the top level in Figure 3-1. The next two CREATE-BLOCK statements define the
second level diagram in the figure. Finally, the OPTIMIZE statement records the direc-
tion of optimization, the kind of objective function type as "cost" and the mode of the
solution as "symbolic". The type of objective function is irrelevant here but is useful
when many different templates are to be combined. As explained above, no attempt is

made to link the problem statement to data values when the mode is symbolic.

Figure 3-1 is an example of a "generalization" hierarchy, [14]. It is designed to
simplify the definition process for the user. Properties defined at higher levels are
automatically inherited by lower levels. In this case, the fact that vendors are linked to
warehouses in the top level causes links to be generated from all instances of Vendor to
all instances of Warehouse in the second level. This is the default mode; arbitrary net-
works can be defined at any level in the hierarchy by entering the arcs individually, or

by specifying an external list where they can be found.

3.2. Running LPFORM in File Mode

We now show how this problem can be formulated using the file-mode and then
run through the MPGEN and LINDO systems to obtain a solution. The same problem

will be used in the following section to illustrate the interactive use of LPFORM.

The following steps are to be performed:

1. Enter the LPSPEC problem statement using the system Editor.

2. Execute LPFORM system to parse the LPSPEC statement and to write the

Stem School of Business

Working Paper IS-86-104

10
formulation for the MPGEN system on an external file.

3. Execute MPGEN, which will allow the user to interactively define the data
for the problem (necessary since the mode is "symbolic") and write the MPS
form of the problem on another external file for input to LINDO.

4. Execute LINDO to obtain the solution to the problem.

Figure 3-3 illustrates the communication between these systems and gives the file

names that are used in the example.

LPSPEC MPGEN MFS
Definition Definition Format

transf.x06 --> LPFORM --> exampl.apl --> MPGEN --> lindo.aas --> LINDO --> solution

Figure 3-3: Communication between Systems

This process is illustrated below from an actual run of the system. The state-
ments in Figure 3-2 have already been entered into the transf.xob file. User responses

to prompts by the system are underlined. Explanatory comments are shown in italics.

To execute LPFORM the user types "do Ipform" and enters the terminal type in
response to the prompt. A menu is displayed.

€do lpform

yes

| ?- lpform.

Terminal Type (vt100, heath): heath

sk ok ok e o o sk sk ok ok R R kK KKK e R Rk sk Rk R R kR R Rk ok Rk Rk

* *
* LPFORM VERSEION 4 .1 *
* - *
* September 1986 Pai-chun Ma *
* (212)505-9392 *
* —-— e *
* Type: *
* *
* help. To obtain an explanation of LPFORM. *
* *
* run_problem. To formulate an LP problem. *
* *
* template. To maintain library of problem templates. *
* *
* lpspec. To modify Lpspec definitioms. *
* *
* ctri~z To exit LPFORM. *
* *

11

ook skokok ok ko ko ke ek o ok Gk ¥ *k ¥ + bk k¥ 4 *

The user types "run__problem.” in order to generate the LP formulation and 1is
then asked to give the names of two input files and two output files.

| ?= run problem.

—————————————————— LPFORMulator version 4.1

Enter the names of files to be used:

1. File names must be enclosed by two single quotes.
2. The input of a list (multiple items) must be terminated by a periocd.
3. To use system default file names type "d"

Template file(s) Ts
LPSPEC file(s) ¢ ‘transf.x05’.
Template save file :d
MPGEN specification file : d

"Template files” are used to load previously defined models that may form part
of the specification of the new model. The user types ".” to indicate that none are to
be used in this run of LPFORM. The LPSPEC file, transf.x05, contains the LPSPEC
definition in Figure 3-2.

The user decides to use the system default file names for the "template save
file", where the formulated model will be stored for possible reuse and the "MPGEN
speci fication file”, which will contain the final algebraic formulation.

Define identifiers for indices, variables and coefficients? y

The "dentifiers" are used in the algebraic formulation. The user will be asked
to input them later after the system has determined what 1s required.

Choose problem representations to be displayed:
(1) LPSPEC compilation, valid and error statements.
(2) Block reascning, relevant blocks, flows, activities.
(3) Model piece construction, a tentative LP formulation.
(4) Internal tableau, final LP formulatiom.
(6) MPGEN specification.

Checking points? (1,2,3,4,5): 4,5.

The user has asked to see the final two representations of the problem. The sys-
tem now interprets the LPSPEC statements in the input file. If checking point 1. had
been selected the system would have displayed each statement as it was parsed.

>>>>>> Compiling LPSPEC File: transf.x05 <<<<<<

ok R R R AR ok R R AR R R R R R KRR RR R R R R R R R RNk RR R R

Center for Digntal Economy Researcl

Sterm School of Business

Worl

a6-104

ng Paper [S-

12

* *
* Compilation Statistics for File: transf.x05& *
* *

s ook o R R R KRR R R R o R R R R R R e ek kR sk kR

Number of lines read: 5

Number of Valid lines: B

VALID statements saved in file: transf.ok
Number of Error limnes: 0

Detail compilation messages in file: transf.msg
Compilation run time: 1.479 seconds

>>>>>> Analyzing Blocks and Flows <<<<<<
>>>>>> Scanning Internal Objects <<<<<<

>>>>>> Conscolidating Model: examplel <<<<<<

At this point LPFORM has a correct formulation and asks the user to name the
variables, indices and coefficients that will appear in the formulation. If this run
had been in "data mode" the system would now try to match the symbols 1t needs with
the data items in the declared tables and relations. Identifiers would automatically be
generated from the data item names in the tables and the next step would display the
automatically generated names and allow the user to override them.

Enter the identifiers for INDICES:
vendor, warehouse.

vendor: 1
warehouse: l

Enter the identifiers for VARIABLE(S):
s

X X

Enter the identifiers for COEF:
obj7#*"vendor~warehouse, rhs?*"demand”warehouse,
rhs?*“supply vendor.

obj?*"vendor~warehouse: tc
rhs?*"demand~warehouse: d
rhs?*"supply~vendor: s

Note that the system displays all of the symbols in each class before requesting
the names of individual tdenti fiers. Data coefficients are distinguished internally by
their position in the tableau and their associated index sets. In the above interaction,
the user has, for exzample, given the identifier "tc" to an objective function coefficient
which will be doubly indexed by vendor and warehouse.

As requested earlier by the user, LPFORM next displays its internal tableau
representation immediately followed by the model data dictionary that it has
generated.

Center for Diettal Economn
Sterm School of Business

Working Paper [5-8¢

13

PROBLEM/MODEL/FRAGMENT = examplel.

ROWNCOL X(i,1) RHS
0BJ= +8{1;j}tecli;j] MIN
Use[1i] +8{j}1[i;j] < +s[1]
Supply[j]l +8{i}1[i;]] > +d[j]

In the above representation, the "S" stands for the mathematical "sigma" (£)
symbol. The indices for the summation are enclosed tn the braces and the indices for
the coefficients in square brackets. Note that the constraint types, "Use” and
"Supply”, have been inferred from the problem context and are mow displayed for
veri fication by the user.

* Symbol convention for examplel *

Set Reference:
SYMBOL: SET NAME:

i : Vendor
Meaning: from_block.
i . Warehouse

Meaning: T.-O_blOCk .

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(i,j) : X(Vendor,Warehouse)

Coefficient Reference:
SYMBOL.: COEFFICIENT (DATA):

1[1;j] : 1[Vendor,Warehouse]

s[i] : Rhs?*"supply~vendor [Vendor]

dlj] : Rhs?*~demand~warehouse [Warehouse]
tc[i;j] : Obj?*"vendor~warehouse[Vendor,Warehouse]

The model data dictionary displays each index, variable and data coefficient
together with information about its role in the model.

Generate Output to MPGEN system? (y or m): y

Since the above formulation appears to be correct, the user decides to generate the
statement for the mathematical programmaing generator.

>>>>>> Generating Output to MPGEN for examplel <<<<<<
NAME examplel

VENDOR = ’'newyork,boston’
VENDOR _ 1 THRU NI _ 2

WAREHOUSE = ‘'buffalo,houston,denver’

*
*
*
E
*
*
E WAREHOUSE _ 1 THRU NJ _ 3
*

DATA= NI,NJ,S(NI),D(NJ),TC(NIxNJ)
*

Center for Digntal Economy Researcl

VAR=X(1,j), i in Vendor, j in Warehouse
*
MIN
8 8 teli;jIxXA. 1)
i in Vendor, j in Warehouse
*
FOR i1 in Vendor
S X(i,j) < sli]
j in Warehouse
*
FOR j in Warehouse
s X(1.3) > dlj]
i in Vendor
*

14

The conventions for representing linear programs in MPGEN are explained in

Save the model template and write the MPGEN problem statement? y

>>>>>> Saving the Model <<<<<<<

stk ok ok ok ok o Rk R R R Aok o kbR sk ok sk sk skok ok R ek k Rk

*

* The LP Formulation of Model: examplel is finished!

*

e e T T T T T I T TI:]
Model template saved in file :
MPGEN statement saved in file: exampl.apl

Run time = 9.695 seconds

yes
| 5%

The user now quits LPFORM and executes the MPGEN program.

@do mpgen

*
*
*

*

[15]. Lines starting with an asterisk are comments. Lines beginning with an "E"
contain executable APL statements. In the above, these are used to generate the Vendor
and Warehouse sets. The "DATA=" line declares the data that will be used together
with the dimensions of arrays (for example, TC is an NI by NJ array). The "VAR="
line declares variable, x, and assigns it to columns tn the tableau.
the problem statement approximates normal mathematical conventions. Note that "S"
has again been used to stand for the "sigma" sign.

The remainder of

The following statements are executed automatically; the MPGEN system 1s

@apl
Loading APLSF.............
terminal..tty

STARTUP

loaded, the file output by LPFORM 1is read and the first few statements of the al-
gebraic problem statement are tnterpreted.

enter for Diental Economy Researcl

Sterm School of Business

ng Paper 1S-86-104

—
(]

--—- LATEST VERSION OF MPGEN 7/12/85 =--—-
1 RECORDS READ FROM FILENM

32 RECORDS READ FROM EXAMPL.APL

———————— PARSING PROBLEM STATEMENT = EXAMPL
*NAME EXAMPLE1

*

% VENDOR = 'NEWYORK,BOSTON'

E VENDOR _ 1 THRU NI _ 2

*

* WAREHOUSE = 'BUFFALO,HOUSTON,DENVER'

E WAREHOUSE _ 1 THRU NJ _ 3

*

DATA= NI,NJ

The MPGEN system mow prompts the user to interactively input the remaining
data for the problem. ‘

DATA= S(NI)
VARIABLE NOT DEFINED. ENTER VALUES ?
LENGTH 2
23

1=

DATA= D(NJ)
VARIABLE NOT DEFINED. ENTER VALUES 7
LENGTH 3
: 1 22

1=

DATA= TC(NIXNJ)
VARIABLE NOT DEFINED. ENTER VALUES 7
DIMENSIONS 2 8
ROW 1

1<

; 2.1 2.5 4.1
ROW 2
1.8 2.4 0.9

MPGEN now interprets the problem statement.

*

VAR=X(I,J),

: I IN VENDOR,

. J IN WAREHOUSE
*

MIN
s 8 TC[I;J]IX(I,J)
I IN VENDOR,

: J IN WAREHOUSE

*

FOR I IN VENDOR
s X(I,1)

: < 8[1)

J IN WAREHOUSE

*

FOR J IN WAREHOUSE
s X(I,0)

> D[J]

I IN VENDOR

*

LP TRIPLES (ROW,COL,VALUE) HAVE BEEN FORMED.
TABLEAU SIZE: ROWS = 6 COLS = 7 TRIPLES = 23

STORED VALUES IN FILE FOR:

enter for Digital Economy Researcl

ng Paper [S-8¢

16
NI NJ 8§ D TC

ERASED VALUES FROM WS FOR:
NI NJ S D TC

The problem statement has been interpreted without error. MPGEN generates
the output file to LINDO and returns to the system monitor.

————————— START OF GENLINDQ -------=-======
NAME EXAMPL.APL 9/23/1986 18:30:32

The user now types "do lindo" to execute the LINDO system and read the file
contarning the problem statement in the MPS format output by MPGEN. The user
then responds to the prompt asking for the direction of optimization and types "go" to
solve the linear programming problem.

@do lindo
LINDO (UC 30 APRIL 82)
:rmps lindo.aas
NAME EXAMPL . APL 9/23/1986 18:30:32

OBJECTIVE ROW FOUND: 1
MAX OR MIN 7
7nin
ROWS= 6 VARS= 6 NO. INTEGER VARS= 0
NONZERDES= 23 CONSTRAINT NONZ= 12(12 ARE +- 1) DENSITY= .548
SMALLEST AND LARGEST ELEMENTS IN ABSOLUTE VALUE= 0.900000 4.10000
NO. < : 2 NO. =: 0 NO. > : 8, DOBJ=MIN, GUBS <= 3
SINGLE COLS= 0
g0
LF OPTIMUM FOUND AT STEP 4

OBJECTIVE FUNCTION VALUE

1) 8.60000000
VARIABLE VALUE REDUCED COST
X11 0.000000 0.200000
X12 2.000000 0.000000
X13 0.000000 3.100000
X21 1.000000 0.000000
X22 0.000000 0.000000
X23 2.000000 0.000000
ROW SLACK OR SURPLUS DUAL PRICES
2) 0.000000 0.000000
3) 0.000000 0.100000
4) 0.000000 -1.900000
5) 0.000000 -2.600000
6) 0.000000 -1.000000
NO. ITERATIONS= 4

DO RANGE(SENSITIVITY) ANALYSIS?
n

‘quit
STOP

enter for Diettal Economn

Sterm School of Business

Working Paper [8-86-104

END OF EXECUTION
CPU TIME: 1.48 ELAPSED TIME: 32.4¢9

3.3. Running LPFORM in Interactive Mode

This section describes the features that have been implemented in LPFORM to

help users define their problems in an interactive mode.

As before, the user accesses LPFORM and types "rum-problem” to start the
definition process. In this case, however, there is no external file containing the
LPSPEC definition of the problem so the user types "user" in response to the
LPSPEC file prompt. This automatically places the system in tnteractive mode.

| 7= run problem.

------------------ LPFORMulator version 4.1 e
Enter the names of files to be used:
1. File names must be enclosed by two single quotes.

The input of a list (multiple items) must be terminated by a period.
3. To use system default file names type "d"

]

Template file(s) 3
LPSPEC file(s) Ser
Template save file 2 E__-
MPGEN specification file : d

Define identifiers for indices, variables and coefficients? y
Choose problem representations to be displayed:
(1) LPSPEC compilation, valid and error statements.
(2) Block reasoning, relevant blocks, flows, activities.
(3) Model piece construction, a tentative LP formulatiom.
(4) Puzzler reasoning, a complete LP formulation.
(5) MPGEN specification.
Checking points? (1,2,3,4,5): 4.

* Interactive Mode = On

The system now prompts the user to tnput LPSPEC statements one-by-one. As
each statement is entered it is interpreted immediately and error diagnostics are dvs-
played 1 f a mistake vs made.

Enter LPSPEC statement (h.=help, a.=assistance, ~Z=end): a.
LPSPEC Name: create block

The user can access an on-line help utility by typing "h." in response to the first

er for Diettal Economy Researcl

Yaper IS-86

18

prompt (see Section 5.2). Statements are entered in "assistance” mode if "a" is en-
tered followed by the name of an LPSPEC command. Finally, to end the definition
phase, the user types ctrl-z (ez) in response to this prompt.

The values of the arguments of the LPSPEC statement are entered one-at-a-time
in response to prompts:

block name(atom): examplel

block 1ist(list): vendor, warehouse.

Statement No: 1
create_block(examplel, [vendor,warehouse])

At this point, the call _model command has been entered successfully. Note that
LPFORM indicates the kind of data that should be entered (atom or list) and, as il-
lustrated in the following example, the permissible values where these are appropriate.

Enter LPSPEC statement (h.=help, a.=assistance, ~Z=end): a.
LPSPEC Name: link block

Permissible $link type values are: {all, partial}.
link_type(atom): all

Permissible $link_mode values are: {file, explicit}.
link_mode(atom): explicit

directed_arecs(list): vendor,warehouse.

flow_var(atom): Xx

Statement No: 2
link_block(all,explicit, [vendor,warehouse],x)

The remaining LPSPEC statements are entered at this point. Finally, the user
types "ctrl-z" in response to the prompt and obtains a complete listing of the problem
statement:

Enter LPSPEC statement (h.=help, a.=assistance, ~Z=end): “z
The following LPSPEC statements have been entered successfully:

create_block(examplel, [vendor,warehouse]).
link_block(all,explicit, [vendor,warehouse] ,x) .
create_block(vendor, [newyork,boston]) .
create_block(warehouse, [buffalo,houston,denver]).
optimize(min, examplel,cost,symbolic) .

The problem can now be run to its conclusion as in the preceding section.

19
4. Further Examples of LPSPEC

This section contains three more examples of LPSPEC models. They illustrate
some new LPSPEC statements and some of the different strategies for building models
that are available in LPFORM. Only very general explanations are provided here. The

reader is referred to Appendix I for detailed definitions of the LPSPEC statements.

When a model or sub-model is constructed from scratch using LPSPEC commands
such as Create_ block, Link block and Def Activity, we say that we are using a
"first-principles approach". When sub-models are retrieved from the LPFORM model
library using the Call model command, we are using a "model-mapping approach".

Mixtures of these two basic approaches are also possible.

The set of templates currently in the LPFORM model library are listed in Appen-

dix III. User-defined models can be added to the library very easily.

The first example illustrates the use of the Call _Model statement to access the
LPFORM model library. A transportation model template is used to formulate the
transportation model of the previous session. The second example uses a simple
product-mix problem to illustrate the use of the Def Activity command. The final ex-
ample shows how a mixture of Call _model and other commands can be used to build a

complex model.

4.1. Model Mapping Approach: Using Call model

In the example in Section 3, Create _block and Link _block commands were used
to describe the graph associated with a transportation problem. This is a first-
principles approach to model-building. The same model can be constructed using the

model-mapping approach as shown in the following LPSPEC model:

Call model (transportation, examplel,
[from block,to block], [vendor,warehouse],
[flow], [x],

[trans cost,gain or loss,supply,demand], [tc,1,s,d]).

def_set(vendor, [newyork,boston]) .

def set(warehouse, [buffalo,houston,denver]).

optimize (min,examplel,cost,symbolic) .

The Call _model statement "maps" a stored template into the model being for-
mulated by replacing template parameter names by the names that are to be used in
the model. There are eight arguments arranged in pairs. The first pair of arguments
replaces the template name (e.g. transportation) by the model name (e.g. examplel).
The last three pairs of arguments are lists which map the index sets, variables and data
coefficients of the template into those for the model. The elements in each list must be

in 1:1 correspondence. In the example, "from block" in the template becomes

"vendor" in the model and so on.

The stored templates are generally the most complicated of their type. They can
be simplified by omitting index sets and/or replacing data coefficient names by con-
stants. The REPLICATE command (see Appendix) can be used to add index sets to

sub-models derived from templates.

4.2. First Principles Approach: Using Def Activity

The product mix model determines the levels of production activities, X}, that

maximize profits subject to constraints on the availability of raw materials:

Maximize: Z pJXJ-
7 € output

Subject to: Z a‘.,JXJ. < b, V€ input
7 € output

ster for Digital Econe
School of Business

Paper 18-86-104

21
The corresponding LPSPEC problem statement is:

Def Activity(prodmix, [output],x, [input], [tech coef], [output],
profit,profiv,#,#,#,1linear,product mix).
optimize (max,prodmix,profit,symbolic).

Briefly, the Def Activity command defines a set of decision variables. The idea

is illustrated in Figure 4-1 which is adapted from [3].

Activity X

Input 1 ———————o >|

Jjomsn g > Output 1
Input 2 ==—smamman >|

|

[> Output n
Input m ——————————= >|

Figure 4-1: Picture of an Activity Set

In the example, Def Activity is used to define the set of production variables, X.
The names of the input, output and cost coefficients are specified together with the type
of the activity. The "#" symbols, specify that the slots for upper- and lower-bounds

and unit should be ignored in the formulation.

4.3. A More Elaborate Example

The following example shows how a complex model can be constructed by specify-
ing its component sub-models. LPFORM combines the sub-models automatically using
the information provided by the user-supplied names of model parameters. The user

must obviously adhere to a common set of names throughout the formulation.

The problem involves the determination of an optimal pattern of production and
distribution of energy in a hypothetical national economy. Foreign and domestic

sources of raw energy (oil,gas and coal) are used by conversion centers (electric-utilities

22

and refineries) to produce processed energy (gasoline and electricity) to be consumed at
final markets (residential, transportation and industrial). The latter also consume raw-
energy. A pictorial view of the problem is shown in Figure 4-2 and the algebraic state-

ment in Figure 4-3.

Sink
Source Conversion {residential,
{domestic, {refineries, transportation,
foreign} electric-utilities} industrial}
TSCs0,co, e TCSco,si,pe

e R e > []

! Raw_energy Xt pe Processed_energy -

| (0il,gas,coal) (gasoline,electricity) |

l |

¥ Tssso,si,re |

__ >

Raw_energy
(oil, gas,coal)

Figure 4-2: Graphic View of Energy Problem

From Figure 4-2, it seems intuitively obvious that the model is a combination of
three transportation models (Sources to Conversions, Conversions to Sinks and Sources
to Sinks) together with the product-mix problems at the conversion centers. This

simple view-point is adopted in the LPSPEC formulation shown in Figure 4-4

Note that the product-mix template is used twice in the example - once for the
conversion of the raw energy inputs and once for the capacity resource usage con-
straints. LPFORM is able to "collapse" the objective functions from the two models
into one. The internal tableau and model data dictionary for this problem are listed in

Figure 4-5 and 4-6.

Min: Z z ccco,pexco,pe

co € Conversion pe € Processed _energy

+ E Z Z tcscrso,co,rfTSCso,co,re

so € Source co € Conversion re € Raw_energy

: tessr . TSS .
- Z Z Z so,sz,reT 50,81,Te

so € Source st € Sink re € Raw_energy

+ Z Z Z tccs?co,ai,pemsco,si,pe

co € Conversion st € Sink pe € Processed _energy

Subject To:

Raw Energy Supply Constraint:

re € Raw __energy

Z TSO.so,co,re % Z Tssso,si,re = ssrso,re’ V{

co € Conversion s1 € Sink so € Source

Material Balance - Production of Processed Enerey using Raw Energy:

re € Haw_energy

o Z tcco,re,peXco,pe * Z Tscao,co,re 2% V{

pe € Processed _energy so € Source co € Conversion

Capacity Limits for Conversion Processes:

¢p € Capacity

Z cuco,cp,peXco,pe = dcco,cp’ V{

pe € Processed _energy co € Conversion

Balance Constraint - Processed Energy:

pe € Processed _energy

Xco,ps - Z msco,si,pe =8 V{

st € Sink co € Converston

Demand Constraint for Raw Energy at Sink:

re € Raw__energy
Z: TSSso,sz',re 2 dsrai,re’ V{ -

s0 € Source st € Sink

Demand Constraint for Processed Energy at Sink:

pe € Processed _energy

> TCS . > dsp._. ,v{
co,st,pe §1,pe

co € Conversion

s1 € Sink

Figure 4-3: Mathematical Formulation of Energy Problem

23

24

Call _model(transportation, energy model,
[from_block, to_block, commodity],
[source, conversion, Taw_energyl,
[flow], [tsc],

[gain_or_loss], [1]).

Call model(transportation, energy model,
[from block, to block, commodity],
[source, sink, raw_energy],
[flow], [tss],

[gain _or loss], [1]).

Call_model (transportation, energy model,
[(from block, to_block, commodity],
[conversion, sink, processed_energyl],
[flow], [tes],

[gain_or loss], [1]).

Call _model(product mix, energy model,
[block, input, output],
[conversion, raw_energy, processed energy],
[volume], [x]1,

[tech coef], [tech coef]).

Call model(product mix, energy model,
[block, input, output],
[conversion, capacity, processed energy],
[volume], [x],

[tech_coef,available input],
[capacity usage,capacity limit]).

def_set(source, [foreign,domestic]).
def_set(conversion,[refineries,electric_utilities]).
def_set(sink, [residential,transportation,industriall).
def set(raw _emnergy, [0il,gas,coal]).
def_set(processed_energy, [gasoline,electricity]).
def_set(capacity, [1abor,machine hours]).

optimize(min, energy model,cost,symbolic).

Figure 4-4: LPSPEC Statements for Model-Mapping Approach

5. LPFORM Utilities

In this section we provide a brief overview of some of the features of LPFORM
that are designed to provide a good system development and prototyping environment.
LPSPEC features are covered first followed by a brief description of the "Help" com-

mand.

PROBLEM/MODEL/FRAGMENT = energy_model.

ROW\COL X(co,pe) TSC(so,co,re)
0BJ= +8{co;pelcclco;pe]l +5{so;co;re}tescr[so;co;re]
Use[so:re] +S{co}1[so;co;Te]

Supplylco;re] -s{pe}tclco;re;pe] +S{so}1[so;co;re]
Supplylsi;rel

Use [co;pel +1[co;pel

Supplylsi;pel

Use[co;ep] +S{perculco;cp;pel

...................................... CORBINURE wiiiiine i BNEhR ERETERLES warar i

ROW\COL TSS(so,si,re) TCS(co,si,pe) RHS

0BJ= +5{so;si;re}tessrlso;si;re] +5{co;si;pelttccsplco;si;pe] MIN

Use[so;re] +5{si}1[so;si;re] < +ssr(so;rel

supplylco;re] > +0[co;re]

Supplylsi;re] +S{so}il[so;si;re] > +dsr[si;re]

Use [co;pel -S{si}1[co;si;pel > +0[co;pe]

Supplyl[si;pel +5{co}1[co;si;pe] > +dsp[si;pe]
< +cle(co;cp]

Use [co;cp]

Figure 4-5: Internal tableau Representation of Energy Model

5.1. LPSPEC Support Facilities

LPSPEC statements are somewhat independent, because each individual statement
has its own meaning and own effects in the LPFORM system. Definitions of all
LPSPEC statements are listed in Appendix I. Each statement in LPSPEC is defined to
the system by a "schema" or representative example. Thus the LINK BLOCK state-

ment has the schema:

link _ block(link _type,link _mode,directed _arcs,flow-var).

The schema contains information to allow validity checking. When an LPSPEC
model is parsed, each statement is checked ‘against its schema. Each argument is
checked to see if its data type is valid (atom, list or numeric), and if its value is within
a permissible range. If a "key" has been defined for the statement the system also
checks to ensure that no two statements have the same value for the key. For example,
if we require uniqueness in the directed linkage between any two blocks, the attributes,

from-block and to-block can be defined as a key in the schema for the Link-Block state-

Set Reference:

* Symbel convention of energy_model ¥

SYMBOL.: SET NAME:
cp . Capacity

Meaning: input.
co . Conversion

Meaning: block, transhipment_node.
Pe . Processed_energy

Meaning: commodity, output.
Te : Raw_energy

Meaning: commeodity, input.
si : Bink

Meaning: to_block.
so . Source

Meaning: from block.

Activity Reference:

SYMBOL :

ACTIVITY (VARIABLE):

TSC(so,co,Te)
TSS(so,si,re)
TCS(co,si,pe)
X(co,pe)

: TSC(Source,Conversion,Raw_energy)

: TSS(Source,Sink,Raw_energy)

: TCS(Conversion,Sink,Processed energy)
: X(Conversion,Processed_energy)

Coefficient Reference:

SYMBOL:

i{so;co;rel
i[so;si;rel

COEFFICIENT (DATA):

1[Source,Conversion,Raw_energy]
1 [Source, Sink,Raw_energy]

26

1[co;si;pel : 1[Conversion,Sink,Processed_energy]

culco;cp;pel : Capacity usage[Conversion,Capacity,Processed_energy]
clecleco;cpl : Capacity limit[Conversion,Capacity]

1[co;pel : 1[Conversion,Processed_energy]

0[co;pel : O[Conversion,Processed_energy]

tclco;re;pel : Tech_coef [Conversion,Raw_energy,Processed_energy]
0[co;re] : O[Conversion,Raw_energy]

ssrso;re] : Rhs?*"supply~source~raw_energy[Source,Raw_energy]
dsr(si;re] : Rhs?*"demand~sink~raw_energy[Sink,Raw_energy]

dsplsi;pel : Rhs?*~demand~sink~processed energy[Sink,Processed_energy]

teser[so;co;re] : Obj?*~trans_cost~source“conversion“raw_energy [Source,Conversion,
Raw_energy]
tcssriso:si;re] : Ubj?*“trans_cost"source"sink”rav_energyISource,Sink,Raw_energy]
tccsp[co;si;pe] : Obj?*‘trans_cost"conversion“sink“processed_energy[Conversion,Sink,
Processed_energy]
: Obj?*~profit~conversion~processed_energy[Conversion,Processed_energy]

cclco;pel
Figure 4-6: Data Dictionary for Energy Model

ment. The schemas also contain special "explanations" that can be used to prompt the

user for information if an argument value is missing or invalid.

A useful set of PROLOG utilities have been developed in order to handle the syn-
tactical definition of the LPSPEC language. In particular, changes of LPSPEC state-
ments during the prototyping stage can be accommodated by editing the corresponding

schemas using these utilities. =~ An automatic cross-referencing procedure ("allied

[
-1

NAME energy_model

CAPACITY = ‘labor,machine_hours’

CAPACITY _ 1 THRU NCP _ 2

CONVERSION = ‘refineries,electric_utilities’
CONVERSION _ 1 THRU NCO _ 2
PROCESSED_ENERGY = 'gasoline,electricity’
PROCESSEDENERGY _ 1 THRU NPE _ 2

RAW_ENERGY = 'oil,gas,coal’

RAWENERGY _ 1 THRU NRE _ 3

SINK = 'residential,transportation,industrial’
SINK _ 1 THRU NSI _ 3

SOURCE = 'foreign,domestic’

SOURCE _ 1 THRU NSO _ 2

¥ M % [0 % [% [% [% [% #

DATA= NCP,NCO,NPE,NRE,NSI,NSO,CU(NCO#NCP#NPE) ,CLC (NCO#NCP) , TC (NCO#NRE#NPE)
DATA= SSR(NSO#NRE) ,DSR (NSI#NRE) ,DSP (NSI#NPE) , TCSCR (NSO#NCO#NRE)
DATA= TCSSR (NSO#NSI#NRE) , TCCSP (NCO#NSI#NPE) , CC(NCO#NPE)
*
VAR=TSC(so,co,re), so in Source, co in Conversion, re in Rawenergy
VAR=TSS(so,si,re), so in Source, si in Sink, re in Rawenergy
VAR=TCS (co,si,pe), co in Conversion, si in Sink, pe in Processedenergy
VAR=X(co,pe), co in Conversion, pe in Processedenergy
*
MIN § S cc[co;pelX(co,pe) +5 8 S teser[so;co;re]TSC(so,co,re)
+5 § § tessrso;si;re]TSS(so,si,re) +8 S S tecesplco;si;pel TCS(co,si,pe)
co in Conversion, pe in Processedenergy, sc in Source, co in Conversion,
: re in Rawenergy, so in Source, si in Sink, re in Rawenergy,
co in Conversion, si in Sink, pe in Processedenergy
*
FOR so in Source FOR re in Rawenergy
S TSC(so,co,re) +5 TSS(so,si,re) < ssrlso;re]
co in Conversion, si in Sink
*
FOR co in Conversion FOR re in Rawenergy
- 5 tclco;re;pelX(co,pe) +5 TSC(so,co,re) > O
pe in Processedenergy, so in Source
*
FOR si in Sink FOR re in Rawenergy
S TsSS(so,si,re) > dsr[si;re]
so in Source
*
FOR co in Conversion FOR pe in Processedenergy
X(co,pe) -S TCS(co,si,pe) > O
si in Sink
*
FOR si in Sink FOR pe in Processedenergy
S TCS(co,si,pe) > dsplsi;pel
co in Conversion
*
FOR co in Conversion FOR cp in Capacity
S culco;cp;pelX(co,pe) < clcleco;cpl]
pe in Processedenergy ;

Figure 4-7: Formulation Statements for APL Tableau generator

schemas") ensures, for example, that if an "attribute” name is changed, it is changed in

every schema where it is used.

for Dieital Economy Research

5.2. LPFORM Help Facility

LPFORM provides substantial on-line documentation and help. Only a brief ex-
planation will be provided here. Figure 5-1 shows the main help screen and Figure 5-2

the screen obtained in response to a request by the user to "View Model Templates".

yes

| ?- help.
sk sk ok ok ok ok sk ok ok ok sk ks okoR Rk ok ok ok koK ok kK
* *
* LPFORM On-line Help Utility *
* *
* -—- ®
* Type: *
* *
* 1. List LPFORM System Commands. *
* *
* 2, Display Definitions of LPSPEC Statements. *
* *
* 3. Review Model Templates. *
* *
* 0. Exit Help. *
* *

KRR K oK oK oK o ook s o sk oo sk sk sk sk ok ok sk sk ko skt ks ok
Enter (0,1,2,3): 3.

Figure 5-1: Main Help Screen

This menu supports interactive users who wish to define LPSPEC models. The
menu choices are sel f-explanatory. The displays generated by the first two choices are
shown tn the Appendiz 2 and Appendizx 1, respectively. Menu choice 8 results in the
display shown in Figure 5-2.

Thes menu allows users to access some of the model management functions of
LPFORM. Since users can add new templates to the system library, it 1s necessary to
provide the on-line documentation, dictionary and query facilities associated with this
menu.

6. Conclusion

This paper has reviewed the main features of the LPSPEC language and provided
examples of its use in defining LP models. Together with the Appendices, the paper
constitutes a fairly complete guide to the use of the current version of LPFORM. The

system is in an early stage of development. The main infrastructure has been com-

mter for Diental

Paper IS-

Econe
School of Business

86-104

29

TEMPLATE INFORMATION MENU

Enter:

1. List the names of all Templates in library.
25 Display an existing Model Template.

3. Obtain the Template symbol convention.

4. Output a Template in MPGEN form to a file.
5. Search for Templates using key words.

0. Quit.

(0,1,2,3,4,6): 1

—————————————— MODEL TEMPLATE LIBRARY =====

exog_demand, exog_supply, general lp max, general lp min,
input_cons, inventory, process_selection, product _mix, purchase,
transportation.

Figure 5-2: Template Maintenance Facility
pleted and a subset of problems can be successfully formulated. The definition of the
LPSPEC language will have to expand and adapt to new requirements over time. A

number of features have been built-in to LPFORM to facilitate this process.

The major directions for future research and development are:

1. Add rules to enable the system to handle models outside the production
planning domain.

2. Complete work on the "data mode" of formulation in which the symbols in
the problem statement are bound to values on external files and databases.

3. Develop the graphics interface to the system.

4. Investigate and develop methods to take advantage of specialized knowledge
in different application domains.

Finally, after the interface has been built, we will need to carry-out extensive tests

with real users to see if the new scheme for representing LPs is successful.

Center for Diettal Economn
Sterm School of Business

Working Paper [5-8¢

30
References

1. Astrahan, M. M., and Chamberlin, D. D. "Implementation of a Structured English
Query Language". Communications of the ACM 18, 10 (October 1985), 580-588.

2. Dano, Sven. Linear Programming in Industry - Theory and Applications.
Springer-Verlag, New York, 1974.

3. Dantzig, George B.. Linear Programming and Extenstons. Princeton University
Press, Princeton, N.J., 1963.

4. Greenberg, Harvey J. "A Functional Description of ANALYZE: A Computer-
Assisted Analysis System for Linear Programming Models". ACM Transactions on
Mathematical Software 9, 1 (March 1983), 18-56.

5. Ma, Paichun. An Intelligent Approach to Formulating Linear Programs. Ph.D.
Th., New York University, 1986. Ph.D. Dissertation Proposal.

6. Ma, P., F. H. Murphy and E. A. Stohr. Design of a Graphics Interface for Linear
Programming. Center for Research in Information Systems, Graduate School of Busi-
ness Administration, New York University, New York, 1986. Working Paper.

7. Ma, P., F. H. Murphy and E. A. Stohr. A Representation Scheme for an Intelligent
LP System. Center for Research in Information Systems, Graduate School of Business
Administration, New York University, New York, 1986. Working Paper.

8. Meeraus, A. General Algebraic Modeling System (GAMS): User’s Guide, Version 1.
Development Research Ceter, World Bank, 1984.

9. IBM Mathematical Programming Language Extended /370 (MPSX /870), Program
Reference Manual, SH19-1095. IBM Corporation, Paris, France, 1975.

10. Murphy, F. H. and E. A. Stohr. "An Intelligent System for Formulating Linear
Programs". International Journal of Decision Support Systems 2, 2 (March 1986).

11. Murphy, F. H., E. A. Stohr and P. Ma. The Science and Art of Formulating
Linear Programs. Center for Research in Information Systems, Graduate School of
Business Administration, New York University, New York, 1986. Working Paper.

12. OMNI Linear Programming System: User Manual and Operating Manual.
Haverly Systems Inc., Denville, N.J., 1977.

13. Schrage, Linus. Linear, Integer, and Quadratic Programming with LINDO. The
Scientific Press, Palo Alto, 1984.

14. Smith, JM. and D.C.P. Smith. "Database Abstractions: Aggregation".
Communications of the ACM 20, 6 (1977), 405-413.

15. Stohr, Edward A. A Mathematical Programming Generator System. Working
Paper 96, New York University, New York, 1985.

31

I. Appendix: LPSPEC Language Statements

Section 1.1 of this appendix contains a complete listing of LPSPEC commands.

This listing can also be obtained on the screen using the on-line help feature. Section

1.2 contains detailed definitions for each command.

I.1. Listing of LPSPEC Commands

10:

11:

12:

13:

block input_output(block name, input, output).

call model(model name, problem name, model index, problem index,
model_var, problem var, model coef, problem coef).

create block(block name, block list).
def_activity(block_name, activity set, activity var,
activity_ input, i_o_coef, activity output, obj coef,
obj_type, upper_bound, lower_ bound, unit,
math_property, activity type).
def_inventory(block name, commodity set, inventory_ var,
incoming inv, gain_or_loss, outgoing inv, obj_coef,
obj_type, upper_bound, lower_bound, unit,
inventory_property, inventory_type) .
def_rhs(cons_type, rhs_coef, row_set).

def set(set_name, set member).

def transport (tra.nsport.ed_commodity, directed_arcs, gain_or_ loss,
trans_mode) .

link block(link_type, link_mode, directed_arcs, flow_var).
link output_input(block set, common commodity) .

optimize (optimize_direction, problem name, obj_type,
formulation mode) .

short_name (model_name, name_type, long name, short_name).

table(table_name, table_index, table_type, content _mode,
content spec, unit).

1.2. Detailed Definitions of LPSPEC Statements

In the following pages the LPSPEC statements are listed in alphabetical order.
The description for each statement consists of a statement format, a screen design, the
data types and domain sets of each argument, the statement’s key (if any), an example

and a brief explanation.

A "domain set" defines the permissible set of values for an argument. The
domain set members are listed as part of the schema definition. When an argument is
declared to have a data type of "atom" its value must be a single character string (no
quotes, imbedded commas or other characters except for underline). A "list" data type
consists of the empty string or one or more strings separated by commas (no imbedded
blanks) and enclosed in square brackets. A "file-spec" data-type must contain a valid

file name complete with file extension (e.g. myfile.new).

The "allied schemas" for an argument are the other LPSPEC statements that use
the argument. The "key" of an LPSPEC schema is the set of one or more arguments

that must have unique values in every instance of that statement in the model.

enter for Dieital Economy Research

33
LPSPEC: block input output(block name, input, output)

Screen Interface:

PROBLEM: energy model VERSION: 1 LAST UPDATE: 10/01/86	DATA:			
LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT				
	MODE: DATA			
LEVEL: 1 GRAPH: 1 CURRENT OP: BLOCK_INPUT_OUTPUT	REL: T			
BLOCK: conversion	TAB: t			
	PAR: p			
	INPUTS: OUTPUTS :		SET: {s}	
	raw_energy	processed_energy		
			STRUCTURE:	
			c-B: [1	
	L-B: -->			
	L-0-1: :==:			
	B-10: =[]=			
	D-I: .:.			
	b-c:	_I		
I	D-R: 0=0			
I	I (
	D-A: ==			
	C-M: <>			
	REP: 111			
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE []	OPT ~/v			

Figure I-1: Defining Inputs and Outputs of a Block

Argument Data Type
1: block name atom
Allied Schema: def inventory, def _activity, create _ block.
2: input list
3: output list
Key: [1]
Example:

block input_output(conversion, [raw_energy], [processed_energy]) .
Explanation:

Block-Inputs-and-Outputs (B-IO): Specifies the tnputs to, and outputs from, a
block one block at a time. A block usually represents activities at a location and the
inputs and outputs are commodities. The information captured by this statement is
generated (see Figure I-1) by prompting for information using slot titles, such as
"nputs”, and "outputs”.

34

B-10 s usually used as part of the specification of a multi-commodity network.
B-IO 1is used first to specify the inputs and outputs of several blocks; the blocks are
then connected automatically using the LINK OUTPUTS INPUTS Statement which

will establish links from the blocks that output each commodity to the blocks that in-
put tt.

enter for Dienal Economy Research

Sterm School of Business

Working Paper IS-86-104

35
LPSPEC: call _model(model _name, problem _name, model _index, problem __index,
model _var, problem _ var, model _ coef, problem __coef)

‘Screen Interface:

PROBLEM: energy model VERSION: 1 LAST UPDATE: 10/01/86	DATA:		
LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT			
	MODE: DATA		
LEVEL: 1 GRAPH: 1 CURRENT OP: CALL_MODEL	REL: T		
TEMPLATE MODEL: transportation	TAB: t		
	PAR: p		
	TEMPLATE INDICES:		SET: {s}
	FROM BLOCK : source		[
	TO BLOCK : conversion		STRUCTURE:

	COMMODITY ! Taw_energy		
	TEMPLATE MODEL VARIABLE:		c-B: [1
	FLOW tsc	{ L-B: =->	
	TEMPLATE MDDEL COEFFICIENTS:		IL-0-1: :=-:
	TRANS COST : 7		B-I0: ={1=
I	GAIN_OR_LOSS : 1	FOPREE 3	
	SUPPLY o I	p-c: I_I	
	DEMAND i		D-R: 0=0
	J	b-T:	
	D-A: =	-	
	C-M: <>		
	REP: 111		
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE [1	OPT ~/v		

Figure I-2: Mapping a Transportation Model on to the Sources - Conversions Link

Argument Data Type
1: model _name atom
Allied Schema: short name.
2: problem _name atom
Allied Schema: optimize.
3: model _index list
4: problem _index list
5: model var list
6: problem _var list
7: model _ coef list
8: problem _coef list

36

Example:
call model(transportation, energy model,
[from_block,to_block,commodity], [source,conversion,raw_emnergy],
[flow], (tl,
[gain_or loss], [1]).
Explanation:

Call-Model (C-M): Speci fies that a pre-existing template from the LPFORM sys-
tem library ts to be incorporated as a sub-model of the new formulation. The names
of parameters in the pre-existing model must be matched with the names for these
parameters in the new model. The statement has four slots to be filled, model name,
index set names, vartable names, and data coefficient names or values. These must be
speci fied in pairs and in order. Each pair has the parameter name of the pre-existing
model followed by a user-supplied name that is appropriate for the current context. If
the parameter of the pre-existing model is a set (such as index set mames) the cor-
responding new name must be a set and the included members of both sets must be in
one-to-one correspondence. In the example below, the template index set,
"from _block”, acquires the name "source” in the formulated model.

An index from the template can be suppressed simply by omitting it from the
list (this reduces the size of a model). Alternatively, the unknown value "2" can be
used as a variable name or coefficient name. Later, LPFORM will generate proper
names for the unknown values when they are needed.

mter for Diental

Pape

Econe
hool of Business

-86-104

37
LPSPEC: create block(block _name, block _list)

Screen Interface:

ENTER BELOCK NAME: industrial

PROBLEM: energy_model VERSION: 1 LAST UPDATE: 10/01/86	DATA:
LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT	
	MODE: SYMB
LEVEL: 2 GRAPH: 1 CURRENT OP: CREATE BLOCK	REL: T
	TAB: t
	PAR: p
source conversion sink	SET: {s}
O i s I [
residential	STRUCTURE:
[1]	
domestic refineries	¢c-B: [1
[1] S	L-B: -——>
	L~0~X; 7=z
transportation	B-10: =[1=
[1]	D-I: .:.
foreign electric-utility I Dp-C:	_I
[1] k-	D-R: 0=0
industrial	p-T: ___
[1]	D-A: =[-
	C-M: <>
[REP: 111
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE []	OoPT: ~/v

Figure I-3: Create Blocks at subsequent levels

Argument Data Type
1: block name atom
Allied Schema: def _inventory, def activity, block _input__ output.
2: block list list
Example:

create_block(source, [foreign,domestic]).
create block(conversion, [refinery,electric_utility]).
create block(sink, [residential,transportation,industrial]).

Explanation:

Create-Block (C-B): Specifies the set of children of a block in a hierarchical
structure. In the graphics interface a small square tndicates the position of each block
and the user 1s prompted for the names of the block and its children. If block name
does not exist it 18 created. If block-list is empty, a block with no children is created.

A block is a user-defined grouping of activities in space or time. Create-Block
statements can be used to create a multiple level hierarchy. Blocks at the lowest level
in the hierarchy represent real world entities such as vendors, warehouses, factories,
etc.

38

LPSPEC: def _activity(block _name, activity _set, activity _var, activity input,
i__o_ coef, activity _output, obj coef, obj _type,
upper _ bound, lower _bound, unit, math _property,
activity _type)

Screen Interface:

| PROBLEM: emergy model VERSION: 1 LAST UPDATE: 10/01/86 | DATA: |
| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT| |
I | MODE: SYMB |
| LEVEL: 2 GRAPH: 1 CURRENT OP: DEF_ACTIVITY | REL: r |
| BLOCK: conversion | TAB: t |
1 | PAR: p |
| | ACTIVITY SET: processed_energy | | SET: {s} |
I | ACTIVITY VAR: x | | |
| | INPUTS: NAME | | STRUCTURE: |
| | raw_energy | I I
	DOUTPUTS: NAME		c-B: [1
	processed_energy		L-B:r ==>
	DOBJ. COEFFT : conversion _cost	1B-B-Fz ;==	
	OBJ. TYPE : cost		B-10: =[]=
	ACT. COEFFTS: tech_coef		P=fz ia]
	UPPER BOUNDS:		pb-c:
	LOWER BOUNDS:		D-R: 0=0
	UNITS		p-T: __
	MATH PROP : linear		D-A: =
	ACT. TYPE : product mix		Cc-M: <>
			REP: 111
[OPT: ~/v		
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE []			
Figure I-4: Define Production Activity

Argument Data Type Domain Set

1: block name atom
Allied Schema: def _inventory, block _input__output, create _block.

2: activity set list

3: activity var atom

4: activity _input list

5: i_o_ coef list

6: activity output list

7: obj_ coef atom
Allied Schema: def _inventory.

8: obj_ type atom objective _ function type
Allied Schema: def inventory, optimize.

9: upper__bound atom
Allied Schema: def _inventory.

10: lower _bound atom

Allied Schema: def _inventory.

39

Argument Data Type Domain Set
11: unit atom

Allied Schema: def inventory, table.
12: math property atom math _property
13: activity _ type atom activity _type

Key: [2, 3]

Domain Set Members:

objective _ function type = {profit, cost}

math __property = {linear, non _linear}

activity _type = {product mix, transportation, blending, purchasing}

Example:

def activity(conversion,processed energy.X, [raw energy], [tech coef],
[processed energy],conversion cost,cost,#,#,#,linear,product mix).

Explanation:

Def-Activity (D-A): Defines a set of activities in a block. These usually involve
a form transformation between inputs and outputs. For example, the activity mught
be of the product-mix or blending type. FEach activity translates to a set of columns in
the tableau and is associated with a variable name. The screen for D-A prompts for
complete information about the activity, including the associated activity set, the in-
put and output sets, the variable name, objective coefficient name, etc. Many of these
slots have default values and need not be filled-in by the user.

The "activity set” speci fies all the instances of an activity. For example, 1 f we
have a decision wvariable, XJ, 7 € Products then Products ts the activity set. The

def set command would be used to specify the elements of products.

The "activity _input” list contains the set names for the different kinds of in-
put to the activity. For example, if raw__materials and resources are used in the ac-
tivity, the activity _input list would be: [faw__mats,resources] where each of the
items in the list would be sets speci fied by the DEF _SET command.

The " _o__coefficient” list contains the names of the data coefficients that per-
form the transformation from inputs to outputs for the activity. These must be
stated in the same order as their associated inputs in the activity input list. If
there is more than one output, the TAB (table) statement must be used to provide the
in formation necessary to associate the technical coefficients with the correct outputs.

The "activity output” list contains the set mames for the different kinds of
output from the activity.

40

The "obj coef” vs the mame for the array of coefficients that are to be as-

sociated with the activity in the objective function. "Obj type" is used to determine
the sign (+ or -) of obj__coef in the objective function.

The "upper bound” and "lower bound” arguments provide names for the ar-

rays of data coefficients that define the upper and lower bounds for the levels of the
activity.

The following three arguments are not used by the current version of LPFORM
but are useful for documenting the model:

The "units" argument 1s used to specify the units in which the activity ts ex-
pressed (e.g. barrels of oil, units of product).

The "math _prop” slot is used to specify whether the activity s linear or should
be approximated by its piece-wise linear approrimation.

The "activity _type" is used to specify the type of activity (e.g. product mizx or
blending, etc.)

Center for Digital Economy Rese.
Stem School of Business

Working Paper 1S-86-104

arcn

41

LPSPEC: def _inventory(block name, commodity _set, inventory var,
incoming _inv,gain__or__loss, outgoing _inv, obj coef,
obj _ type,upper _bound, lower _bound, unit,
inventory property,inventory type)

Argument Data Type Domain Set
1: block name atom
Allied Schema: def _activity, block _input__output, create _block.
2: commodity set list
3: inventory _var atom
4: incoming inv list
5: gain_or_loss atom
Allied Schema: def transport.
6: outgoing inv list
7: obj _coef atom
Allied Schema: def _activity.
8: obj_type atom objective _ function _type
Allied Schema: def activity, optimize.
9: upper_bound atom
Allied Schema: def _activity.
10: lower bound atom
Allied Schema: def _activity.
11: unit atom
Allied Schema: def _activity, table.
12: inventory property atom
13: inventory type atom tnventory _type
Key: [2, 3]
Domain Set Members:
objective _ function _type = {profit, cost}
inventory _type = {input, output, work _in__ process}
Explanation:

Def-Inventory (D-I): Specifies the inventory to be accounted for in a block one
commodity at a time. Some relevant properties about the inventory, such as the type
of tnventory (input, work-in-process or output) and special restrictions are speci fied by
this statement. This command 1s similar to Def-Activity, but has not been imple-
mented yet.

42
LPSPEC: def set(set name, set _member)

Screen Interface:

| PROBLEM: energy _model VERSION: 1 LAST UPDATE: 10/01/86 | DATA: |
| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUITI |
	MODE: DATA		
LEVEL: 1 GRAPH: 0 CURRENT OP: DEF_SET	REL: T		
	TAB: t		
	PAR: p		
	SET NAME : source		SET: {s}
	SET MEMBERS : domestic,foreign		
			STRUCTURE:
			¢c-B: [1
			L-B: =-=>
			IL-0-I: :=->
	[B-10: =[1=	
	B=X: 2.		
	pb-c: [_I		
	D-R: o0=0		
[o=r			
	D-&: =	-	
I	c-M: <>		
	REP:]11		
BACK [] FORWD [1 DELETE [] UNDELETE [] SHOW-DET [] ERASE []	OPT: ~/v		

Figure I-5: Defining a source set

Argument Data Type
1: set__name atom
2: set _member list
Key: [1]
Example:

def set(source, [domestic,foreign]).
Explanation:

Def-Set (Set): Specifies a set name and its members. The sets determine the
dimensions of the model. For example, a single commodity transportation problem be-
tween "wendor" and "warehouse" is mot really significant unless vendor and
warehouse are sets. The screen inter face prompts for the set name and 1ts members.

43

LPSPEC: def _transport(transported _commodity, directed _arcs, gain__or_ loss,
trans__mode)

Screen Interface:

BACK [1 FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE []

PROBLEM: energy model VERSION: 1 LAST UPDATE: 10/01/868	DATA:		
LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT			
	MODE: SYMB		
LEVEL: 2 GRAPH: 1 CURRENT OP: DEF_TRANSPORT	REL: r		
	TAB: t		
	PAR: p		
	COMMODITY SET: processed_energy I	SET: {s}	
	DIRECTED ARCS: conversion,sink I I		
			structure:
	GAIN OR LOSS : 1		I
	MODE :		c-B: 01
	I	L-B: =-->	
	L-0-I: :=—:		
	B-10: =[]=		
[D=LE il			
	b-¢c:	_	
	D-R: 0=0		
	D-T		
	D-A		
	C-M		

Figure I-6: Defining the Commodities to be Transported

Argument Data Type
1: transported commodity atom
2: directed _arcs list
Allied Schema: link _block.
3: gain_ or_ loss atom
Allied Schema: def _inventory.
4: trans_mode atom

Key: [1, 2]

44
Example:

def_transport(processed_energy, [conversion,sink],1,#).
Explanation:

Def-Transport (D-T): Specifies the commodity set to be transported on a directed
arc or a set of directed arcs. The mazximum and minimum capacity requirements of
the flow, and the names of the arrays that contain the coeffictents specifying gains
or losses associated with the flow, are also specified. "Mode" is the set name for the
different transportation modes that might be available (e.g. by rail, truck or air).

LPSPEC: link _block(link _type, link__mode, directed _arcs, flow _var)

Screen Interface:

FLOW VAR '@ t

| PROBLEM: energy model VERSION: 1 LAST UPDATE: 10/01/86 | DATA:
| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT|
| | MODE: SYMB
LEVEL: 1 GRAPH: 1 CURRENT OP: LINK_BLOCK REL: T
TAB: t
| LINK TYPE : SPACE: X_ | TIME: | PAR: p
| LINK MODE : FILE: ___ | EXPLICIT: X__ | SET: {s}
| DIR ARCS : source,conversion,conversion |
| sink,source,sink | STRUCTURE:
| |
| |

c-B: []
LB

energy model L-0-I: :—->
B-I0: =[I=

source conversion sink D-I: .:
I e [Jemmmm e ——— e >[] D-C: |_|

| - D-R: 0=0
v | D-T: __
m > D-A: =|-

CM: <>

REP: 111
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE [] OPT: ~/v

ENTER LINK TYPE: space

I I
| |
I I
I I
I I
| I
| |
| |
I |
| |
i e |
| |
| I
I [
| I
| |
| |
| I
| |
I |
| |

Figure I-7: Link Blocks at Set Level

Argument Data Type Domain Set
1: link type atom link _type
2: link_mode atom link _mode
3: directed _arcs list

Allied Schema: def transport.
4: flow _var atom

Key: [3]

Domain Set Members:
link _type = {space, time}
link _mode = {file, explicit}

enter for Dieital Economy Researcl

Stermn School of B

mg Paper

46
Example:

link block(space,explicit, [source,conversion,conversion,sink,source,sink],t).

Explanation:

Link-Block (L-B): Specifies a directed linkage between two or more blocks. The
type of the linkage can be either in space or time. If the linkage is in space (between
blocks at different locations), LPFORM generates an assoctated flow-variable. If the
linkage represents a time transformation, a transition vartable ©s generated.

Because the block definition hierarchy can have multiple levels, only the relevant
linkages need be specified by Link-Block statements. All linked blocks must be at the
same level. In the Figure, three directed arrows are drawn between three blocks. The
example shows the corresponding link _block statement.

If the default "link _mode" is explicit, the "directed _arcs" argument must con-
tain a list of from-to node pairs as in the example. This corresponds to the user ex-
plicitly constructing the graph on the screen using a pointing device or simply typing
in the pairs of blocks that are to be linked in response to a prompt. If the
"link _mode" is "file", "directed _arcs" contains the name of a file containing the
list of from _to pairs.

enter for Digital

Econc

M1

LPSPEC: link _output__input(block _set, common _ commodity)

4 Screen Interface:

PROBLEM: energy model VERSION: 1 LAST UPDATE: 10/01/86	DATA:			
LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT				
	MODE: DATA			
LEVEL: 1 GRAPH: 1 CURRENT OP: LINK_OUTPUT_INPUT	REL: T			
	TAB: t			
	PAR: p			
	BLOCK SETS: COMMON COMMODITY:		SET: {s}	
	source	raw_energy		
	conversion	processed_emergy		STRUCTURE:
	sink			
I		c-B: [1		
	L-B: -->			
	L-0-I: :=—:			
	B-10: =[]=			
	DTz <t			
I p-c:	_I			
	D-R: 0=0			
I D-T: __				
	D-A: =	-		
	C-M: <>			
	REP: 111			
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE [1	OPT /v			
I				
I | |

Figure I-8: Linking common commodities among Blocks

Argument Data Type
1: block _set list
2: common _commodity list
Example:

link output_input([source,conversion,sink], [raw_energy,processed_energyl) .
Explanation:

Link-Outputs-to-Inputs (L-O-I): Generates linkages within a given set of blocks
to form a multi-commodity network. These linkages are made on the basis of com-
mon commodity flows. For example, a block with ‘coal’ as output commodity will be
automatically linked to every block having coal as an input. Usually, the Block-Inputs-
and-Outputs statement will have been used prior to this statement.

48

LPSPEC: optimize(optimize _direction, problem name, obj _type,
formulation _mode)

Screen Interface:

| PROBLEM: energy model VERSION: 1 LAST UPDATE:10/01/86 | DATA: |
| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT] |
	MODE: DATA
LEVEL: 1 GRAPH: 1 CURRENT OP: OPTIMIZE	REL: r
BLOCK: energy model	TAB: t
I	PAR: p
I	OPTIMIZATION
	DIRECTION : MAXIMIZE i
	OBJ. TYPE : PROFIT 2
	MODE : SYMBOLIC P X
I D=I: =i	
[D=cy 1_I	
	D-R: 0=0
I I opEpE o	
	D-A: =[-
] C-M: <>	
	REP: 111
BACK [] FORWD [] DELETE [] UNDELETE [] SHOW-DET [] ERASE [J	OPT: -/v
Figure I-9: Define Optimization Direction

Argument Data Type Domain Set

1: optimize direction atom optimization

2: problem name atom
Allied Schemas: call _model.

3: obj type atom objective _ function type
Allied Schema: def inventory, def activity.

4: formulation mode atom formulation _mode

Key: [2]

Domain Set Members:

optimization = {max, min}

objective__ function type = {profit, cost}
formulation _mode = {data, symbolic}

49
Example:

optimize (min,energy model,cost,symbolic).
Explanation:

Optimize (OPT): Specifies the optimization direction (mazimize or minimize)
the type of the objective function (cost or profit) and formulation mode (symbolic or
data). An Optimize statement is required in every formulation.

When the formulation mode is ‘symbolic’, the final formulation is in algebraic
form and no data binding is tnvolved. The data binding process ts 1nitiated by a value
of ‘data’ for the formulation mode.

50
LPSPEC: short name(model _name, name__type, long_ name, short _name)

Argument Data Type Domain Set
1: model name atom
Allied Schema: call __model.
2: name __type atom name__type
3: long_ name atom
4: short name atom
Key: [1, 2, 4]
Domain Set Members:
name __type = {index, var, coef}
Example:

short_name (energy model,index,source,so).
Explanation:

Short-Name (SN): Speci fies that an explicitly defined symbol dictionary is to be
used in this formulation. The user specifies a problem (model) name, the type of the
symbol (indez, var, or coef), its full name, and short name. If this statement 1s not
part of the LPSPEC problem speci fication, the short name will be generated either by
asking the user in the formulation stage or by internally generating it according to
some simple algorithm.

LPSPEC: table(table name, table _index, table _type, content _mode,

content _spec, unit)

Screen Interface:

ol A ol

CONTENT SPEC : tcsc.dat
UNIT :

BACK [1 FORWD [1 DELETE [] UNDELETE [] SHOW-DET [] ERASE []

| PROBLEM: energy model VERSION: 1 LAST UPDATE:10/01/86 | DATA:

| LOAD SAVE PROB-DATA DATABASE DICTIONARY UP DOWN SOLVE QUIT]|

| | MODE: DATA
| LEVEL: 1 GRAPH: 0 CURRENT OP: TABLE | REL: T

| | TAB: t

| | PAR: p

| | TABLE NAME : trans_cost_so_co | | SET: {s}
| | INDICES : source,conversionm | I

| | TABLE TYPE : PROFIT i | | STRUCTURE:
| | | COsT A2 | |

| | | UPPER BOUND | | c-B: [1

| | | LOWER BOUND | | L-—B: -—>
| | | EXACT AMOUNT : | |L-0 t——
| | CONTENT MODE : FILE ¥ | | B- I : =[1=
| | | EXPLICIT | | D- e
| I | | D

| | | |

| I I |

| |

I |

| |

| |

I [

| |

Figure I-10: Defining transportation cost data Table

Argument Data Type Domain Set

table __name atom

table _index list

table type atom valid _coef _type
content _mode atom table content _mode
content spec file

unit atom

Allied Schema: def inventory, def _activity.
Key: [1]

Domain Set Members:

valid _coef _type = {profit, cost, upper _bound, lower _bound,
exact__amount}

table _content _mode = {file, explicit}

51

Example:

table(trans_cost_so_co, [source,conversion],cost,file, tesc.dat’,#) .
Explanation:

Table (TAB): Specifies that an explicitly defined table is to be used in the
problem. Tables are needed when the optimization mode is "data" but can also be
speci fied in "symbolic” mode. A "table" 1s a multi-dimensional array of numerical
values. The "Table index” argument defines its dimensions. Thus, in the example,
the "trans _cost _so__co” table is a 2-dimensional array of cost coefficients with
rows corresponding to the set of sources and columns corresponding to the set of con-
VETrSLONS.

Two "content modes” are used in a Table statement to indicate the storage media.
"File mode” indicates that the numerical values are stored in a file and the file
speci fication is specified in the next slot (see Figure I-10). "Ezplicit mode” indicates
that the numerical values are explicitly specified as a list at the next slot. If the un-
known value "2" 1s speci fred together with explicit mode, the numerical values will be
acquired interactively from the user during the consolidation stage of LPFORM.

The units in which the data is expressed (for example, units of product per unit
of raw material) vs stated in the "unit" argument.

enter for Dietal

Econd

M1

53
II. Appendix: LPFORM Commands

LPFORM commands are used to control the interaction with the system. For ex-
ample, they allow the user to specify the terminal type ("terminal"), to start the execu-
tion of the system ("run_ problem”), to dump various system files ("dump _Ipspec",
"dump template"), to maintain the LPSPEC definition ("lpspec"), and to maintain
model templates ("template"). The "/" is used to specify the abbreviation of a com-

mand.

help

Access a help utility.

terminal/t

Allows user to specify the terminal type in order to improve the screen interface.

run__problem/r

Formulate the problem in either file or interactive mode.

Ipspec

Access a system maintenance utility to list or modify the LPSPEC language.

dumplpspec/dl

Dump definitions of all LPSPEC statements into a file called "Ipspec.dum™.

template
Access the template maintenance utility to list existing templates and create new

ones.

dumptemplate/dt
Dump a listing of all model templates from the LPFORM model base into a file

called "lpform.dum".

Center tor Digital Economy Research

atern School of Business
ng Paper 18-86-104

54

ctrl-z
Quit LPFORM, and return to monitor level. Summary statistical information

about the usage of the system is displayed.

Center for Digital Economy Research
Stern School of Business

Working Paper 18-86-104

55
ITI. Appendix: Model Template Library

A listing of all existing model templates can be dumped into a file by the com-

mand, "dump template" or "dt":

| 7- dt.
* Dumping Template Library *

* The Template library have been dumped into file: lpform.dum.

Here we list all model templates (structure and symbol convention) currently

available in LPFORM system as following:
PROBLEM/MODEL/FRAGMENT = exog_supply.

ROWNCOL X(i,j.%) RHS
Use[i;k] +8{j¥1[i;3:k] < +sli;Xk]

* Symbol convention of exog supply *

Set Reference:

SYMBOL.: SET NAME:
k : Commodity
i : From_block
j : To_block

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(i,j.%) : FLOW(From_block,To_block,Commodity)

Coefficient Reference:

SYMBOL.: COEFFICIENT (DATA):
1[1;3:%] : i[From_block,To_block,Commodity]
s[i;k] : Supply[From_block,Commodity]

PROBLEM/MODEL/FRAGMENT = exog_demand.

ROW\COL X(,3.% RHS
supplylj;k] +8{iali;j:k] > +d[j:¥]

* Symbol convention of exog demand *

Set Reference:

SYMBOL: SET NAME:
k : Commodity
i : From_block

i . To_block

iter for Dieital Economy Research

Activity Reference:
SYMBOL.: ACTIVITY (VARIABLE):

X(i,j.k) : FLOW(From block,To_block,Commodity)

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

ali;j:;x] : Gain_or_loss[From_block,To_block,Commodity]
d[j;x] : Demand [To_block,Commodity]

PROBLEM/MODEL/FRAGMENT = input_comns.

ROWA\COL X(k,j) RHS
Uselk;i] +s{jXalk;1;j] < +s[k;i]

* Symbol convention of imput_cons *

Set Reference:

SYMEOL: SET NAME:
k : Block
i : Input
j : Output

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(k,j) : VOLUME (Block,Output)

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

alk;i;j] : Tech_coef[Block,Input,Output]
s[k;1i] : Available input[Block,Input]

PROBLEM/MODEL/FRAGMENT = transportation.

ROW\COL X(1,3.%0 RHS
0BJ= +8{i;3;k¥ecli;j;k] MIN
Use[1;k] +8{j31[i;j:%) < +s[i:k]
Supplyl(i;k] +8{iYali;j;x] > +d[j:k]

* Symbol convention of transportation *

Set Reference:

SYMBOL: SET NAME:
k : Commodity
i . From_block
] : To_block

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(1,],%) : FLOW(From_block,To_block,Commodity)

56

Center or Diotlal Fee

momy Resear
Stem School of Business

=1

5

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

eli;j;x] : Trans_cost([From_block,To_block,Commodity]
1[i;j:x] : 1[From_block,To_block,Commodity]

s[i;k] : Supply(From_block,Commodity]
ali;§;k] : Gain_or_loss[From_block,To_block,Commodity]
dlj:x] : Demand[To_block,Commodity]

PROBLEM/MODEL/FRAGMENT = product mix.
ROWNCOL X(k,j) RHS

0BJ= +5{k;i}plk;j] MaAX
Uselk;i] +8{jralk;i:jl < +slk;i]

* Symbol convention of product _mix *

Set Reference:

SYMBOL: SET NAME:
k . Block

i : Input

j : Dutput

Activity Reference:

SYMBOL: ACTIVITY (VARIABLE):

X(x,j) : VOLUME(Block,Output)
Coefficient Reference:

SYMBOL: COEFFICIENT (DATA):

plk;jl : Profit[Block,Dutput]

alk;i;j] : Tech_coef[Block, Input,Output]
s(k;1i] : Available_input[Block, Input]

PROBLEM/MODEL/FRAGMENT = inventory.

ROWA\COL I(t-1) X() I(t) RHS
Inventoryl[time] +1[t~1] +1[t] -1[t] = +0[t]

* Symbol convention of inventory *

Set Reference:
SYMBOL: SET NAME:

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

I(t-1) : INVENTORY(T-1)
X () 1 VOLUME(T)
I(t) : INVENTORY(T)

58

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

1[t-1] : 1[T-1]
1[t] 1 1[T]
o[t] : 0[T]

PROBLEM/MODEL/FRAGMENT = process_selection.

ROW\COL X(k,j.m RHS
0BJ= +s{k;j:m}clk;j:m] MIN
Use [k;1i] +8{j;mItlk;i;j;m] < +alk;i]
Supplylk;jl +s{m}1[k;j;m] > +blk;jl

* Symbol convention of process_selection *

Set Reference:

SYMBOL: SET NAME:
k . Block
m : Form_mode
i . Input
i : Dutput

Activity Reference:
SYMBOL.: ACTIVITY (VARIABLE):

X(k,j.m) : VOLUME(Block,Output,Form_mode)

Coefficient Reference:

SYMBOL.: COEFFICIENT (DATA) :

clk;j;m] : Production_cost[Block,Output,Form_mode]
tlk;1;j;m] : Tech_coef[Block,Input,Output,Form_mode]
alk;1] : Available_input[Block,Input]

1[x;j;m] : 1[Block,Output,Form mode]

blk;jl : Minimum_production[Block, Dutput]

PROBLEM/MODEL/FRAGMENT = general lp max.

ROW\COL X(}) RHS
0BJ= +8{j¥p[]] MAX
Use[i] +8{j}ali;j] < +b[i]

* Symbol convention of general lp max *

Set Reference:
SYMBOL: SET NAME:
i : I_set
i} : J_set

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(j) : X(J_set)

Center for Digital Economy Research

Stem School of Busir

orking Paper [S-86-104

59

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

plil : P[J_set]
ali;j] : A[I_set,J set)
b[i] : B[I set]

PROBLEM/MODEL/FRAGMENT = general lp min.

ROWNCOL X(j) RHS
0BJ= +8{j}recljl MIN
supplyl[i] +8{j*ali;jl > +bli]

* Symbol convention of general lp min *

Set Reference:
SYMBOL: SET NAME:
i ;I _set
i : J set

Activity Reference:
SYMBOL: ACTIVITY (VARIABLE):

X(3) ¢ X(J_set)

Coefficient Reference:
SYMBOL: COEFFICIENT (DATA):

cljl : Cl[J_set]
ali;jl @ A[I_set,J_set]
b[i] : B[I_set]

enter for Digital Economy Researcl

Sterm School of Business

Working Paper [S-8t

