
ACQUIRING APPLICATION-SPECIFIC KNOWLEDGE DURING'

DESIGN TO SUPPORT SYSTEMS MAINTENANCE

Vasant Dhar
P. Ranganathan

Information Systems Department
Graduate School of Business Administration

New York University
90 Trinity Place

New York, NY 10006

and

Matthias Jarke

University of Passau
West Germany

June 1986

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS #I70
GBA #87-117

'we wish to thank Albert Croker for his assistance with the notation used to formalize the model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

Abstract
Most large systems development efforts proceed in a top-down fashion where initial

specifications and requirements are incorporated into a high-level design, followed by
programs based on this design. However, a major part of the software life-cycle effort is
devoted to maintenance. While several existing methodologies aid in the initial phases of
requirements and specification, they have proven to be of little value for maintenance.
Changes in user requirements are often translated directly to the level of code, divorcing
i t from the high level design it was based on. After a few such changes, the programs
may not correspond to any formal high-ievel design, making subsequent maintenance
difficult. We argue that maintenance must be based on the knowledge used in
synthesizing the high-level design. This requires a development environment where the
knowledge about high-level designs is formally represented, and raises the question
about how this knowledge will be acquired by the support environment in the first
place. In this paper, we present a model that enables the support environment to acquire
design knowledge through "learning by observation" of a designer engaged in specifying
a high-level design. The knowledge that the learning system begins with is a generic
object for expressing design decisions. Based on the input provided by the designer, and
a limited interactive querying process, it constructs and continuously refines a
taxonomic classification of appiication-specific knowledge and rules a t an appropriate
level of generality that capture the rationale of the design. This knowledge can be used
subsequently for maintaining system designs and recognizing design situations similar to
the ones i t has knowledge about.

KEYWORDS: Knowledge-based Systems Maintenance, Software life cycle,
knowledge acquisition and learning, object-oriented design.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

Table of Contents

1. The Systems Maintenance Problem
2. Representing Designs

2.1. Design Primitives
2.2. An Example Set of Design Decisions

3. The Objective: Synthesizing the Generalization Hierarchy
4. An Example

4.1. System-Generated Examples
5. The Model

5.1. Notation
5.2. Algorithm

6 . Discussion
7. Conclusion

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

1. The Systems Maintenance ProbIern

Systems maintenance refers to changes that have to be made to computer programs after they

have been delivered to a user. While there exist several well-established techniques that help in

. structuring the initial specification acd high-level logical design, they prove to be of marginal value

for maintenance. Fundamentally, this is because much of the semantics of the application domain

are implicit in the primitives/structures that constitute the initial design supported by these

techniques. This has two related consequences. First, the ramifications of specifications or

requirements changes are not readily apparent a t the design and hence the program level, and must

be assessed completely by the designer. This requires the designer to alternate continua1Iy between

the high level design and the low level programs, an activity which is cumbersome and prone to

error. A consequence of this situation is that i t encourages changes to be made directly a t the level

of code, thereby throwing the conceptual design and programs out of sync, rendering the design

useIess for purposes of maintenance. Over time, the relationship between the design and code can

loosen considerably, placing a heavy burden on the designer to remember the associations between

the application domain and the code; if this individual's involvement with the system ceases,

making changes can become extremely difficult.

Our position is that while maintenance ultimately involves managing changes a t the level of code,

i t can be greatly facilitated if we first attend to maintaining accurate higher level design

specifications on which the programs are based. Coupling maintenance to design requires a

development environment (henceforth environment) where application-specific knowledge about

dependencies among various parts of the high-level design and the general bases for them can be

accumuIated in an appropriate form and used to reason about subsequent design changes. An

important component of such an environment is a learning or knowledge acquisition mechanism

that can extract the general bases for dependencies among design decisions expressed by the

designer/analyst. This application-specific knowledge can be used subsequently in maintaining an

increasingly complex software design, and in detecting similarities between new design situations

and ones i t has already encountered.

In this paper we present an implemented model for knowledg+acquisition/learning that is part of

the larger environment we are developing for systems development and maintenance (Dhar &

Jarke, 1985). A primitive object-oriented language is used for describing the high-level design in

terms of situations (a set of attribute-value pairs) and design decisions/actions. A complete design

is viewkd a s a set of "examples", each consisting of situation-action pairs. The learning process

involves generating hypotheses about associations between design situations and actions, and an

iterative refinement of these hypotheses based on successive examples. Further, in situations where

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87- 1 1 7

i t is not possible to sufficiently constrain the plausible generalizations arising out of the examples,

some of these generalizations can be eiiminated via an intelligent querying process. Functionally,

the queries can be viewed as generating examples that help discriminate among the hypothesized

generalizations.

2. Representing Designs

Getting started on a design requires putting aside the details and the procedural aspects of the

problem. A common technique for imposing structure on a problem is to break i t down into

connections among abstract .black boxes*, and label these boxes and connections to designate

features of the problem. Gradually, the function and structure of these components becomes

specified. Over the last two decades, several methods have been developed for expressing designs.

A limitation of most of these schemes, however, is that the semantics associated with their

primitives and hence the application-specific labels attached to them is not precise. Further, the

structure of programs can become language-dependent. These factors have led researchers to design

high-level object-oriented specification languages which allow for data independence, and have a

formal semantics associated with high-level design primitives so that they are machine interpretable

(for example TAXIS (Borgida et.al. (1984)); Belkhouche & Urban (1986)).

Our approach toward developing a comprehensive design environment is in the spirit of these

latter approaches, and involves the design of a set of ontological primitives for specifying designs.

We are interested in extending the advantages of the object-oriented representation to very high

level design specifications that have traditionally been expressed using other methodologies such as

structured design. In this paper a limited subset of this language, namely, a set of structured

object types is used to represent designs in terms of dataflows and transformations of dataflows.

This scheme resembles structured design methods using dataflow diagrams (deMarco, 1979; Gane &

Sarson, 1979; Yourdon & Constantine, 1979). However, we should stress that our model of learning

is independent of any particular design method, and in this respect, the Structured Design

Methodology is used for illustrative purposes only.

2.1. Design Primitives

In Structured Analysis, systems designs are described in terms of data flow diagrams a t various

levels of abstraction. A data flow diagram is a network where the nodes represent transformations

on data, external entities, or data stores (files), and directed arcs represent the data flows from one

node to another. Process nodes are frequently caIled "bubbles*; each bubble can be'decomposed

into a lower-level data flow diagram. Bubbles a t the bottom level have associated mini-specs on

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

which the program designs are based. Data flow and data store information is managed in data

dictionaries. In order to keep the discussion simple, we iimit ourselves to dataflows and

transformations on them. Both dataflows and transformations are represented as structured

objects.

IJl this representation, a design decision (also called an action) is a transformation that is required

because of certain attributes of a dataflow. That is, the dataflow constitutes a situation, and the

transformation is an action.' The learning task, as we shall shortly illustrate, is one of

distinguishing between the important and the incidental attributes of the dataflow. Once this is

done, a generalization of the situation can be constructed that incorporates in it the important

features while ignoring the incidental.

2.2. An Example Set of Design Decisions

For purposes of illustration, we use the following example in this paper. We assume that an

organization has a central computerized sales accounting system (the one being designed and/or

maintained) that processes sales data from its two branches, one in New York and the other in

London. These branches generate three types of sales invoices, namely, directrsales-invoices,

assigned-sales-invoices, and statistical-sales-invoices which indicate different types of sales. These

invoices are computerized, that is, are accessible from a magnetic tape, o r directly from disk.

Further, New York invoices are formated according to some scheme whereas London invoices are

un formated, because of which they must go through a convert operation before they can be

processed, Since both offices generate computerized invoices, they can be automatically loaded into

the system for processing; if the invoices had been non-computerized (i.e. paper invoices), manual

editing and entry wouId first be required. A small fragment of a high-level design corresponding to

the above description is presented in figure l a , with a decomposition of part of figure l a in figure

lb. The symbols have their usual meanings (see deMarco, 1979).

3. The Objective: Synthesizing the Generalization Hierarchy

Basically, our objective is to infer the general knowledge underlying a design where the design

consists of a set of examples. Viewed differently, the design is an instantiation of a more abstract

model relevant to the application domain.

Extracting plausible generalizations from examples is basically a learning task. It involves

 his is a convention. Other conventions for designating situations and actions (for example, see Orr (1981)) can also be
adopted.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-117

LEVEL 1 DATAFLOW DIAGRAM OF EXAMPLE

NEW Y ORX ASSIGNED c 0 DES ZEFERENCE
SALES INVOICES 1 FILES

NEW Y ORX DIRECT
SALES INVOICES

'LONDON STATISTICAL
SALES INVOICES

EmOR EXCEPT1 ON
REPORT REPORT

, CHANGE
NOTICE

SALES
OPERATIONS

FIGURE la

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

LEVEL 2 DATAFLOU DIAGRAM OF EXAMPLE

LONDON STATISTICAL
SALES INVOICES

I

LONDON DIRECT
SALES INVOICES

LONDON ASSIGNED
SALES INVOlCES

FCRKATTED
LONDON
SALES

REFERENCE

VEXFIE D SALES

ZEW Y OM ASSIGNED
T Tq INVOICrC;

I VERIFIED \
SALES

AUDIT TRAIL

1 ERROR
REPORT I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

generalizing situations into categories on which design decisions might be based. For example, if

sales invoices coming from London are computerized (a situation) and are processed directly by

computer (a decision), a plausible generalization is that computerized invoices in geceral can be

processed by computer. It therefore makes sense to creaGe a category called ''computerized

invoices" and a general rule stating that computerized invoices are to processed directIy. These two

types of knowledge can then be used t o recognize new instances of such invoices, and how they are

to be processed. The problem of course, is to distinguish among the important and the incidental

attributes of the situation.

The problem of generating plausible generalizations is esentialIy a search problem. Most

researchers in Psychology and Artificial Intelligence (AI) have in fact viewed Learning primarily as

a heuristic search through a space of possible generalizations - also referred to as the hypothesis

space (for example, see Simon (1977)). This approach has formed the basis for several AI systems

such a s those of, Waterman (1970), Sussman (1975), Lenat (1982) and Michalski (1980).

While search is an important ingredient of any Iearning mechanism, more recent work has

focussed on representations for imposing structure on the hypothesis space to reduce the search.

Broadly, this includes learning by analogy (Winston 1975), by being told (Davis 1979), learning

based on candidate eliminations in the light of successive training instances (Mitchell 1977, 1983a),

and learning by observing experts solve specific problems (Mitchell et al. 1985). In these

approaches, emphasis is on incremental learning based on a small number of examples.

Our approach to forming general descriptions is based on construction of a structured hypothesis

space (a lattice da ta structure) for each decision. This space contains possible generalizations of

situations for each decision. These generalizations are gradually eliminated or refined with

successive examples. For a design expressing many situation-action pairs, the ultimate goal is to

synthesize a taxonomy of appropriate situation descriptions, each corresponding to a decision

expressed in the design. Specifically, the aim is to synthesize a generalization hierarchy of concepts

relevant to the application domain that contains general situation descriptions on which the design

decisions are based.

4. An Example

We provide a formal notation for the data structures and the learning algorithm in the next

section: To illustrate the example however, a brief description of these structures and the mechanics

for operating on them is first necessary.

A situation is characterized in terms of an instance di of a generic object D that is used to express

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87- 117

the examples. It has slots s p se, sg ,..., s An instance di consists of the set of pairs of properties
P.

{s. :V. .) where V.. is the value of the jth slot. An operator that is applicable to this situation is
3 '23 $1

represented as tk. In the application domain, di ==> t k represents a design decision to perform tk

in the situations described as di. If his first example is followed by the example *dj == > tk*,

this example represents a positive training instance for tk whereas :he example d. ==> tI would
1

represent a negative training instance for tk. The learning goal is to converge on those properties of

examples that are by themselves or in combination, relevant to the design decisions.

To introduce the model, let us consider some design decisions from the sales accounting system

mentioned earlier. To keep the example clear, we restrict the generic object D to four slots, called

from*, " mediumn, "priority * and 'frequency". These slots are relevant for defining dataflows in

the design of a particular sales accounting system we have analyzed. The first example, designated

El is:

from: London
medium: magtape - -> Auto-load-and-edit
priority: high
frequency: da i ly)

where Auto-load-and-edit is an action performed on a dataflow characterized by the left hand side.

The set {from:London, medium:magtape, priority:high, frequency:daily) represents the situation

dl. The operator tl that is applicable to dl is Auto-load-and-edit. Based on this example alone, the

following possibilities arise:

I. All pairs of dl are relevant in deciding on tl.

2. Only some combination of the pairs are relevant to tl.

3. All pairs of dl are merely incidental, that is, tl is performed on all instances of D
regardless of their properties.

A representation of the possibilities, the hypothesis space of all possible rules based on the first

example, is shown in Figure 2. A question mark indicates that there is no restriction on the slot

value. The figure represents a hypothesis space for tl, extending from the most specific hypothesis,

at level 0, down to the most general one a t level 4.

It is worth contrasting such a hypothesis space with those that are constructed using an a priori

taxonomy of object types such as is done in LEX Ih/fitchell, 1983aI. In those spaces, nodes represent

situations characterized in terms of the types in the existing taxonomy. We interpret our

hypothesis space in the same way, as consisting of objects. The difference, of course, is that these

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87- 11 7

lrrrl 0

from: London
mrdium : magtape
priority : high

priority:
freq:

C
from: ? from: London from: London from: London
medium : magtape medium : ? medium: magtape medium: magtape
priority : high priority : high priority: ? priority: high
freq: daily freq: dally freq: daily freq: ?

Figure 2. Hypothesis space for Auto-load-and-Edit (tl) after El.

from: ?
medium: ?
priority: high
freq : daily

level 1

lrrrl 2

from: ? from: ? from. ? from: London
medium : ? medium: ? medium: magtape medium: ?
priority: ? priority: ?

from: London
medium: ?
priority: ?
freq: daily

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

from: ?
medium: magtape
priority: ?
freq: dally

from: ?
medium: magtap*
priority: high
freq: ?

from: London
medium: ?
priority: high
frrq: 7

from: London
mrdiua: aagtapr
priority: ?
frrq: ?

types are implicit in our hypothesis space and need to be characterized explicitly. Specifically, the

nodes contain specializations of D, that is, subtypes with restrictions on values of certain slots. In

our example, nodes at level 1 are those where values of any three slots have restricted values and

the fourth slot can take any value. Similarly, level 4 consists of the most general object, type, where

values of all 4 slots are unrestricted. In effect, each of the nodes in the hypothesis space is a

specialization of D, corresponding to a particular object type. The generalization hierarchy

corresponding to this hypothesis space is shown in Figure 3. In summary, an initiaI hypothesis

space generates a crude object taxonomy. As the space is refined, so is the taxonomy.

Let us consider what happens when another example, again representing a design decision, is

Ez =

(dz
from: London
medium: d i s k => Auto-load-and-edit
p r i o r i t y : h i g h
f r eq : d a i l y 3

Comparison with El shows that only the value of the "medium' slot is different. The second

example calls for the same right hand side and is therefore a positive training instance with respect

to El. The fact that both left hand sides, which represent slightly different situations, have the

same right hand side leads to the following possibilities:

1. The values of the "mediumY slot are irrelevant in determining which operator is to be
applied, since changing them made no difference to the action to be performed.

2. Alternatively, the values may in fact be essential, if they belong to some generic
category which requires performing tl. For example, 'magtape' and "disk' could

could both belong to a 'superclass* calIed 'computerized' which could be what
requires tl. Ideally, this situation requires creating a new term, in this case
computerized, that will characterize the new superclass. However since the system has
no domain knowledge for generating this type of vocabulary, we designate the
possibility of there being a superclass using a dot notation such as "magtape.diskU. This
designates a class that subsumes "magtape' and 'disk'. The system must query the
user as to whether a suitable superclass exists which can characterize both 'magtape'
and 'disk". If the user responds with *computerizedm, the system asks the user to
enumerate other members belonging to the class labelled 'computerized". This
information can be used to recognize other instances of the new class.

Both'these possibilities are represented in the hypothesis space. In the second case, certain nodes

in the hypothesis space are generated to accomodate the information in the positive training

instance. This is the well known disjunctive problem, which we return to in the next section.

The hypothesis space for tl, shown in figure 2, is now refined to reflect these modifications. We

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-117

/

from: London

from: London from: London from: London

from: London
medium: magtape
priority: high

Figure 3. Generalization Hierarchy after El. Nodes in the hierarchy are specializations of

D where slot and value pairs on the right of the vertical bar indicate restrictions on an

object type. The lines joining the nodes are IS-A Links.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

have replaced 'magtape" by "magtape.diskY (instead of using the new label *computerizedm) in

the relevant slots. This change reflects a modification of the object types in the hypothesis space a s

shown in figure 4. The dotted segment will be explained shortly. The generalization hierarchy is

reorganized accordingly to incorporate the modified object type.

Let us now consider a third example:

E3

d3
from: Tokyo
medium: paper - -:, manual-add-and-edit
priority: high
f r e q : d a i l y >

This instance is a negative instance with respect to El and E,. Comparison of this new training
"

instance with El and E, reveals the following:
*

1. The values of slots "priority" and 'freq" are the same in all three instances. This
implies that the 'priority" and "freq" pairs do not, by themselves or in combination,
discriminate in deciding which operator should be applied.

2. The values of the dots 'from" and "freq* could, in conjunction with values of other
slots, provide the rationale for Manual-add-and-edit (t,).

In light of the evidence from the third example, i t is apparent that object types corresponding to

1 p r i o r l r y : high * / f r e q : d a i l y p r i o r i t y : h igh i f r e q : d a i l y

do not discriminate among the examples, and can therefore be eliminated from the two

hypothesis spaces so far. The nodes corresponding to these types were indicated in the dotted

section of figure 3. In the refined hypothesis spaces of Auto-load-and-edit and Manual-add-and-edit

(figure 4) these nodes are marked as eliminated.

The generalization hierarchy, reflecting the refined hypothesis spaces is also modified to that

shown in Figure 6. It represents a union of the two hypothesis spaces.

As a final example, let us consider the following:

E4=

C d4
from: Tokyo
medium: paper => Manual-add-and-edit
p r i o r i t y : high
f r e q : weekly 3

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87- 1 17

l e v e l 0

f r o m : London
medium : (m a g t a p e . d i s k)
p r i o r i t y : h i g h
f r e q : d a i l y

Figure 4. Hypothesis space for Auto-load-and-edit after E2.

l e v e l 1

l e v e l 2

l e v e l 3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

l e v e l 0
from: Tokyo
medium : paper

freq : d a i l y

from: Tokyo from: Tokyo
medium: paper medium: paper

p r i o r i t y : high p r i o r i t y : high p r i o r i t y : ? p r i o r i t y : high
freq: d a i l y f rrq: d a i l y f rrq: d a i l y f req: ?

F - -

~ f r o m : Tokyo from: ?

I f r s q : d a i l y ,Lfrsq: d a i l y freq: d a i l y

1 I medium: ? I I medium: ? I , I medium: paper 1 1 medium: ? I

I

I p r i o r i t y :
I f req: ? I

I I

Figure 5. Hypothesis space for Manual-add-and-edit (tz) after E3.
Comparision of this hypothesis space with that of t l leads to

the removal of the dotted area from both hypothesis spaces.

l e v e l 1

l e v e l 2

l e v e l 3

l e v e l 4

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

In comparing this example with Eg we find that only the value of the "freq" slot is different. As

in the second example, this results in the possibility that the two values 'daily" and 'weekly"

belong to some superclass. Accordingly, the hypothesis-space for Manual-add-and-edit is

augmented to reflect this possibility, and the corresponding changes are induced in the

generalization hierarchy. Finally, this is a negative instance with respect to the hypothesis space for

tl. In this case, i t has no effect on the hypothesis space of tl.

To summarize, the concept formation problem described above has the following features. An

example, reflecting a design decision, leads to the construction of a lattice structure called a

hypothesis space which is interpreted as a partial order of plausible concepts that account for the

decision. Subsequent examples refine the hypothesis space. Specifically, positive instances suggest

higher order concepts which result in an expansion of the taxonomy of objects. Negative instances

are used to eliminate from the space, those concepts previously hypothesized to differentiate

between design decisions. In this way the taxonomy of objects is refined, with the expectation that

the irrelevant concepts will be eliminated as pIausible differentiators, enabling the system to

converge on rules a t the appropriate level of generality.

4.1. Sys tem-Genera ted Example s

Like other learning formalisms that generalize from examples, the effectiveness of our model is

sensitive on the nature of the examples. If provided with "good' examples, the model converges

quickly on the right hypothesis for a decision; for our problem, the best discriminatory power

results from examples where situations that vary only in terms of values of a few attributes require

different decisions (the negative instances). However, in general, the strategy above cannot

guarantee that the system wiII converge on the most appropriate hypothesis in each hypothesis

space based on the examples alone. From a practical standpoint, however, if we are to use the

results of the learning process for anaIogical reasoning, i t is necessary to narrow down to a single

hypothesis for each space. For this reason, i t is necessary to have a mechanism that overcomes

reliance on the examples alone. One way for the system to accomplish this is to generate

additional examples that will help i t discriminate among competing hypotheses in each space.

Since the real discriminating power is provided by negative instances, i t makes sense to try and

generate descriptions that will prove to be negative instances in the various hypothesis spaces. To

illustrate, consider figure 4 where there are several competing hypotheses for Auto-Load-and Edit.
'

Suppose the system wants to establish the node marked 'Xu as the correct hypothesis for Auto-

Load-and-Edit (reasons for why X are explained shortly). To generate a negative example, the

system picks the "corresponding nodem (marked *Ym in figure 5) from another hypothesis space.

The system thus generates the example, posed a s a query to the user:

Center for Digital Economqg Research
Stem School of Business
IVorking Paper IS-87- 117

For < dataflow
from: ?
medium: paper
p r l o r l t y : ?
f r e q : ? 1

W i l l you do Auto-Load-and-Edit ?

If the users response is negative, i t is dear that the node marked as 'Xu represents the most

general correct hypothesis for Auto-Load-and-Edit. In this example, i t mean s that the value of the

"medium" slot is the sole discriminator in deciding on Auto-Load-an-Edit instead of Manual-Add-

and-Edit. On the other hand, if the user responds in the affirmative, further querying is needed.

The above scenario raises two questions: (1) How does the system generate the example, and (2)

what happens if the example turns out to be a positive training instance (i.e the user's response is

affirmative).

Given a hypothesis space (i.e corresponding to a design decision/action), from all the plausible

hypotheses in that space, one of the possibilities is to begin with the most general or specific

situation as the correct one (the one which expresses the rationale for the design decision). If we

begin with the most general situation and the user responds negatively to the example, that node

can be established as characterizing the most appropriate general class of situations for which the

design decision is valid. In contrast, if one starts with a more specific hypothesis, a negative

response would be of no value since more general situations might also be appropriate for that

action. The system therefore begins with the most general node as the first example.

Since we are trying to generate a negative instance, the node in the example is actually picked

from another hypothesis space - a node that 'corresponds* to X. This corresponding node, marked

"Y" in Figure 5, is one a t the same level of generality in another hypothesis space; only the

value(s) of the discriminating slot(s) are different.

In addition to a method for choosing an initial hypothesis, the system must also have a search

strategy for exploring the remaining nodes if its initial exampies prove to be positive training

instances. There are several ways to organize the search, the extremes being depth-first and

breath-first. We employ a breath-first strategy. The rationale for this is that in a design organized

in terms of incremental transform of data, differences in one or only a small number of attribute-

value pairs is likely to differentiate among the transformations. If the example above had proved to

be a positive instance, the system would have generated another query using the node "X2' in

figure 4 as the situation in the example query, before proceeding to a more specific level.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

T o summarize the querying mechanism, the system attempts to establish a node at the most

general level in one hypothesis space a s the correct (characterization of the) situation. To

accomplish this, the system generates an example, using a s the situation a corresponding node in

another hypothesis space, and attempts to establish via a query, whether the example is a positive

or negative training instance with respect to the decision of that space. Further examples are

generated using a breath-first strategy.

Figure 7 shows a generalization hierarchy where the nodes in figure 6 that are not relevant to the

design decisions in the examples have been eliminated. For readability, we have relabeled some of

the nodes. As we can see, the hierarchy represents the general situations that underlie that part of

the design used in the examples.

5. The Model.

We now describe the model underlying the learning process illustrated in the example.

5.1. Notation

Let D be the object type with slots sl, s2,.-.,s i.e., D is the p-tuple <s1, s2, ... s >.
P' P

Let dl, d2, -..d, be instances of D.

Let V.. be the value of the slot s. of instance di.
1 J J

Thus, di is the ordered set of pairs (s :V. . I 1 < j 5 p)
J '>J

Let di ==> tc indicate a decision *If di then tCY.

Let CJk) be the set of all subsets of k pairs of di, i.e.,

VSf Ci(k), S E di and IS\=k

Let a specialization of D, denoted Dls. : = <sl, s2, stl, V, sji1, ... s >
J

P

Thus, Cdkf creates specializations of D a t *leveln k. Specializations a t level k represent types

where k slots are constrained to have a fzed value.

Let @ be a function that maps specializations at level k into subsets of specializations a t level

k f l .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

Figure 7. Final generalization hierarchy corresponding to the design examples.

GENERIC OBJECT

AUTO-LOAD- EANUAL-A DD-

fd 3 (d 4

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

INST INST

(d 1
from. London
medium. magtape
priority: tugh
frequency daily

from. Tokyo
medium. paper
priority hi@
frequency daily 1

{d2
from. London
medium. disk
priority hrgh
frequency daily 1

t

from. Tokyo
medium. paper
priority high 1 frequency weekly 1

Thus Q : Ci(k) -+ ?Ci(ktl) 5.t. S E @(t) where t E C(k), t S, and C(k+-1) = C(k) for k 2

P-

.4 hypothesis space, Rk, corresponding to "di ==> t k ', is the lattice :

which represents partially ordered set of specializations of D.

%(I) represents the set of nodes a t level 1 of the hypothesis space Rk.

5.2. Algorithm

The following algorithm describes modifications to the set of hypothesis spaces (Ri, RZ, ... Rm)

when an example in the form of ' dh == > tc* is presented.

Le t 1 = C t l , tZ. . . . tm}

Begin
I f tc $E 1
Then Begln

I = I U Ct,}
nc = Qj

For K = 0 t o p , DO:
Rc = R,u Ch(k)

End
E l s e
. Begin

If tb E I s . t . tb = tc
and tb is genera ted from 'dl => t b '. do

For k from 0 t o p , do:
For j from 1 t o p , do:

If s j :Vb,] # 6j:"1.1

then Let V = V V
l * l 1 . j ' 11.1

For each tl E I s . t . tl # t,, do:
For k from 0 t o p. do:

For each El E R1 (k) and f o r each E, E R,(x) .
I f El = Ec,

then Mark El and Ec a s e l imina ted .

End

End

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

6. Discussion

In general, a system based on the learning by observation model described above is likely to be

valuable in problem areas where experts routinely engage in design activity. As a taxonomy of

objects in the application domain is gradually synthesized, the system can become useful for

reasoning about analogous situations.

Our model of learning has been motivated by Mitchell's (1983) version spaces. The structure of

our hypothesis spaces is similar to his version spaces which contain partial orderings of situations

(left hand sides of rules) that are hypothesized to account for the actions (the right hand sides -
decisions in our problem). The fundamental difference is that while MitcheII's version spaces are

generated from a preexisting generalization hierarchy of carefully selected object types and

relationships relevant to a domain, our objective is to synthesize such a hierarchy from the

hypothesis spaces generated by the examples.

A limitation of the model is that the object classifications it forms are limited by the adequacy of

the generic object used to describe the examples. Ideally, the generic object must be supplied with

all the properties needed to capture the important features of the examples. W e believe this is a

reasonable assumption for most domains. However, we are currently working on ways to enable a

user to introduce new properties dynamically a t any level of abstraction in the generalization

hierarchy.'

A second limitation is because of the disjunctive problem. In programs tha t begin with a

generalization language, the program makes inductive leaps that are biased by the content and

structure of the generalization language (Mitchell, 1983b; Utgoff and Mitchell, 1982). As we

illustrated in the example, the disjunctive problem arises in our model in another form: when faced

with an 'A or B" situation, the program is unable to create an appropriate superclass because i t

has no access to such a vocabulary. One way to create these is by embeding domain knowledge into

the program - which runs counter to our goal. Alternatively, the expert could be requested to

suggest a category - which is the method we have adopted.

Finally, since the model does not include a scheme for backtracking, a critical assumption

underlying it is that there are no inconsistencies in the examples. We are currently investigating

ways of incorporating the plausible reasoning machinery of Doyle (1979), McAllester (1982) and

others into the model in order to deal with inconsistent exampIes.

*currently, changing a type definition requires restating all previously expressed examples in terms of the modified type
definition.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

7. Conclusion

This research has been motivated by a real world problem where i t is clear that knowledge-based

support will be plausible only if a system manages to first acquire sufficient knowledge about the

domain from a designer engaged in specifying the design. This is particularly important when

domain-knowledge is embeded in decisions. If this decision making is observable by a computer, as

we have described, i t is possible to extract this knowledge by endowing the computer with the

intelligence to learn through observation. Rather than place the burden on the designer to specify

all the data types and operations on them, the system is able to infer the appropriate amount of

domain knowledge for use in maintenence.

We have presented a model for learning through a process of observing design decisions. These

decisions, viewed a s examples, result in a space of partial orderings of plausible generalizations.

This space is then refined using the constraint information in successive examples. Finally, an

attractive feature of the model is that the results are independent of the order of the examples.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87- 1 1 7

References

Belkhouche, B. & Urban, J.E., 1986. Direct Implementation of Abstract Data Types
from Abstract Specifications, in IEEE Transactions on Software Engineering, Vol.
SE12, No. 5, May 1986, pp. 649-661,

Borgida, A., Mylopoulas, J., & Wong, H., Generalization/Specialization as a basis for
software specification, in On Conceptual Modelling, Springer Verlag, New York, 1984.

Davis, R., 1979. Interactive Transfer of Expertise - Acquisition of new inference rules,
in Artificial Intelligence, Vol. 4.

DeMarco, T., 1979. Strcutured Analysis and System Specification, Prentice-HaII,
1979.

Dhar, V. and Jarke, M., 1985. Learning from Prototypes, in Roceedings of the Sizth
International Conference on Information Systems, Indianapolis, Indiana.

Doyle, Jon., 1979. A Truth Maintenance System, Artificial Intelligence, vol 12,
number 3, 1979, pp. 231-272.

Gane, C. & Sarson, T., 1979. Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, 1979.

Lenat, D.B., 1982. AM: Discovery in Mathematics as Heuristic Search, in R.Davis and
D.B.Lenat (eds), Knowledge-Based Systems in Artificial Intelligence, pp 1-225.

McAIlester, D., 1982. Reasoning Utility Package, AI Laboratory Memo 667.

Michalski, R.S., 1980. Knowledge Acquisition through Conceptual Clustering: a
theoretical framework and an algorithm for partitioning data into conjunctive concepts,
in International Journal of Policy Analysis and Information Systems, Vol. 4, No. 3.
pp 219-244.

Mitchell, T., 1977. Version Spaces: A Candidate Elimination Approach t o Rule
Learning, in Proceedings of the Fifth International Joint Conference on Artificial
Intelligence, pp 305-310.

MitcheII, T., 1983a. Learning and Problem Solving, in Roceedings of the Eighth
International Joint Conference on Artificial Intelligence, pp 1134-1151.

Mitchell, T.M, 1983b. Generalization as Search, in Artificial Intelligence, Vol. 18,
No. 2.

Mitchell, T.M., Mahadevm, S., and Steinberg, L.I., 1985. LEAP: A Learning
Apprentice for VLSI Design, in Roceedings of the Ninth International Joint
Conference on Artificial Intelligence, pp 573-580.

Orr, K.T., 1981, Structured Requirements Definition, Ken Orr and Associates,
Topeka, Kansas, 1981.

is-

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-117

Simon, H.A., 1977. Artificial Intelligence Systems that Understand, in Proceedings of
the F i f t h International Joint Conference on Art i ficial Intelligence, pp 1059-1073.

Sussman, G.J., 1975. A Computer Model of Skill Acquisition, American Elsevier,
New York.

Utgoff, P.E. and Mitchell, T.M., 1982. Acquisition of Appropriate Bias for Inductive
Concept Learning, in Proceedings of the 1982 National Conference o n Art i f ic ia l
Intelligence.

Waterman, D.A., 1970. Generalization Learning Techniques for Automating the
Learning of Heuristics, in Artif icial Intelligence, No. 1, pp 121-170.

Winston, P.H., 1975. Learning Structural Descriptions from Examples, in P.H.
Winston (ed), The Psychology of Computer K s i o n , McGraw Hill, New York.

Yourdon, E. and Constantine, L.L., 1979. Structured Design, Prentice-Hall, New
Jersey.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87- 117

