
PROLOG META-INTERPRETERS FOR

RULEBASED INFERENCE UNDER UNCERTAINTY

Information Systems Area
Graduate School of Business Administration

New York University
90 Trinity Place

New York, N.Y. 10006

Tim Finin

Unisys Corp. and
Computer Science Department
Moore School of Engineering
University of Pennsylvania

September 1987
(Revised October 1987)

Center for Research on Information Systems
Information Systems Area

Graduate School of Business Administration
New York University

Workinp Paper Series

CRIS #I65
GBA #87-91

'please direct all inquiries and comments to Shimon Schocken, 624 Tisch Hall, 40 West 4th Street,
New York, NY 10003, or by electronic mail to B20.s-schocken@kl.gba.nyu,edu

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Abstract

Uncertain facts and inexact rules can be represented and

processed in standard Prolog through meta-interpretation. This

requires the specification of appropriate parsers and belief

calculi. We present a meta-interpreter that takes a rule-based

belief calculus as an external variable. The certainty-factors

calculus and a heuristic Bayesian belief-update model are then

implemented as stand-alone Prolog predicates. These, in turn,

are bound to the meta-interpreter environment through second-

order programming. The resulting system is a powerful

experimental tool which enables inquiry into the impact of

various designs of belief calculi on the external validity of

expert systems. The paper also demonstrates the (well-known)

role of Prolog meta-interpreters in building expert system

shells.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- .

1. Introduction

More than any other programming language, Prolog means different

things to different people. In this paper, we focus on some

aspects of Prolog which make it particularly useful for building

systems for non-categorical rule-based inference. The basic

notion of losic prosrams with uncertainties is due to a paper of

this title by Shapiro (1983). The present paper elaborates on

this concept in the context of expert systems and presents

several extensions to the basic idea. The computational tools

that resulted from this research turned to be very useful in

experimentation with alternative techniques for rule-based

inference under uncertainty.

In a logic program with uncertainty, rules and facts are

parameterized by some sort of a 'Idegree of belief." The program

is designed to compute posterior beliefs in goals as a side-

effect of standard theorem proving. Belief update can be

performed either within the logic program itself (e.g. Clark &

McCabe, 1982, Alvey et all 1986), or at higher, meta-level of

interpretation (Shapiro, ibid). A Meta-interpreter is an

interpreter of a language written in the same language. In

Prolog, meta-interpreters have proven to be particularly useful

in building expert system shells. The basic idea is that Prolog

is already a very capable first-order inference-engine; turning

this raw power into a full-featured shell is basically a matter

of adding functionalities to the standard language. For the sake

of modularity, this is best accomplished by creating specialized

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

meta-interpret=rs-and enhancing them incrementally (Sterling,

1986).

Prolog meta-interpreters were developed to add a number of

essential capabilities found in most commercial expert system

shells. For example, Hammond & Sergot (1984) extended the

inference-engine with a ''query the userw facility which obtains

missing information through interactive consultation. Sterling

and Lalee (1986) developed techniques to explain the system's

line of reasoning. A number of authors, e.g. Dincbas (1984) and

Pereira (1982), have shown how the fixed control structure of

Prolog can be short-cut and modified to suit various inferential

needs. Baldwin and Monk (1986) developed a meta-interpreter for

inexact reasoning based on the Dempster-Shafer model (Shafer,

1976).

The motivation for this paper came from the first author's

interest with experimenting with a variety of belief update

models in expert systems. It soon became clear that such

experiments require a computational environment which (a)

simulates a standard rule-based inference algorithm, and, (b)

allows a great deal of design flexibility with respect to

creating and modifying alternative belief calculi. This need was

satisfied effectively by extending work of the second author on

Prolog meta-interpreters. In the process of developing these

tools, we became aware of a recent paper by Sterling (1986)

describing the analogy between ~ i s p Flavors and Prolog meta-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

interpreters. 'sterling's paper provided an elegant theoretical

framework within which our work can be viewed as a special case

of flavor mixing.

The paper begins with a synopsis of rule-based inference under

uncertainty in the context of expert systems. Techniques for

representing and parsing uncertain facts and inexact rules within

Prolog are then described. Next, the building blocks of a belief

update model are defined and implemented as logic programs.

These individual modules, of which systems like MYCIN and

PROSPECTOR are built, are then integrated into an overall meta-

interpreter called SOLVE. The unique feature of SOLVE is that it

takes a belief calculus as an external parameter. The paper

proceeds to present Prolog predicates which implement the

certainty-factors calculus and an ad-hoc Bayesian belief update

model, and shows how these can be easily mixed with SOLVE'S

theory. The paper concludes with comments on the suitability of

this environment to experimentation on the validity of rule-based

inference in non-deterministic domains.

2. Rule-based inference under uncertainty

The mathematical and cognitive underpinnings of rule-based

(production) systems are well known, and the reader is referred

to Davis and King (1984) and Newel1 (1973) for elaborate

discussions. Due to its proximity to first-order predicate

calculus, the rational basis of cateaorical rule-based inference

is normally unchallenged. This validity, however, does not

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

extend naturally-to applications involving uncertain facts and

heuristic inference rules. Under such conditions, a rule-based

system may be viewed as a non-cateaorical classification program,

designed to map a set of observed facts on a set of one or more

explaining hypotheses (Cohen, 1985). This inexact matching

algorithm is carried out by applying modus ponens repeatedly to a

set of rules of the form <IF e THEN h Bel> (throughout the paper,

e and h stand for a piece of evidence and an hypothesis,

respectively). The postfix Be1 is a degree of belief, which,

broadly speaking, reflects an expert's confidence in the logical

entailment associated with the implication e->h. The problem,

simply put, is this: given the prior belief in h and all the

degrees of belief that parameterize rules and facts that

ultimately imply h, how does one compute the posterior belief in

h? In expert systems, this is typically accomplished by some

sort of a belief lansuaqe.

According to Shafer and Tversky (1985), the building-blocks of a

belief language are syntax, calculus, and semantics. In the

context of rule-based inference, svntax corresponds to a set of

degrees of belief which parameterize uncertain facts, inexact

rules, and competing hypotheses. The degrees of belief

associated with rules are elicited from a domain expert as the

knowledge-base is being constructed. Factual degrees of belief

are obtained interactively through consultation. Posterior

degrees of belief are computed through a set of operators

collectively known as a belief calculus. The semantics of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

language can be viewed as a mapping from a real-life domain into

the belief language. This mapping provides a cognitive

interpretation and face-validity to both the syntax and calculus

dimensions of the language.

As the rule-based inference-engine processes rules which

ultimately imply an hypothesis, a belief calculus is applied to

update the posterior belief in this hypothesis. The process

normally terminates when the belief in one or more hypotheses

exceeds a certain pre-defined cutoff value. Ideally, we would

like the system to be externally valid, namely, to assign the

highest posterior belief to that hypothesis which best explains

the observed fact-base. If we choose to abide to Bayesian

rationality, this objective requires that the system's belief

calculus be consistent with the axioms of subjective probability.

However, it was shown by several authors (e.g. Heckerman, 1986)

that the modular structure of the rule-based architecture is

generally inconsistent with the wholistic nature of Bayesian

inference. From a probabilistic standpoint, domain knowledge may

be characterized by a joint distribution function F defined over

the hypotheses/facts space (Pearl, 1986). Attempts to capture

this knowledge through a compartmentalized rule-based

architecture amount to making strong independence assumptions on

F which are rarely met in practice.

The artificial intelligence literature on numeric belief update

algorithms consists of two major trends. Global methods, which

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

are due primarily-to Pearl (1986) and his colleagues at UCLA,

view the knowledge-base as a space of propositional random

variables, organized in a network. Pearl has shown that, for a

certain class of distribution functions, there exists a method of

computing posterior beliefs which is consistent with the axioms

of subjective probability. Moreover, the method's run-time is

polinomial in the number of nodes in the network. Similar

algorithms were recently proposed by Shenoy and Shafer (1987) for

the Dempster-Shafer model. Local or ple-based methods, which

include MYCIN1s and PROSPECTORts belief update models, are only

partially consistent with probability theory. Therefore, it is

more prudent to describe a rule-based calculus as a "scoringM

algorithm, a term coined originally by Cooper (1984). This

algorithm accepts a set of inexact rules and a set of uncertain

data, and goes on to "scorew a set of competing hypotheses.

There exist conditions under which the resulting scores are

probabilities, but this is not always the case.

In view of the limited Bayesian rationality of rule-based

inference, it is appropriate to question the merit of forwarding

probabilistic research in this direction. There are several

reasons, however, which make this a legitimate and potent area of

inquiry. First, there exist techniques designed to transform

certain wholistic evidential spaces into decomposed spaces in

which rule-based belief calculi do have a Bayesian interpretation

(Charniak, 1983, Schocken, 1987). Second, due to their

relatively simple and ttlogicalfi structure, rule-based calculi

Center for Digital Economy Research
Stem School of Business
Working Paper IS-87-91

seem to enjoy a'descriptive appeal; that is, they make sense to

human experts. This is at least one reason for the fact that "at

present, almost all commercially-available expert system shells

are based on either EMYCIN or its fairly closed relative

PROSPECTORw (Bramer, 1986, p. 3). Indeed, following the great

popularity of such shells as EMYCIN, M.1, and AL/X, rule-based

belief calculi became the de-facto method of handling uncertainty

in applied expert systems. Consequently, the question of how far

these relatively simple and appealing methods can be pushed is

interesting, both on theoretical and on practical grounds.

The present paper describes meta-enhancements to Prolog which

enable it to (a) recognize and wunderstand'* the notion of

uncertain facts and inexact rules, and, (b) compute the posterior

belief in hypotheses with respect to a given belief calculus.

Before delving into this discussion, we wish to present a simple

example which highlights the essence of what follows. The

example is taken from the familiar domain of rating propspective

dates listed in a "little black book." Suppose a person, denoted

hereafter "dater," wishes to determine whether or not another

person is a good match for a blind-date, based on a limited set

of available facts. For the sake of simplicity, let's assume

that the dater's knowledge-base consists of the following two

rules and two facts:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- -
nice-voice(X) => good - looking(X) # 0.4.

good-looking (X) or smart (X)
=> date (X) # 0.8.

nice-voice (leslie) # 1.0.

smart (leslie) # 0.7.

This knowledge-base has the following interpretation: (1) is a

wishful (and inexact) conjecture that blind-daters typically make

and then learn that they should have known better. (2) is an

inexact rule of thumb which models the dater's social

preferences. (3) is a certain fact about Leslie. S/he sounds

good over the telephone. Fact (4) is an inexact estimate of

Leslie's IQ.

We see that, not unlike other domains of expertise, the dater's

"knowledgew and perception of reality are heuristic and

subjective, respectively. In the rule-based architecture of

(1-4), this non-determinism is represented by the numbers

following the # symbol. Note, however, that, barring these

numbers, (1-4) may be readily translated to standard Prolog. To

do this, one replaces the non-standard token => by Prolog's :-

operator and reverses the direction of the two rules. These

cosmetic transformations are of little theoretic interest.

Indeed, had we chosen to truncate all the degrees of belief in

(1-4) starting with the # symbol, we could have asked Prolog to

prove the goal:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

date (leslie) ?

Prologls response to this query will be the laconic and rather

unproductive result 'IYes." Under the given semantics, this

means: "go ahead and date Leslie." We think that most daters

would reject this black and white dichotomy in favor of a finer

and more informative matcher. In particular, let's assume that

(a) the # degrees of belief in (1-4) were reinstated, and, (b) a

certainty-factors oriented meta-interpreter called SOLVE were

available. Under these conditions, the original query may be

recast as the following meta-query:

solve (date (leslie) , Bel) ?

To which Prolog will answer:

Yes, Bel=O. 56

Like standard Prolog, SOLVE attempts to prove the goal

date(leslie), searching for facts and rules which imply this

hypothesis categorically. In the process of constructing this

proof, however, SOLVE also collects degrees of belief relevant to

Leslie and fuses them into Bel, the posterior belief in the

proposition date(1eslie). In a meta-interpreter environment, the

Be1 variable is bound and updated on the fly, as a side-effect of

the ordinary proof process.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

The preceding diwussion made the implicit assumption that SOLVE

has a built-in belief calculus. In other words, the belief

calculus is assumed to be a fixed part of SOLVE'S theory.

However, in view of Sterling's (1986) principles of mixing

flavors, it is far more elegant and tasteful to define a stand-

alone calculus, say c, and pass it on to the SOLVE meta-

interpreter as a parameter. In this form, the query

solve(h,Bel,c) consists of a request to confirm an hypothesis, h,

and compute its posterior belief, Bel, modulo the belief

calculus, c.

For example, let cl and c2 be two complex Prolog predicates which

implement the certainty-factors (CF) and the Bayesian calculus,

respectively, and consider the following set of queries:

solve (date (leslie) , cl ,xl) ?

solve (date (pat) , cl , y1) ?

solve (date (leslie) , c2 4 2) ?

solve (date (pat) , c2, y2) ?

Suppose that the results of this experiment were xl > yl and

x2 < y2. Let's assume further that the underlying knowledge-base

as well as the corresponding CF and Bayesian degrees of belief

were elicited from the same human expert. Under such

circumstances, the results of the experiment clearly indicate

that at least one of the belief languages under consideration

failed to capture the human's preferences. This amounts to a

powerful test of the empirical rationality of both languages:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

excluding the change in the belief calculi and in the

corresponding sets of degrees of belief, everything else is kept

intact, including Leslie, Pat, the dater's preferences, and the

inference-engine.

. We wish to avoid here some pressing questions regarding the

empirical validity of such experiments. These questions are at

the heart of the broader issue of validating expert systems, a

subject of a different paper. We do wish to emphasize, however,

the instrumental role that meta-interpreters play in the context

of such experiments. Specifically, the SOLVE meta-interpreter

serves two purposes: first, it provides a clear and concise

conceptualization of the experiment setup. Second, it serves as

a working shell which can be instantiated with qtcompetingll belief

calculi, leading to alternative and often conflicting system

recommendations. These data sets, in turn, provide important

insights into the compatibility of belief calculi and their

sensitivity to a variety of design changes. Research in this

direction is reported in Schocken (1987).

The following section describes how rule-based knowledge is

represented and parsed in the SOLVE environment. This discussion

sets the stage for Section 4, where a detailed description of

SOLVE'S inference-engine is given.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

3. Knowledse Representation

So far we have deliberately ignored the meaning of the numbers

following the # symbol. The interpretation and treatment of

these degrees of belief depend on our choice of a belief

language. In EMYCIN and M.1, degrees of belief are elicited and

represented as diasnostic certainty-factors, bearing evidence

from facts to hypotheses. In Bayesian systems (e.g. PROSPECTOR),

degrees of belief are causal, representing the likelihood of

observing certain facts given alternative prospective hypotheses.

Causal and diagnostic methods of knowledge engineering are quite

different, both on cognitive and on mathematical grounds.

Readers who are interested in this important ndualityw are

referred to Einhorn and Hogarth (1987) and to Shachter and

Heckerman (1986).

This section deals with two syntactically related topics. First,

we present a simple "user-orientedQ' language for representing

inexact rules and uncertain facts. Using this language and a

standard word-processor, one can create and update a knowledge-

base outside the Prolog environment. Let's assume that this

knowledge-base is stored in a flat file called KBASE. Next, we

wish to be able to merge KBASE with SOLVE'S theory through

Prolog's system predicate CONSULT. This, however, requires a

certain degree of parsing and pre-processing, which are also

covered in this section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Going back to the-dating example, consider the following subset

of an hypothetical, CF-oriented, KBASE file:

/* rule-base */
rich(X) => date (X) # 0.2.

age(X,Age) and Age>l8 and Age<35 => date(X) # 0.3.

salary(X,Salary) and Salary>75000 or
parent(X,Parent) and salary(Parent,SalaryP) and SalaryP>150000

=> rich(^) # 0.9.

/* fact base */
age(nicky, 28) .
parent (nicky , bob) .
salary (bob, 160000) ,
salary(nicky,20000) # 0.8.
good-looking (pat) # 0.95.
salary (pat, 0) .
age (pat, 24) .
potential-date(nicky).
potential-date(pat).

How can we merge this set of non-standard clauses with a standard

Prolog database? ideally, we would like to simply prove the goal

consult(kbase). This, however, won't work, since the KBASE

syntax in incompatible with Prolog. This difference can be

resolved as follows: first, enhance Prolog's syntax by adding the

tokens "=>, or, "and, and 'I#" to the language. Next,

specify their semantics. The first

through the following predicate:

define-syntax :- op(255,xfy,=>),
op(254,xfx,#),
op(254,xfx,or),
op(253,xfxtand) .

modification is accomplished

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Each application-of the system predicate op(P,A,T) defines the

token T as a new, non-standard Prolog operator. The precedence

and associativity properties of T are given by P and A,

respectively. The actual values of these arguments vary from one

Prolog implementation to another and are of little interest.

Having added a bunch of non-standard clauses to Prolog, we now

have to describe their intended meaning. The general strategy

taken here is to convert all rules and facts into a '*generic

clausal formw consistent with Prolog's syntax. In particular, we

wish to (a) convert inexact rules of the form ce => h # Bel> into

the generic clause (h,e,Bel), and, (b) convert uncertain facts of

the form <e # Bel> into the generic clause (e,true,Bel). The

generic clause is important because this is the only inferential

data-type that SOLVE understands. More about that, later.

Since the direction of rules and the semantics of degrees of

belief vary across belief languages, each language requires a

specialized parser. The remainder of this section presents a

certainty-factors parser and a Bayesian parser. The section

concludes with some general remarks on other functions which may

be incorporated in more sophisticated parsers.

A Certainty-factors Parser: In the additive CF syntax, a

diagnostic rule of the form <e => h Bel) means that e increases

the belief in h by the magnitude Be1 which varies from -1 to 1.

If e is irrelevant to h, Bel=O. The extreme case of e being

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

sufficiently condncing to confirm (disconfirm) h in certainty is

modeled through Bel=l (Bela-1). There are basically two types of

certainty-factors. The CF's associated with rules (e.g.

rich(x) => date(x) # 0.4) are elicited from a domain expert when

the systems's rule-base is being constructed. The CF's

associated with uncertain facts (e.g. salary(nicky,20000) # 0.8)

are supplied through consultation.

A knowledge-base with certainty-factors is translated into

generic clauses through the following parser:

parse(H,E,Bel) :- (E => H # Bel).
parse(E,true,Bel) :- (E # Bel) .
parse(E,true,l) :- E.

This code reads as follows: (5) matches the non-standard rule

<E => H # Bel> with the clause (H,E,Bel). (6) matches the

uncertain fact <E # Bel> with the clause (E,true,Bel). Finally,

certain facts of the form E (with no attached degrees of belief)

are defaulted by (7) to the clause (Eftrue, 1) which reads: E is

true with certainty. The latter convention allows us to freely

mix certain and uncertain facts in the same knowledge-base, and,

at the same time, relieves us from the tedium of assigning a 1.0

degree of belief to such certain facts as parent(nicky,bob).

Instead, we let the system take care of this nuisance as a side-

effect of parsing.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

A Bavesian parser! In the Bayesian language, the flow of

evidence is the reverse of the CF language, reflecting causal

reasoning from hypotheses to evidence. Specifically, the rule

<h -> e Bel> represents the assertion that (the cause) h is a

potential explanation to (the effect) e. Given this

interpretation, there are many ways to define the degree of

belief, Bel, measuring the "strengthl1 of this causal implication.

Indeed, the probabilistic meaning of causality has been the

subject of an intense philosophical debate, and the reader is

referred to Bunge (1979), Carnap (1954), and Churchman (1971) for

insightful discussions of this issue.

The Bayesian calculus implemented here is based on heuristic

extensions of Bayes rule. This calculus requires that each rule

of the form <h ==> e Bel> be accompanied by three probabilities:

P (h) , P (e 1 h) , and P (e (h) . The probability of e, P(e) , need not
be specified, because it is either (a) given, if e is a terminal

fact, or, (b) calculated by the system through a lower-level rule

of the form <e -> el Belt>. The most natural place to store the

three probabilities associated with each rule is in the Be1

parameter. Hence, we make the syntactical convention that the

Bayesian degree of belief, Bel, is the three-place list

[P(h),P(elh),P(elh)]. With that in mind, the Bayesian parser is

defined as follows:

parse(H,E,Bel) :- (H => E # Bel).
parse (E, true, Bel) : - (E # Bel)
parse(E,true, 10.9999, lJ]) :- E.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-87-91

The meaning of'(8) and (9) is identical to their corresponding

meaning in the CF parser, but note that the direction of the rule

in the right-hand side is reversed. When the parser detects a

certain fact through (lo), it defaults its prior probability to

0.9999. The difference between this and the more plausible 1 is

due to an uninteresting technical detail.

Similar to the CF parser, the role of (8-10) is to translate

rules and facts into the generic clause (H,E,Bel) which is

recognizable by the SOLVE meta-interpreter. Note that no attempt

is made here to unpack the compound degree of belief into its

three individual components. This task is left where it belongs

-- the belief calculus level. This again illustrates how a

modular design can relieve the inference-engine from unnecessary

technical clutter.

Other Uses of Parsers: Thoughtful combinations of the OP and

PARSE predicates can result with a great deal of design

flexibility. In the present context, this flexibility allows the

designer to modify the syntax of a belief language and its

corresponding knowledge-bases without tinkering with the rest of

the system. For example, suppose we wish to leave the CF

calculus intact, and, at the same time, elicit degrees of belief

that vary from -100 to 100 (this is normally done by most CF

knowledge engineers). This leads to rules and facts of the form:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

likes (XI sushi) --r -date (X) # -10.

nationality (X I japan) -> likes (XI sushi) # 90.

nationality (tomo, japan) .

Following the standard CF requirement that degrees of belief be

restricted to the interval [-1,1], we can pre-process the

knowledge-base as follows:

parse (H,E, Bel) : (E -> H # Bell) ,
Be1 is Be11/100.

parse (E, true, Bel) : - (E # Bell) ,
Be1 is Be11/100.

parse (El true, 1) : - E.

One can easily envision other useful applications of PARSE beyond

this trivial example. In PROSPECTOR, for example, there is a

provision for representing belief in evidence through qualitative

terms, e.g. woccasional,w Rrare,w etc. Those statements are then

transformed into probabilities, e.g. 0.1 and 0.01 ,respectively

(Duda et al, 1977). In a similar vein, Lichtenstein and Newman

(1967) concluded empirically that verbal descriptions of

uncertainty may be mapped on ranges of probabilities. These

verbal-numeric mappings can be made explicit as a side-effect of

parsing, as follows:

parse (El true, Bel) : - (E # Bel-text) ,
translate(Be1-text,Bel).

translate (woccasional*~, 0.1) .
translate ("rarew, 0.01) .
etc.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

To sum up, the parser shields the inference-engine from the

syntactical idiosyncrasies of the underlying belief language.

This separation enables us to elicit and represent rules and

facts in a variety of forms, and, at the same time, process them

through a generalized inference-engine that operates on a

collection of generic clauses of the form (H,E,Bel).

4. The Inference Enaine

In order to propagate degrees of belief in a network consisting

of uncertain facts and inexact rules, a rule-based inference

system must be capable of handling three generic types of

reasoning: Boolean conditioning, sequential propagation, and

parallel combination. This section describes each of these

special cases of belief update schemes and provides their

corresponding logic programming solutions. In the subsequent

section, the three individual modules are integrated into the

overall SOLVE meta-interpreter.

Let h, el, and e2 be an hypothesis and two pieces of evidence

with known prior belief Bel(h) and current beliefs Bel(e1) and

Bel(e2), respectively. Our inference-engine must be capable of

computing the posterior belief Bel(h/.) in light of any recursive

combination of the following generic relationships:

Boolean conditioning: <el or e2 -> h Bel)

<el and e2 -> h Bel>

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

-.
sequential propagation: <el -> e2 Bell>, <e2 -> h el^>

Parallel combination: <el -> h Bell>, <e2 -> h Be12>

The exact specification of how to compute the posterior belief in

h in any one of the above circumstances is precisely the

definition of a rule-based belief calculus. Although the details

of such specifications vary greatly across different calculi, the

basic structure of the rule-based belief update model is quite

invariant and isomorphic. This general structure is described in

what follows, leaving the details for later sections.

4.1. Boolean Conditioninq

Consider the categorical disjunctive rule <el or e2 -> h> which

reads: either one of the two pieces of evidence el or e2 (known

in certainty) can alone establish the hypothesis h. How does one

extend this rule to situations in which either el or e2 are

uncertain? this question is complicated by the observation that

the uncertainty associated with these facts is not necessarily a

standard probability, but, rather, an abstract measure of human

belief. Kahneman and Miller (1986) have argued that, under these

circumstances, the most reasonable rule for Boolean combination

is the one used in the theory of fuzzy sets (Zadeh, 1965). This

rule, which was implemented both in MYCIN and in PROSPECTOR, sets

the belief in a disjunction (conjunction) to the maximal

(minimal) belief in its constituents:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- -

Be1 (el or e2) = max (Be1 (el) , Be1 (e2))
Be1 (el and e2) = min (Be1 (el) , Be1 (e2))

Once the belief in a rule's premise is established trough Boolean

conditioning, the posterior belief in the rule's conclusion can

be computed using sequential propagation.

4.2. Seauential Pro~aaation

Rule-based belief calculi make the implicit assumption that the

"actualw degree of belief in a rule has to change when the belief

in the rule's premise changes. Specifically, let <e->h Bel(h,e)>

be a rule specifying that "given e (with certainty), h is implied

to a degree of belief Bel(h,e),w and let the current belief in e

be Bel(e). In the process of doing rule-based inference, the

premise e might be either (a) a terminal fact whose prior belief

Bel(e) is specified by the user, or, (b) an intermediate "sub-

hypothesisff whose current belief Bel(e1.) was already computed by

the system.

Whichever category e falls in, the posterior degree of belief in

the rule, denoted Belf(h,e), is computed through a variant of the

following "sequential propagation function:ff

Be1 (h, e) = Fs (Be1 (e) , Be1 (h, e))

The function Fs is monotonically increasing in both variables

Bel(e) and Bel(h,e). Therefore, Fs is sometimes referred to in

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

the A1 literature-as an "attenuation function," designed to

translate the uncertainty associated with a rule's premise into

the uncertainty associated with the rule itself.

4.3. Parallel Combination

Let h be an hypothesis with current degree of belief Bel(h) and

let eel -> h Bel(h,el) > and ee2 -> h Bel(h,e2) > be two rules that

bear evidence on h independently. The combined, posterior belief

in h in light of {elre2) is given by the following binary

"parallel combination functi~n:~~

Be1 (hl el,e2) = Fp (Be1 (h) , Be1 (h,el) ,Be1 (h,e2))

(it is implicitly assumed that Bel(h,el) and Bel(h,e2) were

already attenuated by Fs). In order to free the inference

process from order and clustering effects, the function Fp is

normally required to be commutative and associative. If these

requirements are satisfied, the binary Fp function can be

extended recursively to an n-ary parallel combination function.

The details of this extension are straightforward.

The description of a belief calculus given in this section was

deliberately given in skeletal terms; this abstract level of

specification is all that is required by the SOLVE meta-

interpreter. The actual specification of the functions

eFs,Fp,Fand,For> is made at another, meta-level of

interpretation. This technique, however, requires a method for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

binding a specific belief calculus <fs,fp,fand,for> to the SOLVE

environment. This technique is described in the next section.

4.4. A Note on "Function Variablesw in Proloq

In the preceding paragraphs, the sequential and parallel

combination functions were specified using the conventional

algebraic notation Y=f(X). In Prolog, this notation has no

meaning. Instead, the logic programming equivalent of the

computation Y=f(X) is normally the predicate f(X,Y). This goal

is made to succeeds always, unifying the variable Y to the value

f(X). For example, the successor function s(X)=X+l is

implemented through the predicate s(X,Y) :- Y is X+1. When we

ask Prolog to prove the goal s(3,Y), Prolog succeeds and binds Y

to 4 as a side-effect.

Now, things become slightly more complicated if we wish to treat

the functor f itself as a variable. This is precisely what is

required in the SOLVE meta-interpreter, which uses a belief

calculus without knowing its exact specification, From a design

standpoint, the ideal solution is to pass the four predicates

cfs,fp,fand,for> as parameters to the SOLVE predicate, creating a

goal of the form solve(h,Bel,fs,fp,fand,for), In this context,

the predicates cfs,fp,fand,for> are meant to instantiate the

variables <Fs,Fp,Fand,For> in SOLVE. However, this type of

quantification is beyond the scope of first-order predicate

calculus, and, consequently, is illegal in Prolog. This

limitation can be overcome by second-order programming, taking

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

advantage of Profog's gfuniv'* =.. operator. Among other things,

this operator may be used to bind variables to functions. For

example, consider the following APPLY predicate, defined in

(Sterling and Shapiro, 1986):

applyl(F,Xs) :- Goal=..[FIXs], Goal.

The goal applyl(f,Xs) causes Prolog to apply the function f to

the argument list Xs. For example, the goal applyl(s,[3,Y]) will

succeed, resulting with Y=4.

In this paper we define a more powerful version of APPLY, as

follows:

apply(Predicate,Args) :- Predicate=..PredList,
append(PredList,Args,GoalList),
goal=..GoalList,
call (Goal) .

~efined that way, the first argument of apply, Predicate, can be

either an atomic symbol naming a predicate, or, alternatively, a

term representing a predicate with some of its arguments

supplied. For example, apply(sf[3,Y]) will yield Y-4, and so

will As yet another example of the utility of

APPLY, consider the following numeric computation of the square-

root function, using Newton's approximation formula:

sqrt (X,Y) :- apply(newton(0.01) , [XJ]) .
newton(Epsilon,X,Y) :- iterate(Epsilon,X,Y,l).
iterate(Epsilon,X,Y,Y) :- Diff is X-Y*Y,abs(Diff,Z),Z=cEpsilon,!.
iterate(Epsilon,X,Y,Z) :- New2 is (X/Z+Z)/2,

iterate(Epsilon,X,Y,Newz)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Defined that way, the parameter of the NEWTON predicate,

currently set to 0.01, specifies the precision level of the SQRT

function. That is, Y is guranteed to be within a 0.01

neighborhood of the true value of In this example,

sqrt(4,Y) will yield Y-2.0006.

To sum up, we see that the term representing the predicate in our

definition of APPLY is the equivalent of a closure in a Lisp-

based functional language.

The programming techniques discussed in this section have general

implications to software engineering beyond the context of this

paper. We have chosen to present this material here because

second-order programming is used extensively in the SOLVE

architecture. In particular, the APPLY predicate plays a central

role in mixing flavors, i.e. adding functionalities to the

wvannilalt meta-interpreter. This analogy becomes clearer in the

next section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

4.5. Puttins it All tosether

The theory of SOLVE consists of a recursive union of all the

modules described thus far, namely parsing, Boolean conditioning,

sequential propagation, and parallel combination. The complete

definition of SOLVE is as follows:

solve((H1 and H2),Bel,Fs,Fp,Fand,For) :-
solve(H1,Bell,Fs,Fp,Fand,For),

(13)

solve(H2,Bel2,Fs,Fp,Fand,For),
apply (Fand (Bell, Bel2) , [Bel J) .

solve (H, Be1 , Fs, Fp, Fand, For) : -
parse (Hr-Belp) , ! ,
bagof(Belx,

(14 1

(parse (H, E, Bel-rule) , (15)

solve(E,Bel e,Fs,Fp,Fand,For) , (16)
(17)

apply (Fs, [BG~-e, el-rule, ~ e l x)) , (18)
Bels) ,

apply(Fp,[Belp,Bels,Bel]).
(19)
(2 0

solve(E,l,Fs,Fp,Fand,For) :- E,!.

The base-fact (11) of SOLVE, which is ground, assigns a belief of

1 to the constant hypothesis @*true." The subsequent handling of

Boolean conditioning in (12-13) is self-explanatory. In (14),

PARSE is used to check if the hypothesis H is present in the

knowledge-base, and, if so, to bind Belp to its prior degree of

belief. The BAGOF predicate accomplishes a few things. First,

it looks (through parsing) for all the rules <E => H Be1 rule> -
whose conclusion is H (16). For each such rule, SOLVE is applied

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

recursively to Compute the posterior belief in the premise, E,

yielding Bel-e (17). This ncurrent belief,I1 in turn, is used by

Fp to attenuate the original degree of belief, Be1 - rule, into
Belx (18). Attenuated degrees of belief are strung together (via

BAGOF) into the list Bels (19).

The Ifpunch linew of SOLVE is (20). When we get to this point,

the list Bels consists of all the attenuated degrees of belief

associated with all the rules whose conclusion is H. Since this

list is constructed recursively, Bels incapsulates all the

evidence that SOLVE drew from all the reasoning chains whose

ultimate conclusion is H. At that point, the parallel

combination function Fp is applied to fuse this information with

the prior belief Belp, yielding the ultimate outcome of SOLVE,

i.e, the posterior belief, Bel.

To sum up, SOLVE(H,Bel,Fs,Fp,Fand,For) implements an exhaustive

depth-first search, pruning all the rules and facts which bear

evidence on H, either directly or indirectly. As a side-effect

of this process, the program computes the posterior belief in H

modulo the belief calculus <Fs,Fp,Fand,For>. When SOLVE branches

horizontally, Fp is used to combine the degrees of belief

originating from rules whose direct conclusion is H. When SOLVE

backtracks from a vertical recursive call, Fs is used to

synthesize the belief committed to H from lower-levels of

reasoning. If a Boolean **forkt* is encountered, either Fand or

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

For are applied to compute the posterior belief coming out of the

fork.

The reader has probably noticed that the predicates

<Fs,Fp,Fand,For> are still unspecified. This was done in

purpose, in order to highlight the modularity and top-down design

of SOLVE. Indeed, one motivation for writing this paper was to

demonstrate the ease by which a belief calculus can be added to

or modified within the SOLVE environment. This is accomplished

in a completely orthogonal manner, i.e. without tinkering with

any other part of the meta-interpreter. To illustrate this

point, we now proceed to define two examples of well-known rule-

based belief calculi. In the modular SOLVE environment, this

amounts to no more than specifying the theory of the predicates

cFs,Fp,Fand,For>.

5. Rule-Based Belief Calculi

This section gives Prolog implementations of the CF calculus and

an ad-hoc Bayesian calculus. These models are presented

verbatim, and no attempt is made here to either defend their

cognitive appeal or argue for or against their normative

justification. The literature is by now rife with probabilistic

analyses and commentary of this sort, e.g. Heckerman (1986),

Grosof (1986), and Schocken and Kleindorfer (1987).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

5.1. The certainty-factors Calculus

Following its great popularity in applied expert systems, the

certainty-factors calculus has evolved into several forms, all of

which might be easily incorporated into the SOLVE architecture.

The calculus discussed here adheres to the original model,

described in detail by Buchanan and Shortliffe (1984).

Seuuential combination: The CF associated with the diagnostic

rule <e => h CF(hle)> is elicited from a domain expert under the

assumption that the premise e is known with certainty. When the

belief in e is less than certainty, the CF calculus attenuates

the rule's degree of belief through the following sequential

propagation function:

CF(h1 e) * CF(e) If CF(e) > 0
CFg(hle) =

otherwise

This function is implemented in Prolog as follows:

cf - s(Be1-e,Bel-rule,Bel) :- max(0,Bel~e,Bel~max),
Be1 is Bel-rule * Belmax,

Parallel combination: When two rules <el->h CF(hjel)> and

<e2 ->h CF(hleZ)> bear evidence on h independently, their compound

increased belief in h in light of {elre2) is computed through the

binary CF parallel combination function:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- f if both CFgs are positive:

if both CF's are negative: (21)

CF(hlelte2) = -(ICF(hlel) l+lCF(hled I*(l-ICF(hlel) I)

I if CF(hlel)>O and CF(hle2)<0

The Prolog implementation of this function is as follows:

cf3-2 (XJ, 2) : - ((X=<O , Y>=0) ; (X>=O , Y=<O)) ,
abs (X,A) , abs (Y, B) , min(A, B,C) ,
Z is (X+Y)/(l-C),!.

An inspection of (21) reveals that c f ~ 2 is both commutative and

associative. Hence, (21) might be applied recursively to compute

the compound evidential impact of any finite set of independent

rules. The resulting n-ary expansion of cfg-2 is as follows:

cfJ(-,Elto)*
cfg(-, [XI Xs] ,Bel) : - cfg(-,Xs, Bel-Xs) ,

cfg-2 (X, Bel-Xs, Bel) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

The explicit omission of the first variable in (22) underscores

the fact that the CF language ignores prior beliefs. This can be

seen clearly in the definition of the base-fact of c f g , which

models the llstate of insufficient reasonM (Savage, 1954). This

case, which is characterized by an empty set of diagnostic facts,

causes c f j to assign a posterior belief of 0 to the hypothesis

in question. This is consistent with the additive CF rationale,

in which the absence of any relevant evidence on h causes the

belief in h to neither increase nor decrease. In a Bayesian

language, one would normally model this case by setting the

posterior belief in the hypothesis to its prior belief.

Boolean Conditioning: the CF definitions of the functions Fand

and For are as follows:

5.2. An Ad-Hoc Bayesian Calculus

The ad-hoc Bayesian (AHB) calculus described below operates on

causal rules of the form <h -> e Bel>. Recalling section 3, the

degree of belief Be1 associated with the rule h->e is assumed to

be a three-place list Bel=[xlfx2,x3] with xl=P(h), x2=P(elh), and

x3=P (e 1 h) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Seuuential ~ro6aaation: The literature contains several

heuristic procedures for sequential belief update, e.g. Jeffries

rule of conditioning (Shafer, 1981) and PROSPECTOR'S

interpolation function (Duda et al, 1977). For the sake of

brevity, we choose to describe here a simple interpolation

function, discussed by Wise (1986). This function defines the

"attenuatedw degree of belief P1(elh) as a weighted average of

P(e(h) and P(glh), weighted by P(e) and P(g), respectively:

The AHB sequential propagation function is implemented as a

3-place Prolog predicate called ahb-s. The first two "inputw

variables of ahb-s are the rule's degree of belief

[P(h),P(elh),P(elh)] and the belief in the rule's premise P(e).

The third woutputN variable is the attenuated, 3-place degree of

belief, [P(h) ,PI (el h) ,PI (e 1 h) 1, which is computed through (23) .
Note that ahbs leaves the prior P(h) intact. The variables

naming in ahb-s is as follows: the list [P(h),P(elh),P(elh)] and

the scalars P(h), P(e), P8(elh), and P(elh) are denoted by

[PO,Ql,Q2], PO, Bel-e, P1, and P2, respectively.

ahb - s([POfQ1,Q2],Bel-el [POfP1,P2]) :-
P1 is Ql*Bel-e + (1-Q1) * (1-Bel-e) ,
P2 is Q2*Bel-e + (1-Q2) * (1-Bel-e) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Parallel combination: Let <h -> el Bell> ,..., <h -> en Beln> be

n causal rules with Beli=[P(h),P(eilh),P(eilh)l. The posterior

belief in h in light of the evidence {el, ..., en) is computed
through the following version of (the commutative and

associative) Bayes rule:

P(elIh) P(enlh)
product-odds = ------- * . m e * -------

P(ellh) P(enlh)

P (h)
odds = product-odds * ----

p (h)

P (h 1 el, . . . , en) = odds / (l+odds)

Let the the set {Bell, ..., Bel,) and the scalars P(h) and

P(hlel, ..., en) be the list Bels and the atoms Prior and P,
respectively. Given this naming convention, the Prolog

implementation of (24) is the predicate ahbg, defined as

follows:

a h b j ([Prior 1-1 , Bels , P) : -
mult(Bels,Product Odds),
Odds is (prior/ (1-prior)) * Product - Odds,
P is Odds/ (1+0dds) .

mult([l,l).
mult([[Xl,X2]1Xs],Product) :- mult(Xs,Bel-Xs),

Product is (Xl/X2) *Be1 - Xs.

A more efficient, tail-recursive version of MULT can be defined

as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Boolean Conditioninq: the definitions of the functions Fand and

For in the ad-hoc Bayesian model are equivalent to their CF

versions :

6. Cookins Instructions

Wirth's (1976) design principle of <programs = algorithms + data

structures> is well known. In the context of expert systems,

this translates into <expert system = inference mechanism +
knowledge-base>. In this paper we have taken the modularity

principle one step further, achieving what may be described

symbolically as <inference mechanism = inference engine + belief

calculus>. The resulting SOLVE environment is basically a

collection of modules that can be intermixed without having to

tinker with the theory of any one individual module.

The practice of incremental enhancements of meta-interpreters was

analyzed by Sterling (1986). This analysis, which draws its

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

terminology from-object programming, suggests that Prolog meta-

interpreters are analogous to Lisp Flavors. Using Sterling's

language (which is underlined), the modules PARSE and

<Fs,Fp,Fand,For> are orthoaonal enhancements to the SOLVE flavor,

in that the computations necessary for incorporating them are

completely separate. The PARSE predicate amounts to a behavioral

enhancement: it extends the computation performed by SOLVE

without changing the meta-goal of the enhanced meta-interpreter.

This is done simply by adding the parsing predicates to SOLVE'S

theory. The flavor SOLVE(H,Bel,Fs,Fp,Fand,For) is a structural

enhancement of the vannila flavor SOLVE(H), in that the extra

arguments <Fs,Fp,Fand,For> (which are winitializedn to a specific

belief calculus <fs,fp,fand,for>) are used to compute Be1 as H is

being solved.

So, now that all the ingredients have been provided, the creation

of a rule-based inference system is merely a matter of mixing

flavors. Let p and q be two Prolog predicates whose extended

theory is stored in two files named "pH and @*q" (the extended

theory of p includes p t s theory and the theory of all the

predicates mentioned in p t s theory). In what follows, when we

say Itadd p to qtl or "mix p and qw we mean "prove the goals

consult (p) and consult (q) .

With that in mind, to prepare a CF-oriented inference system,

follow this set of instructions:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

1. Create a CF-oriented knowledge-base and save
it in a file called KBASE

2 . Prove the goal define-syntax

3 . Mix the cf parse predicate with the SOLVE flavor

4. Add the predicates cf-s, cfj, cf-and, cf-or

5. Mix the resulting inference system with the
knowledge-base KBASE

6. Confirm the hypothesis h and compute its posterior
certainty-factor by proving the meta-theorem
solve(h,Bel,cf~s,cfjIcfIand~cffor)~

To prepare a Bayesian-oriented inference system, follow this set

of instructions:

1. Create a Bayesian-oriented knowledge-base and save
it in a file called KBASE

2. Prove the goal define-syntax

3. Mix the ahb parse predicate with the SOLVE flavor

4. Add the predicates ahb-st ahbj, ahb - and, ahb-or

5. Mix the resulting inference system with the
knowledge-base KBASE

6. Confirm the hypothesis h and compute its posterior
(ad-hoc) Bayesian belief by proving the meta-theorem
solve(h,Bellahb-sIahbjIahbhbandtahb-or).

As far as Prolog is concerned, the fully instantiated SOLVE meta-

interpreter is yet another predicate. Therefore, one can blend

SOLVE with standard Prolog in order to implement the typical bits

and pieces which make up full-blown expert systems. For example,

let's go back to our dubious dating system. Perhaps the most

useful output of this application would be a reorganized version

of the little black book, sorted in decreasing order of composite

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

attractiveness.' This book may be prepared by the following (CF-

oriented) predicate:

create (Book) : - bagof ((XI Rating) ,
(potential-date (X) ,
s o 1 v e (d a t e (X) , R a t i n g , c f ~ s I c f ~ r)) ,
Xs) 1

sort (Xs , Book) .

Given the database described in section 3 (consisting of only two

potential dates), the goal create(Book) will yield the response:

Book = [(pat10.832),(nicky,0.426)].

The casual nature of the dating example should not be confused

with the underlying seriousness of the SOLVE meta-interpreter.

Consider, for example, a medical diagnosis application. In this

context, potential dates and their perceived characteristics

correspond to prospective diseases and symptom manifestations,

respectively. Sub-hypotheses, like wrich(X),N correspond to

clinical syndromes or intermediate diagnoses. Finally, dating

rules are analogous to text-book medical knowledge and heuristic

inferences of experienced experts. Under this interpretation,

the evaluation of a propspective date is analogous to the

diagnosis of a certain patient. In this context, the goal

create(Book) should probably be renamed to rank(Diseases). Given

a certain knowledge-base and a set of symptoms (stored in KBASE),

this goal gives a list of all the potential diseases that this

patient might have, in decreasing order of likelihood.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- -

7. Conclusions and Future Research

The validity of alternative belief languages can be investigated

in two different and complementary methodologies. The analytic

approach is chiefly concerned with comparing belief calculi to

well-known normative criteria, e,g. probability theory or

predicate logic. This line of research leads quite clearly to

the realization that, not unlike the humans that they attempt to

model, all rule-based belief calculi contain varying degrees of

normative violations. Nonetheless, the extent of these

violations is not well understood, and the sensitivity of the

system's advice to such violations is still an open question.

In spite of their normative deficiencies, rule-based belief

calculi are widely-used in commercial expert systems. Moreover,

it might be that a careful design of the underlying knowledge-

base might ensure that normative violations are kept to a

minimum. with that in mind, there is a crucial need for an

em~irical methodology for investigating the external validity of

alternative belief calculi. This line of research will simulate

experimental settings in which the expertise of human subjects is

elicited and represented via different belief languages. The

experiments will then pit the systems' recommendations with (a)

the judgment of the humans that they claim to model, and, (b) an

external norm, such as the 'Itrue state of the world.11

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

There exist very-few empirical studies related to expert systems,

and the com~arative study of alternative belief languages is no

exception. Most of the work in this area was carried out during

the last two years, e.g. Mitchell (1986), Yadrick et a1 (1986),

Wise (1986), and Schocken (1987). These studies attempt to

understand the conditions under which one belief language

performs better than another. Therefore, they have important

prescriptive implications on knowledge engineering.

One limitation that inhibited more research in this direction has

been a lack of a common benchmark environment. Such environment

ought to simulate rule-based inference on the one hand, and, on

the other hand, allow a great deal of design flexibility in terms

of experimenting with alternative belief calculi. We feel that

the SOLVE meta-interpreter presented in this paper is a first

step toward closing this gap. We hope that other people will

modify this meta-interpreter to meet their own research needs,

and that this will promote further understanding of the empirical

validity of expert systems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

/* The following is a listing of all the miscellaneous
predicates referred to in the paper */
apply(Predicate,Args) :- Predicate=..PredList,

append(PredList,Args,GoalList),
goal=..GoalList,
call (Goal) .

bagof(X,G,-) :- asserta(found(mark)),G,asserta(found(X)),fai1.
bagof (-,-, L) : - collectFound([] ,M) , ! I W M .
collectFound(Lin,Lout):- getNext(X),!,collectFound([X/Lin]tLout).
collectFound(Lin,Lin).
getNext (X) : - retract (found (X)) , ! I not (X==mark) .

abs(X,Z) :- X<O, Z is -(X).
abs (X, X) : - X>=O.

/* the following predicate sorts a list of pairs [X,Y] in
decreasing order of Y */

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

References - -

Alvey, P. L., Myers, C. D., and Greaves, M. F., "An Analysis of
the Problems of Augmenting a Small Expert System," in Bramer, M.
A. (ed.) Research and Development in Expert Systems, Cambridge
University Press, 1986, pp. 61-72.

Baldwin, J. I?.! and Monk, M. R. M., "SLOP - a System for Support
Logic Programmlngtm I.T.R.C. research report, University of
Bristol, 1986.

Bramer, M. A., "Expert Systems: the Vision and the Reality," in
Bramer, M. A. (ed.), Resaerch and Development in Expert Systems,
Cambridge University Press, 1986, pp. 1-12.

Bunge, M., ffCausality and Modern Science,*f New York: Dover
Publications, 1979.

Carnap, R., Logical Foundations of Probability, Chicago:
University of Chicago Press, 1954.

Charniak, E., "The Bayesian Basis of Common Sense Medical
Diagnosis," Proceedings of the National Conference in Artificial
Intelligence, 1983, 3, pp. 70-73.

Churchman, C. W., ffThe Design of Inquiring system^,^ Basic Books,
1971.

Clark, K. L. and McCabe, F. G., "Prolog: a Language for
Implementing Expert Systems," in Hayes, Michie, D. and Pao, W. H.
(eds.), Machine Intelligence 10, Ellis Horwood, 1982, pp. 455-
470.

Cohen, P., Davis, A., at all "Representativeness and Uncertainty
in classification Systems," The A1 Magazine, Fall 1985, pp. 139-
149.

Cooper, G. F., "NESTOR: a Computer Based Medical Diagnostic Aid
that Integrates Causal and Probabilistic Knowledge," unpublished
Ph.D. Dissertation, Stanford University, 1984.

Davis R., and King, J. J., "The Origin of Rule-Based Systems in
AItW in Buchanan, B. G., and Shortliffe, E. H. (Eds.), Rule-Based
Expert Systems, Addison-Wesley, 1984, pp. 20-52.

Dincbas, M., Metacontrol of Logic Programs in METALOG, Proc. of
FGCS, Tokyo, Japan, November, 1984, pp. 361-370.

Duda, R. O., Hart, P. E., and Nilsson, N. J., HDevelopment of a
Computer-Based Consultant for Mineral Explorationtq* SRI
International Projects 5821 and 6415, october 1977.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-87-91

Einhorn, H. J. *and Hogarth, R. M., nDecision Making: going
Forward in Reverse,** Harvard Business Review, January-February
1987, pp. 66-70.

Grosof, B. N., **Evidential Information as Transformed
Probability, ** i n Lemmer, J. F. , and Xanal, L. (eds.) ,
Uncertainty in Artificial Intelligence. North Holland, 1986.

Hammond, P., *lMicro-Prolog for Expert Systems, Chapter 11 in
Clark, K. L. and McCabe, F. G. (eds.) , **Micro-Prolog: Programming
in Logic,** Prentice-Hall, 1984.

Heckeman, D. E., "Probabilistic Interpretation for MYCINss
Certainty Factors," in Lemmer, J. F., and Xanal, L. (eds.),
Uncertainty in Artificial Intelligence. North Holland, 1986.

Heckeman, D. E., **The Myth of Modularity in Rule-Based Systemsrw
in: Proceedings of the 2nd Special Conference on Uncertainty in
Artificial Intelligence, AAAI Conference, Philadelphia, PA, 1986,
pp. 115-122.

Kahneman, D. and Miller, D. T., "Norm Theory: Comparing Reality
to its Alternatives," Psychological Review, Vol. 93,No. 2, 1986,
pp. 136-153.

Lichtenstein, S., and Newman, J. R., "Empirical Scaling of Common
Verbal Phrases Associated with Numerical ProbabilitiestW
Psychonomic Science, 9, 1967, pp. 563-564.

Mitchell, D. H., I1The Shape Experiment," Manuscript, Psychology
Department, Northwestern University, 1986.

Newell, A., "Production Systems: Models of Control Structure," in
Chase, W., (ed.), Visual Information Processing, New York:
Academic Press, 1973, pp. 463-526.

Pearl, J., wFusion, Propagation, and Structuring in Belief
Networks,?* Artificial Intelligence, September, 1986.

Pereira, L., "Logic Control with logic,** Proc. of the First
International Logic Programming Conference, Marseille, 1982, pp.

Savage, L. J., The Foundations of Statistics, Wiley, 1954.

Shachter, R. D. and Heckerman, D. E., **A Backwards View for
AssessmenttW in Lemmer, J. F., and Xanal, L. (eds.), Uncertainty
in Artificial Intelligence. North Holland, 1986.

Schocken, S., **On the Rational Scope of Probabilistic Rule-Based
Inference SystemstW in: Proceedings of the 2nd Special Conference
on Uncertainty in Artificial Intelligence, AAAI Conference,
Philadelphia, PA, 1986.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

Schocken, S., 1~0n--the Underlying Rationality of Non-Deterministic
Rule-Based Inference Systems: a Decision Sciences Perspective,"
Ph.D. Dissertation, Decision Sciences Working Paper 87-04-02, The
Wharton School of the University of Pennsylvania, 1987.

Schocken, S. and Kleindorfer, P. R., mArtificial Intelligence
Dialects of the Bayesian Belief Language,** Center for Research on
Information Systems (CRIS) Working Paper #160, New York
University, 1987.

Shafer, G., A Mathematical Theory of Evidence, Princeton
University Press, 1976.

Shafer, G., "Jeffrey's Rule of ConditioningIw Philosophy of
Science, September, 1981, pp. 337-362.

Shafer, G. and Tversky, A., "Languages and Designs for
Probability Judgment," Cognitive Science 9 (1985), pp. 309-339.

Shenoy, P., and Shafer, G., "Propagating Belief Functions with
Local Computations,** IEEE Expert 1, 1987, pp. 43-52.

Shapiro, E. Y., "Logic Programs With Uncertainties: a Tool for
Implementing Rule-Based SystemstW IJCAI, 1983, Krlsruhe, West
Germany, pp.529-532.

Shortliffe, E. H., and Buchanan, B. G., "A Model of Inexact
Reasoning in Medicine," in: Buchanan, B. G., and Shortliffe, E.
H. (Eds.), Rule-Based Expert Systems, Addison-Wesley, 1984.

Sterling, L. S., "Meta-Interpreters: the Flavors of Logic
Programming?" Proc. of the Workshop on the Foundations of
Deduction, Databases, and Logic Programming, Washington, D.C.,
August, 1986.

Sterling, L. S. and Lalee, M., **An Explanation Shell for Expert
SystemstW Computational Intelligence, 1986 (to appear).

sterling, L. S. and Shapiro, E. Y., "The Art of Prologtn The MIT
Press, 1986, pp. 280-283.

Wise, B. P., **Experimentally Comparing Uncertain Inference
Systems in Probability,** in: Proceedings of the 2nd Special
Conference on Uncertainty in Artificial Intelligence, AAAI
Conference, Philadelphia, PA, 1986b, pp. 319-332.

Wirth, N., MAlgorithms + Data Structures = Programs,*@ Englewood
Cliffs, N.J.: Prentice-Hall, 1976.

Yadrick, R. M., Perrin, B. M., Vaughan, D. S., Holden, P. D., and
Kempf, K. G., "Evaluation of Uncertain Inference Models I:
Prospector," in: Proceedings of the 2nd Special Conference on
Uncertainty in Artificial Intelligence, AAAI Conference,
Philadelphia, PA, 1986b, pp. 333-337.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

- .

Zadeh, L. A . , "Fuzzy S e t s , " Information and Control, 8 , 1965, pp.
338-353.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-87-91

