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Abstract 

Uncertain facts and inexact rules can be represented and 

processed in standard Prolog through meta-interpretation. This 

requires the specification of appropriate parsers and belief 

calculi. We present a meta-interpreter that takes a rule-based 

belief calculus as an external variable. The certainty-factors 

calculus and a heuristic Bayesian belief-update model are then 

implemented as stand-alone Prolog predicates. These, in turn, 

are bound to the meta-interpreter environment through second- 

order programming. The resulting system is a powerful 

experimental tool which enables inquiry into the impact of 

various designs of belief calculi on the external validity of 

expert systems. The paper also demonstrates the (well-known) 

role of Prolog meta-interpreters in building expert system 

shells. 
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- .  

1. Introduction 

More than any other programming language, Prolog means different 

things to different people. In this paper, we focus on some 

aspects of Prolog which make it particularly useful for building 

systems for non-categorical rule-based inference. The basic 

notion of losic prosrams with uncertainties is due to a paper of 

this title by Shapiro (1983). The present paper elaborates on 

this concept in the context of expert systems and presents 

several extensions to the basic idea. The computational tools 

that resulted from this research turned to be very useful in 

experimentation with alternative techniques for rule-based 

inference under uncertainty. 

In a logic program with uncertainty, rules and facts are 

parameterized by some sort of a 'Idegree of belief." The program 

is designed to compute posterior beliefs in goals as a side- 

effect of standard theorem proving. Belief update can be 

performed either within the logic program itself (e.g. Clark & 

McCabe, 1982, Alvey et all 1986), or at higher, meta-level of 

interpretation (Shapiro, ibid). A Meta-interpreter is an 

interpreter of a language written in the same language. In 

Prolog, meta-interpreters have proven to be particularly useful 

in building expert system shells. The basic idea is that Prolog 

is already a very capable first-order inference-engine; turning 

this raw power into a full-featured shell is basically a matter 

of adding functionalities to the standard language. For the sake 

of modularity, this is best accomplished by creating specialized 
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meta-interpret=rs-and enhancing them incrementally (Sterling, 

1986). 

Prolog meta-interpreters were developed to add a number of 

essential capabilities found in most commercial expert system 

shells. For example, Hammond & Sergot (1984) extended the 

inference-engine with a ''query the userw facility which obtains 

missing information through interactive consultation. Sterling 

and Lalee (1986) developed techniques to explain the system's 

line of reasoning. A number of authors, e.g. Dincbas (1984) and 

Pereira (1982), have shown how the fixed control structure of 

Prolog can be short-cut and modified to suit various inferential 

needs. Baldwin and Monk (1986) developed a meta-interpreter for 

inexact reasoning based on the Dempster-Shafer model (Shafer, 

1976). 

The motivation for this paper came from the first author's 

interest with experimenting with a variety of belief update 

models in expert systems. It soon became clear that such 

experiments require a computational environment which (a) 

simulates a standard rule-based inference algorithm, and, (b) 

allows a great deal of design flexibility with respect to 

creating and modifying alternative belief calculi. This need was 

satisfied effectively by extending work of the second author on 

Prolog meta-interpreters. In the process of developing these 

tools, we became aware of a recent paper by Sterling (1986) 

describing the analogy between ~ i s p  Flavors and Prolog meta- 
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interpreters. 'sterling's paper provided an elegant theoretical 

framework within which our work can be viewed as a special case 

of flavor mixing. 

The paper begins with a synopsis of rule-based inference under 

uncertainty in the context of expert systems. Techniques for 

representing and parsing uncertain facts and inexact rules within 

Prolog are then described. Next, the building blocks of a belief 

update model are defined and implemented as logic programs. 

These individual modules, of which systems like MYCIN and 

PROSPECTOR are built, are then integrated into an overall meta- 

interpreter called SOLVE. The unique feature of SOLVE is that it 

takes a belief calculus as an external parameter. The paper 

proceeds to present Prolog predicates which implement the 

certainty-factors calculus and an ad-hoc Bayesian belief update 

model, and shows how these can be easily mixed with SOLVE'S 

theory. The paper concludes with comments on the suitability of 

this environment to experimentation on the validity of rule-based 

inference in non-deterministic domains. 

2. Rule-based inference under uncertainty 

The mathematical and cognitive underpinnings of rule-based 

(production) systems are well known, and the reader is referred 

to Davis and King (1984) and Newel1 (1973) for elaborate 

discussions. Due to its proximity to first-order predicate 

calculus, the rational basis of cateaorical rule-based inference 

is normally unchallenged. This validity, however, does not 
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extend naturally-to applications involving uncertain facts and 

heuristic inference rules. Under such conditions, a rule-based 

system may be viewed as a non-cateaorical classification program, 

designed to map a set of observed facts on a set of one or more 

explaining hypotheses (Cohen, 1985). This inexact matching 

algorithm is carried out by applying modus ponens repeatedly to a 

set of rules of the form <IF e THEN h Bel> (throughout the paper, 

e and h stand for a piece of evidence and an hypothesis, 

respectively). The postfix Be1 is a degree of belief, which, 

broadly speaking, reflects an expert's confidence in the logical 

entailment associated with the implication e->h. The problem, 

simply put, is this: given the prior belief in h and all the 

degrees of belief that parameterize rules and facts that 

ultimately imply h, how does one compute the posterior belief in 

h? In expert systems, this is typically accomplished by some 

sort of a belief lansuaqe. 

According to Shafer and Tversky (1985), the building-blocks of a 

belief language are syntax, calculus, and semantics. In the 

context of rule-based inference, svntax corresponds to a set of 

degrees of belief which parameterize uncertain facts, inexact 

rules, and competing hypotheses. The degrees of belief 

associated with rules are elicited from a domain expert as the 

knowledge-base is being constructed. Factual degrees of belief 

are obtained interactively through consultation. Posterior 

degrees of belief are computed through a set of operators 

collectively known as a belief calculus. The semantics of the 
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language can be viewed as a mapping from a real-life domain into 

the belief language. This mapping provides a cognitive 

interpretation and face-validity to both the syntax and calculus 

dimensions of the language. 

As the rule-based inference-engine processes rules which 

ultimately imply an hypothesis, a belief calculus is applied to 

update the posterior belief in this hypothesis. The process 

normally terminates when the belief in one or more hypotheses 

exceeds a certain pre-defined cutoff value. Ideally, we would 

like the system to be externally valid, namely, to assign the 

highest posterior belief to that hypothesis which best explains 

the observed fact-base. If we choose to abide to Bayesian 

rationality, this objective requires that the system's belief 

calculus be consistent with the axioms of subjective probability. 

However, it was shown by several authors (e.g. Heckerman, 1986) 

that the modular structure of the rule-based architecture is 

generally inconsistent with the wholistic nature of Bayesian 

inference. From a probabilistic standpoint, domain knowledge may 

be characterized by a joint distribution function F defined over 

the hypotheses/facts space (Pearl, 1986). Attempts to capture 

this knowledge through a compartmentalized rule-based 

architecture amount to making strong independence assumptions on 

F which are rarely met in practice. 

The artificial intelligence literature on numeric belief update 

algorithms consists of two major trends. Global methods, which 
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are due primarily-to Pearl (1986) and his colleagues at UCLA, 

view the knowledge-base as a space of propositional random 

variables, organized in a network. Pearl has shown that, for a 

certain class of distribution functions, there exists a method of 

computing posterior beliefs which is consistent with the axioms 

of subjective probability. Moreover, the method's run-time is 

polinomial in the number of nodes in the network. Similar 

algorithms were recently proposed by Shenoy and Shafer (1987) for 

the Dempster-Shafer model. Local or ple-based methods, which 

include MYCIN1s and PROSPECTORts belief update models, are only 

partially consistent with probability theory. Therefore, it is 

more prudent to describe a rule-based calculus as a "scoringM 

algorithm, a term coined originally by Cooper (1984). This 

algorithm accepts a set of inexact rules and a set of uncertain 

data, and goes on to "scorew a set of competing hypotheses. 

There exist conditions under which the resulting scores are 

probabilities, but this is not always the case. 

In view of the limited Bayesian rationality of rule-based 

inference, it is appropriate to question the merit of forwarding 

probabilistic research in this direction. There are several 

reasons, however, which make this a legitimate and potent area of 

inquiry. First, there exist techniques designed to transform 

certain wholistic evidential spaces into decomposed spaces in 

which rule-based belief calculi do have a Bayesian interpretation 

(Charniak, 1983, Schocken, 1987). Second, due to their 

relatively simple and ttlogicalfi structure, rule-based calculi 
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seem to enjoy a'descriptive appeal; that is, they make sense to 

human experts. This is at least one reason for the fact that "at 

present, almost all commercially-available expert system shells 

are based on either EMYCIN or its fairly closed relative 

PROSPECTORw (Bramer, 1986, p. 3). Indeed, following the great 

popularity of such shells as EMYCIN, M.1, and AL/X, rule-based 

belief calculi became the de-facto method of handling uncertainty 

in applied expert systems. Consequently, the question of how far 

these relatively simple and appealing methods can be pushed is 

interesting, both on theoretical and on practical grounds. 

The present paper describes meta-enhancements to Prolog which 

enable it to (a) recognize and wunderstand'* the notion of 

uncertain facts and inexact rules, and, (b) compute the posterior 

belief in hypotheses with respect to a given belief calculus. 

Before delving into this discussion, we wish to present a simple 

example which highlights the essence of what follows. The 

example is taken from the familiar domain of rating propspective 

dates listed in a "little black book." Suppose a person, denoted 

hereafter "dater," wishes to determine whether or not another 

person is a good match for a blind-date, based on a limited set 

of available facts. For the sake of simplicity, let's assume 

that the dater's knowledge-base consists of the following two 

rules and two facts: 
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- - 
nice-voice(X) => good - looking(X) # 0.4. 

good-looking (X) or smart (X) 
=> date (X) # 0.8. 

nice-voice (leslie) # 1.0. 

smart (leslie) # 0.7. 

This knowledge-base has the following interpretation: (1) is a 

wishful (and inexact) conjecture that blind-daters typically make 

and then learn that they should have known better. (2) is an 

inexact rule of thumb which models the dater's social 

preferences. (3) is a certain fact about Leslie. S/he sounds 

good over the telephone. Fact (4) is an inexact estimate of 

Leslie's IQ. 

We see that, not unlike other domains of expertise, the dater's 

"knowledgew and perception of reality are heuristic and 

subjective, respectively. In the rule-based architecture of 

(1-4), this non-determinism is represented by the numbers 

following the # symbol. Note, however, that, barring these 

numbers, (1-4) may be readily translated to standard Prolog. To 

do this, one replaces the non-standard token => by Prolog's :- 

operator and reverses the direction of the two rules. These 

cosmetic transformations are of little theoretic interest. 

Indeed, had we chosen to truncate all the degrees of belief in 

(1-4) starting with the # symbol, we could have asked Prolog to 

prove the goal: 
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date (leslie) ? 

Prologls response to this query will be the laconic and rather 

unproductive result 'IYes." Under the given semantics, this 

means: "go ahead and date Leslie." We think that most daters 

would reject this black and white dichotomy in favor of a finer 

and more informative matcher. In particular, let's assume that 

(a) the # degrees of belief in (1-4) were reinstated, and, (b) a 

certainty-factors oriented meta-interpreter called SOLVE were 

available. Under these conditions, the original query may be 

recast as the following meta-query: 

solve (date (leslie) , Bel) ? 

To which Prolog will answer: 

Yes, Bel=O. 56 

Like standard Prolog, SOLVE attempts to prove the goal 

date(leslie), searching for facts and rules which imply this 

hypothesis categorically. In the process of constructing this 

proof, however, SOLVE also collects degrees of belief relevant to 

Leslie and fuses them into Bel, the posterior belief in the 

proposition date(1eslie). In a meta-interpreter environment, the 

Be1 variable is bound and updated on the fly, as a side-effect of 

the ordinary proof process. 
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The preceding diwussion made the implicit assumption that SOLVE 

has a built-in belief calculus. In other words, the belief 

calculus is assumed to be a fixed part of SOLVE'S theory. 

However, in view of Sterling's (1986) principles of mixing 

flavors, it is far more elegant and tasteful to define a stand- 

alone calculus, say c, and pass it on to the SOLVE meta- 

interpreter as a parameter. In this form, the query 

solve(h,Bel,c) consists of a request to confirm an hypothesis, h, 

and compute its posterior belief, Bel, modulo the belief 

calculus, c. 

For example, let cl and c2 be two complex Prolog predicates which 

implement the certainty-factors (CF) and the Bayesian calculus, 

respectively, and consider the following set of queries: 

solve (date (leslie) , cl ,xl) ? 

solve (date (pat) , cl , y1) ? 

solve (date (leslie) , c2 4 2 )  ? 

solve (date (pat) , c2, y2) ? 

Suppose that the results of this experiment were xl > yl and 

x2 < y2. Let's assume further that the underlying knowledge-base 

as well as the corresponding CF and Bayesian degrees of belief 

were elicited from the same human expert. Under such 

circumstances, the results of the experiment clearly indicate 

that at least one of the belief languages under consideration 

failed to capture the human's preferences. This amounts to a 

powerful test of the empirical rationality of both languages: 
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excluding the change in the belief calculi and in the 

corresponding sets of degrees of belief, everything else is kept 

intact, including Leslie, Pat, the dater's preferences, and the 

inference-engine. 

. We wish to avoid here some pressing questions regarding the 

empirical validity of such experiments. These questions are at 

the heart of the broader issue of validating expert systems, a 

subject of a different paper. We do wish to emphasize, however, 

the instrumental role that meta-interpreters play in the context 

of such experiments. Specifically, the SOLVE meta-interpreter 

serves two purposes: first, it provides a clear and concise 

conceptualization of the experiment setup. Second, it serves as 

a working shell which can be instantiated with qtcompetingll belief 

calculi, leading to alternative and often conflicting system 

recommendations. These data sets, in turn, provide important 

insights into the compatibility of belief calculi and their 

sensitivity to a variety of design changes. Research in this 

direction is reported in Schocken (1987). 

The following section describes how rule-based knowledge is 

represented and parsed in the SOLVE environment. This discussion 

sets the stage for Section 4, where a detailed description of 

SOLVE'S inference-engine is given. 
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3. Knowledse Representation 

So far we have deliberately ignored the meaning of the numbers 

following the # symbol. The interpretation and treatment of 

these degrees of belief depend on our choice of a belief 

language. In EMYCIN and M.1, degrees of belief are elicited and 

represented as diasnostic certainty-factors, bearing evidence 

from facts to hypotheses. In Bayesian systems (e.g. PROSPECTOR), 

degrees of belief are causal, representing the likelihood of 

observing certain facts given alternative prospective hypotheses. 

Causal and diagnostic methods of knowledge engineering are quite 

different, both on cognitive and on mathematical grounds. 

Readers who are interested in this important ndualityw are 

referred to Einhorn and Hogarth (1987) and to Shachter and 

Heckerman (1986). 

This section deals with two syntactically related topics. First, 

we present a simple "user-orientedQ' language for representing 

inexact rules and uncertain facts. Using this language and a 

standard word-processor, one can create and update a knowledge- 

base outside the Prolog environment. Let's assume that this 

knowledge-base is stored in a flat file called KBASE. Next, we 

wish to be able to merge KBASE with SOLVE'S theory through 

Prolog's system predicate CONSULT. This, however, requires a 

certain degree of parsing and pre-processing, which are also 

covered in this section. 
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Going back to the-dating example, consider the following subset 

of an hypothetical, CF-oriented, KBASE file: 

/* rule-base */ 
rich(X) => date (X) # 0.2. 

age(X,Age) and Age>l8 and Age<35 => date(X) # 0.3. 

salary(X,Salary) and Salary>75000 or 
parent(X,Parent) and salary(Parent,SalaryP) and SalaryP>150000 

=>  rich(^) # 0.9. 

/*  fact base */ 
age(nicky, 28) . 
parent (nicky , bob) . 
salary (bob, 160000) , 
salary(nicky,20000) # 0.8. 
good-looking (pat) # 0.95. 
salary (pat, 0) . 
age (pat, 24) . 
potential-date(nicky). 
potential-date(pat). 

How can we merge this set of non-standard clauses with a standard 

Prolog database? ideally, we would like to simply prove the goal 

consult(kbase). This, however, won't work, since the KBASE 

syntax in incompatible with Prolog. This difference can be 

resolved as follows: first, enhance Prolog's syntax by adding the 

tokens "=>,  or, "and, and 'I#" to the language. Next, 

specify their semantics. The first 

through the following predicate: 

define-syntax :- op(255,xfy,=>), 
op(254,xfx,#), 
op(254,xfx,or), 
op(253,xfxtand) . 

modification is accomplished 
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Each application-of the system predicate op(P,A,T) defines the 

token T as a new, non-standard Prolog operator. The precedence 

and associativity properties of T are given by P and A, 

respectively. The actual values of these arguments vary from one 

Prolog implementation to another and are of little interest. 

Having added a bunch of non-standard clauses to Prolog, we now 

have to describe their intended meaning. The general strategy 

taken here is to convert all rules and facts into a '*generic 

clausal formw consistent with Prolog's syntax. In particular, we 

wish to (a) convert inexact rules of the form ce => h # Bel> into 

the generic clause (h,e,Bel), and, (b) convert uncertain facts of 

the form <e # Bel> into the generic clause (e,true,Bel). The 

generic clause is important because this is the only inferential 

data-type that SOLVE understands. More about that, later. 

Since the direction of rules and the semantics of degrees of 

belief vary across belief languages, each language requires a 

specialized parser. The remainder of this section presents a 

certainty-factors parser and a Bayesian parser. The section 

concludes with some general remarks on other functions which may 

be incorporated in more sophisticated parsers. 

A Certainty-factors Parser: In the additive CF syntax, a 

diagnostic rule of the form <e => h Bel) means that e increases 

the belief in h by the magnitude Be1 which varies from -1 to 1. 

If e is irrelevant to h, Bel=O. The extreme case of e being 
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sufficiently condncing to confirm (disconfirm) h in certainty is 

modeled through Bel=l (Bela-1). There are basically two types of 

certainty-factors. The CF's associated with rules (e.g. 

rich(x) => date(x) # 0.4) are elicited from a domain expert when 

the systems's rule-base is being constructed. The CF's 

associated with uncertain facts (e.g. salary(nicky,20000) # 0.8) 

are supplied through consultation. 

A knowledge-base with certainty-factors is translated into 

generic clauses through the following parser: 

parse(H,E,Bel) :- (E => H # Bel). 
parse(E,true,Bel) :- (E # Bel) . 
parse(E,true,l) :- E. 

This code reads as follows: (5) matches the non-standard rule 

<E => H # Bel> with the clause (H,E,Bel). (6) matches the 

uncertain fact <E # Bel> with the clause (E,true,Bel). Finally, 

certain facts of the form E (with no attached degrees of belief) 

are defaulted by (7) to the clause (Eftrue, 1) which reads: E is 

true with certainty. The latter convention allows us to freely 

mix certain and uncertain facts in the same knowledge-base, and, 

at the same time, relieves us from the tedium of assigning a 1.0 

degree of belief to such certain facts as parent(nicky,bob). 

Instead, we let the system take care of this nuisance as a side- 

effect of parsing. 
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A Bavesian parser! In the Bayesian language, the flow of 

evidence is the reverse of the CF language, reflecting causal 

reasoning from hypotheses to evidence. Specifically, the rule 

<h -> e Bel> represents the assertion that (the cause) h is a 

potential explanation to (the effect) e. Given this 

interpretation, there are many ways to define the degree of 

belief, Bel, measuring the "strengthl1 of this causal implication. 

Indeed, the probabilistic meaning of causality has been the 

subject of an intense philosophical debate, and the reader is 

referred to Bunge (1979), Carnap (1954), and Churchman (1971) for 

insightful discussions of this issue. 

The Bayesian calculus implemented here is based on heuristic 

extensions of Bayes rule. This calculus requires that each rule 

of the form <h ==> e Bel> be accompanied by three probabilities: 

P (h) , P (e 1 h) , and P (e (h) . The probability of e, P(e) , need not 
be specified, because it is either (a) given, if e is a terminal 

fact, or, (b) calculated by the system through a lower-level rule 

of the form <e -> el Belt>. The most natural place to store the 

three probabilities associated with each rule is in the Be1 

parameter. Hence, we make the syntactical convention that the 

Bayesian degree of belief, Bel, is the three-place list 

[P(h),P(elh),P(elh)]. With that in mind, the Bayesian parser is 

defined as follows: 

parse(H,E,Bel) :- (H => E # Bel). 
parse (E, true, Bel) : - (E # Bel) 
parse(E,true, 10.9999, lJ]) :- E. 
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The meaning of'(8) and (9) is identical to their corresponding 

meaning in the CF parser, but note that the direction of the rule 

in the right-hand side is reversed. When the parser detects a 

certain fact through (lo), it defaults its prior probability to 

0.9999. The difference between this and the more plausible 1 is 

due to an uninteresting technical detail. 

Similar to the CF parser, the role of (8-10) is to translate 

rules and facts into the generic clause (H,E,Bel) which is 

recognizable by the SOLVE meta-interpreter. Note that no attempt 

is made here to unpack the compound degree of belief into its 

three individual components. This task is left where it belongs 

-- the belief calculus level. This again illustrates how a 

modular design can relieve the inference-engine from unnecessary 

technical clutter. 

Other Uses of Parsers: Thoughtful combinations of the OP and 

PARSE predicates can result with a great deal of design 

flexibility. In the present context, this flexibility allows the 

designer to modify the syntax of a belief language and its 

corresponding knowledge-bases without tinkering with the rest of 

the system. For example, suppose we wish to leave the CF 

calculus intact, and, at the same time, elicit degrees of belief 

that vary from -100 to 100 (this is normally done by most CF 

knowledge engineers). This leads to rules and facts of the form: 
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likes (XI sushi) --r -date (X) # -10. 

nationality ( X I  japan) -> likes (XI sushi) # 90. 

nationality (tomo, japan) . 

Following the standard CF requirement that degrees of belief be 

restricted to the interval [-1,1], we can pre-process the 

knowledge-base as follows: 

parse (H,E, Bel) : (E -> H # Bell) , 
Be1 is Be11/100. 

parse (E, true, Bel) : - (E # Bell) , 
Be1 is Be11/100. 

parse (El true, 1) : - E. 

One can easily envision other useful applications of PARSE beyond 

this trivial example. In PROSPECTOR, for example, there is a 

provision for representing belief in evidence through qualitative 

terms, e.g. woccasional,w Rrare,w etc. Those statements are then 

transformed into probabilities, e.g. 0.1 and 0.01 ,respectively 

(Duda et al, 1977). In a similar vein, Lichtenstein and Newman 

(1967) concluded empirically that verbal descriptions of 

uncertainty may be mapped on ranges of probabilities. These 

verbal-numeric mappings can be made explicit as a side-effect of 

parsing, as follows: 

parse (El true, Bel) : - (E # Bel-text) , 
translate(Be1-text,Bel). 

translate (woccasional*~, 0.1) . 
translate ("rarew, 0.01) . 
etc. 
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To sum up, the parser shields the inference-engine from the 

syntactical idiosyncrasies of the underlying belief language. 

This separation enables us to elicit and represent rules and 

facts in a variety of forms, and, at the same time, process them 

through a generalized inference-engine that operates on a 

collection of generic clauses of the form (H,E,Bel). 

4. The Inference Enaine 

In order to propagate degrees of belief in a network consisting 

of uncertain facts and inexact rules, a rule-based inference 

system must be capable of handling three generic types of 

reasoning: Boolean conditioning, sequential propagation, and 

parallel combination. This section describes each of these 

special cases of belief update schemes and provides their 

corresponding logic programming solutions. In the subsequent 

section, the three individual modules are integrated into the 

overall SOLVE meta-interpreter. 

Let h, el, and e2 be an hypothesis and two pieces of evidence 

with known prior belief Bel(h) and current beliefs Bel(e1) and 

Bel(e2), respectively. Our inference-engine must be capable of 

computing the posterior belief Bel(h/.) in light of any recursive 

combination of the following generic relationships: 

Boolean conditioning: <el or e2 -> h Bel) 

<el and e2 -> h Bel> 
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-. 
sequential propagation: <el -> e2 Bell>, <e2 -> h   el^> 

Parallel combination: <el -> h Bell>, <e2 -> h Be12> 

The exact specification of how to compute the posterior belief in 

h in any one of the above circumstances is precisely the 

definition of a rule-based belief calculus. Although the details 

of such specifications vary greatly across different calculi, the 

basic structure of the rule-based belief update model is quite 

invariant and isomorphic. This general structure is described in 

what follows, leaving the details for later sections. 

4.1. Boolean Conditioninq 

Consider the categorical disjunctive rule <el or e2 -> h> which 

reads: either one of the two pieces of evidence el or e2 (known 

in certainty) can alone establish the hypothesis h. How does one 

extend this rule to situations in which either el or e2 are 

uncertain? this question is complicated by the observation that 

the uncertainty associated with these facts is not necessarily a 

standard probability, but, rather, an abstract measure of human 

belief. Kahneman and Miller (1986) have argued that, under these 

circumstances, the most reasonable rule for Boolean combination 

is the one used in the theory of fuzzy sets (Zadeh, 1965). This 

rule, which was implemented both in MYCIN and in PROSPECTOR, sets 

the belief in a disjunction (conjunction) to the maximal 

(minimal) belief in its constituents: 
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- - 

Be1 (el or e2) = max (Be1 (el) , Be1 (e2) ) 
Be1 (el and e2) = min (Be1 (el) , Be1 (e2) ) 

Once the belief in a rule's premise is established trough Boolean 

conditioning, the posterior belief in the rule's conclusion can 

be computed using sequential propagation. 

4.2. Seauential Pro~aaation 

Rule-based belief calculi make the implicit assumption that the 

"actualw degree of belief in a rule has to change when the belief 

in the rule's premise changes. Specifically, let <e->h Bel(h,e)> 

be a rule specifying that "given e (with certainty), h is implied 

to a degree of belief Bel(h,e),w and let the current belief in e 

be Bel(e). In the process of doing rule-based inference, the 

premise e might be either (a) a terminal fact whose prior belief 

Bel(e) is specified by the user, or, (b) an intermediate "sub- 

hypothesisff whose current belief Bel(e1.) was already computed by 

the system. 

Whichever category e falls in, the posterior degree of belief in 

the rule, denoted Belf(h,e), is computed through a variant of the 

following "sequential propagation function:ff 

Be1 (h, e) = Fs (Be1 (e) , Be1 (h, e) ) 

The function Fs is monotonically increasing in both variables 

Bel(e) and Bel(h,e). Therefore, Fs is sometimes referred to in 
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the A1 literature-as an "attenuation function," designed to 

translate the uncertainty associated with a rule's premise into 

the uncertainty associated with the rule itself. 

4.3. Parallel Combination 

Let h be an hypothesis with current degree of belief Bel(h) and 

let eel -> h Bel(h,el) > and ee2 -> h Bel(h,e2) > be two rules that 

bear evidence on h independently. The combined, posterior belief 

in h in light of {elre2) is given by the following binary 

"parallel combination functi~n:~~ 

Be1 (hl el,e2) = Fp (Be1 (h) , Be1 (h,el) ,Be1 (h,e2) ) 

(it is implicitly assumed that Bel(h,el) and Bel(h,e2) were 

already attenuated by Fs). In order to free the inference 

process from order and clustering effects, the function Fp is 

normally required to be commutative and associative. If these 

requirements are satisfied, the binary Fp function can be 

extended recursively to an n-ary parallel combination function. 

The details of this extension are straightforward. 

The description of a belief calculus given in this section was 

deliberately given in skeletal terms; this abstract level of 

specification is all that is required by the SOLVE meta- 

interpreter. The actual specification of the functions 

eFs,Fp,Fand,For> is made at another, meta-level of 

interpretation. This technique, however, requires a method for 
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binding a specific belief calculus <fs,fp,fand,for> to the SOLVE 

environment. This technique is described in the next section. 

4.4. A Note on "Function Variablesw in Proloq 

In the preceding paragraphs, the sequential and parallel 

combination functions were specified using the conventional 

algebraic notation Y=f(X). In Prolog, this notation has no 

meaning. Instead, the logic programming equivalent of the 

computation Y=f(X) is normally the predicate f(X,Y). This goal 

is made to succeeds always, unifying the variable Y to the value 

f(X). For example, the successor function s(X)=X+l is 

implemented through the predicate s(X,Y) :- Y is X+1. When we 

ask Prolog to prove the goal s(3,Y), Prolog succeeds and binds Y 

to 4 as a side-effect. 

Now, things become slightly more complicated if we wish to treat 

the functor f itself as a variable. This is precisely what is 

required in the SOLVE meta-interpreter, which uses a belief 

calculus without knowing its exact specification, From a design 

standpoint, the ideal solution is to pass the four predicates 

cfs,fp,fand,for> as parameters to the SOLVE predicate, creating a 

goal of the form solve(h,Bel,fs,fp,fand,for), In this context, 

the predicates cfs,fp,fand,for> are meant to instantiate the 

variables <Fs,Fp,Fand,For> in SOLVE. However, this type of 

quantification is beyond the scope of first-order predicate 

calculus, and, consequently, is illegal in Prolog. This 

limitation can be overcome by second-order programming, taking 
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advantage of Profog's gfuniv'* =.. operator. Among other things, 

this operator may be used to bind variables to functions. For 

example, consider the following APPLY predicate, defined in 

(Sterling and Shapiro, 1986): 

applyl(F,Xs) :- Goal=..[FIXs], Goal. 

The goal applyl(f,Xs) causes Prolog to apply the function f to 

the argument list Xs. For example, the goal applyl(s,[3,Y]) will 

succeed, resulting with Y=4. 

In this paper we define a more powerful version of APPLY, as 

follows: 

apply(Predicate,Args) :- Predicate=..PredList, 
append(PredList,Args,GoalList), 
goal=..GoalList, 
call (Goal) . 

~efined that way, the first argument of apply, Predicate, can be 

either an atomic symbol naming a predicate, or, alternatively, a 

term representing a predicate with some of its arguments 

supplied. For example, apply(sf[3,Y]) will yield Y-4, and so 

will As yet another example of the utility of 

APPLY, consider the following numeric computation of the square- 

root function, using Newton's approximation formula: 

sqrt (X,Y) :- apply(newton(0.01) , [XJ]) . 
newton(Epsilon,X,Y) :- iterate(Epsilon,X,Y,l). 
iterate(Epsilon,X,Y,Y) :- Diff is X-Y*Y,abs(Diff,Z),Z=cEpsilon,!. 
iterate(Epsilon,X,Y,Z) :- New2 is (X/Z+Z)/2, 

iterate(Epsilon,X,Y,Newz) 
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Defined that way, the parameter of the NEWTON predicate, 

currently set to 0.01, specifies the precision level of the SQRT 

function. That is, Y is guranteed to be within a 0.01 

neighborhood of the true value of In this example, 

sqrt(4,Y) will yield Y-2.0006. 

To sum up, we see that the term representing the predicate in our 

definition of APPLY is the equivalent of a closure in a Lisp- 

based functional language. 

The programming techniques discussed in this section have general 

implications to software engineering beyond the context of this 

paper. We have chosen to present this material here because 

second-order programming is used extensively in the SOLVE 

architecture. In particular, the APPLY predicate plays a central 

role in mixing flavors, i.e. adding functionalities to the 

wvannilalt meta-interpreter. This analogy becomes clearer in the 

next section. 
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4.5. Puttins it All tosether 

The theory of SOLVE consists of a recursive union of all the 

modules described thus far, namely parsing, Boolean conditioning, 

sequential propagation, and parallel combination. The complete 

definition of SOLVE is as follows: 

solve((H1 and H2),Bel,Fs,Fp,Fand,For) :- 
solve(H1,Bell,Fs,Fp,Fand,For), 

(13) 

solve(H2,Bel2,Fs,Fp,Fand,For), 
apply (Fand (Bell, Bel2) , [Bel J ) . 

solve (H, Be1 , Fs, Fp, Fand, For) : - 
parse (Hr-Belp) , ! , 
bagof(Belx, 

(14 1 

(parse (H, E, Bel-rule) , (15) 

solve(E,Bel e,Fs,Fp,Fand,For) , (16 ) 
(17) 

apply (Fs, [BG~-e,  el-rule, ~ e l x )  ) , (18) 
Bels) , 

apply(Fp,[Belp,Bels,Bel]). 
(19) 
(2 0 

solve(E,l,Fs,Fp,Fand,For) :- E,!. 

The base-fact (11) of SOLVE, which is ground, assigns a belief of 

1 to the constant hypothesis @*true." The subsequent handling of 

Boolean conditioning in (12-13) is self-explanatory. In (14), 

PARSE is used to check if the hypothesis H is present in the 

knowledge-base, and, if so, to bind Belp to its prior degree of 

belief. The BAGOF predicate accomplishes a few things. First, 

it looks (through parsing) for all the rules <E => H Be1 rule> - 
whose conclusion is H (16). For each such rule, SOLVE is applied 
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recursively to Compute the posterior belief in the premise, E, 

yielding Bel-e (17). This ncurrent belief,I1 in turn, is used by 

Fp to attenuate the original degree of belief, Be1 - rule, into 
Belx (18). Attenuated degrees of belief are strung together (via 

BAGOF) into the list Bels (19). 

The Ifpunch linew of SOLVE is (20). When we get to this point, 

the list Bels consists of all the attenuated degrees of belief 

associated with all the rules whose conclusion is H. Since this 

list is constructed recursively, Bels incapsulates all the 

evidence that SOLVE drew from all the reasoning chains whose 

ultimate conclusion is H. At that point, the parallel 

combination function Fp is applied to fuse this information with 

the prior belief Belp, yielding the ultimate outcome of SOLVE, 

i.e, the posterior belief, Bel. 

To sum up, SOLVE(H,Bel,Fs,Fp,Fand,For) implements an exhaustive 

depth-first search, pruning all the rules and facts which bear 

evidence on H, either directly or indirectly. As a side-effect 

of this process, the program computes the posterior belief in H 

modulo the belief calculus <Fs,Fp,Fand,For>. When SOLVE branches 

horizontally, Fp is used to combine the degrees of belief 

originating from rules whose direct conclusion is H. When SOLVE 

backtracks from a vertical recursive call, Fs is used to 

synthesize the belief committed to H from lower-levels of 

reasoning. If a Boolean **forkt* is encountered, either Fand or 
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For are applied to compute the posterior belief coming out of the 

fork. 

The reader has probably noticed that the predicates 

<Fs,Fp,Fand,For> are still unspecified. This was done in 

purpose, in order to highlight the modularity and top-down design 

of SOLVE. Indeed, one motivation for writing this paper was to 

demonstrate the ease by which a belief calculus can be added to 

or modified within the SOLVE environment. This is accomplished 

in a completely orthogonal manner, i.e. without tinkering with 

any other part of the meta-interpreter. To illustrate this 

point, we now proceed to define two examples of well-known rule- 

based belief calculi. In the modular SOLVE environment, this 

amounts to no more than specifying the theory of the predicates 

cFs,Fp,Fand,For>. 

5. Rule-Based Belief Calculi 

This section gives Prolog implementations of the CF calculus and 

an ad-hoc Bayesian calculus. These models are presented 

verbatim, and no attempt is made here to either defend their 

cognitive appeal or argue for or against their normative 

justification. The literature is by now rife with probabilistic 

analyses and commentary of this sort, e.g. Heckerman (1986), 

Grosof (1986), and Schocken and Kleindorfer (1987). 
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5.1. The certainty-factors Calculus 

Following its great popularity in applied expert systems, the 

certainty-factors calculus has evolved into several forms, all of 

which might be easily incorporated into the SOLVE architecture. 

The calculus discussed here adheres to the original model, 

described in detail by Buchanan and Shortliffe (1984). 

Seuuential combination: The CF associated with the diagnostic 

rule <e => h CF(hle)> is elicited from a domain expert under the 

assumption that the premise e is known with certainty. When the 

belief in e is less than certainty, the CF calculus attenuates 

the rule's degree of belief through the following sequential 

propagation function: 

CF(h1 e) * CF(e) If CF(e) > 0 
CFg(hle) = 

otherwise 

This function is implemented in Prolog as follows: 

cf - s(Be1-e,Bel-rule,Bel) :- max(0,Bel~e,Bel~max), 
Be1 is Bel-rule * Belmax, 

Parallel combination: When two rules <el->h CF(hjel)> and 

<e2 ->h CF(hleZ)> bear evidence on h independently, their compound 

increased belief in h in light of {elre2) is computed through the 

binary CF parallel combination function: 
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- f if both CFgs are positive: 

if both CF's are negative: (21) 

CF(hlelte2) = -(ICF(hlel) l+lCF(hled I*(l-ICF(hlel) I) 

I if CF(hlel)>O and CF(hle2)<0 

The Prolog implementation of this function is as follows: 

cf3-2 (XJ, 2 )  : - ( (X=<O , Y>=0) ; (X>=O , Y=<O) ) , 
abs (X,A) , abs (Y, B) , min(A, B,C) , 
Z is (X+Y)/(l-C),!. 

An inspection of (21) reveals that c f ~ 2  is both commutative and 

associative. Hence, (21) might be applied recursively to compute 

the compound evidential impact of any finite set of independent 

rules. The resulting n-ary expansion of cfg-2 is as follows: 

cfJ(-,Elto)* 
cfg(-, [XI Xs] ,Bel) : - cfg(-,Xs, Bel-Xs) , 

cfg-2 (X, Bel-Xs, Bel) . 
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The explicit omission of the first variable in (22) underscores 

the fact that the CF language ignores prior beliefs. This can be 

seen clearly in the definition of the base-fact of c f g ,  which 

models the llstate of insufficient reasonM (Savage, 1954). This 

case, which is characterized by an empty set of diagnostic facts, 

causes c f j  to assign a posterior belief of 0 to the hypothesis 

in question. This is consistent with the additive CF rationale, 

in which the absence of any relevant evidence on h causes the 

belief in h to neither increase nor decrease. In a Bayesian 

language, one would normally model this case by setting the 

posterior belief in the hypothesis to its prior belief. 

Boolean Conditioning: the CF definitions of the functions Fand 

and For are as follows: 

5.2. An Ad-Hoc Bayesian Calculus 

The ad-hoc Bayesian (AHB) calculus described below operates on 

causal rules of the form <h -> e Bel>. Recalling section 3, the 

degree of belief Be1 associated with the rule h->e is assumed to 

be a three-place list Bel=[xlfx2,x3] with xl=P(h), x2=P(elh), and 

x3=P (e 1 h) . 
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Seuuential ~ro6aaation: The literature contains several 

heuristic procedures for sequential belief update, e.g. Jeffries 

rule of conditioning (Shafer, 1981) and PROSPECTOR'S 

interpolation function (Duda et al, 1977). For the sake of 

brevity, we choose to describe here a simple interpolation 

function, discussed by Wise (1986). This function defines the 

"attenuatedw degree of belief P1(elh) as a weighted average of 

P(e(h) and P(glh), weighted by P(e) and P(g), respectively: 

The AHB sequential propagation function is implemented as a 

3-place Prolog predicate called ahb-s. The first two "inputw 

variables of ahb-s are the rule's degree of belief 

[P(h),P(elh),P(elh)] and the belief in the rule's premise P(e). 

The third woutputN variable is the attenuated, 3-place degree of 

belief, [P(h) ,PI (el h) ,PI (e 1 h) 1, which is computed through (23) . 
Note that ahbs leaves the prior P(h) intact. The variables 

naming in ahb-s is as follows: the list [P(h),P(elh),P(elh)] and 

the scalars P(h), P(e), P8(elh), and P(elh) are denoted by 

[PO,Ql,Q2], PO, Bel-e, P1, and P2, respectively. 

ahb - s([POfQ1,Q2],Bel-el [POfP1,P2]) :- 
P1 is Ql*Bel-e + (1-Q1) * (1-Bel-e) , 
P2 is Q2*Bel-e + (1-Q2) * (1-Bel-e) . 
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Parallel combination: Let <h -> el Bell> ,..., <h -> en Beln> be 

n causal rules with Beli=[P(h),P(eilh),P(eilh)l. The posterior 

belief in h in light of the evidence {el, ..., en) is computed 
through the following version of (the commutative and 

associative) Bayes rule: 

P(elIh) P(enlh) 
product-odds = ------- * . m e  * ------- 

P(ellh) P(enlh) 

P (h) 
odds = product-odds * ---- 

p (h) 

P (h 1 el, . . . , en) = odds / (l+odds) 

Let the the set {Bell, ..., Bel,) and the scalars P(h) and 

P(hlel, ..., en) be the list Bels and the atoms Prior and P, 
respectively. Given this naming convention, the Prolog 

implementation of (24) is the predicate ahbg, defined as 

follows: 

a h b j  ( [Prior 1-1 , Bels , P) : - 
mult(Bels,Product Odds), 
Odds is (prior/ (1-prior) ) * Product - Odds, 
P is Odds/ (1+0dds) . 

mult([l,l). 
mult([[Xl,X2]1Xs],Product) :- mult(Xs,Bel-Xs), 

Product is (Xl/X2) *Be1 - Xs. 

A more efficient, tail-recursive version of MULT can be defined 

as follows: 
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Boolean Conditioninq: the definitions of the functions Fand and 

For in the ad-hoc Bayesian model are equivalent to their CF 

versions : 

6. Cookins Instructions 

Wirth's (1976) design principle of <programs = algorithms + data 

structures> is well known. In the context of expert systems, 

this translates into <expert system = inference mechanism + 
knowledge-base>. In this paper we have taken the modularity 

principle one step further, achieving what may be described 

symbolically as <inference mechanism = inference engine + belief 

calculus>. The resulting SOLVE environment is basically a 

collection of modules that can be intermixed without having to 

tinker with the theory of any one individual module. 

The practice of incremental enhancements of meta-interpreters was 

analyzed by Sterling (1986). This analysis, which draws its 
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terminology from-object programming, suggests that Prolog meta- 

interpreters are analogous to Lisp Flavors. Using Sterling's 

language (which is underlined), the modules PARSE and 

<Fs,Fp,Fand,For> are orthoaonal enhancements to the SOLVE flavor, 

in that the computations necessary for incorporating them are 

completely separate. The PARSE predicate amounts to a behavioral 

enhancement: it extends the computation performed by SOLVE 

without changing the meta-goal of the enhanced meta-interpreter. 

This is done simply by adding the parsing predicates to SOLVE'S 

theory. The flavor SOLVE(H,Bel,Fs,Fp,Fand,For) is a structural 

enhancement of the vannila flavor SOLVE(H), in that the extra 

arguments <Fs,Fp,Fand,For> (which are winitializedn to a specific 

belief calculus <fs,fp,fand,for>) are used to compute Be1 as H is 

being solved. 

So, now that all the ingredients have been provided, the creation 

of a rule-based inference system is merely a matter of mixing 

flavors. Let p and q be two Prolog predicates whose extended 

theory is stored in two files named "pH and @*q" (the extended 

theory of p includes p t s  theory and the theory of all the 

predicates mentioned in p t s  theory). In what follows, when we 

say Itadd p to qtl or "mix p and qw we mean "prove the goals 

consult (p) and consult (q) . 

With that in mind, to prepare a CF-oriented inference system, 

follow this set of instructions: 
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1. Create a CF-oriented knowledge-base and save 
it in a file called KBASE 

2 .  Prove the goal define-syntax 

3 .  Mix the cf parse predicate with the SOLVE flavor 

4. Add the predicates cf-s, cfj, cf-and, cf-or 

5. Mix the resulting inference system with the 
knowledge-base KBASE 

6. Confirm the hypothesis h and compute its posterior 
certainty-factor by proving the meta-theorem 
solve(h,Bel,cf~s,cfjIcfIand~cffor)~ 

To prepare a Bayesian-oriented inference system, follow this set 

of instructions: 

1. Create a Bayesian-oriented knowledge-base and save 
it in a file called KBASE 

2. Prove the goal define-syntax 

3. Mix the ahb parse predicate with the SOLVE flavor 

4. Add the predicates ahb-st ahbj, ahb - and, ahb-or 

5. Mix the resulting inference system with the 
knowledge-base KBASE 

6. Confirm the hypothesis h and compute its posterior 
(ad-hoc) Bayesian belief by proving the meta-theorem 
solve(h,Bellahb-sIahbjIahbhbandtahb-or). 

As far as Prolog is concerned, the fully instantiated SOLVE meta- 

interpreter is yet another predicate. Therefore, one can blend 

SOLVE with standard Prolog in order to implement the typical bits 

and pieces which make up full-blown expert systems. For example, 

let's go back to our dubious dating system. Perhaps the most 

useful output of this application would be a reorganized version 

of the little black book, sorted in decreasing order of composite 
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attractiveness.' This book may be prepared by the following (CF- 

oriented) predicate: 

create (Book) : - bagof ( (XI Rating) , 
(potential-date (X) , 
s o 1 v e ( d a t e ( X ) , R a t i n g , c f ~ s I c f ~ r ) ) ,  
Xs) 1 

sort (Xs , Book) . 

Given the database described in section 3 (consisting of only two 

potential dates), the goal create(Book) will yield the response: 

Book = [(pat10.832),(nicky,0.426)]. 

The casual nature of the dating example should not be confused 

with the underlying seriousness of the SOLVE meta-interpreter. 

Consider, for example, a medical diagnosis application. In this 

context, potential dates and their perceived characteristics 

correspond to prospective diseases and symptom manifestations, 

respectively. Sub-hypotheses, like wrich(X),N correspond to 

clinical syndromes or intermediate diagnoses. Finally, dating 

rules are analogous to text-book medical knowledge and heuristic 

inferences of experienced experts. Under this interpretation, 

the evaluation of a propspective date is analogous to the 

diagnosis of a certain patient. In this context, the goal 

create(Book) should probably be renamed to rank(Diseases). Given 

a certain knowledge-base and a set of symptoms (stored in KBASE), 

this goal gives a list of all the potential diseases that this 

patient might have, in decreasing order of likelihood. 
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- - 

7. Conclusions and Future Research 

The validity of alternative belief languages can be investigated 

in two different and complementary methodologies. The analytic 

approach is chiefly concerned with comparing belief calculi to 

well-known normative criteria, e,g. probability theory or 

predicate logic. This line of research leads quite clearly to 

the realization that, not unlike the humans that they attempt to 

model, all rule-based belief calculi contain varying degrees of 

normative violations. Nonetheless, the extent of these 

violations is not well understood, and the sensitivity of the 

system's advice to such violations is still an open question. 

In spite of their normative deficiencies, rule-based belief 

calculi are widely-used in commercial expert systems. Moreover, 

it might be that a careful design of the underlying knowledge- 

base might ensure that normative violations are kept to a 

minimum. with that in mind, there is a crucial need for an 

em~irical methodology for investigating the external validity of 

alternative belief calculi. This line of research will simulate 

experimental settings in which the expertise of human subjects is 

elicited and represented via different belief languages. The 

experiments will then pit the systems' recommendations with (a) 

the judgment of the humans that they claim to model, and, (b) an 

external norm, such as the 'Itrue state of the world.11 
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There exist very-few empirical studies related to expert systems, 

and the com~arative study of alternative belief languages is no 

exception. Most of the work in this area was carried out during 

the last two years, e.g. Mitchell (1986), Yadrick et a1 (1986), 

Wise (1986), and Schocken (1987). These studies attempt to 

understand the conditions under which one belief language 

performs better than another. Therefore, they have important 

prescriptive implications on knowledge engineering. 

One limitation that inhibited more research in this direction has 

been a lack of a common benchmark environment. Such environment 

ought to simulate rule-based inference on the one hand, and, on 

the other hand, allow a great deal of design flexibility in terms 

of experimenting with alternative belief calculi. We feel that 

the SOLVE meta-interpreter presented in this paper is a first 

step toward closing this gap. We hope that other people will 

modify this meta-interpreter to meet their own research needs, 

and that this will promote further understanding of the empirical 

validity of expert systems. 
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/* The following is a listing of all the miscellaneous 
predicates referred to in the paper */ 
apply(Predicate,Args) :- Predicate=..PredList, 

append(PredList,Args,GoalList), 
goal=..GoalList, 
call (Goal) . 

bagof(X,G,-) :- asserta(found(mark)),G,asserta(found(X)),fai1. 
bagof (-,-, L) : - collectFound([] ,M) , ! I W M .  
collectFound(Lin,Lout):- getNext(X),!,collectFound([X/Lin]tLout). 
collectFound(Lin,Lin). 
getNext (X) : - retract (found (X) ) , ! I not (X==mark) . 

abs(X,Z) :- X<O, Z is -(X). 
abs (X, X) : - X>=O. 

/*  the following predicate sorts a list of pairs [X,Y] in 
decreasing order of Y */ 
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