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1 Introduction 

There are many important systems that evolve indefinitely long in time. Examples of these 

systems comprise operating, process control, con~munication, and flexible manufacturing 

systems (FMSes) [GroS7, RanSG]. Pnueli calls such systems reactive systems [PnuSG] and 

proposes temporal logic as a specification language for reactive systems. 

However, temporal logic is used not only as a specification language. There have been 

several proposals to use predicate temporal logic as a programming language [AMS9, BauS9, 

BFG+S9, IiI<N+90, FKTh/IoSG, MosSG]. Each of these proposals selects a certain type of 

temporal logic and defines a semantics of programs in the resulting language. 

METATEM [BFG4S9] and TEniIPLOG [AMSg, BauS91 provide two diametrically op- 

posite approaches to the design of a language based on temporal logic. METATEM is a 

very expressive language. In fact, Gabbay shows in the Separation Theorem [Gabs91 that 

the propositional counterpart of hlETATEM has the power of full propositional temporal 

logic. However, the semantics of METATEM is imperative [BFG+S9], i.e. very procedural. 

Furthermore, some METATEM programs have non-deterministic computations resulting in 

backtracking. This leads to computations whose complexity grows exponentially in time. 

Contrary to METATEM, TEblPLOG has limited expressive power since it does not 

support negation. On the other hand, it has a well-defined declarative semantics [BauSS] 

and a computational procedure based on temporal resolution [Ah/IS9]. 
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In this paper we take a middleground approach to the design of a language based on 

temporal logic. We want to find a fragment of temporal logic such that 

behavior of reactive systems can be modeled in this fragment and can be modeled in 

a "natumlV way; 

the language has a well-defined declarative semantics; 

programs written in this language have efficient computations, i.e. are linear in time 

(e.g. no backtracking). 

In other words, we want to find a fragment of temporal logic with the right balance 

between expressive power on one hand and a clear meaning and computational efficiency on 

the other hand which is suitable for programming reactive systems. 

We contribute to the solution of this problem by presenting the language PTL1 based 

on a fragment of predicate temporal logic with inflationary semantics [GSS6, AV8S, KPS81. 

The language will be formally defined in Section 3. However, before that, we state the 

requirements that a programming language for reactive systems must satisfy. 

2 Requirements for Programming Reactive Systems 

In this paper we propose a certain fragment of temporal logic as a programming language 

for reactive systems. In order to motivate the selection of this specific fragment, we consider 

a Flexible Manufacturing System [RanSG, GroS71 as an important example of a reactive 

system and see what requirements it imposes on a fragment of temporal logic to be used for 

programming reactive systems. 

Example 1 A Flexible Manufacturing System (FMS) manufactures certain products such 

as car engines, electronic boards, or electrical appliances. In this example, we assume that 

an FMS performs assembly operations on unfinished units. The initial part of an assembly 

is brought into the system through the load-unload station. Then it is carried among various 

manufacturing units, called cells, where the assembly process takes place. For example, in 

case an FMS manufactures toasters, one cell can be responsible for making the outer body 

of a toaster, another for installing heating elements in it, another for assemblying knobs on 

'PTL stands for Programming in Temporal Logic. 
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the front panel of a toaster, and still another one for attaching the front door to it. A special 

vehicle, called an Automatic Guidance Vehicle (A  G V), carries incomplete assemblies among 

various cells. When the assembly process is completed, the finished units are brought by 

AGVs back to the load-unload station where they are removed from the FMS system. 

An Fh/IS, as described in Example 1, has certain features common to other reactive 

systems. They must be properly supported in temporal logic for it to be a good programming 

language for reactive systems. We describe the features below and explain what requirements 

they impose on a fragment of temporal logic for it to be well suited for programming reactive 

systems. 

First, an FMS system evolves forward in time from the past into the future. Therefore, 

a fragment of temporal logic for programming reactive systems must support this forward 

movement in time. This means that the formulas of the type op -+ q describing backward 

movement in time are unacceptable in the language (note that these formulas are allowed in 

TEMPLOG [AhlSS]). 

Second, an FbfS is a very dynamic system, Conditions that hold now may not hold in 

the future. For example, if a vehicle is located at a cell now, it may not be located there 

in the future because it may move elsewhere. This means that the language must explicitly 

support updates. By that we mean that if a certain statement is true now, it may not be 

true in the future as the previous example shows. 

Third, certain conditions may hold only for some time in the future or can happen 

within a limited time frame. For example, a vehicle can travel between two cells only for a 

certain amount of time. This means that a temporal logic should support statements like 

"the condition will always be true in the future within some time frame." 

Fourth, we may want to ask queries about an FMS system. For example, we may want 

to know which cells a vehicle will visit within the next 60 minutes. This means that the 

language must support program calls, and these calls should also be expressed in temporal 

logic. 

Fifth, an FMS system exhibits non-deterministic behavior. For example, a vehicle can 

travel from a given cell to several other cells where the next assembly operation can take place. 

This requires a non-deterministic choice of a cell to which a vehicle must travel. Therefore, 

temporal logic should also support non-determinism. This requirement is consistent with 
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the definition of a reactive system [PnuSG], where a transition function maps a state into a 

set of states, and a specific computation makes a non-deterministic choice among the various 

"next" states. 

Note that these requirements are applicable not only to FMSes but also to other reactive 

systems such as operating systems and communication networks. In the nest section, we 

propose a fragment of a predicate temporal logic that satisfies these requirements. 

3 PTL: Programming in Temporal Logic 

In this section, we define the syntax and the semantics of PTL language that satisfies the 

requirements for programming reactive systems as stated in Section 2. 

3.1 Syntax of P T L  

Before defining the syntax of PTL, we esplain how the language will satisfy the requirements 

introduced in Section 2. 

The first requirement of Section 2 will be supported by restricting temporal logic for- 

mulas to the clausal form BODY + HEAD, where BODY refers to the past and present 

and HEAD to the future. This restriction provides for the forward movement in time. The 

second requirement will be supported by allowing negations both in the head and in the 

body of a rule. This feature supports updates by making some conditions false after they 

have been true. The third requirement will be supported by the introduction of the bounded 

necessity and possibility operators and their past mirror images. These temporal operators 

will be defined below. The fourth requirement will be supported by the introduction of a 

query language in Section 4. A program call will be interpreted as a query in this language. 

The fifth requirement will be supported by the introduction of non-deterministic variables. 

To define PTL formally, we introduce the following preliminary concepts. First, we use 

standard future temporal operators of necessity U, possibility o, and next o [I<ro87, RU711. 

rrvll is true if A is always true in the future, oA is true if A is true at  some time in the 

future, and oA is true if A is true at the next moment of time. We also use past mirror 

images of these operators: past necessity m, past possibility *, and previous 0. Second, we 

introduce two new temporal operators of bounded necessity Q and bounded possibility OT 

together with their past mirror images. &A is true at time t if A is true from time t up 
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to but not including t + T and is false at time t + T. o~ A is true at time t if there is t', 

such that t < t' < t + T and A is true at t'. We need such bounded operators to be able 

to express bounded temporal properties of reactive systems, e.g. the statements such as "an 

AGV is moving from one cell to another within a certain time period." Additional examples 

of bounded temporal operators will be provided in Example 2. 

We define literals as in the standard first-order logic [End72]: a literal is either an atomic 

formula or a negated atomic formula. A next-literal (in analogy with next-atom of [AM89]) 

is a literal preceded by a finite number of next operators o. Similarly, a previous-literal is a 

literal preceded by a finite number of previous operators. 

We are now ready to define the syntax of PTL. A PTL program is a set of temporal 

clauses. A temporal clause has the form BODY + HEAD, where BODY is any temporal 

logic formula with only the past temporal operators appearing in them; and HEAD is a 

conjunction of next-literals and necessity and bounded necessity operators. Notice that we 

make another syntactic restriction assuming that the head of a rule does not have temporal 

possibility operators. This restriction becomes important when we consider the semantics of 

PTL. As Example 2 shows, conjunctions in the head of a rule will be denoted with semicolon 

(;). It follows from this definition that the body of a rule refers to the current moment of 

time and to the past, whereas the head of a rule refers strictly to the future. In addition, 

PTL supports negations both in the head and the body of a rule. 

Variables in temporal clauses are divided into deterministic and non-deterministic [Tuz89]. 

The distinction between these two types of variables will be intuitively explained in Example 

2 and will be formally defined in Section 3.2. 

Next, we provide examples of PTL rules and explain various points about PTL using 

these examples. 

Exarnple 2 Behavior of an FMS system presented in Example 1 can be described with PTL 
rules. We present only several rules providing a partial program describing FMS behavior. 

The state of an FMS system is defined with the following predicates. D(AGV, C): a vehicle 

AGV is docked at a cell C; Ll(ASM,AGV): an assembly ASM is loaded on a vehicle 

AGV; L2(ASM,C): an assembly ASM is located in a cell C; NEXT(C, C'): the next 

assembly operation is done in cell C' after the previous assembly operation is done in cell 

C; TRAV(C, C', T): it takes T units of time for an AGV to travel from cell C to cell C'; 

PROC(C, T): it takes T units of time to perform an operation in cell C. 
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Non-deterministic variables are overlined in the rules. Their meaning will be explained 

after the rules are presented together with some other comments about this program. 

R1: If an AGV is docked at a cell with an assembly on it and the assembly has been 

processed by the cell, then move the AGV to one of the next cells for the time period 

determined by relation TRAV. 

D(AGV, C) A L1 (ASM, AGV) A *L2(ASM, C) A NEXT(C, F )  A TRAV(C, F, T)  -+ 

o-D(AGV, C); @MOV(AGV, C') 

R2: If an AGV arrived at a cell then dock it at that cell. 

R3: If some AGV7s are docked at a cell with assemblies loaded on them that have not 

been processed by the cell yet, and no other assembly is in that cell, then transfer the 

assembly from one of the AGV7s to the cell. 

R4: If an operation on an assembly is finished by the cell and an empty AGV is docked at 

the cell then put the assembly on the AGV. 

Comments about Example 2 are in order. First, notice the usage of non-deterministic 

variables. For example, the rule R1 says that if an AGV can be moved to several possible 

cells where the next operation can take place then non-deterministically select only one of 

them. Therefore, PTL supports future non-deterministic scenarios which correspond to the 

branching version of temporal logic [RU71]. This choice is facilitated by the non-deterministic 

variable C'. More precise meaning of non-deterministic variables will be provided in Section 

3.2. Second, notice the usage of bounded and unbounded possibility and necessity operators. 

For example, rule R1 says that if an assembly has been located in a cell in the past, i.e. the 

assembly has been processed by the cell (unbounded past possibility operator), then keep 

moving an AGV to the next cell for a specified amount of time (bounded necessity operator). 

Third, the heads of rules contain only bounded and unbounded future necessity operators, 
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and the bodies of the rules contain bounded and unbounded past possibility and necessity 

operators. Therefore, the body of a rule refers to the past, and the head refers to the future. 

This is a restriction of the language defined above. Finally, observe that the predicates 

TRAV, NEXT, and PROC do not appear in the head of any rule and, therefore, do not 

change over time. They are called rigid predicates [AM89]. 

A PTL program is normalized if the body of any of its rules is a conjunction of liter- 

als. Clearly, normalized programs form a subset of PTL. However, it can be shown using 

techniques from [Tuz89] that for any unnormalized PTL program, there exists an equivalent 

normalized PTL program. 

3.2 Semantics of P T L  

Baudinet [BauSg] defined a model-theoretic semantics of a TEMPLOG program [AMSS]. 

However, this semantics cannot be extended to PTL because PTL supports negations, 

whereas Baudinet's semantics does not. Therefore, PTL requires a different type of se- 

mantics. We consider the deterministic case at  first, i.e. we assume that all the variables in 

a program are deterministic; we extend the semantics to the non-deterministic case later on. 

Semantics of a PTL program is based on the concept of a temporal interpretation and a 

temporal model of a temporal logic formula [RU71]. A temporal interpretation of a program 

defines the domain of discourse, the model of time (e.g. discrete or continuous, bounded 

or unbounded, linear or branching), assigns values to constants, predicates and function 

symbols as in classical logic, and specifies the values of all the predicates in the program at 

all time instances. We assume any arbitrary structure of the domain of discourse, assume 

that time is defined with integers, and assume that the domain of discourse does not clzange 

over time. A temporal interpretation is a temporal model of a PTL program if all the clauses 

of that program are true at all the time instances in that interpretation. If the domain of 

discourse is the Herbrand universe [End72], i.e. it consists of all the ground next-atomic 

formulas of the form o", then the model is called temporal Herbrand model. 

Example 3 Consider the program i p  -+ o p expressed in the propositional temporal logic. 

It has infinitely many temporal Herbrand models. Some of the examples of these models are 

1. {oip) for i = 0,1,2,3,. . . 

2. {oip) for i = 1,3,5,7,. . . 
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3. {op, 02p, oiP} for i = 4,5,6,. . . 

where oi is the composition of next o operator applied i times. 

As Example 3 shows, there can be many models of a temporal logic program in general. 

Therefore, we have to provide some way to select a canonical model out of the set of all the 

possible models to define semantics of a PTL program. We propose the following inflationary 

conditions to restrict the set of models of a program. Intuitively, inflationary conditions say 

that if a fact is not explicitly removed from the set of valid facts by application of rules at 

the current moment of time then it remains valid at the nest moment of time. 

Formally, let PI, P2, . . . , Pm be the set of the predicates in a PTL program that change 

over time, i.e. the predicates that appear in the head of some rule. Let D; be the vector of 

instances of predicates PI, P2, . . . , Pm at time i ,  i.e. D; = (PI;, P2i, . . . , Pmi). We say that a 

model of a program satisfies inflationary conditions if values of predicates PI, P2,. . . , P, at all 

the time instances i.e. Do, Dl, D2, . . ., satisfy the following requirements. Let IN(Do,.  . . , Dk) 

and OUT(Do, .. . , Dk) be the sets of the ground atoms that have to be true and false respec- 

tively at  time k + 1 in the model that has Do, Dl, . . . , Dk as instances of its predicates at 

times O , 1 ,  . . . , k2. In other words, I N  and OUT determine the ground atoms that will be, 

respectively, added to and removed from the predicates a t  the "next" time moment k + 1, 

assuming the 'Lhistory" of these predicates was Do, Dl,. . . , Dk. Then the model satisfies 

the inflationary conditions if Dktl = Dk U IN(Do, . . . , Dk) - OUT(Do, . . . , Dk). In other 

words, if the ground atom Pi(al, . . . , a,) is true at time k, and the model does not require 

Pj(al,.  . . ,a,) to be false at time k + 1 then Pj(al , . .  . ,a,) is true at  time k + 1. 

Example 4 Consider the program from Example 3. As was shown in Example 3, this 

program can have infinitely many temporal Herbrand models. However, it can have only 

two temporal Herbrand models satisfying inflationary conditions: 

1. {oip) for i = 0,1,2,. . . 

2. {oip} for i = 1,2,3,. . .. 

I 

20bserve that IN(Do, . . . , Dk) n OUT(Do, . . . , D k )  = 0 must hold in order that the temporal interpreta- 
tion based on the temporal structure Do, Dl ,  D2, .  . . be a model. 
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Inflationary conditions can be traced back to the inflationary operators of Gurevich and 

Shelah [GSSGJ and to the inflationary semantics of negated Datalog programs [AV88, I(P881. 

Semantics of PTL programs defined with inflationary conditions is important because of 

the following reasons. First, such semantics appears to be "natural" for reactive systems. In- 

tuitively, temporal logic programs describe changes to a reactive system. Whenever changes 

do not occur, components of the system remain unchanged which is exactly what inflationary 

conditions say. For example, if a rule makes an AGV move to another cell if certain condi- 

tions are satisfied, then other AGVs that do not satisfy these conditions stay where they are. 

Second, as related to the first point, inflationary conditions provide a solution to the frame 

problem [MH69] for PTL programs: if the ground atom does not become false at the next 

time instance, it is assumed to be true at that time. Third, inflationary semantics malies 

PTL at least as powerful as production systems with the "in case of conflicts, cancel the 

computation" conflict resolution strategy. It can be shown that the inflationary semantics 

of PTL programs in the degenerate case when rules can have only next temporal operators 

in their heads coincides with the semantics of production systems with the aforementioned 

conflict resolution strategy. For example, the temporal clause P(x)  + oQ(x) with the in- 

flationary semantics is equivalent to the production rule P(x) + INSERT(&, x), and the 

clause P(x) + oiQ(x)  is equivalent to the rule P(x) + DELETE(&, x). 

In case non-deterministic variables are allowed in a program, the semantics of a pro- 

gram is associated with a set of non-deterministic trajectories. Each trajectory is defined 

by the inflationary semantics and by specific choices of non-deterministic variables. More 

specifically, sets IN(Do,. . . , Dk) and OUT(Do,.. . , Dk) of trajectory Do, Dl, Dz7. .  . , are de- 

termined at  time il- by instantiating deterministic variables in rule bodies based on states 

Do, Dl, . . . , Dk and making choices among values of non-deterministic variables correspond- 

ing to the instantiated deterministic variables. A specific choice determines the next state of 

a non-determinis tic trajectory. As before, the inflationary semantics for a non-deterministic 

trajectory assumes that Dkfl = Dk U IN(Do,.  . . , Dk) - OUT(Do, . . . , Dk). 

However, the inflationary conditions still do not define the unique model of a PTL 

program. As follows from Example 4, the program -.p t o p still has two models. This 

motivates other types of restrictions on the possible models of a PTL program called boundary 

conditions3. 

We distinguish between the two types of boundary conditions. First, the initial condi- 

31n analogy to boundary conditions for a solution of partial differential equations. 
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NEXT(LU, C1) TRAV(LU, C1,5) PROC(LU, 1) 
NEXT(LU, C2) TRAV(LU, C2,S) PROC(C1,3) 
NEXT(CL, C2) TRAV(C1, C2,3) PROC(C2,7) 
NEXT(C1, C3) TRAV(C1, C3,6) PROC(C3,5) 
NEXT(C2, C3) TRAV(C2, C3,4) 
NEXT(C3, LU) TRAV(C3, LU, 6) 

NEXT TRAV PROC 

Figure 1': Initial Instances of Rigid Predicates 

tions define predicate instances at time t = 0. For example, if we assume that the value of 

p is TRUE at time t = 0 then the program from Example 3 has the unique model {oip) for 

i = 0,1,2,3, . . .. The second type of a boundary condition specifies values of the predicates 

that do not appear in the head of any rule in a program. These predicates do not change over 

time and are called rigid in [AMSS]. The meaning of these two types of boundary conditions 

will be illustrated by the following example. 

Example 5 The PTL program from Example 2 has the following boundary conditions. 

First, it has rigid predicates NEXT, TRAV, and PROC that do not change over time. 

Possible examples of their values are shown in Fig. 1. Second, initial conditions must be 

specified for predicates D, L1, L.2, and MOV. These initial conditions are determined by the 

initial configuration of the FMS system and are left unspecified in this example. 

The two types of boundary conditions uniquely specify the model of the PTL program 

from Example 2 assuming inflationary semantics and some choice of non-deterministic vari- 

ables. 

1 

The inflationary semantics combined with the boundary conditions suggests a compu- 

tational mechanism to construct the trajectory of a given program. If only the deterministic 

case is considered then, in its naive implementation, the next state of the trajectory is ob- 

tained from the previous one by adding newly derived facts and removing the obsolete facts. 

This means that the n-th state in the trajectory can be computed in time linear in n for the 

determinis tic case. 
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3.3 Relationship to Temporal Prolog 

As was stated in the introduction, METATEM and TEMPLOG provide two diametrically 

opposite approaches to the design of a programming language based on temporal logic. In 

contrast to this, PTL takes a middleground approach: it selects a fragment of temporal logic 

that is powerful enough to be well-suited for programming reactive systems and that also 

has a declarative semantics and is co~nputationally efficient. 

Temporal Prolog, as part of RACCO programming language [I<IiNf90], also takes a 

middleground approach. It forms a subset of temporal logic with negations allowed in the 

body but not in the head of a rule. Also, it has a declarative semantics supporting efficient 

computations. 

However, PTL differs from Temporal Prolog in the following respects. First, it supports 

negation not only in the body of a rule but also in its head. Second, PTL and Temporal 

Prolog have different semantics. Semantics of Temporal Prolog assumes that if the fact 

is not made true explicitly at the next time moment, it is assumed to be false, whereas 

the inflationary semantics says that if a fact is not made false explicitly at  the next time 

moment, it is assumed to be true. Clearly, the inflationary semantics is better in the case 

when the number of changes to the set of facts in one step is smaller than the total number 

of facts. This is often the case in reactive systems. Third, the two languages have different 

types of temporal operators. However, this is not an important distinction because any 

Temporal Prolog and any PTL program without bounded operators can be reduced to an 

equivalent program with only next temporal operator [I<I<N+SO]. Fourth, PTL supports 

non-determinism. Fifth, as described in Section 4, we define calls to PTL programs in terms 

of arbitrary temporal logic formulas, whereas Temporal Prolog does not. 

4 Temporal Logic Queries 

In this section, we define calls to PTL programs. The calls will be associated with queries 

against temporal logic programs defined in Section 3. In accordance with requirement 4, as 

stated in Section 2, the queries should also be expressed in a predicate temporal logic. 

'CVe make a restrictive assumption that temporal logic programs do not contain non- 

deterministic variables. In other words, we consider only the deterministic case. Non- 

deterministic extensions to such a query language for the programs defined with production 
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systems were studied in [TuzSS]. 

A temporal logic query on a PTL program P is an expression of the form 

where # is a predicate temporal logic formula with all of its predicates appearing in program 

P, and XI, x2,. . . , x, are some of the free variables in 4. 

The answer to this query is the set of tuples (xl,x2, . . . ,x,) for which the formula 

4(x1, x2,. . . , x,) is true at present time moment for the temporal model determined by 

program P. 

Example 6 

Q1: Find all the assemblies that will pass through the cell Co within the next 60 min. 

{ASM 1 060 L2(ASM7 Co)) 

060 is the bounded possibility operator introduced in Section 3.1. 

Q2:  Find all the assemblies that will stay in the cell Co exactly throughout the next 60 

minutes. 

(ASM 1 &oL2(ASM, Co)) 

where 060 is the bounded necessity operator. 

Q3: Find all the assemblies that will be produced within the next hour. 

(ASM I 060 (L2(ASM7 LU) A *L2(ASM, C) A C # LU)) 

The predicates inside the parenthesis in the query say that the ASM is at  the load/unload 

station now but it is the finished assembly (as opposed to the newly introduced one) 

because it was in the FMS system in the past. 

I 

An arbitrary predicate temporal logic query is undecidable in general. Therefore, we 

impose certain syntactic safety restrictions on temporal queries that guarantee decidability. 

Intuitively, a temporal logic formula is temporally safe, if the time domain on which the 

formula is evaluated is uniformly bounded for all values of all the variables appearing in the 
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formula. In other words, it is guaranteed for a safe temporal logic formula that the formula 

is always evaluated in finite time. 

Formally, a temporal logic formula is temporally safe if all the terms in its conjunctive 

normal form have the form okm4 or o k o ~ 4 ,  where k > 0 and # is any temporal logic formula. 

For example, the formulas 0 2 0 ,  ~40A A 06&, and ~ ( o A  V d 3 )  are temporally safe, and 

the formulas o A, UA A oTLj are not temporally safe. 

Besides temporal safety, we also need structural safety that guarantees that the temporal 

logic query returns only finite answers. Structural safety is defined as in [UllS8] with the 

additional provision that the temporal operators of bounded and unbounded necessity and 

possibility, next, and their mirror images produce structurally safe formulas if their operands 

are structurally safe. 

A temporal logic formula is safe if it is both structurally and temporally safe. For 

example, queries Q1 - Q3 are safe. 

5 Summary 

\Ye have  resented the language PTL suitable for programming reactive systems. The lan- 

guage is based on a fragment of predicate temporal logic with inflationary semantics. The 

formulas in the language have clausal form, support negations both in the head and in the 

body of a rule, support temporal operators of bounded necessity and possibility, and also 

support non-deterministic variables. PTL satisfies the requirements for programming reac- 

tive systems as presented in this paper. Finally, PTL supports temporal queries that can be 

interpreted as calls to PTL programs. 
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