
AUTOMATING SOFTWARE

DEVELOPMENT PRODUCTIVITY METRICS

Rajiv D. Banker

Eric Fisher

Robert J. Kauffman

Charles Wright

Dani Zweig

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 100 12

Center for Digital Economy Research
Stern School of Business
Working Paper IS-90-15

AUTOMATING SOFTWARE
DEVELOPMENT PRODUCTIVITY METRICS

by

Rajiv D. Banker
Arthur Andersen Chair in Accounting and Information Systems

University of Minnesota

Eric Fisher
Doctoral Program in Information Systems

New York University

Robert J. Kauffman
Assistant Professor of Information Systems

New York University

Charles Wright
Seer Technologies

Dani Zweig
Assistant Professor of Information Systems

Naval Post Graduate School

September 1990

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-90-15

We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa
for the access they provided us to the software development activities and
staff at a large investment bank. We also appreciated the assistance and

advice of Donna Ilodson, Len Erlihk, Don Middleton, Norman Shing and Brian
Weisinger in understanding the computer aided software engineering tools and
development methods utilized within the industry. Finally, we wish to thank

Hank Lucas and Vivek Wadhwa for invaluable suggestions about the managerial
and technical content of this paper.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

AUTOMATING SOFTWARE DEVELOPMENT PRODUCTIVITY METRICS

ABSTRACT

Measurement of software development productivity is needed in order
to control software costs, but it is discouragingly labor-intensive
and expensive. Computer aided software engineering (CASE)
technologies -- especially object-oriented, integrated CASE --
have the potential to support the automation of this measurement.
In this paper, we describe automated analyzers for function point
and code reuse measurement. Both analyzers take advantage of the
existence of a meta-model of the application system, stored within
an object repository, which contains the necessary information
about the application system. We also propose new metrics for code
reuse analysis, including reuse leverage, reuse value and reuse
classification. The state-of-the-art automated software metrics
analyzers are illustrated in the context of an investment banking
industry application.

[KEYWORDS: CASE, code reuse, computer aided software engineering, function point
analysis, object-oriented programming, programming productivity, repositories,
software costs, software development, software engineering economics, software
metrics, software productivity.]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

1. Introduction

1.1. The Incentive and Opportunity to Automate Software Metrics

The recent upsurge in interest concerning computer aided software
engineering (CASE) technologies provides managers with both an
incentive and an opportunity to measure software development
performance. The incentive is that documenting the productivity
gains from CASE can help to justify (or, for some products,.
discourage) the large investment the technology often requires.
One popular press observer of these developments has recently
written:

"Like handcrafted furniture, software has traditionally
been customized for a task in a laborious process more
akin to artistic work than to engineering. [But now],
software is increasingly being written in the form of
pre-fabricated pieces that can be reused in different
combinations, much as plumbing systems can be tailored
for each house yet still be built out of standard pipes,
valves and joints."([34], pp. Dl-2)

Many observers believe this is a "software industrial revolutionw
in the making. However, the cost of participating in this
revolution may be substantial, while the benefits have proven hard
to verify [8, 311.

The opportunity is that of automating the collection of
productivity data. Any firm with high software expenditures that
is attempting to achieve important strategic and operational goals
has a strong incentive to measure its productivity [9, 15, 33, 371,
But in traditional software shops, such measurement requires
discouragingly expensive manual analysis of the software. CASE
technologies, especially object-oriented, repository-based
integrated CASE technologies, provide a means to automate a variety

. of software metrics that can help managers to aain control of their
software development operations. 1

A software development metrics expert recently commented that
automation of the process of collecting key software metrics is
likely to be one of the next areas to receive attention from CASE
tool vendor^.^ Software Magazine expressed a similar view of the
future by showcasing products from nearly forty vendors which
"measure productivity within a CASE environment1* [8]. But a cursory

'For an introduction to the "repository" concept, see [12] and
r171.

2~rom a speech by Capers Jones on software maintenance given
at Center for Research on Information Systems, Stern School of
Business, New York University, December 1989.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90-15

review of the listing of products identified very few which
actually automate the process of collecting software metrics to
perform productivity analysis. The majority are project management
tools which require a significant amount of input from the user to
make them useful. The magnitude of this manual burden, however, is
precisely what has made productivity measurement so difficult to
carry out in the past.

In this paper we will examine the automation of two important'
metrics: function points -- a measure of programmer output -- and
code reuse -- a major determinant of programmer productivity.
Function point analysis is currently the most popular means of
measuring the output of software development activities, although
the analysis is quite labor intensive, especially for large
systems. Code reuse is the extent to which software is developed
by recycling previously written code rather than rewriting it from
scratch. Extensive code reuse can increase productivity by an
order of magnitude and more [3]. These two measures, which we
will discuss in greater depth below, offer useful indicators of the
productivity of software project performance in CASE development
environments.

In order to automate the computation of these metrics, we require
the ability to automate the analysis of the content of the software
being analyzed. We shall see that, in addition to other benefits
claimed for it, tlobject-oriented programmingw can provide this
capability, primarily by encouraging the division of software into
smaller and more easily analyzed units than the traditional
program. 3 (For additional information on object-oriented
development environments, the interested reader is referred to: [7,
10, 14, 27, 28, 29, 401.)

A prerequisite for any flindustrial revolution in the makingtt, is
the ability to measure such basic factors as output and
productivity. Yet, despite annual. software costs rising into the
hundreds of billions of dollars, and a general agreement that these
costs are out of control, such measurement has generally proven too
difficult and expensive to undertake. We will examine the
potential of modern software development tools to not only increase
the productivity of the software development function, but to
finally begin to bring it under control.

3~ recent article in the New York Times provided a. useful and
readily understood definition of object-oriented programming: "In
object-oriented programming, the data and the instructions are
combined into a single module of software, or object . . . Objects
pass messages to one another requesting information and giving
instructions. Yet no object interferes with the internal working
of another. This method makes it easier to reuse pieces of
software and to make changesw ([34], pp. Dl-2).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

1.2. organization of the Paper

In this paper, we will describe the design and common architecture,
and managerial application of two automated software metrics
analyzers made possible using a repository-based, object-oriented
Integrated CASE Environment (which we will call wICEtg hereafter).
These include a Function Point Analyzer (FPA) and a Code Reuse
Analyzer (CRA) .
The remainder of the paper is organized as follows. Section 2
introduces the basic concepts necessary to understand our strategy
for developing the automated software metrics facilities. It
includes: an overview of the function point analysis methodology;
a discussion of why the methodology is useful, but costly and
problematic to implement; a consideration of prior attempts to
automate function point analysis; and an examination of the
features of repository-based, object-oriented CASE development
environments which enable us to automate function point analysis.

Section 3 presents the Function Point Analyzer. We make the
argument that much of the necessary information for a function
point analysis is readily available in an applicationls meta-model,
and we show how the repository objects and the relationships
between them can be mapped into function point analysis. we
present the architecture for FPA and then illustrate how it
navigates the hierarchy of rules to conduct an exhaustive search of
the user functionality built into an application.

Section 4 presents the Code Reuse Analyzer. We define three
classes of code reuse metrics, and discuss the design of CRA, and
the manner in which it navigates the meta-model hierarchy to obtain
the relevant information to instantiate the code reuse metrics.

The concluding section addresses additional technical and
managerial questions that were raised by our work in this area, and
the future research which is required to resolve them. It also
summarizes the key contributions of this work to practitioners and
to research on software development productivity. The paper also
includes a stand-alone example of how the analyzers and the new
metrics we will propose can be applied to an investment banking
application called the Broker Sales Reporting System.

4 ~ h e term ~~rneta-rn~del~~ builds on the idea of wmeta-data,R1
i.e those elements of a data dictionary that describe "the keys, ! attribute order, formats, and rules applied to individual records
and attributes in a database. A repository stores additionalmeta-
data concerning many other aspects of the total system of which the
database is only a partt1 ([12], p. 47) . In this paper, we focus
almost exclusively on the capability of a repository to store
information concerning the relationship among objects which
comprise a system.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

2. Automating Function Point Analysis: Preliminaries

2.1. Function Point Analysis

The magnitude of a software development effort depends upon several
factors, including the amount of information processing
accomplished by the system, the quality and the extent of the input.
and output interfaces provided to meet the userst needs, and
environmental factors ranging fromthe quality of the hardware used
by the programmers to the sophistication of the users requesting
the software [42]. Allan Albrecht of IBM originally proposed
"function pointsw as a metric to capture the intrinsic size of an
application, so that software development activities could be
evaluated for the outputs they create, and so that software
development managers would have a tool to estimate the resources
required to build systems of various sizes [I, 21.

Function points are meant to provide a language-independent and
implementation-independent measure of the functionality actually
produced and delivered to the user. In this, they differ from
output measures (such as source lines of code) that reward verbose
programming practices. Since its introduction in the late 1970s,
function point analysis has evolved, with the help of the
International Function Point Users Group, into a well-accepted and
operationally well-defined methodology [ll, 443. 5

Function points are computed by measuring the degree of
functionality actually delivered to the user "of the system, in
terms of reports, inquiry screens, and so on. Functlon counts are
determined by summing the point scores which are assigned (on the
basis of their complexity) to each input, output, internal file,
external interface and query that comprising the system. Function
counts are further adjusted by a measure of environmental
complexity. The mathematical definition of function points is
shown below.

FUNCTION POINTS = FUNCTION COUNTS * (.6 5 + (. 0 1 * COMPLEXITYf))
f=l

where

FUNCTION COUNTS = instances of the five function types;

5 ~ o r additional details on the implementation of function
points which extends the approaches presented by Albrecht and
Gaffney [2] and Zwanzig [44], see Symons [41], who discusses
function points with entity type complexity rules.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

COMPLEXITYf = a complexity factor, f, associated with
a descriptor of the implementation
complexity of a system.

Two recent papers provide excellent critiques of function point
analysis, alternative definitions and the issues that arise in
calculating and using them [24, 421.

One roadblock to collecting function point metrics for software
applications is that their computation (which is performed
manually) is very labor-intensive. In addition, such computation
requires the availability of consistently good system
documentation. In practice, where documentation exists at all, it
usually describes the system that was designed, not the system that
was actually delivered.

A third concern is c a l i b r a t i n g the people who carry out the
function point analysis. Our experience in a recent study of the
productivity of CASE development suggested that even when well-
trained individuals perform function point analysis for the same
set of software projects there are bound to be discrepancies which
have to be resolved [3]. Individual differences in interpretation
of documentation, knowledge of an application and experience in
conducting function point analysis can all drive these differences.
The recent research by Low and Jeffrey [24] examined the
reliability of function point analysis in a more structured manner
and found that significant training in the use of the complexity
measures is necessary to ensure that the correct constructs are
being measured.

2 .2 . ICE -- A Repository-Based, Object-Oriented Integrated CASE
Tool

A large investment bank located in New York City made the initial
commitment to design and develop an object-oriented, repository-
based I n t e g r a t e d CASE Environment (ICE) at a cost of tens of
millions of dollars over the course of three years. ICE was built
by the firm as a response to the problems it faced in developing
and maintaining technically complex systems. The firm's computer
operations are geographically distributed, and are required to
perform effectively on a 24-hour basis.

Similar to others in the investment banking industry, the firm had
been experiencing rapidly mounting software costs, that were
expected to rise as its trading activities expand to provide global
coverage. To achieve competitive performance in this environment
previously required the firm's developers to program applications
which ran on each of three hardware platforms (mainframe,
minicomputer and microcomputer) in a different language '- COBOL,
PL/I and C++, respectively. A CASE tool was needed that would
support the programming of systems running simultaneously on all
three platforms, and reduce the firm's reliance on three separate

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

sets of highly skilled programmers.

ICE systems are written in an object-oriented fourth-generation
language which buffers programmers from the complexity of the
firm's operating environment. Applications written using ICE are
later compiled in the appropriate languages for the relevant
hardware platforms, and communication protocols for cooperative
processing across platforms are handled without programmer
intervention.

The object orientation of ICE supports cooperative processing. The
code is organized according to objects which play specific roles in
the functions delivered by the application, and the various
software functions can be allocated across hardware platforms in
the most appropriate manner. This organization is also what makes
it practical to automate the analysis of the code for the
computation of function points.

A feature of ICE, of special interest for the discussion which
follows, is its object repository. This includes all the
definitions of the data and objects that make up the organization's
business, and also all the pieces of software that comprise its
systems.

In addition to the additional control it provides, the advantage
associated with a single repository for all such objects is similar
to that for having a single database for all data: a program, or
a procedure, or a screen, or a report, need only be written once,
no matter how many times it is used. Such reuse has the potential
to decrease software development costs many-fold, and it forces
developers to more carefully "engineerw an information and
information systems architecture which will form a solid base for
the firm's business. The repository also makes the automation of
code reuse measurement practical, since it maintains a record of
each object and where it is used or reused.

2.3. Definitions of Basic ICE Objects

The ICE object repository stores information about the different
kinds of entities or objects which form the basic building blocks
of ICE-developed applications: BUSINESS PROCESSES, RULE SETS, 3GL
MODULES, SCREEN DEFINITIONS, FILES, DATAVIEWS, DATA ELEMENTS, DATA
DOMAINS, INSTANCES WITHIN DATA DOMAINS, REPORTS and REPORT
SECTIONS. It is useful to think of these objects as similar to
corresponding 3GL constructs. For example, a RULE SET is analogous
to a 3GL procedure, and a SCREEN DEFINITION can be thought of as a
window that provides a user interface. At the same time, it is
worthwhile to keep in mind that the object definitions in the ICE
environment are deliberately precise and rigid, so as to enforce
structured programming and design practices. We next consider each
object type in more detail.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

A RULE SET contains most of the instructions which observers
unfamiliar with CASE tools would tend to think of as "the programm.
In particular, most of the "traffic controlw resides there: a RULE
SET can u s e other RULE SETS or 3GL MODULES, c r e a t e REPORTS which
i n c l u d e REPORT SECTIONS, a c c e s s FILES and communicate w i t h SCREEN
DEFINITIONS. (Note that the 4GL used by ICE has specialized set of
verbs to describe the various interactions among object types.)

A 3GL MODULE is a pre-compiled procedure, originally written in a'
specific third-generation language. While the 4GL language used by
ICE developers is very small and general, it provides those 10% of
the data handling and computational capabilities which constitute
over 90% of the functionality of an information system. It is left
to 3GL MODULES to implement more specialized capabilities. In
investment banking operations, highly quantitative options pricing
and other valuation procedures for derivative instruments exist on
the shelf in optimized 3GL code at most firms. Such procedures are
used intact, as 3GL MODULES, rather than recoded.

A SCREEN DEFINITION is the logical representation of an on-screen
image. A RULE SET can communicate w i t h a given SCREEN DEFINITION,
meaning that data is passed back and forth between them. The
user-interface capabilities of a SCREEN DEFINITION are built into
ICE, and do not have to be considered by the developer. This tends
to speed the development process for screens in ICE. BY
comparison, the creation of screens delivered by IBM 3270 terminals
is more labor-intensive by a full order of magnitude.

A DATA VIEW consists of a set of DATA ELEMENTS, data objects that
have been defined in the object repository. A DATA VIEW can be
thought of as a logical data record. The communication of all data
between ICE objects is mediated by DATA VIEWS. For example, data
is passed from a RULE SET'S DATA VIEW to a SCREEN DEFINITIONt s DATA
VIEW and back. Data for a 3GL MODULE or a REPORT must similarly be
passed through a DATA VIEW.

A REPORT means much the same thing in ICE as it does in other
development environments. More specifically, a REPORT is the
internal logical representation of the physical report. REPORTS
consist of one or more REPORT SECTIONS, each with its own layout.

Each of these ICE objects is reusable, and good practice in the
context of ICE development is to reuse them as much as possible.
Placing all of the objects associated with an application in the
object repository has two intended effects. It prevents a
programmer from circumventing the discipline of database
management, and it makes all the objects of one application
available for reuse by any other application which is stored in the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

repository. 6

2.4. From ICE Repository Objects to ICE Application Meta-Models

An ICE application system consists of ICE repository objects, such
as RULE SETS and SCREEN DEFINITIONS, communicating with each other
in a structured manner. (See Figure 1.) A single application is
invoked by a menu item which has a high-level BUSINESS PROCESS..
This high-level BUSINESS PROCESS in turn r e f i n e s i n t o other RULE
SETS which may in their own turn use other RULE SETS or 3GL
MODULES. A RULE SET may acces s a DATA VIEW through which it can
communicate with a SCREEN DEFINITION, or c r e a t e a REPORT. The DATA
VIEW, in turn, will be d e f i n e d by one or more DATA ELEMENTS. A
RULE SET or 3GL MODULE may also access a FILE.7

These relationships, like the objects themselves, reside in the
object repository, Every such relationship is represented by a
database entry, and collectively, this database of relationships
constitutes the application "META-MODELw -- the abstract structural
map of the application system. (See Figure 2.)

We can use this general META-MODEL to identify the entities
associated with any application system. Since the META-MODEL is
hierarchical, following the chain of relationships will reliably
lead us to all the objects which may be accessed or invoked by a
given object. Traversal of the hierarchy of RULE SETS which
comprise an application, or sets of applications, is a very
powerful capability that is exploited in the design and development
of automated software metrics facilities for ICE. Clearly, any
attempt to automate the collection of software metrics in ICE
begins with a major advantage over similar efforts in
third-generation environments. Much of information which is needed
to calculate a variety of software metrics (code reuse, complexity,
function points, etc.) is already contained in usable form in the
META-MODEL. This information would have to be deduced from a
detailed (and probably manual) analysis of the source code
developed in a third generation environment.

%eryard has noted that considerable effort must still be
expended to make code reuse work effectively. "[Reusable] code may
be more difficult to design and test, and there is always a
temptation for the designer to develop something new, rather than
take the trouble to investigate and implement something that
already existstt ([43], p. 229) .

7 ~ h e verbs in the ICE 4GL language we have already mentioned
include use , own, communicate, c r e a t e , i n c l u d e and a c c e s s . The
reader now should have a feel for how the nouns and verbs go
together, without focusing on details of the syntax that ICE
enforces.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

3. FPA: A Function Point Analyzer for ICE

ICE satisfies two important prerequisites for the automation of
function point analysis. First, the object repository, and its
application META-MODELS, allow us to automate the identification of
all software belonging to a given system. In traditional
environments, this task must be accomplished on the basis of
documentation, which is rarely complete or up-to-date, and software
naming conventions which, even when they are followed, rarely
identify the use of code by multiple applications.

Second, the design of ICEts object-oriented 4GL is such that a
precise mapping may be defined between each object and its
associated functionality. In traditional environments, the only
way to perform the mapping between programs and functionality is to
manually figure out what each program is doing, again with the aid
of such documentation as may exist.

3.1. ~apping Function Point Concepts to ICE Objects

Of the five function types used in the computation of function
points, four measure data flows that either enter or leave the
ttboundarytt of an application. Internal files constitute the fifth
function type; they measure data stores internal to the
application. ICE decomposes object and entity relationship
definitions into specific functional roles, and there is a
well-defined mapping from ICE objects or relationships to function
counts. This is illustrated in Figure 3, which also provides a
conceptual representation of what we mean by the ttapplication
boundary." (See Figure 3.)

3.1.1 INPUTS

A SCREEN with an output DATA VIEW (i.e., a SCREEN which sends data,
as well as receiving it) is an input. A FILE access is an input if
the FILE is external to the system. The complexity of the input is
determined by examining the number of DATA VIEWS and ELEMENTS or,
in the case of a FILE access, the number of keys instead of DATA
VIEWS.

3 1 2 OUTPUTS

A SCREEN with an input DATA VIEW (i . e. , a SCREEN which receives
data from the RULE SET which calls it) is an output, as is a REPORT
or an output to an external FILE. Again, the compleyity of the
output is determined by examining the number of DATA VIEWS and
ELEMENTS or, in the case of a FILE access, the number of keys
instead of DATA VIEWS.

3.1.3. QUERIES

A screen which allows a user to access data, but not to update it

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

(this can be determined by comparing the FIELDS used in its input
and output VIEWS) represents a query. (Queries have lower function
counts than the input/output combination of update-capable
screens.) The complexity of a query is determined by examining the
number of DATA VIEWS and ELEMENTS.

3 1 4 INTERNAL FILES

A FILE is internal to an application if some RULE SETS and ~ G L
MODULES that access the FILE are also internal to the application.
(FPA checks which RULE SETS or 3GL MODULES access the FILE and
examines if they are subordinate to the high-level RULE SET or
BUSINESS PROCESS that defines the application). The complexity of
an internal file is determined by the number of keys and DATA
ELEMENTS it is defined to possess.

FPA also counts DATA DOMAINS, a special case of internal FILES.
DATA DOMAINS are used by an application to validate or verify the
values a user inputs.

3.1.5. EXTERNAL INTERFACES

A FILE that is not internal is considered to be external. Each
occurrence of an external FILE access constitutes an external
interface, as well as either an input or an output. The complexity
of the interface is determined by the number of DATA ELEMENTS and
keys.

Each function type gives rise to a number of function counts (see
Table 2) which depend upon its type and complexity. The function
count of a system is the sum of the function counts of its
component function types.

In most third-generation languages, a single program may easily
give rise to any or all of the five function types, possibly
multiple times. The only way to determine the functionality which
it represents is to read and understand it. Each ICE object, by
contrast, fills a limited role. That role, as we have seen, may
be determined by an examination of the META-MODEL and of the data
definitions associated with the object.

3.2. computing Function Points in FPA

FPA has three main components that execute the function point
analysis methodology: an Object Identifier, a Function Counter and
a complexity Factor Counter. (See Figure 4.)

The O b j e c t I d e n t i f i e r traverses the META-MODEL in order to identify
all the objects used in an application that have to be evaluated
for functionality. It starts with a FUNCTION, PROCESS or
high-level RULE SET chosen by the project manager that defines the
application being analyzed, and navigates the hierarchy downward

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

until all relevant objects have been found.

The Function Counter performs the mapping described in the previous
section from objects and relations, to function types and
complexities, to function counts.

The Complexity Factor Counter computes environmental complexity,
which is used in function point analysis as an adjustment factor,,
to allow for the overall complexity of the task being implemented
and the environment within which it is being implemented. A point
score is assigned to each of fourteen complexity factors, and the
total of these scores is the complexity factor.

FPA determines the fourteen complexity factors through a
combination of objective, automated measures and online inputs
provided by project managers familiar with the technical aspects of
implementation. In the current implementation of FPA, the
objective measures are computed in parallel with managerst inputs,
which only take a few minutes. When they have been sufficiently
validated through use of FPA, the corresponding manual inputs will
be replaced entirely, where possible. Each complexity factor has
a separate input response screen that displays a definition of the
complexity factor. (See Figure 5.) This can help a project
manager who may not be familiar with function point analysis to
give accurate and consistent responses.

The sequence of computation, then, is:

(1) The Object Identifier traverses the META-MODEL in order to
identify the objects and relations which may represent
functionality.

(2) The Function Counter computes and sums the function count
scores associated with those objects and relations.

(3) The Complexity Factor Counter computes the environmental
complexity of the application on the basis of user inputs,
and generates an adjustment factor for the function count.
The maximum adjustment, positive or negative, is 35%.

(4) Function points are computed as the product of function
counts and the adjustment factor, according to the relation
presented in Section 2.1.

Thus, an automated function point analysis for a given application
system would result in the collection of all data needed to compute
function counts and environmental complexity. This data, along
with the total function points and other useful managerial
information can be tracked for completed systems, as well as for
systems that are under construction. (An illustration of how FPA
works in the context of the Broker Sales Reporting System is
presented in Sidebar 1, Figures 5 and 6, and Tables 1, 2, 3 and 4

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

at the end of this paper.)

4. CRA: A Code Reuse Analyzer for ICE

Code reuse is known to be a major source of productivity gains and
cost reduction in software development operations. [32, 381. A
study conducted at the Missile Systems Division of the Raytheon
Company found that greater .than 60% of procedural code was repeated
in multiple applications [6], and reuse levels in non-manufacturing
and non-engineering business applications (where less technical
specificity is required) niay even be greater. Considering the high
costs of software development which are pervasively reported in the
popular press, reuse represents a source of savings that managers
are increasingly interested in tapping.

Yet, due to the difficulties associated with identifying reuse in
most 3GL and 4GL environments, efforts to implement and manage
successful code reuse programs have been stymied in many
organizations [18, 251. Traditionally, assessing the level of code
reuse in a 3GL programming environment has been difficult. While
certain types of explicit reuse (e.g., reuse of data definition
files) have been easy to identify, most reuse in these environments
is buried within programs where it is not easily identified without
considerable manual effort.

An integrated, object-oriented CASE environment provides two major
aids to the implementation and control of code reuse. First, the
code exists at a level of granularity more conducive to the
implementation of code reuse. While it is rare that an entire 3GL
program will prove reusable, such programs frequently contain
routines which could be reused with a little modification, were the
programmer aware of their existence. An object-oriented system may
be designed so that each such routine is a unique object. This
makes reuse opportunities considerably easier to identify and to
exploit.

Second, the integrated environment serves to support the control,
and in particular the measurement, of code reuse. With the design
of the entire system stored centrally along with the software
itself, an instance of code reuse becomes readily identifiable: it
is simply the repeated invocation of an object within the
repository.

To provide managers with information on code reuse, we designed and
developed a facility within ICE called the Code Reuse Analyzer
(CRA). CRA analyzes an existing software application; reporting
the levels of reuse for the various elements comprising the
application.

~ i k e FPA, CRA identifies all the relevant objects for a given
analysis by systematically navigating the hierarchy of calling
relationships within the repository. (In fact, it reuses much of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

the code from FPA.) Once all the objects within an application
have been identified, and the instances of reuse have been noted,
a range of managerially useful code reuse metrics can be computed.

4 . 1 . P r i o r Research o n Reuse

Prior research provides relatively little guidance as to how code
reuse metrics should be defined. The bulk of the research
concerning reuse in 3GL and 4GL environments has focused on
exploiting the technology available to increase the level of reuse,
rather than upon the impact of reuse on development productivity,
and costs have not been considered. For example, Horowitz and
Munson [18] looked at reuse in the context of compiler technology
and subroutine libraries, application generators, and the
development and adaptation of unspecialized systems which may be
reused with minimal incremental development effort.

Other studies have made special efforts to define the range of
possible kinds of reuse. For example, Jones [19] suggested the
following kinds of reuse in software development operations: data,
architecture, designs, programs and common subsystems and modules.
Kernighan [21] examined the same issues in the context of the UNIX
operating system and identified potential reuse at the code
library, programming language, program and system levels. Still
other researchers have explored how to promote reuse by suggesting
new development methods, such as the ttreusable module designtt
approach of Lanergan and Grasso [22], and "range-of-change
requirements specificationw of Matsumoto [26]. Our focus is
limited to reuse of code, although ICE stores information about the
functional and technical design of a system as well,

Two studies we identified made concrete suggestions regarding
strategies for the measurement of reuse: Standish [39] and
Neighbors [30]. Standish's proposal -- that re-use should be
measured at the line of code level -- suffers from the
disadvantages endemic to source-line-of-code metrics: they are
conceptually simple, but are unlikely to convey managerially useful
information. Neighbors argued that reuse should be abstracted from
the level of source code into some meta-language which relates to
the problem. This approach is likely to be of practical use in an
environment in which a high-level representation of the system
already resides.

Gaffney and Durek [13] modeled the cost impact of code reuse as a
function of the relative costs of new and recycled code'(there are
costs associated with reuse; they are just usually lower than the
cost of rewriting), and of their relative incidence. The quality
of the authorst analysis suggests a strong rationale for creating
code reuse metrics which support economic modeling of software
development productivity and measurement of the business value of
CASE technology. (For discussions of the value and use of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

economics-based approaches to the evaluation of software
development performance, see Boehm [51 , Kang and Levy [201 , and
Levy [231.)

In the next section, we build on this discussion of the generally
neglected problem of measuring code reuse.

4.2. Basic Definitions of Reuse

Since most studies of reuse have concentrated on the problems of
encouraging it, rather than on those of identifying and measuring
it, it is not surprising that there are few rigorous definitions of
reuse in a systems development context [22, 32, 361. Reuse , as the
name implies, is the employment of previously written code as an
alternative to writing new, possibly identical, code to perform the
same or similar function.

The level of code reuse may be computed as the number of times a
particular piece of code, data element or object is reused within
the context of a program, application or information system [35].
As Hall [16] has pointed out, however, this measure does not, in
itself, address many of the managerial questions concerning code
reuse :

[The] d e v e l o p e r needs t o a s c e r t a i n what sort o f r e u s e i s
meant . Is it the number o f times the code i s i n c o r p o r a t e d
i n t o other code? The number o f t i m e s the code i s
e x e c u t e d ? A combinat ion , the number o f t i m e s the
i n c o r p o r a t i n g code i s e x e c u t e d ? A f i g u r e o f m e r i t
r e f l e c t i n g the v a l u e or u t i l i t y or s a v i n g r a t h e r t h a n
b e i n g a s i m p l e coun t o f u s e s ? (p. 41)

In the process of designing CRA, we identified three primary types
of issues that its code reuse metrics would need to address:

* What objects are being reused?
* What is the impact of this reuse on productivity and
development costs?

* How effective is a particular system or environment in
promoting code reuse?

As a result, we have developed metrics to address all three kinds
of questions: r e u s e l e v e r a g e metrics, r e u s e v a l u e m e t r i c s , and
r e u s e c l a s s i f i c a t i o n m e t r i c s , respectively. (For a fuller
presentation of these ideas, see [4].)

4.2.1. Leverage Metrics

Reuse l e v e r a g e metrics measure the number of times objects are

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

reused within a system. We define the degree of reuse within a
system as:

REUSE LEVERAGE = TOTAL NUMBER OF OBJECTS USED
NUMBER OF NEW OBJECTS BUILT

For example, if a system consists of 400 objects, of which 100 had
to be programmed from scratch, the reuse leverage would be 400/100
= 4.0, meaning that the average object is used 4 times. his
measure of reuse can be used at several levels of analysis. In
computing separate reuse leverage factors for different object
types, for example, we might find that the summary reuse factor of
4.0 aggregates a reuse leverage factor of 2.5 for RULES and 6.0 for
SCREEN DEFINITIONS.

4.2.2. Value Metrics

To measure the actual productivity gains associated with code
reuse, we must also distinguish between the reuse of
easily-programmed objects, such as REPORTS and the reuse of more
costly objects, such as RULE SETS. We can compute r e u s e v a l u e by
weighting the level of reuse by the cost of programming the various
types of objects. Specifically, rather than just counting objects,
we add up the cost of each object:

COSTj
REUSE VALUE = 1 - :'

COST,
j=1

where

COST = the standard (or average) cost in person days of
building object j ;

J = the total number of occurrences of objects in
an application META-MODEL hierarchy;

k = the total number of unique objects built for
this application.

This metric provides an estimate of the percentage of development
costs saved, assuming the calculation of total costs is made based
on the standard costs associated with the various object types.

4.2.3. ~lassification Metrics

For most purposes we include in our computation of code reuse, any
object which is found in the repository, rather than rewritten from
scratch. For some managerial purposes, however, we will wish to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

distinguish internal reuse from external reuse. Internal reuse
refers to code reuse within a system or subsystem, as defined by
its META-MODEL hierarchy. (For example, almost all the reuse
displayed in Figures 7 and 8 is of this type.) External reuse
refers to the reuse of objects which are in the repository, but
which currently belong to a different system, and were originally
developed for it. While both kinds of reuse are of equal value,
different managerial policies may be required to encourage the two
kinds of reuse.

In particular, the degree of internal reuse will probably depend
upon the size of the team developing a given application, and the
quality of the communications within that team. The degree of
external reuse, on the other hand, will depend more upon the
quality of the indexing system used to help programmers to identify
existing objects which they might be able to reuse. When reuse
metrics are being computed for all the code within the repository,
all reuse is internal.

Reuse classification metrics allow us to assess and compare system
reuse by classifying a system's objects by source. Some examples
are shown below:

NEW CODE PCT = NUMBER OF NEW OBJECTS BUILT
TOTAL NUMBER OF OBJECTS USED

EXTERNAL REUSE PCT =
NUYBER OF OBJECTS OWNED BY OTHER SYSTEMS

TOTAL NUMBER OF OBJECTS USED

INTERNAL REUSE PCT = 100% - NEW CODE PCT - EXTERNAL REUSE PCT

Internal reuse percentage, here, is interpreted as the proportion
of occurrences of objects written for an application (not counting
the first occurrence of each object) compared to the total number
of objects used in the application. These metrics can be modified
as in the preceding section to reflect differences in the relative
costs of developing the objects.

4.3. CRA Architecture

The Code Reuse Analyzer identifies the objects used by a given
application the same way that the Function Point Analyzer does.
The repository contains a complete META-MODEL describing the
relationships between its objects, and CRA uses it to trace all the
objects which are called, directly or indirectly, by the
application under analysis. As for FPA, the scope of the analysis
is determined by the user at the time of execution. It can include
the entire contents of the repository, a large or small set of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

application systems, or even a subset of a single system.

The ability to start anywhere in the hierarchy provides CRA with a
great deal of power for addressing managerial concerns about reuse.
For example, reuse may be analyzed for a specific type of
application, for a given project team, for a given manager, etc.
It also facilitates research into what factors contribute to
increased reuse.

Once the set of objects has been identified, the objects can be
classified, and reuse metrics can be computed. The repository
contains information to not only identify the objects called by a
given object, but also to identify the source of each object. If
a given object was originally written for a different system (i.e.,
one beyond the scope of the current analysis) then it is an
instance of external reuse. If it was written for the system being
analyzed, then the first time it is encountered by the analyzer it
is classified as newly-written code, while subsequent encounters
are classified as instances of internal reuse. (An illustration of
how CRA calculates the code reuse metrics in the context of the
Broker Sales Reporting System is presented in Sidebar 2, Figures 7
and 8, and Tables 5 and 6 at the end of this paper.)

5. Conclusion

We have ,described two automated software development productivity
analyzers, a function point analyzer and a code reuse analyzer. In
the process of building and testing the analyzers, we were able to
come to an improved understanding of the nature of the productivity
gains attributable to CASE tools. Such productivity gains are
typically thought of as the result of being able to produce desired
software more quickly and cheaply. In fact, our analysis reveals
that much of the gain is represented by the production of
functionality which, without the improved tools, might well not
exist.

ICE, for example, automatically provides many capabilities which
would require considerable programmer resources in a traditional
programming environment, such as the automation of inter-platform
communications, the automatic generation of "HELPw messages for
every field on a screen, and the automatic translation of any table
to graphical format (a useful capability for traders in investment
banking firms) .
In many cases, designers in a 3GL environment would probably choose
to do without these capabilities, rather than expend tlle cost and
effort needed to implement them without the appropriate CASE
support. Thus, the comparisons which are frequently cited between
the cost of producing a system using a given CASE technology and
the cost which traditionally would have been incurred may be
misleading in the productivity advantage they appear to indicate
for the CASE tools. At the same time, they may tend to overlook

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

the superior functionality and user-friendliness which may be
expected to accompany CASE devel~prnent.~

5.1. Future Research on Productivity and Software Metrics

Our research raises questions about the continued usefulness of
function points -- a measure designed and calibrated for use in
traditional 3GL environments. Are they still useful as predictors*
of programming costs within an integrated CASE environment? Are
they useful as a means of .exercising managerial control in such an
environment? Can they be used to predict staffing requirements or
future maintenance requirements? Could they be made more useful by
recalibrating and fine-tuning them for new conditions?

In a similar vein, our development of the Code Reuse Analyzer gave
us an improved understanding of code reuse. In particular, we have
confirmed that commercial application systems offer tremendous
scope for code reuse. If the average object is used five times,
this can mean an 80% reduction in the cost of programming and unit
testing, and such reuse levels are attainable within ICE. However,
initial analysis suggests that, even here, little of the potential
for reuse is being tapped. In particular, programmers tend to only
reuse code with which they are personally familiar.

We are now in the process of formulating research to deal with the
ques'tions raised by these observations. How can code reuse be
supported, encouraged and motivated? What aspects of the code are
conducive to reuse? What programming practices and what managerial
practices provide the proper incentives for code reuse?

One of the major benefits of the development of the automated
analyzers to our research efforts is the outputs they will create.
The automated report generation capabilities of the Function Point
and Code Reuse Analyzer enables us to pursue research questions
that were simply beyond the scope (in terms of cost and
availability of data) of prior research. The basic questions are:
What can we learn about software development productivity in this
environment? Do productivity gains change with CASE or
application-specific experience? With the passage of time and the
accretion of maintenance changes? What are the features of CASE
tools that best encourage productivity? Which slow it down?

 his raises a related issue. The function types which are
assigned the highest weights in function point analysis are those
which are most difficult to implement in a 3GL. But often these
are not difficult at all, with CASE support. Function points may
be useful, then, in answering the question "What would this system
have cost to develop without CASE?". But a recalibrated measure
may be required in order to estimate costs within a given CASE
environment.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

The questions raised here are the basic questions the software
development managers will have to answer: What works? What
doesn't work? How well does it work? How can I make it work
better? In the absence of the right metrics made available to
managers at the right time, it will be impossible to match the
"artw of software management to the new ttscienceft of software
development.

5.2. Contributions

This paper had multiple objectives. We wished to report on our
automation of function point and code reuse metrics -- automation
which has not been possible in traditional programming
environments. We wished to generalize from our experience, to
identify the features of the CASE environment which make this
automation possible. And we wished to report on the implications
which this research has for our understanding of software
productivity in an integrated CASE environment.

The Function Point Analyzer and the Code Reuse Analyzer described
in this paper represent the state-of-the-art in designing and
developing automated software metrics facilities in an integrated
CASE tool environment. Their implementation was made possible by
two key features. of the object-oriented, repository-based
integrated CASE environment which we have called ICE.

The first of these features is the repository, which contains not
only all the code and data used by the applications, but also an
indexing system (in this case, the META-MODEL) which allows us to
identify the software and files belonging to each application, as
well as the key relationships between them which result in
application functionality. It is conceptually possible for this
information to be maintained (within a repository or otherwise) by
a non-integrated CASE tool, but we consider it improbable that the
integrity of the information would or could be maintained in such
circumstances.

The second feature is the object orientation of the CASE
environment, and of its 4GL. The organization of the software into
objects of limited and clearly defined functionality has enabled us
to compute function points and to identify reuse without having to
actually analyze and understand the code itself.

We proposed metrics for assessing code reuse: leverage metrics,
value metrics, and classification metrics. The first two of these
metrics match the efficiency and effectiveness dimensions of
standard performance evaluation approaches. These measures help
managers to distinguish between aggregate reuse, as well as reuse
of individual objects that may not be equally easy to build.
Moreover, we have suggested that a variety of metrics that
triangulate on the key management problems are of interest here: a
unitary measure of code reuse lacks the power to answer the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

questions that we found to be important to managers.

We also showed how traversing a hierarchical meta-model of an
object-oriented system enables the analyst to identify objects, and
define reuse which is internal to the hierarchy (for example, code
reused within a program or an application) or which is external to
it. Initial analysis suggests that this classification is
important to managers wishing to encourage code reuse [4] . It
appears that internal reuse will proliferate where the technology'
supports it: ICE programmers routinely reuse code from one part of
an application in another. Code external to the system, however,
tends to be code written by other programmers, and different
technical support and organizational incentives are needed in order
to motivate programmers to seek out external reuse opportunities.

Clearly, these questions are only the starting point for a rich,
new management agenda to better understand and control CASE-based
development. Yet, we are also left with some answers we did not
have before we began this research. We have learned that the data
collection and analysis needed in order to control software costs
can be automated. We have identified features of CASE systems
which support such automation. And we have begun to understand the
issues involved in measuring output and reuse in such environments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

REFERENCES

1. Albrecht, A. J., Measuring Application Development
productivity. In Proceedings of the Joint SHARE, GUIDE, and IBM
~pplication Development Symposium, IBM (October 1979) , pp .
83-92.

2. Albrecht, A. J. and Gaffney, J. E. Software Function, Source
Lines of Code, and Development Effort Prediction: A Software '

Science Validation. IEEE Transactions on Software Engineering
9, 6 (November 1983), pp. 639-647.

3. Banker, R. D., and Kauffman, R. J. An Empirical Assessment of
Computer Aided Software Engineering (CASE) Technology, A Study
of Productivity, Reuse and Functionality. Management Information
Systems Quarterly (forthcoming).

4. Banker, R. D., Kauffman, R. J. and Zweig, D. Metrics for the
Code Reuse in Software Development. Working paper, 1990.

5. Boehm, B. W. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

6. Boehm, B. W. , and Papaccio, P. N. understanding and Controlling
Software Costs. IEEE Transactions on Software Engineering 13,
10 (October 1988), pp. 1462-1477.

7. Booch, G. Object Oriented Development. IEEE Transactions on
Software Engineering 12, 2 (February 1986), pp. 211-221.

8. Bouldin, Barbara M. CASE: Measuring Productivity -- What Are
You Measuring? Why Are You Measuring It? Software Magazine 9,
10 (August 1989), pp. 30-39.

9. Davis, G. B. Commentary on Information Systems: Productivity
Gains from Computer Aided Software Engineering. Accounting
Horizons 2, 2 (June 1988), pp. 90-93.

10. Deutsch, L. P. Reusability in the Smalltalk-80 Programming
System. In ITT Proceedings on Reusability in Programming, ITT
(1983), pp. 72-76.

11. Dreger, J: B. Function Point Analysis. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

12. Fisher, J. T. IBM's Repository: Can Big Blue Establish 0S/2 EE
As the Professional Programmer's Front End? DBMS (January
1990), pp. 42-49.

13. Gaffney, J. E., Jr.., and Durek, T. A. Software Reuse -- Key to
Enhanced Productivity: Some Quantitative Models. Information
and Software Technology 31, 5 (June 1989), pp. 258-267.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

14. Goldberg, A., and Pope S. T. Object Oriented Programming is
Not Enough. American Programmer: Special Issue on Object
Oriented Observations 2, 7-8 (Summer 1989).

15. Grammas, G. W:, and Klein, J. R. Software Productivity as a
Strategic Variable. Interfaces 15, 3 (May-June 1985), pp.
116-126.

16. Hall, P. A. V. Software Components and Reuse -- Getting ore
Out of Your Code. Information and Software Technology 29, 1
(January-February 1987), pp. 38-43.

17. Hazzah, A. Making Ends Meet: Repository Manager. Software
Magazine (December 1989) , pp. 59-72.

18. Horowitz, E. and Munson, John. An Expansive View of Reusable
Software. IEEE Transactions on Software Engineering SE-10, 5
(September 1985), pp. 477-487.

19. Jones, T. C. Reusability in Programming: A Survey of the State
of the Art. IEEE Transactions on Software Engineering SE-10,
5 (September 1984), pp. 484-494. .

20. Kang, K. C., and L. S. Levy. Software Methodology in the Harsh
Light of Economics. Information and Software Technology 31, 5
(June 1989), pp. 239-249.

21. Kernighan, B. W. The UNIX System and Software Reusability.
IEEE Transactions on Software Engineering SE-10, 5 (September
1984), pp. 513-518.

22, Lanergan, R. G. and Grasso, C. A. Software Engineering with
Reusable.Designs and Code. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), pp. 498-501.

2 3. Levy, L. S . Taming the Tiger: Software Engineering and
Software Economics. Springer Verlag, New York, 1987.

24. Low, G. C., and Jeffrey, D. R. Function Points in the
Estimation and Evaluation of the Software Process. IEEE
~ransactions on Software Engineering 16, 1 (January 1, 1990),
pp. 64-71.

25. Mathis, R. F. The Last 10 Percent. IEEE Transactions on
Software Engineering, SE-12, 6 (June 1986) , pp. 705-712.

26. Matsumoto, Y. Some Experiences in Promoting Reusable Software:
presentation in Higher Abstract Levels. IEEE Transactions on
Software Engineering, SE-10, 5 (September 1984), pp. 502-512.

27. Meng, B. Object Oriented Programming. MacWorld (January
1990), pp. 174-180.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

28. Meyer, B. Reuse: The Case for Object-Oriented Design. IEEE
Software (March 1987), pp. 50-64.

29. Meyer, B. Object Oriented Software Construction. Prentice
Hall, New York, 1988.

30. Neighbors, J. M. The DRACO Approach to Constructing Software
from Reusable Components. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), pp. 564-574.

31. Norman, R. J., and Nunamaker, J. F. Jr. CASE productivity
Perceptions of Software Engineering Professionals.
Communications of the ACM 32, 9 (September 1989), pp.
1102-1108.

32. Nunamaker, J. F. Jr., and Chen, M. Software Productivity: A
Framework of Study and an Approach to Reusable Components. In
proceedings of the 22nd Hawaii International Conference System
Sciences, IEEE (Kona Lua, Hawaii, January 1989a) , pp. 959-968.

33. Nunamaker, J. F. Jr., and Chen, M. Software Productivity:
Gaining Competitive Edges in an Information Society. In
Proceedings of the 22nd Hawaii International Conference on
System Sciences, IEEE (Kona Lua, Hawaii, January 1989b), pp.
957-958.

34. Pollack, A. The Move to Modular Software. New York Times
(Monday, April 23, 1990), pp. Dl-2.

35. Polster, F. J. Reuse of Software Through Generation of Partial
Systems. IEEE Transactions on Software Engineering SE-10, 5
(September 1984), pp. 402-416.

36. Raj, R. K. and Levy, H. M. A Compositional Model for Software
Reuse. The Computer Journal 32, 4 (April 1989), pp. 312-323.

37. Senn, J. A. and Wynekoop, J. L. Computer Aided Software
~ngineering (CASE) in Perspective. Working Paper, Information
Technology Management Center, College of Business
Administration, Georgia State University, 1990.

38. Seppanen, V. Reusability in Software Engineering. In P.
Freeman (ed.), Tutorial: Software Reusability, Computer Society
of the IEEE, 1987, pp. 286-297.

39. Standish, T. A. An Essay on Software Reuse. IEEE Transactions
on Software Engineering SE-10, 5 (September 1984) , pp. 494-497.

40. Stroustrup, B. What is Object-Oriented Programming?. IEEE
Software (May 1988), pp. 10-20.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

41. Symons, C. R. Ex tended Func t ion Points w i t h E n t i t y Type
c o m p l e x i t y R u l e s . Nolan, Norton, and Company, London, 1984.

42. Symons, C. R. Function Point Analysis: Difficulties and
Improvements. IEEE T r a n s a c t i o n s on S o f t w a r e E n g i n e e r i n g 14, 1
(January 1988), pp. 2-10.

43. Veryard, R. Information and Software Economics. I n f o r m a t i o n
and S o f t w a r e T e c h n o l o g y 31, 5 (June 1989), 226-230.

44. ~wanzig, K. and book‘ for E s t i m a t i n g F u n c t i o n Points. GUIDE
Project -- DP-1234, November 1984, GUIDE International.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

Figure 1. A Repository-Based Application Meta-Model

11 Business 11
Function 1 'Y"::; y

Business
Process #1
(Subsystem

Business
Process #2
(Subsystem

Business
Process #3
(Subsystem I,

Set A Set B Set C

A BUSINESS FUNCTION is represented in ICE by a menu of BUSINESS
PROCESSES. An application consists of all the objects called
(directly or indirectly) by a given BUSINESS PROCESS. The first
step in analyzing a system is to identify these objects, by
iteratively tracing the calling relationships stored in the META-
MODEL. A BUSINESS PROCESS will call one or more RULE SETS. Each
RULE SET, in turn, may call other RULE SETS, 3GL MODULES or other
ICE objects (Figure 2). Note that the use of an object by an
application system does not preclude its reuse by another
application.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90-15

Figure 2. ICE Repository Objects

This figure is an expansion of RULE SET A, from Figure 1. There is
a well-defined set of relationships allowed. Each object resides
in the repository, and has a descriptive entry in a database table
which also resides there. In addition, the repository contains
other tables with entries for each relationship between two
objects. A RULE SET may also use pre-existing 3GL MODULES. The
repository contains no information about the processing performed
by these modules. However, any functionality they provide the
user, via REPORTS, FILES or SCREENS, must be mediated by an ICE
object .

I

_------------------
I 3GL Modules -](no object structure) I
I I

I

I ' Repository Objects (significant object structure) I I
I

I I
I

I Create Access Communicate I I
I I

I t
I

Access I
I

Def ini- I I

I t ions I I

I I I
I

I Require I
I I

I

I
I Include Consist of .
I

I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

I
I

I

Built from Domains 1 ---
I

I
I ...

Defined by Defined by I I

I I
I I

Figure 3. Mapping from ICE Objects to Function Counts

Output
Type , APPLICATION BOUNDARY

Function Point analysis measures the functionality which a system
delivers to the user in terms of data transfers into or out of that
system (Inputs, Outputs, Queries, External Interfaces), and in
terms of the data stores (files) used. A 3GL program can contain
functionality of all five classes. An ICE object, however, is
severely constrained in the functionality it can represent, to the
point where a system's function count can be computed by
identifying and classifying its objects (See Table 1.).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

29

Figure 4. The Automated Function Point Analyzer: A Schematic

i
I Manager I n p u t s
I
I

USER

Determine
C o m p l e x i t y . T a b l e

S c o r e s

_--,---------------------------

The ~unction Point Analyzer consists of three subsystems. One
uses the META-MODEL to identify the objects in the application
under analysis. The second uses it to assign Function Count scores
to those objects. The third obtains task complexity measures
(Table 3). This requires programmer or manager input in parallel
with the automated analysis (Figure 5) .

OBJECT IDENTIFIER
-------,-----------------------

I

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

T a b l e

I d e n t i f y
O b j e c t s t o R e p o s i t o r y

A n a l y z e META-MODEL I
I

,,,,,,,,,,,,-------- ,,,,,,,,, . ,,,,,,,,, . I
,,,,,,,,-,,-,,-,,,-, . FUNCTION COUNTER

,,,,,,,,,,,,--------------- ,, . ,,
I I

Determine F u n c t i o n
F u n c t i o n T y p e D i f f i c u l t y

I

i
I
I

O b j e c t
F u n c t i o n

T a b l e II I n s t a n c e s . I I

I

I
I . I
I

C o u n t
T a b l e

I

D e t e r m i n e
F u n c t i o n

S c o r e s T a b l e

I
,,,,-,,-----------------------

II C u s t o m i z e d
- R e p o r t s

Database
for FPs . . . COMPLEXITY FACTOR COUNTER

,,,,,,------------------------ . ,,,,,,,,,,-,,,,,,,,-----------
I I

R e p o s i t o r y Q u e r y I
I I

C a l c u l a t e
F u n c t i o n

P o i n t s (F P s)

. P r o j e c t M a n a g e r
V P , I S D e v e l o p m e n t
C h i e f I n f o r m a t i o n O f f i c e r

Figure 5. Function Point Analysis Complexity Measures:
An Input Screen

COOPERATI

This complexity factor measures the degree an application
stores data in a distributed manner or distributes the
processing among CPUs. Applications which involve multiple
platforms (mainframe, minicomputer and microcomputer) would
receive a higher complexity score than for a mainframe-based

Please select the complexity factor score which most closely
approximates the extent of cooperative processing:

I) 0: Data is stored and processing occurs on a single
machine only.

I) 1: Data is stored on a single platform, but processing
occurs on two platforms.

I) 2: Data is stored and processing occurs on two platforms.

I) 3: Data is stored on one platform, but processing occurs
. on three platforms.

I) 4: Data is stored on two platforms, but processing occurs
on three platforms .

I) 5: Data is stored and processing occurs on three

Each of the fourteen complexity factors has its own input screen.
specific, objective descriptions are given to anchor the scoring of
the programmer or manager entering the data. Since some of the
factors require human judgment, user input is still uqed in some
cases. However, other complexity factors, such as the one above
which measures the extent of cooperative (distributed) processing,
can be automated entirely, once the operational definition for this
complexity factor has been implemented in terms of multi-platform
processing and data flows using ICE, and validated by managers.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90- 15

Sidebar 1. The Broker Sales Reporting System: Introduction

The Broker Sales Reporting System is a small (simplified) ICE
application system which illustrates the concepts presented in this
article. The system tracks and reports the sales activity of
brokers in a small investment firm. The application has both online
and batch capabilities designed to meet the needs of middle and
senior management. Senior management is provided with summarized
reports and inquiries. Middle management is provided with detailed
reports and inquiries concerning the performance of brokers.

Figure 6. The Broker Sales Reporting System: System Layout
I

The Broker Sales Reporting System consists of those repository
objects which are invoked by the Broker Sales Reporting Process,
and of the relationships between those objects. The PROCESS
refines into two RULE SETS, one for online processing and one for
batch processing. Since the two RULE SETS generate similar
outputs, they have a number of other repository objects in common.
Each such object is only stored once in the repository, and reused
as necessary. Each use will be instantiated in the META-MODEL as
an entry in the table of relationships.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

Sidebar 2 . The Code Reuse Analyzer

The operation of the Code Reuse Analyzer will be illustrated for a
subset of the Broker Sales Reporting System. Code reuse is a
measure of the savings which may be realized by coding each object
once and reusing it as necessary (Figure 7) instead of having to
rewrite the code every time it is needed (Figure 8). A simple
ratio of object counts yields the Code Reuse Leverage. The Code
Reuse Value metric estimates the savings attributable to reuse, by
considering not only the number of objects, but also the cost of
the objects.

In principle, an integrated CASE system could be designed to
capture actual costs for each object, as it is produced. This has
not yet been implemented for ICE. Rather, a set of heuristics was
developed, on the basis of interviews with software managers, for
estimating the cost of an object (in days) based on its type and
its complexity. The complexity is measured on a three-point scale
(Simple, Average or Complex -- but not the same scale that is used
for Function Point analysis) which is simple enough to automate. 9

The Code Reuse Analyzer distinguishes between internal reuse -- the
reuse of objects written for the current task -- and external reuse -- the reuse of. objects previously written for different
applications. We have observed relatively little reuse of code
written by other programming teams, for other application systems.
This suggests that special support may be required to encourage
programmers to seek out opportunities for external reuse. Without
that support, much of the potential code reuse goes unexploited.

'~hese heuristics are in actual use by managers, for project
cost estimation. We are currently conducting additional research
to determine their robustness.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

Figure 7. A Subset of the Broker Sales Reporting System (from
Figure 3)

Onltre UI..
Reporting Datuh
Rmle 8.t neportin(i

Rmlo 8 e t

0n11ne Ub.b

Up4ate Online
Relo 8e t u b o b l r ~ m i r y

Rml. 8.t

(-> (-1 (Z>
w t t l i Rate 8.t Uor r loo lon 8 a r r a r y 8eL uoclrle neportlng

I A ..ebb..

Figure 7 displays a subset of the Broker Sales Reporting System.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

Figure 8. Expanded Hierarchy for a Subset of the Broker Sales
Reporting System

Figure 8 displays the same subset, as it would appear in the
absence of code reuse. Several of the objects would have to be
rewritten many times. Code Reuse Leverage is the ratio of the
number of objects used (Figure 8) to the number of unique objects
actually written for this application (Figure 7). The 3GL MODULE
(Calculate Broker Commission) is external to this application; it
was originally written for a different application, and reused by
the programmers of this one. Therefore, the Code Reuse Analyzer
will not include it in the count of unique objects written for this
application.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

35

Table 1. Repository Objects and the Computation of Function Counts

* For every screen which displays tabular data, ICE automatically
generates a graphic-display screen and a HELP screen as well.

The Function Point Analyzer identifies all the repository objects
in the application system, and determines how many times each is
used. The Detail Sales Screen, for example, is used twice: in
response to an Online Inquiry and in response to an Online Update.
In the latter case, the Online Update RULE SET reuses the Online
Inquiry RULE SET and all the objects (including the Detail Sales
Screen) which it uses.

The Analyzer then determines the function types associated with
each object. An application's functionality depends upon its data
stores and upon the flows of data (reports, queries, or updates)
across its boundary. Thus almost all its function counts will be
associated with REPORT SECTIONS, SCREENS or FILES. In this
example, there is also some functionality associated with a RULE
SET which has accessed a FILE belonging to a different application
system.

Functionality

Simple INPUT
Simple EXTERNAL INTERFACE

Average OUTPUT
Simple OUTPUT
Average OUTPUT

3 Average QUERIES (*)
3 Average QUERIES
Average INPUT
Average QUERY
Average OUTPUTS

Simple INTERNAL FILE

Average INTERNAL FILE
Average INPUT
Average EXTERNAL INTERFACE

Total Function Count

Object
TYPe

RULE
SETS

3GL
MODULES

REPORTS

REPORT
SECTIONS

SCREEN
DEFINI-
TIONS

DOMAINS

FILES

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

Total
Count

3
7

5
8
5

3 0
30
4
5
10

7

40
16
2 8

198

Function
Count

3
7

5
4
5

5
5
4
5
5

7

10
4
7

Broker Sales
Object Name

Online Reporting
Batch Reporting

Online Update
Online Inquiry
Sales Retrieval
Sales Summary

Calculate
 omm mission

Individual Sales
Summary Sales

Transaction Detail
Exception Reporting
summary

Detail Sales
Summary Sales
Inquiry and Update

Transaction Types

Transaction Detail

Times
Used

1
I
1
1
2
3
3

3

1
1

1
2
1

2
2
1
1
2

1

4
4
4

36

Table 2. Function Point Analysis Function Complexity Matrix

The Function Point Analyzer can access a table of function count
complexity measures which enable it to compute a function count
score, once it has identified the mapping between ICE objects and
the function types for a given application. The entries to the
matrix above are the ttstandardtt complexity measures of the function
point analysis methodology, rather than calibrated measures
relating to a specific CASE-development environment [ll, 4 4 1 .

FUNCTION 01
External
Inputs

External
outputs

External
Interfaces

External
Queries

Internal
Files

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

FUNCTION COMPLEXITY SCORES

Complex

6

7

10

6 or 7

15

Simple

3

4

5

4

7

Average

4

5

7

- 5

10

Table 3. complexity Measures for the Broker Sales Reporting System

The difficulty of developing an application depends not only on its
magnitude (Function Counts) but also on the complexity of the tasks
it performs. To adjust for this complexity, scores from 0 (no
influence) to 5 (difficult) are assigned for each of fourteen
factors. The resulting adjustment factor can modify the Function
Count by up to 35% (plus or minus).

COMPLEXITY FACTOR

Data Communications Requirements
Distributed Processing Requirements
Response Time or Turnaround Time Required
Heavily Used Configuration
High Transaction Rates
Online Data Entry
Online Update
End-User Efficiency
Complex Processing or Computations
Code Designed for Reuse
Application Designed for Ease of Installation
Application Designed for Ease of Operation
Application Designed for Ease of Modification
Application Runs at Multiple Sites

TOTAL SCORE (Maximum possible is 70)

Adjustment Factor (65 + TOTAL SCORE)/100 =

Table 4. Broker Sales Reporting System Function Point Summary

COMPLEXITY SCORE

1
2
1
1
2
2
3
3
1
3
3
4
2
5

2 9

0.94

Function Points are computed as the product of the Function Counts
and the Complexity Adjustment Factor.

Number of Objects
Number of Function Types

Total Function Counts
Complexity Adjustment Factor

Total Function Points

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

17
32

198
x .94

186

Table 5 . Instances of Code Reuse

The repository contains enough information for the automated Code
Reuse Analyzer to classify each object as Simple, Average or
Complex, on the basis of estimation heuristics used by ICE
developers. (This is not the same classification used by the
Function Point Analyzer.) These heuristics also enable the
Analyzer to assign a programming-time estimate to each object,
based on its type and complexity. Thus we can estimate the
programming time required, and the programming time that would have
been required in the absence of code reuse.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-90- 15

Total
Man-Days

2
2
2
4
4

12
6

12
1

2 1

66

Required
Man-Days

2
2
2
4
2
4
2
3
1

(7)

2 2

Estimated
Complexity

Simple
Simple
Simple
Average
Simple
Average
Simple
Simple
Simple
Complex

Broker Sales
Repository Object Name

Reporting Process
Online Reporting Rule
Batch Reporting Rule
Online Update Rule
Online Inquiry Rule
Sales Retrieval Rule
Sales Summary Rule
Transaction Detail File
Transaction Type Domain
Compute Commission

TOTALS -

Objects
Written

1
1
1
1
1
1
1
1
1

EXT

9

Total
Used

1
1
1
1
2
3
3
4
1
3

20

Table 6. Code Reuse Metrics

On the average, each object is used 2.2 times. However, we see
from the r e u s e v a l u e metric that without reuse the project would
have taken approximately t h r e e times as long to write. The simple
l e v e r a g e metric underestimates the benefits of reuse in this case,
because it does not distinguish that the more expensive objects are
receiving a disproportionate amount of reuse.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-15

20
9

2.2

66
22
67%

MAN-DAYS

22 33%
23 35%
21 32%

66 100%

REUSE LEVERAGE
Total number of objects used
Number of unique objects written
Code Reuse Leverage (2019)

REUSE VALUE
Total Man-Days of objects used
Man-Days required for objects written
Code Reuse Value (1-(22166))

REUSE CLASSIFICATION

Unique objects written
Reuse of internal objects
Reuse of external objects

Total number of objects used

OBJECTS

9 45%
8 40%
3 15%

20 100%

