
THE BUSINESS CASE FOR
AUTOMATING SOFTWARE METRICS IN
OBJECT-ORIENTED COMPUTER AIDED

SOFTWARE ENGINEERING ENVIRONMENTS

Rajiv D. Banker

Robert J. Kauffman

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-90-14

THE BUSINESS CASE FOR
AUTOMATING SOFTWARE METRICS IN
OBJECT-ORIENTED COMPUTER AIDED

SOFTWARE ENGINEERING ENVIRONMENTS

Rajiv D. Banker
Arthur Andersen Professor of Accounting and Information Systems

Carlson School of Business
University of Minnesota
Minneapolis, MN 55455

i and

Robert J. Kauffrnan
Assistant Professor of Information Systems

Leonard N. Stern School of Business
New York University
New York, NY 10006

June 1990

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-90-14

We wish ti, acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa for the access they
provided us to data on software development projects and managers1 time throughout our field study of
CASE development at the First Boston Corporation and Seer Technologies. We also wish to thank Eric
Fisher, Rachna Kumar, Charles Wright and Dani Zweig for their contributions to various aspects of the

work reported on in this paper. Finally, we thank the National Science Foundation for partial funding of the
data collection under grant No. SES-8709044. All errors in this paper are the responsibility of the authors.

Presented at the Workshop on IT Strategy and Architecture, Wharton School of Business, University of
Pennsylvania, Philadelphia, PA, June 22, 1990.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 - _-_- __"._ "..--_*------ ~ - < - - - _ _ ? - - - - .- - - -*- --.- ?-" ----- *- - -

THE BUSINESS CASE FOR AUTOMATING SOFTWARE METRICS IN

OBJECT-ORIENTED COMPUTER AIDED SOFTWARE ENGINEERING ENVIRONMENTS

Abstract

This paper makes the business case for automating the collection of
software metrics for gauging development performance in integrated
computer aided software engineering (CASE) environments that are
characterized by an object-oriented development methodology and a
centralized repository. The automation of function point analysis
is discussed in the context of such an integrated CASE environment
(ICE). We also discuss new metrics that describe three different
dimensions of code reuse -- leverage, value and classification --
and examine the p,ossibility of utilizing objects as means to
estimate software development labor and measure productivity. We
argue that the automated collection of these software metrics opens
up new avenues for refining the management of software development
projects and controlling stra-egic costs.

- Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

1. INTRODUCTION

As the 1990s begin, large-scale investments in computer aided
software engineering (CASE) are becoming increasingly common as
firms seek new ways to deal with the problem of managing the
strategic costs of software development. But such investments also
raise many questions for management (BOUL89, SENN90) . For example,
what are the features of a CASE tool that enable a firm to maximize
development productivity, while maintaining acceptable quality and
functionality? How does a CASE tool affect the activities
associated with different portions of the software development life
cycle? Are the benefits balanced, or are they concentrated in
analysis and design rather than construction and testing? And, are
the benefits of CASE sufficient to justify the high costs of
implementing it? Is the move to modular, object-oriented software
paying off? POLL^^)

The only way to obtain answers to these and other questions
about the perfqrmance of investments in CASE is to develop
measurement methods and programs that are well-suited to the new,
emerging environments for software development. In this paper, we
will discuss a research effort currently underway that is concerned
with improving management's understanding of the potential of CASE
and creating new approaches to measuring software development
performance.

1.1. Investing in ICE -- An Integrated CASE Environment
A large investment bank located in New York City made the

initial commitment to design and develop an object-oriented,
repository-based Integrated CASE Environment (ICE) at a cost of
tens of millions of dollars over the course of three years. ICE
was built by the firm as a response to the problems it faced in
developing and maintaining technically complex systems. The firm's
computer operations are geographically distributed, and are
required to perform effectively on a 24-hour basis.

similar to its competitors in the investment banking industry,
the firm had been experiencing rapidly mounting software costs that
were expected to skyrocket as its trading activities expanded to

Center for Digital Economy Research -

Stem School of Business
IVorking Paper IS-90-14

provide global coverage. To achieve competitive performance in
this environment previously required the firm's developers to
program applications which ran on each of three hardware platforms
(mainframe, minicomputer and microcomputer) in a different language
-- COBOL, PL/I and C++, respectively. A CASE tool was needed that
would support the programming of systems running simultaneously on
all three platforms, and reduce the firm's reliance on three
separate sets of highly skilled and costly programmers,

ICE systems are written in an object-oriented language which
buffers programmers from the complexity of the firms's operating
environment. Applications are later compiled in the appropriate
languages for the relevant hardware platforms, and communications
protocols for coopekative processing across platforms are handled
without programmer intervention. The organization of the code into
objects tends to be'functional, and the various software functions
can be allocated across hardware platforms in the most appropriate
manner. (For an introduction to object-oriented software
dev4opment methodologies and modular software, see GOLD89, MENG90,
MEYE87, MEYE88 and POLL90.)

A special feature of ICE is its object repository (FISH90,
HAZZ89). This includes all the definitions of the data and objects
that make up the organization's business, and also all the pieces
of software that comprise its systems. The motivation for having
a single repository for all such objects is similar to that for
having a single database for all data: a program, or a procedure,
or a screen, or a report need only written once, no matter how many
times it is used. Such reuse has the potential to decrease
software development costs, and it forces the firm to more
carefully engineer an information and information systems
architecture which will form a solid base for the firm's business.

1.2. Software Metrics for Integrated CASE

Our research on software development productivity in this
environment has led to a number of interesting discoveries. First,
we have found that obtaining metrics that are traditionally used to
gauge software development productivity in 3GL environments remains
a very costly process when we translate them for use in the world

- Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

<. *.. - -

of ICE development, despite the much improved quality of the
documentation stored in the repository. More importantly, however,
we have found that the amount of code reused in an application
often represents a significant portion of its functionality, and
that traditional metrics fail to take this into account. This has
led us to develop models for development productivity in which
traditional development productivity measures are adjusted to
consider the level of reuse (BANK90A).

Second, during the course of our work we have also learned
that there is very little research that has addressed the question
of how reuse should be measured, especially when it is to be
incorporated in a development productivity assessment model or

b

methodology. We believe that this is less an oversight of prior
research than a reflection of the realities of 3GL software
development. In these development environments, modules of code
may be reused or revised in ways that lead to new functionality.
But, there are few tools to help a developer identify opportunities
for reuse, and since the reused code is not stored in a central
repository, it becomes very difficult to identify reuse other than
with extensive manual effort. The primary result then has simply
been not to measure it (BANK90D).

~ h i r d , we have learned that the functional organization of an
ICE application into objects makes it practical to automate the
analysis of code for the computation of a range of software
development performance indicators, including metrics for
productivity and complexity. The central repository also makes the
automation of code reuse measurement practical, since it maintains
a record of each object and where it has been used or reused
(BANK90C) .

Fourth, in our interviews and discussions with ICE developers
we also have learned that the new development environment offers
the possibility of utilizing new approaches to estimate the labor
associated with the development of an ICE application. For
example, function point analysis (which we will discuss in more
detail shortly) is traditionally used to estimate development labor
and to measure the resulting productivity of a development effort.
However, we have learned that more intuitive and simplified metrics

Center for Dlgltal Economy Research
Stem School of Busmess
IVorkmg Paper IS-90-14

may serve equally well for ICE applications (BANK90B).

1.3. Outline of the Paper

In the remainder of the paper, we develop these ideas further.
For example, Section 2 expands our critique of software metrics
collection and the difficulties that managers will face in trying
to make them work in CASE environments. Section 3 presents our
proposals for new metrics which are tailored for use in software
development environments that share some of the features of ICE.
Section 4 discusses the business case for automating these metrics,
and provides an overview of how it can be accomplished in an
object-oriented, repository-based i CASE environment. We argue that
the automated collection of these software metrics opens up new
avenues for refining the management of software development
projects.

2. CRITIQUE: SOFTWARE METRICS FOR INTEGRATED CASE

2.1. ~easuring Function Points

The magnitude of a software development effort depends upon
several factors, including the amount of information processing
accomplished by the system, the quality and the extent of the input
and output interfaces provided to meet the userst needs, and
environmental factors ranging fromthe quality of the hardware used
by the programmers to the sophistication of the users requesting
the software (SYM088). Allan Albrecht of IBM originally proposed
function points as a metric to capture the size of an application,
so that software development activities could be evaluated for the
outputs they create, and so that software development managers
would have a tool to estimate the resources required to build
systems of various sizes (ALBR79, ALBR83).

Function points are meant to provide a language-independent
and implementation-independent measure of the functionality
actually produced and delivered to the user. They differ from
output measures (such as those based on source lines of code) that
may reward verbose programming practices (KEME89). Since its

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 .-

introduction in the late 197Os, function point analysis has
evolved, with the help of the International Function Point Users
Group, into a well-accepted and operationally well-defined
methodology (DREG89, ZWAN84).

Function points are computed by measuring the degree of
functionality actually delivered to the user of the system, in
terms of reports, inquiry screens, and so on. This functionality
is determined by the number and complexity of inputs, outputs,
internal files, external interfaces and queries that comprise a
system. The result obtained from this intermediate measure of
function types is called function counts. Function counts are
further adjusted by a measure of environmental complexity. The
mathematical definition of function points is shown below:

14

FUNCTION POINTS =' FUNCTION COUNTS * (.6 5 + (.01 *x COMPLEXITYf))
F=l

where

FUNCTION COUNTS = instances of the five function types;

COMPLEXITY = a complexity factor, f, associated with
each of fourteen descriptors of the
implementation complexity of a system.

A major concern in traditional development environments is
calibrating the people who carry out the function point analysis.
Our experience in a recent study of software development
productivity suggested that even when a group of well-trained
individuals performs function point analysis for the same set of
software projects there are bound to be discrepancies which have to
be resolved (BANK90A). Individual differences in interpreting the
documentation, knowledge of an application and experience in
conducting function point analysis can all drive these differences.
In addition, recent research by Low and Jeffrey (LOW90) found that
significant training in the use of the complexity measures is
necessary to ensure that the correct constructs are being measured.

Center for Digital Economy Research
Stem School of Businers
IVorking Paper IS-90-14 .- 3

2.2. Function Points and Integrated CASE

Unfortunately, none of these problems disappears when
applications developed using integrated CASE tools are examined
using function point analysis. While the quality of the
documentation is much improved due to its automation and storage on
a central repository, utilizing such documentation is still a very
costly and time-consuming process. Although a major source of the
power of CASE tools comes from their ability to generate code, a
programmer or analyst who has not written the actual code and done
only the logical design would be forced to deal with the
automatically generated code. This is unlikely to closely match
what a person would write. Thus, analyzing CASE-generated code
would be an onerods and, most likely, an inefficient task that
would require a large amount of time and effort to do well.

Other potentially more serious problems that need to be
considered deal with the content of the function points method.
For example, the classification scheme used in the identifjcation
of FUNCTION COUNTS is not intuitive for ICE-developed software.
The components of the function points procedure (inputs, outputs,
external interfaces, queries and files) do not follow naturally
from the building blocks of this CASE development environment. The
CASE methodology used in ICE development enforces modularization of
application code and object-oriented design, which both promote
more efficient system development and maintainability. But when
modules and objects are the building blocks of CASE applications,
identification of the five function types will force the analyst to
expend significant effort to examine the code within a module or an
object, resulting in a subjective classification of function counts
and low consistency in the function points estimated by different
analysts.

Straightforward identification of function types via
procedures standard in 3GL development environments is also prone
to double-counting the labor consumed in developing systems with
CASE. Since an important feature of ICE is its central repository,
significant opportunities exist to reuse code which adds to the
functionality a system delivers without requiring much additional
effort. So, even though counting the five function types remains

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

an exhaustive classification of the size of the product, reuse must
be factored in when function points are being used estimate the
labor required to build an ICE application.

classification of FUNCTION COUNTS into simple, average and
complex levels of complexity according to the function points
methodology is also problematic. The weights applied to the
different complexity levels were determined by Albrecht by trial
and error (ALBR79). However, Syrnons (SYM088) concluded that a new
set of weights might need to be recalibrated for any new
technology, new organization, or new development atmosphere.
Clearly CASE qualifies as a technology which will require
Albrecht's weights to be recalibrated.

i

The rationale for decomposing function types into simple,
average and complex was based on the observation that they required
a different amount of time to code. However, in ICE development
the ratio between the time required to code a simple type and a
complex type may not be as large as it wa- in traditional
development environments. Thus the complexity classification used
in the function point analysis method may not do as well in
estimating the actual level of software development labor consumed.

In the integrated CASE environment we have been studying,
reuse affects effort far more than any other factor, and may also
contribute to productivity gains in the testing and implementation
stages of the system development life cycle (BANK9OA). Reused
objects will have been tested in other applications previously.
Reuse, together with the availability of the automatic code
generation facility, may reduce the development labor required to
incorporate higher levels of complexity measured by the subjective
COMPLEXITY FACTORS of the function points method. CASE utilities
for graphics generation and screen painting are good examples that
can produce major time savings for developers. As a result,
whether the COMPLEXITY FACTORS remain the relevant dimensions by
which to adjust FUNCTION COUNTS is an open question.

2.3. Measuring Code Reuse

Since most studies of code reuse in traditional development

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

environments have concentrated on the problems of encouraging it,
rather than identifying and measuring it, it is not surprising that
there are few rigorous definitions of reuse in a systems
development performance evaluation context (LANE84, NUNA89, RAJ89).
Reuse, as the name implies, is the employment of previously written
code as an alternative to writing new, possibly identical, code to
perform the same or a similar function.

The level of code reuse may be computed as the number of times
a particular piece of code, data element or object is reused within
the context of a program, application or information system
(POLS84) . As Hall (HALL87) has pointed out, however, this
intuitive measure does not,. in itself, address many of the
managerial questiork concerning code reuse. Some of the key
questions include:

* What portions of the code are being reused, and among those
which pieces are reused most often?

* What is the impact of such rtlse on productivity and
development costs?

* How effective is a particular system or environment in
promoting code reuse to reduce development costs?

Standish (STAN84) and Neighbors (NEIG84) provide useful
perspectives on the measurement of code reuse for 3GL development
environments. Standish proposed that reuse be measured at the line
of code level. This approach suffers from the disadvantages
endemic to source line of code metrics: they are conceptually
simple, but are unlikely to convey managerially useful information,
and they say nothing about the functionality of a system.
Neighbors argued that reuse should be abstracted from the level of
source code into some meta-language which relates more closely to
the problem. This approach is likely to be of practical use in
CASE environments such as ICE, where there is a high-level
representation of the system.

Gaffney and Durek (GAFF89) modeled the impact of code reuse as
a function of the relative costs of new and recycled code, and of
their relative incidence. The authors' analysis suggests a strong
rationale for creating code reuse metrics which support economic

- Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

9
-

modeling of software development productivity and measurement of
the business value of CASE technology. We next turn to a
discussion of some new metrics which address the problems discussed
in this section.

3. PROPOSAL: RE-THINKING SOFTWARE METRICS FOR OBJECT-ORIENTED
INTEGRATED CASE DEVELOPMENT ENVIRONMENTS

An object-oriented integrated CASE environment presents an
interesting opportunity to examine new metrics for measuring
software development performance. ICE offers support for the
creation and automation of a new set of software metrics through
the following features:

* the use of objects as application building blocks provide a
natural means by which to measure reuse;

* a central repository which stores all objects enables a
historical record of the development of an application to
be maintained;

* the storage of an abstract object hierarchy in the
repository defines the functionality of an ICE
application, and this object hierarchy can be mapped into
the function point analysis methodology.

3.1 object-Oriented Development in Integrated CASE

The central repository in ICE stores information about
different kinds of objects used in applications developed with the
tool. Examples of object types defined for the CASE tool include:
RULE SETS, 3GL MODULES, SCREEN DEFINITIONS and USER REPORTS. Each
object type is defined precisely and rigorously in order to make
the process of software development conducive to object reuse. A
RULE SET contains most of the instructions that observers
unfamiliar with CASE would call "the program1*. A 3GL MODULE is a
pre-compiled procedure, originally written using 3GL. A SCREEN
DEFINITION is the logical representation of an on-screen image. A
USER REPORT means the same thing as it does in development
environments other than ICE.

All objects associated with an application are functionally

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

10

organized into an object hierarchy. An application consists
exclusively of these objects and each application can be identified
by a high-level BUSINESS PROCESS, which calls other RULE SETS.
These RULE SETS in turn use other RULE SETS or 3GL MODULES. These
in turn can communicate with a SCREEN DEFINITION, or create a USER
REPORT. Figure 1 illustrates these concepts.

INSERT FIGURE ABOUT HERE

The relationships between objects (which RULE uses which 3GL
MODULE, which invokes which SCREEN, etc.) are themselves stored in
the central repository. Collectively, the set of object instances
and relationships between them make up the meta-model of the
application, and this can be used to identify the objects
comprising an application. Identification of such objects provides
two important benefits. First, it follows the natural building
process of CASE systems and is therefore intuitive and has the
potential to be more accurate and consistent. Second, the meta-
model in the repository can be utilized to automate the
identification of objects. This would lead to considerable savings
in the effort and cost involved in collecting information about the
objects used, and motivate implementation of the revised
measurement procedures we will shortly describe.

3.2. Measuring Code Reuse for Integrated CASE

We propose that reuse in CASE development environments which
are similar to ICE be measured in three separate classes of
metrics: reuse leverage, reuse value, and reuse classification.
Each of the proposed metrics relies on being able to identify
objects that are reused, rather than lines of codes or modules of
an application. Each also provides answers to different kinds of
questions managers may have in controlling the performance of
software development projects.

Reuse leverage metrics measure the number of times that
objects are used within a system. We define the degree of reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

.

within a system as:

REUSE LEVERAGE =
TOTAL NUMBER OF OBJECTS USED
hWMBER OF NEW OBJECTS BUILT

This measure of reuse can be used at several levels of analysis,
for example, in aggregate form for all the objects in an
application, or by object type such as RULE SETS, SCREEN
DEFINITIONS or USER REPORTS. The primary value of such metrics is
that they enable an analyst to identify what is being reused and
how much reuse is occurring.

To measure the actual productivity gains associated with code
reuse, we must distknguish between the reuse of easily-programmed
objects and the reuse of more costly objects. We can compute r e u s e
v a l u e by weighting 'the level of reuse by the cost of programming
the various types of objects that are reused. So, rather than just
counting objects, we add up the c o s t of each object to form the
following ratio:

COSTj

REUSE VALUE = 1 -
C COSTj
j=1

where

COSTj = the s tandard c o s t i n person days o f b u i l d i n g
o b j e c t j;

= the t o t a l number o f occur rences o f o b j e c t s i n
an a p p l i c a t i o n meta-model h i e r a r c h y ;

= the t o t a l number o f un ique o b j e c t s b u i l t f o r
th is a p p l i c a t i o n .

We normally would include in our computation of code reuse any
object which is found in the repository, rather than rewritten from
scratch. But for some managerial purposes, it may be useful to
classify reuse as internal and external. I n t e r n a l r e u s e refers to
code reuse within a system or subsystem, as defined by its meta-

- Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 - --

12

model hierarchy. External reuse refers to the reuse of objects
which are in the repository, but which currently belong to a
different system, and were originally developed for it. While both
kinds of reuse are valuable, different managerial policies may be
required to encourage them.

For example, the degree of internal reuse will probably depend
upon the size of the team developing a given application, and the
quality of the communications within that team. The degree of
external reuse, on the other hand, will depend more upon the
quality of the indexing system used to help programmers to identify
existing objects which they might be able to reuse.

3 . 3 . Object P o i n t s ' ~ n a 1 ~ s i s f o r Integrated CASE

To explore the questions raised in Section 2 about the
usefulness of function points for estimating software development
labor for ICE projects, we conducted two sets of interviews with
managers and analysts experienced in the use of the tool. The
first set of interviews was in the form of Delphi sessions. Small
groups of project managers were asked to individually estimate the
time required to build a small application involving several
different levels of functionality, and then attempt to achieve a
group consensus. The Delphi sessions were taped, and later
analyzed for themes that unified the discussions and led to the
group estimates.

Based on the analysis, we conducted a second set of individual
follow-up interviews with project managers responsible for
developing and estimating projects. The interviews included more
focused questions regarding how they might estimate using objects
as the basis of their estimation. This enabled us to identify the
usefulness of an output measurement and estimation approach that is
more closely linked to the ICE development environment. Our
analysis indicated that project managers employ estimation
heuristics which rely on the number of different types of objects
that need to be developed for a project. For example, using these
heuristics, a project manager initially estimates the number of
RULE SETS, 3GL MODULES, SCREEN DEFINITIONS and USER REPORTS that
will comprise the final application software.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

The project managersf responses in our interviews raised a
number of important questions regarding the relationship between
function points and this new proposal. For example,

* Do objects really capture the user functionality of an ICE
application?

* Does knowing the number and types of objects comprising a
system provide sufficient information to estimate the labor
required to build it?

* Is knowing the number and types of objects only useful as
a first approximation for development labor, or is it useful
as a means to gauge productivity after application
development has been completed?

b

Continuing the interviews, we also learned that similar to the
function types in function points, different objects exhibit
different levels of' complexity and functionality. Thus, they also
require different amounts of development labor to construct. A
synthesis of our project manager interview results enabled us to
classify occurrences of object types into three levels of
complexity. Each complexity level within an object type was
regarded as requiring a different number of days to develop.
Project managers' object-effort heuristics are summarized in Table
1 below in terms of the average t i m e r e q u i r e d t o b u i l d a g i v e n
o b j e c t t y p e .

INSERT TABLE 1 ABOUT HERE

The means of the project manager responses are shown in the table.

Two new output measures are suggested by our analysis. The
first, termed o b j e c t c o u n t s , is determined by summing the
occurrences of individual objects of the four types. The second,
called o b j e c t p o i n t s , is defined as follows:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

4

C OBJECT- EFFORT- WEIGXT, * OBJECT-OCCURRENCE,
t=l

where

OBJECT-EFFORT-WEIGHT = average estimated development effort
associated with object type t, based
on project manager heuristics;

OBJECT-OCCURRENCE = number of occurrences of one of four
object types t (including RULE SET,
3GL MODULE, SCREEN DEFINITION and USER
REPORT) in an ICE application.

Object points can be further refined to incorporate
information that distinguishes among the three levels of complexity
for each object type in terms of the labor required. At this time,
we have not yet developed a mechanism to classify objects according
to these complexity levels that does not involve significant manual
effort on the part of the analyst. A deeper investigation into the
nature and use of heuristics for estimation and classification of
objects in ICE environments is required in order to specify the
dimensions of object complexity.

Use of heuristics by experts for the estimation of software
development costs has been reported previously in other development
environments (VICI89). However, note that the identification of
objects in the context of ICE presents no problems because of the
availability of the central repository and the application
meta-model. In fact, identification of these objects and
classification into- different complexity should be readily
automatable.

Thus, we conclude that major opportunities exist to pioneer
new metrics that are more closely related to the software
development environments they are meant to describe, yet general
enough to be captured for different kinds of CASE tools.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

4. JUSTIFICATION: MANAGING THE CASE DEVELOPMENT PROCESS USING
AUTOMATED METRICS

4.1. The Automation of Function point Analysis

We can use the application meta-model that is stored by ICE to
identify the objects associated with any application system. Since
the meta-model is hierarchical, following the chain of
relationships will reliably lead us to all the objects which may be
accessed or invoked by a given object. Traversal of the hierarchy
of RULE SETS which comprise an application, or sets of
applications, is a very powerful capability that can be exploited
in the design and development of automated software metrics
facilities for ICE.

Clearly, any 3ttempt to automate the collection of software
metrics in ICE begins with a major advantage over similar efforts
in third-generation environments. Much of information which is
needed to calculate a variety of software metrics (code reuse,
function points, object points, etc.) is ~lready contained in
usable form in the application meta-model. In traditional
environments, this task must be accomplished on the basis of
documentation, which is rarely complete or up-to-date, and software
naming conventions which, even when they are followed, rarely
identify the use of code by multiple applications.

The design of ICEfs object-oriented development language is
such that a precise mapping may be defined between each object and
its associated functionality. In traditional environments, the
only way to perform the mapping between programs and functionality
is to manually figure out what each program is doing, again with
the aid of such documentation as may exist.

Of the five function types used in the computation of function
points, four measure data flows that either enter or leave the
llboundaryfl of an application. Internal files constitute the fifth
function type; they measure data stores internal to the
application. Object and entity relationship definitions may be
decomposed into specific functional roles. This "mappingn enables
function counts to be identified. This is illustrated in Figure 2,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

which also provides a conceptual representation of what we mean by
the lfapplication boundary.I1 (For additional details on the content
of the mapping between functions and ICE objects, see BANK90B.)

INSERT FIGURE 2 ABOUT HERE

Using this approach we developed an automated function point
analyzer with three main components: an Object Identifier, a
Function Counter and a Complexity Factor Counter. The general
architecture of the automated function point analyzer is shown in
Figure 3. b

INSERT FIGURE 3 ABOUT HERE

The Object I d e n t i f i e r traverses the meta-model in order to
identify all the objects used in an application that have to be
evaluated for functionality. It starts with a BUSINESS PROCESS or
high-level RULE SET chosen by the project manager that defines the
application or part of the application being analyzed, and
navigates the hierarchy downward until all relevant objects have
been found.

The Function Counter performs the mapping described in the
previous section from objects and entity relationships, to function
types and complexities, and then to function counts.

The Complexity Factor Counter computes environmental
complexity, which is used in function point analysis as an
adjustment factor, to allow for the overall complexity of the task
being implemented and the environment within which it is being
implemented. A point score is assigned to each of fourteen
complexity factors, and the total of these scores is the complexity
factor.

The function point analyzer determines the scores for fourteen

Center for Digital Economy Research -

Stem School of Business
IVorking Paper IS-90-14

complexity factors through a combination of objective, automated
measures and online inputs provided by project managers familiar
with the technical aspects of implementation. In the current
implementation, the objective measures are computed in parallel
with managersf inputs, which only take a few minutes. When they
have been sufficiently validated, the corresponding manual inputs
will be replaced entirely, where possible. Each complexity factor
also has a separate input response screen that displays a
definition of the complexity factor. This can help a project
manager who may not be familiar with function point analysis to
give accurate and consistent responses.

4.2. Extensions: Automating Reuse and Object Point Collection
i

An integrated, object-oriented CASE environment similar to ICE
also provides a major assist for the implementation and control of
code reuse. First, ICE code exists at a level of granularity more
conducive to the implementation of code reuse. While it is rare
that an entire 3GL prngram will prove to be reusable, such programs
frequently contain routines which could be reused, with a little
modification, were the programmer aware of their existence. An
object-oriented system may be designed so that each such routine is
a unique object. This makes reuse opportunities considerably
easier to identify and to exploit.

Second, the integrated environment serves to support the
control and the measurement of code reuse. With the design of the
entire system stored centrally along with the software itself, an
instance of code reuse becomes readily identifiable as the
repeated invocation of an object within the repository.

To follow up on these ideas, we designed an automated code
reuse analyzer for use within ICE. The tool analyzes an existing
software application, reporting the levels of reuse for the various
elements comprising the application. The code reuse analyzer
shares many features in common with the function point analyzer.
For instance, it identifies all the relevant objects for a given
analysis by systematically navigating the hierarchy of calling
relationships within the repository. (In fact, it even reuses much
of the code required to develop the function point analyzer.) Once

- Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

18

all the objects within an application have been identified, and the
instances of reuse have been noted, a range of managerially useful
code reuse metrics can be computed.

An object point analyzer would also operate along the same
lines. Automating the analysis of an ICE application for function
points and code reuse delivers a portion of the object point
information for free. This is accomplished when the Object
Function Table (shown in Figure 3) is instantiated based on the
function point analyzer's scan of the object repository application
meta-model. This in turn results in information about the typed
object count for an application. The missing piece is that
function point analysis does not require estimation of the effort
that is required' to build objects of different levels of
complexity. As a result, this capability must be added to deliver
a fully automated object point analysis. For the current
implementation, we are investigating the usefulness of the project
manager averages reported in Table 1, because they can be readily
used to weight the objects stored in the Object Function Table to
obtain a short form estimate for object points.

4.3. Software Development Life Cycle Management Via Automated
Metrics

The primary benefits of automated software metrics come from
the opportunities created for management to gain new insights into
the performance of a firm's software development organization.
Previously, obtaining a point estimate (i. e, , at one point in time)
of development productivity for a project required significant
effort. The correct documentation had to be obtained, development
labor information had to be pieced together, and then finally the
analysis had to be performed. But, point estimates only describe
the outcome of development activities; they fail to describe the
process leading to the delivery of completed software. Yet it is
the process that management needs to fine-tune so that the outcome
can be improved.

With automated software metrics, it is possible for management
to replace point estimates of productivity with a full software
development life cycle trajectory estimate of performance. For

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

example, upon reaching significant project development milestones,
automated measurement of function points, object points and various
reuse metrics can be carried out, based on the software stored by
the repository at that time. Additional measures can also be made
on demand when management has specific questions about the
development performance of a specific project.

Software development life cycle performance trajectory
estimates can be made following the natural course of the
development of a software application. For example, at the
inception of a project, very little will be known about what the
software finally will look like, but there will be significant
information available about the kinds of components that are
required to achieGe such functionality. Order of magnitude
estimates will be requiredto identify the overall costs associated
with going ahead with a project. A rough estimate of the number of
objects can be made prior to the start of the creation of the
functional design of a system. This estimate can be refined
further as the project progresses through technical design. By
this time, however, it will be possible to obtain information from
the repository about the future contents of the application, though
they may not be entirely built.

Automated software metrics will be even more useful as a
project moves into the construction and testing phases. Figure 4
below depicts the quarterly progress of two projects (marked A and
B) in terms of metrics that can be captured automatically: function
points per person month and the observed level of reuse leverage.

INSERT FIGURE 4 ABOUT HERE

If a simple average productivity rating were assigned to the
two projects, Project A would clearly exhibit a higher level of
productivity overall (in terms of function points per person month)
than Project B. Yet without the additional information provided by
the trajectory shown in the upper graph of Figure 4, important
information would be lost to management. For example, note that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

LE'

A's productivity is maximized in the middle of the construction
phase, when the project was likely to have been fully staffed, but
it fell later, perhaps due to implementation problems, the slippage
of deadlines, changes in the development environment, or
interference from new projects that were taking more of
management's time. In addition, B1s productivity met or exceeded
the targeted minimum in only four of the eight quarters.

Coupling this information with the reuse leverage trajectory
shown in the lower graph of Figure 4 provides additional
information. Note that the targeted level of code reuse leverage
was only met in one of the eight quarters. Although these graphs
do not provide a complete picture of what was occurring as the
applications were b6ing developed (for example, it is possible that
the more productive project was much larger and provided more
opportunities to make effective use of the CASE tool), they
nevertheless suggest the possibility that management needs to take
additional steps to manage code reuse to avoid substandard
development productivity results.

Although the example we have used is highly simplified, other
useful comparisons of descriptive project performance metrics would
be possible to pave the way for a fuller understanding of the
dynamics of software development. For example:

* reuse classification metrics can be used to indicate the
extent of the extra gains derived from external reuse;

* both function points and object points can be tracked to
identify the perforinance of each in estimating the final
level of development labor required;

* projects can be compared over time for baseline changes in
the level of productivity observed, as the firm's use of
a CASE tool matures and new capabilities become available,
and as the shape of the firm's project performance
trajectories changes;

* the evaluation of project managers can also be tied to
trajectory measures of project performance;

* productivity and reuse metrics for the full development
life cycle can later be used to identify the effects of
other variables including team size, experience levels,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

- - "-

developer training and the size of an application.

We believe that tracking the software development life cycle
of an ICE application with automated performance trajectory metrics
offers management the chance to obtain a comprehensive
understanding of a firm's software development operations. As our
sketch of the function point analyzer suggested (see Figure 3) , a
variety of metrics can be obtained for use by individuals with
different levels of management responsibility, for example, a
project manager, the vice president of systems development or the
chief information officer. Having such information available to
these management levels can lead to better decisions to control the
strategic costs of large scale software development, and offer the
firm a new range of,opportunities to achieve competitive advantage.

5. CONCLUSION: RESEARCH AGENDA

Senior managers of software development operations broadly agree on
the need for metrics and measurement programs that:

* provide an accurate picture of development productivity
across different kind of applications and development
environments;

* enable standards to be devised to identify efficient and
inefficient projects;

* support performance tracking without incurring high costs or
affecting development activities directly;

* help to support the argument that operating an effective,
high technology software development operation can assist
management in its efforts to maximize the value of the firm.

Having informative and readily implemented metrics available
for use in integrated CASE environments can help to jump start
software development performance measurement programs in firms that
have been reluctant to measure. More importantly though, with the
ability to automate much of the effort of collecting software
metrics, tracking performance across the entire development life
cycle of a project becomes possible. This also increases the
likelihood that additional investments in CASE will be made by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

management for the right reasons.

Our exploratory work on the use and automation of the metrics
discussed in this paper is still in progress, so a number of
important questions remain for future research. For example, with
respect to function point and object point analysis, additional
work is required to investigate the estimation performance of
object points in development environments other than the firm that
has been the field site to date. And, once we are able to obtain
a steadier stream of data on developed and developing projects from
the automated function point analyzer, it will be possible to study
whether object points perform better as early life cycle estimators
or as a more robust output metric than function points for the
integrated CASE environment .

A second major set of issues that need to be investigated in
more detail is how reuse should be managed to maximize
productivity, in view of the information provided by the new reuse
metrics. In our preliminary investigation of code rellse, we have
found that developer experience plays an important role in the
delivery of projects which exhibit high levels of reuse. A major
question, then, is how repository objects should be indexed to
encourage easy identification and reuse by developers. Another
question which future research should address is the extent to
which targeted levels of code reuse can be mandated, and the
effects this would have on development productivity.

Many observers have speculated that the real potential of CASE
is to increase software quality and functionality. The ICE
applications we studied deliver a very high level of functionality
compared to their 3GL counterparts, and in some cases, direct
comparisons are inappropriate because the quality of the product is
so different. Thus, the final item on our research agenda is to
determine the extent to which the creation of software developed
using integrated CASE actually delivers software with a higher
overall value to the firm. Clearly, the main issue here is not
user satisfaction. Instead, the key question for management will
be: What is the long-term business value of the increases in
functionality delivered by CASE-developed software? Thus, a major
challenge that remains is to devise an evaluative approach that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 -

23

yields metrics which assist in translating software functionality
into the various dimensions of value obtained by the firm.

REFERENCES

Albrecht, A. J., Measuring Application Development
Productivity. In Proceedings of the Joint SHAR_F, GUIDE,
and IBM Application Development Symposium, IBM (October
1979), pp. 83-92.

Albrecht, A. J. and Gaffney, J. E. Software Function,
Source Lines of Code, and Development Effort Prediction:
A Software Science Validation. IEEE Transactions on
Software Engineering 9, 6 (November 1983), pp. 639-647.

b

Banker, R. D., and Kauffman, R. J. An Empirical
Assessment of Computer Aided Software Engineering (CASE)
Technology, A Study of Productivity, Reuse and
Functionality. Working Paper, Center for Research on
Information Systems, Stern School of Business, New York
University (March 1990) .
Banker, R. D., Kauffman, R. J., and Kumar, R. Output
Measurement Metrics in a Computer Aided Software
Engineering (CASE) Environment: Critique, Evaluation and
Proposal. Management Information Systems Quarterly
(forthcoming) .
Banker, R. D., Fisher, E., Kauffman, R. J., Wright, C.
and Zweig, D. Automating Software Development
Productivity Metrics. Working Paper, Center for Research
on Information Systems, Stern School of Business, New
York University (June 1990).

Banker, R. D., Kauffman, R. J. and Zweig, D. Metrics for
the Code Reuse in Software Development. In preparation
(1990).

Bouldin, B. M. CASE: Measuring Productivity -- What Are
You Measuring? Why Are You Measuring It? Software
Magazine, 9:10 (August 1989), pp. 30-39.

Dreger, J. B. Function Point Analysis. Prentice-Hall,
Englewood Cliffs, NJ (1989).

Fisher, J. T. IBMts Repository: Can Big Blue Establish
OS/2 EE As the Professional Programmer's Front End? DBMS
(January 1990), pp. 42-49.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

MENG9 0

MEYE87

MEY E8 8

NEIG84

Gaffney, J. E., Jr., and Durek, T. A. Software Reuse --
Key to Enhanced Productivity: Some Quantitative Models.
Information and Software Technology 31, 5 (June 1989) ,
pp. 258-267.

Goldberg, A. , and Pope S. T. Object Oriented Programming
is Not Enough. American Programmer: Special Issue on
Object-Oriented Observations 2, 7-8 (Summer 1989) .
Hall, P. A. V. Software Components and Reuse -- Getting
More Out of Your Code. Information and Software
Technology 29, 1 (January-February 1987), pp. 38-43.

Hazzah, A. Making Ends Meet: Repository Manager.
Software Magazine (December 1989), pp. 59-72.

Jones, T., C. Reusability in Programming: A Survey of the
State of the Art. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), pp. 484-494.

Kemerer, C. F. An Agenda For Research in the Managerial
Evaluation of Computer Aided Software Engineering (CASE)
Tool Impacts. Proceedings of The 22nd Hawaii
International Conference on Systems Sciences, Kona Lua,
Hawaii, IEEE (Jan,ary 1989).

Lanergan, R. G. and Grasso, C. A. Software Engineering
with Reusable Designs and Code. IEEE Transactions on
Software Engineering SE-10, 5 (September 1984) , pp.
498-501.

Low, G. C., and Jeffrey, D. R, Function Points in the
Estimation and Evaluation of the Software Process. IEEE
Transactions on Software Engineering 16, 1 (January 1,
1990), pp. 64-71.

Meng, B. Object Oriented Programming. MacWorld (January
1990), pp. 174-180.

Meyer, B. Reuse: The Case for Object-Oriented Design.
IEEE Software (March 1987), pp. 50-64.

Meyer, B. Object Oriented Software Construction.
Prentice Hall, New York (1988).

Neighbors, J. M. The DRACO Approach to Constructing
Software from Reusable Components. IEEE Transactions on
Software Engineering SE-10, 5 (September 1984), pp.
564-574.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

25

Nunamaker, J. F. Jr., and Chen, M. Software
Productivity: A Framework of Study and an Approach to
Reusable Components. In Proceedings o f the 22nd Hawaii
International Conference System Sciences, IEEE , Kona Lua ,
Hawaii (January 1989, pp. 959-968.

Pollack, A. The Move to Modular Software. New York
Times (Monday, April 23, 1990) , pp. Dl-2.

Polster, F. J. Reuse of Software Through Generation of
Partial Systems. IEEE Transactions on Software
Engineering SE-10, 5 (September 1984), pp. 402-416.

Raj, R. K. and Levy, H. M. A Compositional Model for
Software Reuse. The Computer Journal 32, 4 (April 1989) ,
pp. 312-323.

b

Senn, J. A., and Wynekoop, J. L. Computer Aided Software
Engineering (CASE) in Perspective. Working Paper,
Informatifon Technology Management Center, College of
Business Administration, Georgia State University (1990).

Standish, T. A. An Essay on Software Reuse. IEEE
Transactions on Software Engineering SE-10, 5 (September
1 ~ 8 4) ~ pp. 494-49'7.

Symons, C. R. Function Point Analysis: Difficulties and
Improvements. IEEE Transactions on Software Engineering
14, 1 (January 1988), pp. 2-10.

Vicinanza, S., Mukhopadhayay, T. and Prietula, M. J.
Software Effort Estimation: A Study of Expert
Performance. Working Paper 89-002, Center for the
Management of Technology, Graduate School of Industrial
Administration, Carnegie Mellon University (1989)

Zwanzig, K. Handbook for Estimating Function Points.
GUIDE Project -- DP-1234, GUIDE International (Nov.
1984).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 . -

~igure 1. A simplified Repository-Based Application Meta-Model

Business
~pplication

Process #1 Process #2
(Subsystem (Subsystem

Business
Process #3
(Subsystem

Set A Set B Set C

Reports I I
I
I

An application is represented in ICE by a menu of BUSINESS
PROCESSES and all the objects called by these BUSINESS PROCESSES.
The first step in analyzing a system is to identify these objects,
by iteratively tracing the calling relationships stored in the
application meta-model. A BUSINESS PROCESS will call one or more
RULE SETS. Each RULE SET, in turn, may call other RULE SETS, 3GL
MODULES or other ICE objects. Note that the use of an object by an
application system does not preclude its reuse by another
application. Nor does the occurrence of an object within an
application s object hierarchy imply that the object was originally
created for use in that application.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14 - - - - - - - .. - - - -

Figure 2. Mapping from ICE Objects to Function Counts

Function point analysis measures the functionality a system
delivers to the user in terms of data transfers into or out of that
system (Inputs, Outputs, Queries, External Interfaces), and in
terms of the data stores (files) used. A 3GL program normally
contains all five function classes. An ICE object, however, is
severely constrained in the functionality it can represent, to the
points where a system's function count can be computed by
identifying and classifying its objects.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

Figure 3. The Automated Function Point Analyzer: A Schematic

USER

...............................

I

The f u n c t i o n point analyzer consists of three subsystems. One
uses the meta-model to identify the objects in the application
under analysis. The second uses it to assign function count scores
to those objects. The third obtains task complexity measures, and
may require programmer or manager input in parallel with the
automated analysis.

OBJECT I D E N T I F I E R

I Repos i tory Query
I

Manager I n p u t s
I

Determine
Complexity

Scores

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

I

Table

I
---------------------,---

. Repos i tory
META-MODEL

R e l a t i o n s h i p
Table

I d e n t i f y
Objec ts t o

Analyze

------,,------------ --------------,,,--- -,-----,, . ---------
FUNCTION COUNTER -- . -- ,,,-----,,-----,-----------

I I

Determine
Function Type

Table In s t ances
D i f f i c u l t y

Table

I .
Determine

Function Count
Table Scores

. Weighting
Table

----------------,------------- . --,-------,,,----,------------ . Customized - R e p o r t s

Database
f o r FPs

COMPLEXITY FACTOR COUNTER
-------,,,----,--------------- -,,,-----,,,,---,,,-----------

Calcu la t e
Function

Po in t s (FPs)

- P r o j e c t Manager
. VP, IS Development

Chief Informat ion O f f i c e r

Figure 4. Software Development Performance Trajectories: Function
Points and Reuse

Quarterly Estimated
Function Points/
Person Month

* Project A
+ Project B

0 1 2 3 4 5 6 7 8 Quarters

Design construction Testing &
Imp1 emen ~ a t i o n

Quarterly Level of
Reuse Leverage
(times reused)

* Project A
+ Project B

Targeted
Reuse
Leverage

0 1 2 3 4 5 6 7 8 Quarters

construction Testing &
1mp1 ementation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

Table 1. project Manager Development Effort Heuristics

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-14

RULE SETS

3GL MODULES

SCREEN DEFINITIONS

USER REPORTS

PROJECT MANAGER EFFORT
HEURISTICS (AVERAGE)

3 days

10 days

2 days

5 days

