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Abstract
Qutput measurement metrics for the software
development process need to be re-examined 1O

determine their performance in the new, radically
changed CASE development environment. This paper
critiques and empirically evaluates several approaches
to the measurement of outputs from the CASE process.
The primary metric evaluated is the function points
method developed by Albrecht. A second metric
tested is a short-form variation of function points that
is easier and quicker to calculate. We also propose a
new output metric called object points and a related
short-form, which are  specialized for output
measurement in object-onented CASE environments
that include a central object repository. These metrics
are proposed as more intuitive and lower cost
approaches to measuring the CASE outputs. OQur
preliminary results show that these metrics have the
potential to yield as accurate, if not better, estimates
than function points-based measures.

1. INTRODUCTION

The productivity impacts and business value
implications of computer aided software engineering
(CASE) tools are of increasing concern to researchers
as well as practitioners in the software community.
However, convincing results in this area have been
difficult to obtain. The lack of results can be
attributed to a number of difficulties ranging from poor
data availability to limitations of current evaluation
approaches (KEMES9). Thus there is substantial
motivation to conduct research on measurement metrics
that are conducive to building a cumulative base of
valid and reliable estimates for the outputs of CASE
development.

A survey conducted by Software Magazine reports that
only 13% of CASE-using firms out of the 196
surveyed have a productivity measurement program of
any kind in place (BOUL89). Such surveys are
indicative of an urgent need for measurement
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approaches which identify and substanuate CASE-
related productivity improvements, Appropriate
measurement approaches will not only allow
comparisons across different software development
environments, they will also increase the effectiveness
of systems that aim (0 improve strategic cost
management by tracking software development
productivity (BANKSOD).

However, before we measure, we need to establish
robust metrics as measurement umnits. Existing
measurement approaches were developed and validated
for third generation language (3GL) software
development environments. The CASE environment,
however, is radically different in terms of both the
structural and functional dimensions of systems
development  (SENN90). Although these well
established methods can be brought to bear on the
problem of CASE productivity, they must be
scrutinized, and recalibrated to ensure they remain
valid in this new CASE development process.

This paper examines the issue of output measurement
for CASE-based software development. Our aim is to
critique and empirically evaluate several measurement
approaches for software development using CASE
tools. OQur initial emphasis 1s on the appropriaicness
of function points as a measure of the functionality
delivered by CASE-developed systems. The function
points methodology was developed by Albrecht 10
measure the intrinsic size of a system (ALBR79). We
also examine a short-form variation of function points
obtained as an intermediate step in the calculation of
function points. We investigate this variation because
it. is quicker and cheaper to calculate, and as
applicable in the CASE development environment as
the function points metric. :

Another approach, which we call object points
analysis, represents a new proposal that involves
counting repository objects developed in an integrated
CASE environment. This approach is proposed as a
more intuitive way to measure System functionalily
when  developers use  object-oriented CASE
development procedures. We will evaluate this third
metric which is based directly on the number of




objects comprising an application, as well as a fourth
metric that weights objects for their relative complexity
in terms of the average time it takes to build them.

We present estimation performance results of the four
alternative metrics in terms of their ability to predict
soltware development effort.  Estimation performance
refers to the ability of a software output measurement
metric to accurately predict the amount of software
development labor consumed in a project. This will
cnable us to assess the extent to which each of the
metrics actually measures the size of the software.

1.1. Function Points As An Qutput Metric

Function points is a metric for the size of the output
from the softwarc development process. A [unction
point is defined as the size of one end-user business
funcion (ALBR79). It was originally developed as a
means 1o track productivity in terms of function points
delivered per person month of development effort.
Subsequent research has  investigated the ability of
apriori estimates of function points to predict the effort
required for developing software (LOW90, RUDOS84,
KEMERS7).

The function point procedure requires the analyst (o
identify the occurrence of each unique Input, Output,
Logical File, External Interface, and Query types
delivered by the software. In this research, we call
the sum of all function type occurrences the RAW-
FUNCTION-COUNT. RAW-FUNCTION-COUNTS arc
then weighted with numbers that reflect the value of
that function type to the user. These are referred 10 as
WEIGHTED-FUNCTION-COUNTS. This sum is then
adjusted using ratings on fourteen complexily factors
that reflect the complexity of the system requirements
and the development environment. The adjustment
score is called the TECHNICAL-COMPLEXITY-
FACTOR. Finally, function points arc calculated as
WEIGHTED-FUNCTION-COUNTS * TECHNICAL-
COMPLEXITY-FACTOR. Table 1 gives further
details.

A number of factors support the choice of function
points as the measurement approach to be evaluated.
It is widely accepted as a de facto industry standard
(ALBR83, JONE86, SYMO8E, LOW90). In use today
are many flavors of function point counting, including
ESTIMACS (RUBI83), SPQR (JONE86), MARK II
(SYMOS8R), IFPUG (IFPU8B) and IBM (IBMS§9).
Rules for counting function points have been
rigorously defined, and agreed upon by their more
cnthusiastic users (DREG89, IFPU88). Function points
also have advantages over source-lines-of-code methods
of effort estimation because they can be estimated
carlier in the development cycle, and are indepenedent
of the language and technology used (ALBR79,
LOW90). Kemerer (KEMES87) reports that Albrecht’s

function points

method led to a smaller average error rate in
estimating software applications, when compared 10
alternate  output measurement methods  including
COCOMO, SLIM (popular source-lines-of-code based
models) and ESTIMACS.  Finally, Jones states thal
most CASE customers with measurement plans arc
basing their metric on function points (BOULSY).

STEP 1: Kentification of RAW-FUNCTION-COUNTS. Identify
each functionality unit and classify into the five user function
types: Input Type, Output Type, External Interface Type,
Logical File Type, Query Type. This step yields RAW-
FUNCTION-COUNTS for the five different function types, and
we will refer to the sum of these raw-function-counts as
RFC.

STEP 2: Classification of Simple, Average and Complex
Function Types. The RAW-FUNCTION-COUNTS are further
classified into three complexity levels depending on the
number of data elements contained in each count, and the
number of files referenced. Each subtype is weighted with
numbers reflecting the relative value of the function to the
user. For example, a Simple Input Type would be weighted
by 3, while a Complex Input Type would be weighted by
4, The weighting scheme proposed by Albrecht is:

FUNCTION TYPE|FUNCTION-COMPLEXITY-SCORES
Simple Average Complex
Inputs 3 4 6
Outputs 4 5 7
Interfaces 5 7 10
Queries 3 4 6
* Files 7 10 15

WEIGHTED-FUNCTION-COUNTS for the five different types
are then defined as the sum of (RAW-FUNCTION-COUNTS
* FUNCTION-COMPLEXITY-SCORES). Hereatter we will
refer to this sum as WFC.

STEP 3: Adjusting WEIGHTED-FUNCTION-COUNTS by
TECHNICAL-COMPLEXITY-FACTOR. The adjustment factor
reflects application and environmental complexity, expressed
as the degree of influence of 14 "application characteristics"
listed below. Each characteristic is rated on a scale of 0 to
5 (COMPLEXITY-FACTOR-VALUE), and then all scores are
summed. The TECHNICAL-COMPLEXITY-FACTOR (TCF) =

.65 + .01 * Eh:F COMPLEXITY-FACTOR-VALUE;.

1. Data Communications 8. On-line Update

2. Distributed Functions| 9. Complex Processing
3. Performance 10. Re-Usability

4. Heavily-used Config. 11. Installation Ease
5. Transaction Rate - 12. Operational Ease
6. On-line Data Entry 13. Multiple Sites

7. End-User Efficiency 14. Facilitate Change

Finally, total FUNCTION-POINTS (FP) are calculated as FP
= WFC * TCF.
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Table 1. The Function Points Procedure



12 Data and the CASE Environment

Examined

We obtained data on twenty software projects from a
large invesunent bank in New York City.  The
projects were developed and implemented with an in-
house CASE tool over a two-year period. The CASE
tool evolved as a mulu-million dollar, internally
developed softwarc project.  Its objective was 1o
increase the responsiveness of the firm’s software
development operations. It exhibits many of the
features of an /ntegrated CASE Environment (ICE)
(BANK90a). ICE refers to application development
using CASE lools that automate the entire life cycle of
software development, from the earlier stages of
analysis and design to the later stages of code
construction and Lesling. The 1wpe of CASE
environment used dictates the variety and range of
automated software cngineering facilities available for
programming.  This CASE 100l provides powerful
development  support  uulities, including  entity-
relationship modelling, screen and report painters, and
3GL module-intcgration  tools. Its unique features
include:

oriented approach to  applications
development. Application  programmers  use
structured, standardized, and rigorously defined
objects and modules as building blocks o encode
the functionality required for applications.

*an  object

* a centralized repository which stores all modules and
objects developed for applications;

* storage of the application model as an abstract
object hierarchy in the repository. This abstract
model defines the functionality of each ICE
application.

The structure of this development environment is
further detailed later in the paper. Our investigation
into the usefulness of a short-form variation of
function points, and the development of the object
points analysis approach is closely tailored to such
CASE environments. The twenly projecls were
assessed by a team of analysts trained in function
points  analysis. This resulted in four counts
corresponding to the four metrics we discuss in this
paper for each of the twenty projects. This data was
used for evaluating and comparing the performance of
the four metrics.

The remainder of this paper is organized as follows.
Scction 2 critiques the methodology of function points
from the perspective of the changed requirements in a
CASE development environment, It also discusses our
rationale for testing a short-form variation of function
points for CASE-based systems. Section 3 presents a

new approach to gauging the outputs ol software
development object points analysis using object-
oriented CASE environments. Results of an empirical
evaluation of the function points metric, its short-form
variant, and object points and its short form are
presented in Section 4. Section 5 concludes with o
discussion of the requirements for metrics which belter
support  the measurement and  estimation ol
productivity in systems developed using CASE.

2. FUNCTION POINTS FROM A CASE
PERSPECTIVE: A CRITIQUE

How does the function points procedure stand up 10
the measurement challenge of the CASE environment?
What portions of the procedure present problems in
the CASE environment that can be overcome using
revised metrics?  We argue that each step in the
calculation of function points (as presented in Table 1)
nceds o be reassessed in light of relevant CASE
charactenistics,

2.1. Step 1 -- Identification of RAW-FUNCTION-
COUNTS

First, the classification scheme used in the
identification of RAW-FUNCTION-COUNTS (RFC) is
not intuitive for CASE-developed software.  The
components of the function poinis procedure (Inpuis,
Qutputs, External Interfaces, Queries and Files) do not
follow naturally from the building blocks advocated in
an object-oriented integrated CASE environment.  The
CASE methodology used in . object-oricnted ICE
development enforces modularization of application
code. When modules and objects are the building
blocks of CASE applications, identification of the five
function types will force the analyst o expend
significant effort in stepping within a module or an
object to examine the code. Moreover, a sizeable
portion of the code may have originated [rom a
powerful feawwre of CASE: the ability w generate
code. A programmer or analyst who has not wrillen
the actual code and done only the logical design
would be forced 1o deal with the automatically
generated code, which may not closely match what
the person would have written.  Thus, analyzing
CASE-generated code would be an onerous, and most
likely, an inefficient task. It may result in
subjectivity and inconsistency in the classification of
RAW-FUNCTION-COUNTS, as well as require a
large amount of time and effort.

Second, a straightforward gauge of function types will
be prone o double-counting the labor consumed in
developing systems with CASE. The feature of a
central repository in ICE environments presents
significant opportunities o reuse code.

Reused code




adds to the functionality a system delivers without
requiring much additional effort.  So, when function
points are being used for measuring the functionality
or size of a CASE-delivered system, the effort
estimates should be adjusted to reflect the functionality
added by reused code.

Thus, although the five function types represent the
intrinsic functionality of CASE-developed systems, it
would be useful to have a mechanism that translates
functionality into the more natural building blocks of
modules and objects in an object-oriented CASE
cnvironment. In related research, we have investigated
a solution to the problem of mapping between CASE
objects and the function types (BANK90c). The
proposcd mapping forms the basis of automating
function points analysis in an object-oriented ICE.
This could effectively circumvent the problems of
effort, ime and inconsistency in manually counting the
function points of CASE-delivered systems. However,
estimation of function points remains unintuitive in
such CASE cnvironments.

2.2. Step 2 -- Classification into Complexity Levels

Classification of RAW-FUNCTION-COUNTS into
levels of complexity is the second step in function
point analysis. It yields WEIGHTED-FUNCTION-
COUNTS. The complexity weights that apply to the
different complexity levels were determined by
Albrecht by trial and error (ALBR79). Symons
(SYMORS) concluded that a new set of weights might
nced to be recalibrated for any new technology, or
ncw development environment. Clearly CASE
qualifies as a technology radically different from the
traditional 3GL development  activities to  which
Albrecht’s weights apply.

It is useful to keep in mind that the rationale lor
decomposing cach function type into simple, average
and complex came from a realization that each
represented a different level of functionality delivered
to the user (ALBR79). For estimation purposes, this
is assumed to translate into different amounts of time
to code each complexity type. However, in the CASE
environment the differential between the time required
1o code a simple Lype and a complex Lype may nol be
as large as in a 3GL development environment. The
ability to do object-oriented development, 1o reuse
code and to generate code, may contribule (o an
increased uniformity in the levels of effort required for
developing different complexity types. The proposition
here is that the complexity differentials in CASE
function counts may not lead to a significant
improvement in estimating the actual development
labor consumed. Thus, the complexity classification
used in the function points analysis method may not
only need recalibration, but in fact, may not be worth
(in terms of estimation performance) the extra effort.

For use in CASE environments that exhibit some of
the characteristics of ICE, wec think it may be
worthwhile to consider an aggregate count for cach of
the five function types, without further classification
by complexity level.

Other problems with classification of the function
types into three levels of complexity include increased
subjectivity and measurement effort. Level of
experience in software programming (and by analogy,
in CASE 1ools) affects an analyst’s perception
regarding the complexity of a function type (LOW90).
The time and effort involved in achieving this
subclassification  through  CASE-generated
documentation further adds to the cost of counting
function points.

2.3. Step 3 -- Adjusting WEIGHTED-FUNCTION-COUNTS
by the TECHNICAL-COMPLEXITY-FACTOR

Symons (SYMOS88) also advocates a more open-ended
approach to the factors affecting external complexity.
Availability of CASE utilities such as automatic code
generation, graphics generation and screen painting
may reduce the development labor required 10
implement some complexity contributing factors (Table
1). Moreover, in the integrated CASE environment
we have been studying, reuse affects development
effort far more than any other factor (BANK90a). In
short, the list of fourteen factors may not all be
relevant to CASE-based system development.

As a resull, TECHNICAL-COMPLEXITY-FACTOR
(TCF) may not explain a significant portion ol the
variation in labor consumed for developing a CASE-
based sofltware application, so that the time and cffort
spent in calculating TCF would not be of value.
(Note from Table 1 that TCF can have a score only in
the range of .65 to 1.35, and thus can adjust the [mal
number of function points no more than 35% at the
most. In fact, this range proved to be much narrower
in the data set we examined).

Thus, it is worthwhile to assess the predictive ability
of the TCF factor and its components. At the samc
time, the effect of the reuse factor needs 1o be
considered n more detail for the measurement
procedure to be appropriate for CASE.

2.4. Implications For A Short Form Variation
Of Function Points

Based on our discussions, we propose a short form
variation of function points as a candidale metric
appropriale for measuring outputs from object-oriented
CASE environments,

To obtain the RAW-FUNCTION-COUNTS metric,
Step 1 from the function points analysis procedure is




retained but the function counts are not separated into
different complexity levels as in Step 2, or adjusted
for external complexity as in Step 3. Thus, we usc
the fallowing definition for this metric:

5
' RAW-FUNCTION-COUNTS = E FUNCTION-TYPE-INSTANCES, '
£=1

‘where

FUNCTION-TYPE-INSTANCES = total number of
instances of function type t in an
application.

= function types (Input, Output, Query,
External Interfaces, and Files).

We shall later present results to compare RAW-
FUNCTION-POINTS and function points in their
ability to predict development labor for CASE projects.
Resultls will provide justification for the proposed
removal of steps 2 and 3 from the function points
procedure as a means of saving calculation time and
effort without losing much predictive power.

3.A° NEW APPROACH TO OUTPUT
MEASUREMENT FOR CASE PRODUCTIVITY

An object-oriented integrated CASE environment
presents an interesting opportunity to test these metrics.
We have indicated at the outset that object-oriented
ICE is not representative of all CASE tools available
in the market today. However, object-oriented
development is being increasingly practiced in CASE
environments, and is widely believed to be the
standard analysis and design, and implementation
methodology for software development in the 1990s
(BOUL89, GOLD90).

The central repository stores information about the
different  kinds of objects used in applications
developed with the tool. Examples of object types
defined for the CASE (ool we studied are: RULE
SETS, 3GL MODULES, SCREEN DEFINITIONS and
USER REPORTS.  Each object type is defined
rigorously in order to make the process of software
development conducive to object reuse. A RULE SET
is a collection of instructions and routines writlen with
the high level language of the CASE tool being used.
It is usually called "the program" in 3GL development.
As such, RULE SETS have limited flexibility in
encoding functionality and generally allow to build the
most commonly required functions in the relevant
domain. For more complex or uncommon functions,
the 3GL MODULE object can be used. A 3GL
MODULE is a pre-compiled procedure, originally
written using a 3GL. A SCREEN DEFINITION is
the logical representation of an on-screen image. A
USER REPORT means just the same as it does in
development -environments other than ICE.

All objects associated with an application are
functionally organized into an object hierarchy, which
is stored in the central repository. An application
consists exclusively of these objects and each
application can be identified by a high-level
BUSINESS PROCESS at the root of the hierarchy. A
BUSINESS PROCESS calls other RULE SETS, which
in turn use other RULE SETS or 3GL MODULES.
These in tm can communicate with a SCREEN
DEFINITION, or create a USER REPORT. Figure 1
illustrates this hierarchy of application objects.

Figure 1. Repository Objects in the Integrated CASE Environment

3.1 Object-Oriented Development in a CASE
Environment
Busingssl
ICE applications arc comprised of objects that act as 1;‘23;:;;”
building blocks which the programmer uses o level)
synthesise the functionality required by an application — |
system. Objects provide specific, well-defined . ' =g
functionality in handy, ready-t0-use chunks of code. Pl‘_’gz:’;:s;l Business Business
Definitions and code contents of all such objects are {eats Sroerem & Process 3
: t ] ] (Application (Application (Application

stored in the central repository which also enforces level) level) level)
certain  standardization conventions regarding object S
definition. An object need ‘only be written once, and —|
all subsequent applications that need to deliver similar TR

) . RULES RULES
functionality can make use of the relevant object from SET A SET B SET ¢
the repository. If a system needs to deliver
functionality not already embodied in an existing 16L
object, a new object may be created according to the MODULES
standard conventions for its definition. This discipline
in the object storage and application version- USER
management features of the central repository REPORTS
streamlines the process of creating software by writing
and reusing existing objects. SCREEN

DEFINITIONS




The relationships between objects (which RULE uses
which 3GL MODULE, which SCREEN invokes which
VIEW, etc.) are themselves stored in the central
repository,  Collectively, the set of object instances
and relationships between them make up the model of
an application, and this can be used to identify the
objects and the object instances that comprise an
application.  Identification of such objects has two
important benefits. First, it follows the natural
building process of CASE sysiems and is therefore
intuitive and has the potential to be more accurate and
consistent.  Second, the application model in the
repository can be utilized to facilitate the automation
of object identification. This would lead 1o
considerable savings in the effort and cost involved in
collecting information about the objects used, and
motivate implementation of the revised measurement
procedures which we will shortly describe.

32. The "Object Analysis" Approach

Do objects represent the [functionality of an ICE
application? We argue that the size and functionality
delivered by an ICE application can be derived from
the aggregation of the objects used to build it. Will
knowing the number of objects that comprise a system
provide sufficient mformauon o estimate the labor
required to build it?

To explore these questions further, we conducted two
sets of interviews with managers and analysts
experienced in the use of ICE within the organization.
The first set involved conducting Delphi sessions in
which a small group of project managers were asked
lo estimate the time required 1o build a small
application involving a wide variety of functionality
requirements. The Delphi sessions were taped for later
analysis.  Based on the themes that unified the
approaches used for reaching group estimates of
development labor, we conducted a second set of
individual follow-up interviews.  Projecl managers
responsible for developing and estimating projecls were
interviewed and asked more focused questions
regarding how they would estimate development labor
using ICE objects as the basis of their estimation.

Results of our analysis indicated that project managers
employ estimation heuristics 1o assess the number of
different types of objects that need to be developed for
a project. Use of heuristics by experts for the
estimation of software development costs has been
reported previously in other development environments
(VICI89). Using these heuristics, a project manager
initially estimates the number of RULE SETS, 3GL
MODULES, SCREEN DEFINITIONS and USER
REPORTS that would comprise the final application
software. However, similar to the function types in
function points, different objects exhibit different levels
of complexity and functionality, and also require

different amounts of development labor 1o construct.
The project managers we interviewed classified
occurrences of object types into three levels of
complexity. Each complexity level within an object
type was regarded as requiring a different number of
days 1o develop. PI’OJCCI. managers’ object-effort
estimates are summarized in Table 2 below in terms
of the average time required to build a given object

type.

Table 2. Project Manager Development Effort Heuristics

PROJECT MANAGER EFFORT
HEURISTICS (AVERAGE)

OBJECT TYPE

RULE SETS 3 days
3GL MODULES 10 days
SCREEN DEFINITIONS 2 days
USER REPORTS 5 days

We utilized the means of their object-effort responscs
for the complexity levels because we have not yel
explicated the heuristics managers use to classily
objects into complexity levels. A deeper investigation
into the nature of heuristics for estimation and
classification of objects in ICE environments is
required in order to specify dimensions of object
complexity. We can then generate object-effort tables
from a database of actual projects developed using
object-oriented ICE environments.

Two new oulpul measures arc suggesied by our
analysis. The first, OBJECT-COUNTS, is determined
by summing the instances of individual objects of the
four types. The second, OBJECT-POINTS, is
determined by weighting each object type by the
development effort associated with it (given in Table
2). These two metrics are defined as follows:

4 .
OBJECT-COUNTS = Y OBJECT-INSTANCES,

t=1

¢
OBJECT-POINTS = E OBJECT-EFFORT-WEIGHT, « OBJECT-INSTANCES,

=1

where

OBJECT-EFFORT-WEIGHT = average development
effort associated with object type I,

based on project manager
heuristics;

OBJECT-INSTANCES = total number of instances
of object type t in an ICE
application;

t = object type (RULE SETS, 3GL
MODULE, SCREEN DEFINITION
and USER REPORT).




4. EVALUATION OF ALTERNATE METRICS
FOR MEASURING CASE OUTPUTS

We next compare the object points analysis approaches
with the function points procedure as candidate metrics
for measurement of outputs from object-oriented
CASE. The OBJECT-COUNTS and OBJECT-POINTS
metrics were defined in Section 3.2. FUNCTION-
POINTS is the original Albrecht version presented
carlier in this paper, and its short form variation is
RAW-FUNCTION-COUNTS defined at the conclusion
of Section 2.

4.1. Modelling Output Metric Performance

In order to test the performance of the four metrics for
estimation of software development labor, we estimated
a set of regression models to predict the reuse-adjusted
development effor! (the dependent variable) in terms of
cach of the output metrics (the independent variables).
The regression results can be used to indicate the
extent to which a given output metric is able 10
explain the variance in development effort, after it has
been adjusted to reflect unaccounted effort required for
developing reused code.  When high levels of reuse
are observed, the resulting functionality of a system
will not be a very good predictor of the labor required
to build it, since reused code does not requirc an
equivalent amount of labor input to construct and
implement.

In order that the functionality embodied in the reused
code be reflected in the development labor logged
against the project, we adjust labor by a faclor
representing the leverage provided by reused code.
Reuse leverage can be measured by the average
number of times an object was reused in an
application (BANK90a). The average level of reuse
requires calculating the ratio of the total objects. used
in an application to the number of unique objects.
This is a leverage metric, which means it adds to the
labor estimates an amount proportional to the
functionality supplied by reused code. This metric for
measuring reuse agrees with the reuse measurement
approaches advocated by Neighbors (1984) for 3GL
environments. Thus, we adjusted development effort,
expressed in PERSON-MONTHS, by multiplying it by
the average level of reuse as defined below.

TOTAL OBJECTS USED BY APPLICATION

R =
Sl UNIQUE OBJECTS USED BY APPLICATION

The estimation model we used to compare the various
output metrics has the following mathematical form:

PERSON-MONTHS * REUSE = B0
+(B1 * OUTPUT-METRIC * DUMMYI)
+(B2 * QUTPUT-METRIC * DUMMY2)+ ¢

where

PERSON-MONTHS number of person months
of development labor
consumed in consirucling

the project;

Il

REUSE total number of objects
used in an application
divided by the unique

number of objects used;

application  oulput, as
measured by  FUNCTION-

POINTS, RAW-FUNCTION-COUNTS
ORBJECT-COUNTS or OBJECT-

POINTS |

OUTPUT-METRIC =

DUMMY1,(2) 1 if project constructed in
Year 1 (2),

0 otherwise;

regression parameters to be
estimated;

o, B1, B2 - =

a normally distributed error
term.

A model incorporating the DUMMY1 and DUMMY?2
variables enables us to represent information about the
relative productivity of the thirteen projects constructed
in Year 1, when the CASE tool was being developed,
and the seven Year 2 projects developed later. Year 2
projects tended to be much larger development efforts,
where the power of the CASE development
methodology was more effective and more reuse was
observed. As a result, each of the two phases of
project development with the CASE ool exhibited
different productivity levels. Our study of Year 2
projects indicated an order of magnitude gain in
productivity when compared to Year 1 projects
(BANK90a). Clearly, developers’ use of the tool had
begun to mature and the 1ol delivered more
development power by Year 2. The model specified
above accounts for this difference in development
productivity over the two years.

4.2. Estimation Performance Results

Selected details of the data for the metrics used in the
regression are shown in Table 3. Our first step was
to examine correlations between the output metrics.
Table 4 presents the correlation results. The
correlations between

the function point based metrics were all quite high
(98 minimum), while the correlations between the
function point metrics and the object melrics were
lower (.89 maximum). Since the function points
procedure is  established and well validated,
correlations with this metric are an indication of the
convergent validity of the new metric. Low




Table 3. Data for Four Boftware Development Output Metrics

RAW
PROJECT FUHCTION FUNCTION OBJECT OBJECT
DETAILS POINTS COUNTS COUNTS POINTS

MERK 1337.9 242.3 153.9 966.0

HAXIMUM 5911 865 619 3657

MINIMUM 98 27 22 87

STANDARD 1609.0 247.8 168.0 1024.3

DEVIATION

MEAN/

STANDARD 1.20 1.02 1.08 | . 1.06

DEVIATION

correlation with the function point metric could mean
that the new metric is not a good measure of the
construct that function points purports to measure
(functionality delivered to the user). Or, it could mean
that the new metric complements function points by
measuring an aspect or dimension of the construct
ignored by function points. In our data set, the easier
o collect RAW-FUNCTION-COUNTS could, thus be
as useful a measure of output as FUNCTION-POINTS.
The same may not be truc for the object analysis
based metrics. OBJECT-COUNTS and OBIECT-
POINTS may measure a different aspect of the
applications’ functionality, or they may be measuring
an entirely different characteristic of the output.

Table 4. Correlations for Output Metrics
Ir 1) 1l
I I CORRELATIONS |
I — | T T |
outpuT | |oBJECT| OBJECT- |
METRICS | FP RFC |COUNTS| POINTS
it T f
FP | - - | - -
f ! —
RFC .98 - | - -
(B |
Il I
| oBJECT- .89 Br ] = -
COUNTS |
} } f —
| oBJECT- .86 .86 | .ss | - |
[ PpornrTs | | |
1 1 | ]

Thus, our next step was o examine the quality of the
cffort estimates produced by the metrics. The
regression results for the [four estimation models
discussed above are presented in Table 5. The table
offers information about estimated parameters and the
absolute magnitude of the fit of the models.

The RAW-FUNCTION-COUNTS and FUNCTION-
POINTS metric were estimated to explain about 54%
of .the variance in PERSON-MONTHS * REUSE,
based on the R? value for the estimated model. The

similarity between the wo metrics’ estimation
performance is readily explained. Projects in the data
set  exhibited relatively  similar  values  for
TECHNICAL-COMPLEXITY-FACTOR  since  the
implementation environments did not vary much in the
applications. However, the results seem to justify the
proposition that complexity differentials in ICE-
delivered function counts may not lead to significant
improvement in estimating development labor.

Table 5. Results For Estimation Performance of Metrics

SOFTWARE COEFFICIENT ESTIMATES REPORTED
OUTPUT MEASUREMENT (SIGNIFICANCE LEVELS) R=-SQUARED
METRIC go 31 B2
RAW-FUNCTION-COUNTS 464.595 6.37 1.00 .54
(.08) (.001) (.15)
FUNCTION-POINTS 485.16 1.43 0.15 .54
(.08) {.001) {.16)
OBJECT-COUNTS 90.90 15.40 2.38 .58
(.76) (.001) (.03)
OBJECT-POINTS 341.08 2.26 0.29 .65
(.14) (.00L1) {.05)

OBJECT-COUNTS demonstrated a marginally better
performance in estimating PERSON-MONTHS *
REUSE. R? for the estimation model involving
OBJECT-COUNTS rose to 58%, a 7.4% increase over
FUNCTION-POINTS. The OBJECT-POINTS metric
performed even better, with the metric demonstrating
the ability to explain 65% of the variance in the
output metric, a nearly 20% improvement in R’
compared to  FUNCTION-POINTS and 10%
improvement over OBJECT-COUNTS. Once again,
regression resulls indicate the fit of the model, and
thereby provide evidence for the estimation
performance of the metrics. These results, however,
are inconclusive about one metric being better than the
other as a measure of the intrinsic size and
functionality of the software.

The third category of results are derived from an
interpretation of the parameter estimates (B,, B, and
B,). The majority of the paramelers obtained from
these models were positive and significantly differcnt
from zero. In fact, the significance of the relationship
between labor and output was strongest for the object
point metrics. A side result of the modelling approach
we have used is that it also provides information on
the productivity ratios between Year 2 and Year 1
development using the estimated parameters {from the
regression. Table 6 presents the productivity ratios,
B./B;, for each of the output metrics estimations.

Although the Year 2 to Year 1 produclivity ratios
exhibit considerable variance, they demonstraic the
extent to which productivity increased in the firm’s
use of CASE over the two years. The low end of the
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Table 6.

Productivity Ratios Based on Estimated Parameters

SOFTWARE PRODUCTIVITY RATIO --

OUTPUT MEASUREMENT PHASE 2 VERSUS PHASE 1

METRIC (BASED ON 8 PARAMETERS)
RAW~-FUNCTION-COUNTS 6.37/1.00 = 6.37
FUNCTION-POINTS 1.43/0.15 = 9.53
OBJECT-COUNTS 19.40/2.38 = 8.15
OBJECT-POINTS 2.26/0.29 = 7.79

range of productivity ratios is about 6 for RAW-
FUNCTION-COUNTS, while on the

other hand, using FUNCTION-POINTS as an estimator
led to the largest estimated productivity ratio between
the phases. One possible interpretation is that RAW-
FUNCTION-COUNTS underestimates output because it
treats the labor requirements of different complexity
levels uniformly. However, as the funcuonality and
complexity embodied in Year 2 projects increased,
underestimation of output by RAW-FUNCTION-
COUNTS increased more than proportionately. As a
result, productivity gains esymated by RAW-
FUNCTION-COUNTS was the least. Function points,
while accurately capturing the higher functionality of
complex CASE-based applications developed in Year
2, tended to overstate the labor required to create
them. The mean of the productivity ratios
corresponding to the four metrics was 7.96, and this
was most closely matched by the object analysis
metrics.  Thus, each of the models provides clear
evidence for the extent of productivity gains observed
as use of the CASE tool matured in the firm.

3. CONCLUDING REMARKS
5.1. Contributions

Our investigation into the performance of two function
point analysis and two object analysis metrics suggests
that there may exist viable altemate approaches for
measuring the outputs of the CASE-development
process. This study was conducted as an exploratory
investigation to provide us with the basis and
directions  for further developing measurement
approaches for object-oriented CASE environments.
As such, our findings should be interpreted within the
limited validity of the study. Conclusions regarding
the performance of alternate merrics from our study
were obtained within a single organization, with the 20
projects we studied. At this stage, we have no
information about whether the results would also hold
true in other integrated CASE development
environments, since this research question can only be
investigated using data sets that involve multiple
organizations. However, we believe that the
characteristics of the development environment we
studied and utilized in testing the metrics are present

in other object-oriented CASE environments. If that is
true, then it is a reasonable expectaton that results can
be generalized to other such CASE environments. We
are currently involved in confirming this assertion with
larger data sets from multiple sites.

Two altemate measurement approaches exhibited
strong potential for further development and validation
in object-oriented CASE environements. The RAW-
FUNCTION-COUNTS metric proved to be comparable
to FUNCTION-POINTS in terms of ils estimation
performance, and it is readily implemented at much
lower cost. We also achieved considerable success in
our test of the OBJECT-COUNTS and OBJECT-
POINTS metrics as estimators for  software
development labor. Moreover, these are measures that
can be readily automated in an integrated CASE
development environment such as the one described in
this paper. The results showed that OBJECT-POINTS
best fitted our model for estimating software
development labor. For the data set we investigated,

it actually had a higher R® than both FUNCTION- ...

POINTS and RAW-FUNCTION-COUNTS.

Qur approach to esumating the productivity gains from
the use of CASE in Year 2 versus Year 1 also has
important managerial implications for research on
CASE productivity. The lessons and insights obtained
by studying our data and results can help to build
experience in the area of CASE productivity
assessment. ~ As a result, we have considerable
evidence from our research to suggest that the use and
availability of key development faciliies made
available with the CASE tool clearly aflect
productivity, as do the wider range of opportunities for
reuse and a development environment that is more
stable and better understood by developers.

5.2. Future Research

In future research, we intend to further explore object
points analysis as an output measurement approach
that is tailored to and built into the object oriented
CASE development process itself. The first step we
will take is to examine another more detailed object
points metric in which each object is weighted by the
approximate time it takes to construct. Our Delphi
sessions and individual project manager interviews
suggested that project managers distinguish among the
complexity levels of the various objects that they build
into ICE applications. Additonal work needs to be
done to identify the dimensions of the objects that
define their complexity levels. We also intend to
study a larger set of projects within the same
organization and to extend our analyses to the projects
of other organization that have implemented object-
oriented ICE.




Another open question is the automation of object
points analysis. Object point analysis reporting Llools
can be made to analyze the changing contents of the
rcpository as an application is constructed.  Since
objects were found to be more intuitive to the project
managers’ mental model of the functionality of
software developed .with object-oriented CASE, real-
time object information will be relevant for the
project’s operational control. The object information
thus made available to the project manager will assist
him in proactively managing the software development
process and make strategy decisions (BANK90b). We
believe that the measurement of object points
(weighted for the complexity of objects in the
application’s object hierarchy) can be automated at low
cost, once we have solved the problem of
dimensioning object complexity.

When senior managers of softwarc development
operations have such tools available, the stage is set
for an entirely new approach to managing the software
development process -- software development life cycle
productivity management. To date, the process of
rracking software development operations has largely
been based on single point estimates of productivily,
for example, taken when a project has been completed.
But, the data made available by automating the
measurement process as a project proceeds through the
development life cycle offers many possibilities for
rich and insightful analyses that cannot be conducted
using traditional performance tracking approaches.
Management can increase its effectiveness by
proactively fine-tuning software development as it
occurs, rather than adjusting it for future devclopment.
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