
OUTPUT MEASUREMENT METRICS
IN AN OBJECT-ORIENTED COMPUTER AIDED

SOFTWARE ENGINEERING (CASE) ENVIRONMENT:
CRITIQUE, EVALUATION AND PROPOSAL

by

Rajiv Banker
Arthur Andersen Professor of Accounting and Information Systems

Carlson SchooI of Business
University of Minnesota

Robert J. Kauffman
Assistant Professor of Information Systems

Stern School of Business
New York University

and

Rachna Kumar
Doctoral Program in Information Systems

Stern School of Business
New York University

October 1990

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-90-12

Forthcoming in The Proceedings of the 1991 Hawaii International Conference on System Sciences.

We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa for the access they
provided us to data on software development projects and managers' time throughout our field study of

CASE development at the First Boston Corporation and SEER Technologies. We also wish to thank Eric
Fisher and Charles Wright for assisting with the data collection. In addition, Dani Zweig provided useful
suggestions on the content and presentation of the ideas in this paper. Jon Turner helped us to formulate

this research at an early stage with ideas that are central to this paper. Finally, we thank the National
Science Foundation for partial funding of the data collection under grant SES-8709044. All errors in this

paper are the responsibility of the authors.
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-12

OUTPUT MEASUREMENT METRICS I N AN OB JECT-ORIENTED
COMPUTER AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMENT:

CRITIQUE, EVALUATION AND PROPOSAL

Rajiv D. Banker Robert J. Kauffman Rachna Kumar
Carlson School Of Business Stern School Of Business Stern School Of Business

University Of Minnesota New York University New York University

Abstract

Output measurement metrics for the software
development process need to be re-examined to
determine their performance in the new, radically
changed CASE development environment. This paper
critiques and empirically evaluates several approaches
to the measurement of outputs from the CASE process.
The primary metric evaluated is the function points
method developed by Albrecht. A second metric
tested is a short-form variation of function points that
is easier and quicker to calculate. We also propose a
new output metric called object points and a related
short-form, which are specialized for output
measurement in object-oriented CASE environments
that include a central object repository. These metrics
are proposed as more intuitive and lower cost
approaches to measuring the CASE outputs. Our
preliminary results show that these metrics have the
potential to yield as accurate, if not better, estimates
than function points-based measures.

1. INTRODUCTION

The productivity impacts and buslness value
implications of computer aided software engineering
(CASE) tools are of increasing concern to researchers
as well as practitioners in the software community.
However, convincing results in this area have been
difficult to obtain. The Iack of results can be
attributed to a number of difficulties ranging from poor
data availability to limitations of current evaluation
approaches (KEME89). Thus there is substantial
motivation to conduct research on measurement metrics
that are conducive to building a cumulative base of
valid and reliable estimates for the outputs of CASE
development.

A survey conducted by Sofiware Magazine reports that
only 13% of CASE-using firms out of the 196
surveyed have a productivity measurement program of
any kind in place (BOUL89). Such surveys are
indicative of an urgent need for measurement

approaches which identify and substantiate CASE-
related productivity improvements. Appropriate
measurement approaches will not only allow
comparisons across different software development
environments, they will also increase the effectiveness
of systems that aim to improve strategic cost
management by tracking software development
productivity (BANK90b).

However, before we measure, we need to establish
robust metrics as measurement units. Existing
measurement approaches were developed and validated
for third generation language (3GL) software
development environments. The CASE environmeni,
however, is radically different in terms of boih the
structural and functional dimensions of systems
development (SENN90). Although these well
established methods can be brought to bear on the
problem of CASE productivity, they must bc
scrutinized, and recalibrated to ensure they remain
valid in this new CASE development process.

This paper examines the issue of output measurement
for CASE-based software development. Our aim is to
critique and empirically evaluate several measurement
approaches for software developmcnt using CASE
tools. Our inltial emphasis is on the appropriaicness
of function points as a measure of the functionality
delivered by CASE-developed systems. The function
points methodology was developed by Albrecht to
measure the intrinsic size of a system (ALBR79). Wc
also examine a short-form variation of function points
obtained as an intermediate step in the calculation of
function points. We investigate this variation because
it, is quicker and cheaper to calculate, and as
applicable in the CASE development environment as
the function points metric.

Another approach, which we call object points
analysis, represents a new proposal that involves
counting repository objects developed in an integrated
CASE environment. This approach is proposed as a
more intuitive way to measure system functionality
when developers use object-oriented CASE
development procedures. We will evaluate this third
metric which is based directly on the number of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

ol~jects coinprising an application, as well as a fourth
metric that weights objects for their relative complexity
in terms of the average tiinc i t takes to build them.

We present estimation performance results of the four
:~lternative meirics in terms of their abili~y to predict
software development effort. Estimarion performance
refers to the ability of a software output measurement
metric to accurately predict the amount of software
development labor consumed in a project. This will
enable us to assess the extent to which each of the
nietrics actually measures the size of the software.

1.1. Function Points As An Output Metric

Function points is a melrlc for the s17e of the output
lro~n the software development process A function
polnt IS deftned as the size of one end-user buslness
lunction (ALBR79) It was originally developed as a
means to track product~vity In terms of funcuon polnls
dcl~vered per person month of development effort.
Subsequent research has invesbgated the abil~ty of
.Ipnorr estlmatcs of function points to predzrt the effort
rcqu~red for developing software (LOiV90, RUDO81,
KEh4E87).

The functlon polnt procedure requlres the analyst to
identify the occurrence of each unlque Input, Output,
Logtcal F~le, External Interface, and Query types
tielivered by the software. In thts research, we call
the surn of all function type occurrences the RAW-
TUNCTION-COUNT. RAW-FUNCTION-COUNTS arc
then welghted wlth numbers that reflect the value of
that funcuon type to the user These are referred to as
It7ElGIITED-FUNCTION-COUNl'S. T h ~ s surn is then
adjusted uslng ratlngs on fourteen cornplex~t~~ factors
that reflect the complexity of the system requlreinents
and the de\~clopment environmenf. The adj~stment
score 1s called the TECllNICAL-COMPLEXITY-
FACTOR F~nally, funct~on polnts are calculated as
WEIGHTED-FUNCTION-COUNTS " TECHNICAL-
COMPLEXITY-FACTOR Table 1 gives further
tleta~ls.

$4 number of factors support the choice of function
points as the measurement approach to be evaluated.
It is widely accepted as a de facto indusuy standard
(ALBR83, JONE86, SYM088, LOW90). In use today
are many flavors of function point counting, including
ESTIMACS (RUBI83), SPQR (JONE86), MARK I1
(SYMO88), IFPUG (IFPU88) and IBh4 (IBM89).
Rules for counting function points have been
rigorously defined, and agreed upon by their more
enthusiastic users (DREG89, IFPU88). Function points
also have advantages over source-lines-of-code methods
of effort estimation because they can be estimated
earlier in the development cycle, and are indepenedent
of the language and technology used (ALBR79,
LOW90). Kemerer (KEME87) reports that Albrecht's

function points
method led to a smaller average error rate in
estimating software applications, when con~p~l~ctl t o
alternate output measurement methods includtng
COCOMO, SLIM (popular source-llnes-of-cudc basctl
models) and ESTIMACS. Finally, Jones sLatcs that
most CASE customers with mcasureinent plans arc
basing their metric on function points (BOULS9).

Table 1. The Function Points Procedure
STEP 1: Identification of RAW-RJNCTIOKCOUMS. Identify
each functionality unit and classify into the five user function
types: lnput Type, Output Type, kternal Interface Type,
Logical File Type, Query Type. This step yields RAW-
FUNCTION-COUNTS for the five different function types, and
we will refer to the sum of these raw-function-counts as
RFC. - STEP 2: Ctassification of Simple, Average and Complex
Function Types. The RAW-FUNCTION-COUNTS are further
classified into three complexity levels depending on the
number of data elements contained in each count, and the
number of files referenced. Each subtype is weighted with
numbers reflecting the relative value of the function to the
user. For example, a Simple lnput Type would be weighted
by 3, while a Complex lnput Type would be weighted by
4. The weighting scheme proposed by Albrecht is:

FUNCTION TYPE j FUNCTION-COMPLEXITY -SCORES
1 simple Average Complex

I
Inputs l 3 4 6
Outputs 1 4 5 7
In ter faces I : 7 10
Queries 4 6
FiLes ! 10 15

WEIGHTED-FUNCTION-COUNTS for the five different types
are then defined as the sum of (RAW-FUNCTION-COUNTS
* FUNCTION-COMPLEXITY-SCORES). Hereafter we will
refer to this sum as WFC.

STEP 3: Adjusting WEiGHTEDFUNCTlOKGOUNTS by
TECHNICAl..-cOMPLMITY-FACTOR The adjustment factor
reflects application and environmental complexlry, expressed
as the degree of influence of 14 "applicat~on characteristics"
listed below. Each characteristic is rated on a scale of 0 to
5 (COMPLEXITY-FACTOR-VALUE), and then all scores are
summed. The TECHNICAL-COMPLEXITY-FACTOR (TCF) =

.65 + .O1 * CfcF COMPLEXITY-FACTOR-VALUG.

1. Data Comnunications
2. D i s t r i b u t e d Functions
3. Performance
4. Heavily-used Config.
5 . Transaction Rate .
6 . On- l ine Data En t ry
7. End-User E f f i c i e n c y

8. On-Line Update
9. Complex Processing

10. Re-Usabi l i ty
11. I n s t a l l a t i o n Ease
12: Operational Ease
13. Mu l t ip le S i tes
14. F a c i l i t a t e Change

Finally, total FUNCTION-POINTS (FP) are calculated as FP
= WFC * TCF.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

1.2 Data and the CASE Environment
Examined

We obtaitled data on twenty software projects from a
large investment bank in New York City. The
projects were developed and implemented will1 an in-
house CASE tool over a two-year period. The CASE
tool evolved as a multi-million dollar, internally
developed software project. Its objective was to
increase the responsiveness of the firm's software
development operations. It exhibits many of the
features of an Integrated CASE Environment (ICE)
(BANK90a). ICE refers to application development
using CASE tools that automate the entire life cycle of
software cieveloprnent, from the earlier stages of
analysis and design to the later stages of code
construction and testing. The type of CASE
environment used diclates the variety and range of
automated software engineering facilities available for
programming. This CASE tool provides powerful
development support utilities, including entity-
rclationstiip modelling, screen and report painters, and
3GL motiule-integration tools. Its unique features
include:

" an object oriented approach to applications
developmen t. Application programmers use
structured, standardized, and rigorously defined
objects and modules as building blocks to encode
the functionality required for applications.

" a cenrrulized repusrtorj which stores all nodules and
objects dcvcloped for applications;

" storage of the application model as an abstract
object hierarchy in the repository. This abstract
model defines the functionality of each ICE
application.

The structure of this development environment is
further detailed later in the paper. Our investigation
into the usefulness of a short-form variation of
function points, and the development of the object
points analysis approach is closely tailored to such
CASE environments. The twenty projects were
assessed by a team of analysts trained in function
points analysis. T h ~ s resulted in four counts
corresponding to the four meuics we discuss in this
paper for each of the twenty projects. This data was
used for evaluating and comparing the performance of
the four metrics.

The remainder of this paper is organized as follows.
Section 2 critiques the methodology of function points
from the perspective of the changed requirements in a
CASE development environment. It also discusses our
rationale for testtng a short-form variation of function
points for CASE-based systems. Section 3 presents a

new approach to gauging the outputs of softu.al.i.
development : object points analysis using object-
oriented CASE environments. Results of an empirical
evaluation of the function points metric, its short-fornr
variant, and object points and its short term nre
'presented in Section 4. Section 5 conclutfcs witli a
discussion of the requirements for rnetrics which bettcr
support the measurement and estimation of
productivity in systems developed using CASE.

2. FUNCTION POINTS FROM A CASI-
PERSPECTIVE: A CRITIQUE

How does the function points procedure stand u p to
the measurement challenge of the CASE envlronme~'ri?
What portions of the procedure present problems 111

the CASE envlronrnent that can he overcome u5111g
rev~sed metrlcs? We argue that each stcp in tllc
calculatton of function points (as presented 112 Tablc 1)
needs to be reassessed In llght ot relev,lnt CASE
characlenst~cs.

2.1. Step 1 -- Identification of RAW-FUNC'I'ION-
COUNTS

First, the classification scheme used in [tic
identification of RAW-FUNCTION-COUNTS (RFC) is
not intuitive for CASE-developed software. Tllc
components of the function points procedure (Inputs,
Outputs, External Interfaces, Queries and Files) do not
folloni naturally from the building blocks advocated in
an object-oriented integrated CASE environment. Thc
CASE methodology used in object-oriented ICE
development enforces modulariztllion of applicatioii
code. When modules and objecis are the building
blocks of CASE applications, identification of the five
function types will force the analyst Lo expentf
significant effort in stepping within a module or an
object to examine the code. hloreover, a sizeable
portion of the code may have originated frorli a
powerful feature of CASE: the ability to gerzerccic
code. A programmer or analyst who has not uiriltcn
the actual code and done only the logical design
would be forced to deal with the auton~atically
generated code, which may not closely match what
the person would have written. Thus, analyzing
CASE-generated code would be an onerous, and most
likely, an inefficient task. I t may result ill

subjectivity and inconsistency in ,the classification ol'
RAW-FUNCTION-COUNTS, as well as require a
Iarge amount of time and effort.

Second, a straightforward gauge of function types will
be prme to double-counting the labor consunled in
developing systems with CASE. The feature of a
central repository in ICE environments present?
significant opportunities to reuse code. Reused code

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

adds to the functionality a system delivers without
requiring much additional effort. So, when function
points are being used for measuring the functionality
or size of a CASE-delivered system, the effort
estimates should be adjusted to reflect the functionality
added by reused code.

Thus, although the five function types represent the
intrinsic functionality of CASE-developed systems, it
would be useful to have a mechanism that translates
functionality into the more natural building blocks of
modules and objects in an object-oriented CASE
environment. In related research, we have investigated
a solution to the problem of mapping between CASE
objects and the function types (BANK90c). The
proposed mapping forms the basis of automating
function points analysis in an object-oriented ICE.
This could effectively circumvent the problems of
effort, time and inconsistency in manually counting the
function points of CASE-delivered systems. However,
cstirnntiott of function points remains unintuitive in
such CASE cnvironmcnts.

2.2. Step 2 -- Classif'ication into Complexity Levels

Class~ficattqn of RAW-FUNCTION-COUNTS into
levels of complcx~ty 1s the second step In funct~on
point an,llysts It y~elds WEIGHTED-FUNCTION-
COUNTS. The coinplcxlty weights that apply to the
different complex~ty levels were detcrmrncd by
Albrecht by Lrral and error (ALBR79). Symons
(SYMO88) concluded that a neb set of werghts might
need to be recalibrated for any new technology, or
new development environment Clearly CASE
quallfles as a technology rad~cally d~fferent from the
tnd~tional 3GL tlcveloprncnt activities to wh~ch
Albrecht's weights apply

I t is useful to keep in mind that the rationale for
dccon~posing each function type into simple, average
arid complex came from a realization that each
represented a different level of functionality delivered
to the user (ALBR79). For estimation purposes, this
is assumed to translate into different amounts of time
to code each complexity type. However, in the CASE
environment the differential between the time required
to code a simple type and a complex type may not be
its large as in a 3GL development environment. The
ability to do object-oriented development, to reuse
code and to generate code, may conlribute to an
increased uniformity in the levels of effort required for
developing different complexity types. The proposition
here is that the complexity differentials in CASE
function counts may not lead to a significant
iinprovement in estimating the actual development
labor consumd. Thus, the complexity classification

used in the function points analysis method may not
only need recalibration, but in fact, may not be worth
(in terms of estimation performance) the extra effort.

For use in CASE environments that exhibit some of
the characteristics of ICE, we think it may be
worthwhile to consider an aggregate count for each of
the five function types, w~thout further classification
by complexity level.

Other problems with class~ficauon of the function
types Into three levels of complexity include ~ n c r c ~ ~ ~ c d
~~bjectlvlty and measurement effort Level ol
expenence In software programming (and by analogy,
In CASE tools) affects an analyst's perccptloil
regard~ng the complex~ty of a function type (LOW90)
The ume and effort involved in ach~ev~ng th~s
s u b c l a s s ~ f ~ c a t ~ o n through CASE-generalctl
documentation further adds to the cost of countlng
funct~on pornts.

2.3. Step 3 -- Adjusting WE~GIITEI~-FLXCI'IOS-COU~-~S
by the 'SEClISICA1,-CO&fPLI.:XI'rli-FFiCTOR

Symons (SYM088) also advocates a more opcn-endctl
approach to the factors affecung external cornplcx~ty
Availabtl~ty of CASE ut~l~tles such as automatic ~ o t l c
generatlon, graph~cs generatlon and screen palntlng
may reduce the development labor required to
implement some complexity contr~buting factors (Table
1) Moreover, in the integrated CASE cn\l~ron~ncnr
we have been studying, reuse affects de\lclopmcnt
effort far more than any other factor (BANK90a) In
short, the 11st of fourteen factors may not all bc
relevant to CASE-based system de\elopment

As a result, TECHNICAL-COMPLEXITY-FACTOR
(TCF) may not explain a significant portion of thc
variation in labor consumed for developing a CASE-
based software application, so that the time anti effort
spent in calculating TCF would not be of valuc.
(Note from Table 1 that TCF can have a scorc only in
the range of .65 to 1.35, and thus can adjust the final
number of function points no more than 3570 at tlic
most. In fact, this range proved to be much narrower
in the data set we examined).

Thus, it is worthwhile to assess the predicti\le ability
of the TCF factor and its components. At thc same
time, the effect of the reuse factor needs to be
considered In more detail for the measurcmcrit
procedure to be appropriate for CASE.

2.4. Implications For A Short Fonn V~ricrtion
Of Function Points

Based on our discussions, we propose a short form
variation of function points as a candidate metric
appropriate for measuring outputs from object-oriented
CASE environments.

To obtain the RAW-FUNCTION-COUNTS metric,
Step 1 from the function points analysis procedure is

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-12

retained but the function counts are not separated into
different complexity levels as in Step 2, or adjusted
for external complexity as in Step 3. Thus, we use
the fallowing definition for this metric:

' RAW-FUNCTION- COUNTS = FUNCTION- TYPE- INSTANCESC
c-1

where

FUNCTION-TYPE-INSTRNCES = roral number of
instances of function type t in an
appliculion.

t = function types (Input, Outpul, Query,
External Interfaces, and Files).

We shall later present results to compare RAW-
FUNCTION-POINTS and function points in their
ability to predict development labor for CASE projects.
Results will provide justification for the proposed
removal of steps 2 and 3 from the function points
procedure as a means of saving calculation time and
effort without losing much predictive power.

The central repository stores information about the
different kinds of objects used in applications
developed with the tool. Examples of object types
defined for the CASE tool we studied are: RULE
SETS, 3GL MODULES, SCREEN DEFINITIONS and
USER REPORTS. Each object type is defined
rigorously in order to make the process of software
development conducive to object reuse. A RULE SET
is a collection of instructions and routines written with
the high level language of the CASE tool being used.
It is usually called "the program" in 3GL development.
As such, RULE SETS have limited flexibility in
encoding functionality and generally allow to build the
most commonly required functions in the relevan1
domain. For more complex or uncommon functions,
the 3GL MODULE object can be used. A 3GL
MODULE is a pre-compiled procedure, originally
written using a 3GL. A SCREEN DEFINITION is
the logical representation of an on-screen image. A
USER REPORT means just the same as it does in
development -environments other than ICE.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

3.A N E W A P P R O A C H T O O U T P U T All objects associated with an application are
hlEASUREMENrf FOR CASE PRODUCTIVITY functionally organized into an object hierr~rchy, which

is stored in the central repository. An application
An object-oriented integrated CASE environment consists exclusively of these objects and each
presents an interesting opportunity to test these metrics. application can be identified by a high-le\lcl
We have indicated at the outset that object-oriented BUSINESS PROCESS at the root of the hierarchy. A
ICE is not representative of all CASE tools available BUSINESS PROCESS calls other RULE SETS, which
in the market today. However, object-oriented in turn use othcr RULE SETS or 3GL MODULES.
development is being increasingly practiced in CASE These in turn can communicate with a SCREEN
environments, and is widely believed to be the DEFINITION, or create a USER REPORT. Figure 1
standard analysis and design, and implementation illustrates this hierarchy of application objects.
rnethodology for software development in the 1990s
(BOUL89, GOLD90).

Figure Repository Objects in the Integrated CASE Environment

3.1 Object-Oriented Development in a CASE
Environment

Function'
ICE applications are comprised of objecrs that act as (System
building blocks which the programmer uses to level)

synthesise the functionality required by an application
system. Objects provide specific, well-defined I 1

functionality in handy, ready-to-use chunks of code. Business
Process # 2

Definitions and code contents of all such objects are Process # 3
(Application (Application

stored in the central repository which also enforces level) level) level)

certain standardization conventions regarding object
definition. An object need 'only be written once, and --------- ----------

functionality can make use of the relevant object from I SET A SET B

a subsequent applications that need to deliver similar
SET C

the repository. If a system needs to deliver 1 I
functionality not already embodied in an existing I I
object, a new object may be created according to the
standard conventions for its definition. This discipline I I

in the object storage and application version- I * management features of the central repository /
streamlines the process of creating software by writing I
and reusing existing objects. I

t

USER
REPORTS -

I
I
I
I
I

The relationships betwecn objects (which RULE uses
which 3GL MODULE, which SCREEN invokes which
VIEW, etc.) are themselves stored in the central
repository. Collectively, the set of object instances
and relationships between them make up the model of
an application, and this can be used to identify the
objects and the object instances that comprise an
application. Identification of such objects has two
important benefits. First, it follows the natural
building process of CASE systems and is therefore
intuitive and has the potential to be more accurate and
consistent. Second, the application model in the
repository can be utilized to facilitate the automation
of object identification. This would lead to
considerable savings in the effort and cost involved in
collecting information about the objects used, and
motivate implementation of the revised measurement
procedures which we will shortly describe.

3.2, The " Ot>ject Analysis" Approach

Do objects represent the functionality of an ICE
application? We argue that the size and functionality
delivered by an ICE application can be derived fro111
the aggregation of the objects used to build it. Will
knowing the number of objects that comprise a system
provide sufficient information to estimate the labor
rcquired to build it?

To explore these questions further, we conducted two
sets of interviews with managers and analysts
experienced in the use of ICE within the organization.
The first set involved conducting Delphi sessions in
which a small group of project managers were asked
to estimate the time required to build a small
application involving a wide variety of functionality
requirements. The Delphi sessions were taped for later
analysis. Based on the themes that unified the
approaches used for reaching group estimates of
development labor, we conducted a second set of
individual follow-up interviews. Project managers
responsible for developing and estimating projects were
interviewed and asked more focused questions
regarding how they would estimate development labor
using ICE objects as the basis of their estimation.

Results of our analysis indicated that project managers
employ estimation heuristics to assess the number of
different types of objects that need to be developed for
a project. Use of heuristics by experts for the
estimation of software development costs has been
reported previously in other development environments
(VIC189). Using these heuristics, a project manager
initially estimates the number of RULE SETS, 3GL
MODULES, SCREEN DEFINITIONS and USER
REPORTS that would comprise tie final application
software. However, similar to the function types in
function points, different objects exhibit different levels
of complexity and functionaIity, and also require

different amounts of development labor to construct.
The project managers we interviewed classified
occurrences of object types into three levels of
complexity. Each complexity level within an object
type was regarded as requiring a different number of
days Lo develop. Project managers' object-effort
estimates are summarized in Table 2 below in tenns
of the average rime required to build a given object
type.

T a b l e 2 . Project M a n a g e r Development E f f o r t Heuristics

We utilized the means of their object-effort responses
for the complexity levels because we have not yet
explicated the heuristics managers use to classify
objects into complexity levels. A deeper investigation
into the nature of heuristics for estimation and
classification of objects in ICE environments is
rcquired in order to specify dimensions of object
complexity. We can then generate object-effort tables
from a database of actual projects de\lelopecl using
object-oriented ICE environments.

RULE SETS

3 G L MODULES

SCREEN DEFINITIONS

USER REPORTS

Two new output measures arc suggested by our
analysis. The first, OB JECT-COUNTS, is de~ermined
by summing the instances of individual objects of the
four types. The second, OBJECT-POINTS, is
determined by weighting each object type by the
development effort associated with it (given in Table
.2). These two metrics are defined as follows:

PROJECT MANAGER EFFORT
HEURISTICS (AVERAGE)

3 days

10 days

2 days

5 days

4

OBJECT- COUNTS = OBJECT- INSTANCES,
t=1

4

OBJECT-POINTS = OBJECT- EFFORT- WEIGHT, * OBJECT- INSTANCES,

where f.'

OBJECT-EFFORT-WEIGH7;= average develop~nenl
effort associated with object type t ,
based on project manager
heuristics;

OBJECT-INSTANCES = total number of instances
of object type t in an [CE
application;

t = object type (RULE SETS, 3CL
MODULE, SCREEN DBF/NI?'/ON
and USER REPORT).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

4. EVALUATION OF ALTERNATE METRICS
FOR MEASURING CASE OUTPUTS

We next compare the object points analysis approaches
with the function points procedure as canthdate metrics
for measurement of outputs from object-oriented
CASE. The OBJECT-COUNTS and OBJECT-POCI\ITTS
melrics were defined in Section 3.2. FUNCTION-
POINTS is the original Albrecht version presented
earlier in this paper, and its short form variation is
RAW-FUNCTiON-COUNTS defined at the conclusion
of Section 2.

4.1. Modelling Output hletric Performance

In order to test the performance of the four metrics for
estimation of software development labor, we estimated
a set of regression models to predict the reuse-adjusted
development efJort (the dependent variable) in terms of
each of the output metrics (the independent variables).
The regression results can be used to indicate the
extent to which a given output metric is able to
explain the variance in development effort, after it has
been adjusted to reflect unaccounted effort required for
developing reused code. When high levels of reuse
are observed, the resulting functionality of a system
will not be a very good predictor of the labor required
to build it, since reused code does not require an
equivalent amount of labor input to construct and
implement.

In order that the functionality embodied in the reused
code be reflected in the development labor logged
against the project, we adjust labor by a factor
representing the leverage provided by reused code.
Reuse leverage can be measured by the average
number of times an object was reused in an
application (BANK90a). The average level of reuse
requires calculating the ratio of the total objects used
in an application to the number of unique objects.
This is a leverage metric, which means i t adds to the
labor estimates an amount proportional to the
functionality supplied by reused code. This metric for
measuring reuse agrees with the reuse measurement

where
PERSON-MONTHS = number of person months

of developnzc~lt labor
consumed in co~~slructing
the project;

REUSE - - total number of objecls
used in an applicatiori
divided by the unique
number of objects used;

OrJTPUT-METRIC = application output, as
measured by FUIVCTIOIV-
POINTS, RAI~'-FU~'C~'I~I\'-CO UN'I'S
OBJECT-COU,VTS or OBJEC1'-
POINTS :

DUMMY1 ,(2) - - I if project constructed in
Year 1 (21,
0 otherwise;

P O , PI, p2 - - regression parar~zeters to be
estima~ed;

- - a normally disrrib~cted error
term.

A model incorporating the DUMMY1 and DUMMY2
variables enables us to represent information about the
relative productivity of the thirteen projects cons~uctcd
in Year 1, when the CASE tool was being developed,
and the seven Year 2 projects developed later. Year 2
projects tended to be much larger d&elopment efforu,
where the power of the CASE development
methodology was more effective and more reuse was
observed. As a result, each of the two phases of
project development with the CASE tool exhibited
different productivity levels. Our study of Year 2
projects indicated an order of magnitude gain in
productivity when compared to Year 1 projects
(BANK90a). Clearly, developers' use of the tool had
begun to mature and the tool delivered more
development power by Year 2. The mocfel specified
above accounts for this difference in developrncnt
productivity over the two years.

approaches advocated by Neighbors (1984) for 3GL 4.2. performance ~ ~ ~ ~ l t ~
environments. Thus, we adjusted development effort,

in p ~ R s o N - M o ~ T H s ~ m u l i i ~ l ~ i n g i t Selected details of the &ta for the metrics used in the
the average level of reuse as defined below. regression are shown in Table 3. Our first step was

REUSE = TOTAL OBJECTS USED BY APPLICATION to- examine correlations between the output iietrics.
UNIQUE OBJECTS USED BY APPLICATION Table 4 presents the correlation results. The

correlations between
The estimation model we used to compare the various the function point based metncs were quite high
output metrics has the following mathematical form: (98 minimum), while the correlations between the

function mint metrics and the object metrics were

PERSON-MONTHS * REUSE = PO
lower (.& maximum). Since thk function points
procedure is established and well \lalidated, * ouTPuT-METRrC * correlations with this metric are an indication of the

'(0' * ouTpuT-METRrC * DUMMY2)+ convergent validity of the new metric. Low

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-12

T a b l e 3 . D a t a f o r F o u r S o f t w a r e Deve lopment O u t p u t H e t r i c s

correlation with the function point metric could mean
that the new metric is not a good measure of the
construct that function points purports to measure
(functionality delivered to the user). Or, i t could mean
that the new metric complements function points by
measuring an aspect or dimension of the construct
ignored by function points. In our data set, the easier
to collect RAW-FUNCTION-COUNTS could thus bc
as useful a measure of output as FUNCTION-POINTS.
The same may not be true for the object analysis
based metncs. OBJECT-COUNTS and OBJECT-
POINTS may measure a different aspect of the
applications' functionality, or they may be measuring
an entirely different characteristic of the output.

PROJECT
DETAILS

Table 4. Correlations for Output Metrics

1-1
/I

/I
11 C O R R E L A T I O N S 11

I/ li I I I

I/ OUTPUT / /
I/

I I O B J E C T I OBJECT- 11
11 METRICS 1 FP I RFC / C O U N T S / POINTS 11
I I I I

1-1 I I I

I1 FP
it

I1 - I - I - I -
I1

I1
I/ I I I

1 RFC
/I

1 1 . 9 8 1 - 1 - / -
It

/I
II I I

1 OBJECT- 11 . 8 9 / . 8 7 1 - 1 -
I/

11 COUNTS /I 1 1 1
I/

li
II

/I
I I I

1 OBJECT- 11 . 8 6 / . 8 6 / . 9 9 1 -
It

11 POINTS I/
I/

I I I
I I I Il

Thus, our next step was to examine the quality of the
effort estimates produced by the metrics. The
regression results for the four estimation models
discussed above are presented in Table 5. The table
offers information about estimated parameters and the
absolute magnitude of the fit of the models.

L

I FUNCTION
1 POINTS

similarity between the two meuics' estimation
performance is readily explained. Projecu in thc data
set exhibited relalively similar values for
TECHNICAL-COMPLEXITY-FACTOR since the
implementation environments did not vary I T I U C ~ in thc
applications. However, the results seem to justify the
proposition that complexity differentials in ICE-
delivered function counts may not lead to significanl
improvement in estimating development labor.

MEAN 1 3 3 7 . 9

T a b l e 5 . R e s u l t s F o r E s t i m a t i o n Pe r fo rmance o f M e t r i c s

RAW
FUNCTION OBjECT
COUNTS / COUNTS

OBJECT
POINTS

2 4 2 . 3 1 1 5 3 . 9

11 RAW-FUNCTION-COUNTS 11 y:,:: (P,;:, (fig; I ." !

9 6 6 . 0

COEFFICIENT ESTIMATES
LEVELS)

METRIC 8 1 P 2

) FUNCTION-POINTS I 4 8 5 . 1 6 1 . 4 3
(. 0 6) (. 0 0 1) (. 1 6) 0 , i 5 I 11

REPORTED
R-SQUARED

OBJECT-COUNTS demonstrated a marginally bcuer
performance in estimating PERSON-MONTHS *
REUSE. R2 for the estimation model involving
OBJECT-COUNTS rose to 589'0, a 7.3% increase over
FUNCTION-POINTS . Thc OBJECT-POINTS metric
performed even better, with the metric demonstraling
the ability to explain 65% of the variance in ihc
output metric, a nearly 20% improvement in R2
compared to FUNCTION-POINTS and 10%
improilement over OBJECT-COUNTS. Once again,
regression results indicate the fit of the model, and
thereby provide evidence for the estimation
performance of the meuics. These results, however,
are inconclusive about one metric being better than the
other as a measure of the Intrinsic size and
functionality of the software.

OBJECT-COUNTS

OBJECT-POINTS

The third category of results are derived from an
interpretation of the parameter estimates (Po, PI and
P,). The majority of the parameters obtained from
these models were positive and significantly different
from zero. In fact, the significance of the relationship
between labor and output was strongest for the object
point metrics. A side result of the modelling approach
we have used is that it also provides infortnation on
the productivity ratios between Year 2 and Year 1
development using the estimated parameters from the
regression. Table 6 presents the productivity ratios,
P,/P2, for each of the output metrics estimations.

The RAW-FUNCTION-COUNTS and FUNCTION- Although the Year 2 to Year 1 productivity ratios
POINTS metric were estimated to expIain about 54% exhibit considerable variance, they demonstrate the
of .the variance in PERSON-MONTHS * REUSE, extent to which productivity increased in the firm's
based on the R2 value for the estimated model. The use of CASE over the two years. The low end of the

9 0 . 9 0 1 9 . 4 0 2 .38
(. 7 6) (. 0 0 1) (. 0 3)

341 .08 2 26 0 . 2 9
(. 1 4) (001) (. 0 5)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90- 12

. 5 8

. 6 5

j

Table 6. Productivity Ratios Based on Estimated Parameter

5. CONCLUDING REhlARKS

PRODUCTIVITY RATIO --
OUTPUT MEASUREMENT PHASE 2 VERSUS PHASE 1 [Frl (BASED ON P PARAMETERS)

5.1. Contributions

RAW-FUNCTION-COUNTS 1. FUNCTION-POINTS 1: OEJECT-COUNTS

OWECT-POINTS

Our investigation into the performance of two function
point analysis and two object analysis metrics suggests
that there may exist viable alternate approaches for
measuring the outputs of the CASE-development
process. This study was conducted as an exploratory
investigation to provide us with the basis and
directions for further developing measurement
approaches for object-oriented CASE environments.
As such, our findings should be interpreted within the
limited validity of the study. Conclusions regarding
the performance of alternate memcs from our study
were obtained within a single organization, with the 20
projects we studied. At this stage, we have no
information about whether the results would also hold
true in other integrated CASE development
environments, since this research question can only be
investigated using data sets that involve multiple
organizations. However, we believe that the
characteristics of the development environment we
studied and utilized in testing the meuics are present

6.37/1.00 = 6.37

1.43/0.15 = 9.53
1

19.40/2.38 = 8.15

2.26/0.29 = 7.79

s
in other object-oriented CASE environments. If that is
m e , then it is a reasonable expectation that results can
be generalized to other such CASE environments. We
are currently involved in c o n f i i n g this assertion with
larger data sets from multiple sites.

range of productivity ratios is about 6 for RAW-
FUNCTION-COUNTS, while on the
other hand, using FUNCTION-POINTS as an estimator
led to the largest estimated productivity ratio between
the phases. One possible interpretation is that RAW-
FUNCTION-COUNTS underestimates output because it
treats the labor requirements of different complexity
levels uniformly. However, as the functionality and
complexity embodied in Year 2 projects increased,
underestimation of output by RAW-FUNCTION-
COUNTS increased more than proportionately. As a
result, productivity gains esiimated by RAW-
FUNCTION-COUNTS was the least. Function points,
while accurately capturing the higher functionality of
complex CASE-based applications developed in Year
2, tended to overstate the labor required to create
them. The mean of the productivity ratios
corresponding to the four metrics was 7.96, and this
was most closely matched by the object analysis
metrics. Thus, each of the models provides clear
evidence for the extent of productivity gains observed
as use of the CASE tool matured in the firm.

Two alternate measurement approaches exhibited
strong potential for further development and validation
in object-oriented CASE environements. The RAW-
FUNCTION-COUNTS metric proved to be comparable
to FUNCTION-POINTS in terms of its estimation
performance, and it is readily implemented at much
lower cost. We also achieved considerable success in
our test of the OBJECT-COUNTS and OBJECT-
POINTS memcs as estimators for software
development labor. Moreover, these are measures that
can be readily automated in an integrated CASE
development environment such as the one described in
this paper. The results showed that OBJECT-POINTS
best fitted our model for estimating software
development labor. For the data set we investigated,
it actually had a higher R2 than both FUNCTION- -..
POINTS and RAW-FUNCTION-COUNTS.

Our approach to estimating the productivity gains from
the use of CASE in Year 2 versus Year 1 also has
important managerial implications for research on
CASE productivity. The lessons and insights obtained
by studying our data and results can help to build
experience in the area of CASE productivity
assessment. , As a result, we have considerable
evidence from our research to suggest that the use and
availability of key development facilities rnade
available with the CASE tool clearly affect
productivity, as do the wider range of opportunities for
reuse and a development environment that is more
stable and better understood by developers.

5.2. Future Research

In future research, we intend to further explore object
points analysis as an output measurement approach
that is tailored to and built into the object oriented
CASE development process itself. The f is t step we
will take is to examine another more detailed object
points metric in which each object is weighted by the
approximate time it takes to construct. Our Delph~
sessions and individual project manager interviews
suggested that project managers distinguish among the
complexity levels of the various objects that they bulld
into ICE applications. Additiond work needs to be
done to identify the dimensions of the objects that
define their complexity levels. We also intend to
study a larger set of projects within the same
organization and to extend our analyses to the projects
of other organization that have implemented object-
oriented ICE.

Center for Digital Economy Research
Stem School of Business
\Vorking Paper IS-90-12

Another open question is the automation of object
poinls analysis. Object point analysis reporting tools
can be made to analyze the changing contents of the
repository as an application is constructed. Since
objects were found to be more intuitive to the project
managers' mental model of the functionality of
software developed .with object-oriented CASE, real-
time object information will be relevant for the
project's operational control. The object information
thus made available to the project manager will assist
him in proactively managing the software development
process and make strategy decisions (BANK90b). We
believe that the measurement of object points
(weighted for the complexity of objects in the
application's object hierarchy) can be automated at low
cost, once we have solved the problem of
dimensioning object complexity.

When senior managers of software development
operations have such tools available, the smge is set
for an entirely new approach to managing the software
development process -- sofnvare development life c)~cle
productivity rnnnagemeni. To date, the process of
tracking software development operations has largely
been based on single point estimates of productivity,
for example, taken when a project has been completed.
But, the data made available by automating the
measurement process as a project proceeds through the
development life cycle offers many possibilities for
rich and insightful analyses that cannot be conducted
using traditional performance tracking approaches.
Management can increase its effectiveness by
proactively fine-tuning software development as i t
occurs, rather than adjusting it for future development.

REFERENCES

ALBR79 Albrecht, A. J. "Measuring Application
Dei.elopment Productivity " in Proceedings
on the Joint SIIARE, GUIDE, and IBM
Application Development Symposium, IBM,
October 1979, pp. 83-92,

ALBR83 Albrecht, A. J. and Gaffney, J. E. "Software
Function, Source Lines of Code, and
Development Effort Prediction: A Software
Science Validation," IEEE Transactions on
Software Engineering, 9:6, November 1983,
pp. 639-647.

BANKS)OaBanker, R. D and Kauffman, R J. "An
Emplrlcal Assessment of Computer A~ded
Software Eng~neering (CASE) Technology:
A Study of Productiv~ty, Reuse and
Funct~onal~ty," Working Paper, Center for
Research on Informallon Systems, Stern
School of Buszness, New York Untvcrs~ty,

October 1990.

BANKgObBanker, R. D., Kauffman, R. J, and Kumar,
R. "Managing Strategic Costs with
Automated Software Metrics" Working
Paper, Center for Research on Inlormation
Systems, Stern School of Business, New
York University, October 1990.

BANK90cBanker, R. D., Fisher, E., Kauffinan, R. J.,
Wright, C., and Zweig, D. "Automating
Software Development Productivity
Metrics," Working Paper, Center for
Research on Information Systems, Stern
School of Business, New York University,
October 1990.

BOEH84 Boehm, B. W. "Software Engineering
Economics", IEEE Computer, September
1987, pp. 43-57.

BOUL89 Bouldin, B. M. "CASE: Measuring
Productivity -- What Are You Measuring?
Why Are You Measuring It?," SoJOr'are
Magazine, 9:10, August 1989, pp. 30-39.

COT88 Cot, V., Bourque, P., Oligrty, S.,
and Rivard, N. "Software Metrics:

I An Over\-~ew of Recent Results,"
The Journal of Systetns urili
Sofiware, 8 , August 1988, pp. 121-
131.

DREG89 Dreger, J. B. Function Point Analysis,
Prentice Hall, Englewood Cliffs, NJ.

GOLD90 Goldstcin, D.G. "Object Oriented
Programming", DEC Professional, Vo19, #2,
February 1990.

1 ~ ~ 8 9 A p p l i c a t i o n D e v e 1 o p m e l z t
Productivity Srrategy, World-wide
IBM User Group, Application
Development Joint Project, June
1989.

IFPU88 Proceedings of the International Functiotl
Points Users Group, International Function
Points Users Group, 1988.

JONE86 Jones, T. C. Programming Proditctivit) ,
McGraw-Hill, 1986.

JONE88 Jones, T. C. "A New Look At Languages",
Computerworld, November 1988.

KEME87 Kemerer, C. F. "An Empirical Validation of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-12

Software Cost Estimation Models,"
Comtnunications of The ACM, 305, May
1987, pp. 416-429.

KEME89 Kernerer, C. F. "An Agenda For Research
in the Managerial Evaluation Of Computer-
Aided Software Engineering (CASE) Tool
Impacts," Proceedings of The 22nd Ilawaii
Inlernational Conference on Systems
Sciences, Kona Lua, Hawaii, IEEE, January
1989.

LOW90 Low, G. C., and Jeffrey, D. R. "Funcrion
Points in the Estilnation and Evaluation of
the Software Process," IEEE Transactions
on Software Engineering, 16: I , January
1990, pp. 64-71.

NEIG84 Neighbors, J.M. "The DRACO Approach to
Constructing Software From Reusable
Components," IEEE Transactions on
Software Engineering, SE- 10, 5, September
1984, pp. 564-573.

NORM89 Norman, R. J., and Nunamaker, J. F. Jr.
"CASE Productivity Perceptions of Software
Engineering Professionals," Communications
of the ACM, 329, September 1989, pp.
1102-1 108.

NUNA89 Nunamaker, J . F. Jr., and Chen, M.
"Software Productivity: A Framework of
Study and an Approach to Reusable
Components," Proceedings of the 22nd
Hawaii International Conference on System
Sciences, Kona Lua, Hawaii, January 1989,
pp. 957-958.

RUB183 Rubin, H. A. "Macroestimation of Software
Development Parameters: The ESTIMACS
System", IEEE Sofgair Conference on
Sofiware Developnzent Tools, Techniques and
Alternatives, 1983.

RUD084 Rudolph, E. E. "Evaluation of a Fourth
Generation Language",' Proceedings of ACS
and IFIP Joint Symposium on Infornzaiion
Systems," April 1984, pp. 148-165.

SENN90 Senn, J. A., and Wynekoop, J. L.
"Computer Aided Software Engineering
(CASE) in Perspective." Working Paper,
Information Technology Manageincnt
Center, College Of Business Adminis~ralion,
Georgia State University, 1990.

SYM088 Symons, C. R. "Function Point Analysis:
Difficulties and Improvements," IEEE
Transaciions on Software Engineering, 14: 1,
January 1988, pp. 2- 10.

VICI89 Vicinanza, S., Mukhopadhyay, T., and
Prietula, M. J. "Software Effort Estin~ation:
A Study of Expert Performance," Working
Paper 89-002, Center for ihe Management
of Technology, Graduate School of
Industrial Administration, Carnegie Mellon
University.

YELL90 Yellen, R. E. "Systems Analysts'
Performance Using CASE Versus Manual
Methods," Proceedings of the 23rd t-lawaii
International Conference on System Sciences,
Hawaii, January 1990, pp. 497-501.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-90-12

