
REFRAMING DECISION PROBLEMS:
A GRAPH-GRAMMAR APPROACH

Shimon Schocken
Leonard N. Stern School of Business

New York University
New York, NY 10003

and

Christopher Jones
Faculty of Business Administration

Simon Fraser University
Burnaby, British Columbia

August 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-30

This research has been supported in part by a grant from the National Sci-
ence and Engineering Research Council of Canada and by National Science
Foundation Grant SES-8917966.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

Reframing Decision Problems:
A Graph-Grammar Approach

December 24, 1991

Abstract

One fundamental requirement in the expected utility model is that the preferences
of rational persons should be independent of problem description. Yet an extensive
body of research in descriptive decision theory indicates precisely the opposite: when
the same problem is cast in two different, but normatively equivalent? "frames,"
people tend to change their preferences in a systematic and predictable way. In par-
ticular, alternative frames of the same decision tree are likely to invoke different sets
of heuristics, biases, and risk-attitudes, in the user's mind. The paper presents a com-
putational model in which decision-trees are cast as attributed graphs? and reframing
operations on trees are implemented as graph-grammar productions. In addition to
the basic functions of creating and analyzing decision-trees, the model offers a natural
way to define a host of "debiasing mechanisms" using graphical programming tech-
niques, Some of these mechanisms have appeared in the decision theory literature,
whereas others were directly inspired by the novel use of graph grammars in modeling
decision problems.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Graph-Grammars, Networks, and Decision-Trees

Researchers and practitioners of management science often use pictures to represent and
analyze complex models. Indeed, there exist many situations in which "a picture is worth a
thousand words," as the familiar saying proclaims. Examples include PERT/CPM graphs,
data-flow diagams, influence diagrams, semantic networks, decision-trees, and game-trees.
From a functional standpoint, the above graphs are quite different from each other. Yet
from a topological, or syntactical, perspective, they can all be seen as different instances
of the same class - attributed graphs.

Briefly speaking, an attributed-graph is a graph whose nodes and edges are partitioned into
different types. For example, a decision-tree graph consists of three types of nodes and two
types of edges. The node-types are denoted hereafter choice, chmce, and outcome, and
the edge-types are denoted echznce and echoice. Choice nodes represent choices among
alternative courses of action (echoice edges), whereas chance nodes represent different
outcomes of random events (echance edses). Outcome nodes represent final gains and
losses, typically expressed in terms of monetary values or utilities.

Different node- and edge-types are characterized by different sets of attributes, designed to
capture the specific nature of the graph in question. In the case of decision-trees, nodes
of type chance, choice, and outcome are typically characterized by the attributes l a b e l ,
which represents the node's name, and value, which represents the current (expected)
value of the subtree rooted at that node. Edges of type echoice are characterized by a
single l a b e l attribute, whereas edges of type echance are characterized by a l a b e l and
a probabi l i ty attribute. Figure 1 illustrates all the types of nodes and edges that might
appear in any decision tree graph.

The decision-tree in figure 1 was created with the help of NETWORKS [lo] - a prototype
computer-based environment for building and analyzing graph-based models. In NETWORKS,
each graph object (node or edge) is characterized by an optional set of domain attributes,
e.g., value and probabi l i ty , and a mandatory set of system-attributes, e.g. shape and
s ize . The latter attributes are used to control the display characteristics of the graph.
For example, in a decision-tree graph, one can set the shape attribute of every choice,
chance, and outcome node to the values rectangle , c i r c l e , and diamond, respectively.

Center for Digital Economy Research
Stern School of B~~siness
W o r h g Paper IS-91-30

Figure 1: Left: -4 decision-tree that represents a familiar (and repeticiw) urban dilemma:
should I put money in the parking-meter? Parking-meters provide steady municipd revenues
because most people prefer t o pay, say, Sl to avoid an expected loss of, say, 510. Right: The
same tree as an attributed-saph consisting of nine typed objects.

Center for Digital Economy Research
Stern School of Business
Tn'orlmg Paper IS-91-30

These special values cause NETWORKS to draw the corresponding objects in certain, predefined
shapes.

Leaving the subject of graph drawing to a later stage, we now turn to a more fundamental
question: how can we formally define generic families of attributed graphs? For example,
what would be the formal definition of decision-tree graphs? We seek such a definition not
for formality's sake; rather, we wish to develop a graphical. foundation for building, ana-
lyzing, and manipulating decision-tree graphs, as well as other types of attributed graphs.
This will enable us to specify and implement a variety of decision-theoretic analyses as
graphical operations, using the language of graph grammars.

In order for a graph to qualify as a decision-tree, it must obey certain constraints. The
graph objects must be of certain types, and the graph topology must form a hierarchy, each
node having at most one incoming edge. These constraints can be described declaratively,
using a logic-based formalism, or technically, via a set of data-structures. In this paper,
however, we take an alternative approach, inspired by the theory of formal languages (e-g.,
[6]) . Instead of specifying what it takes to be a decision-tree graph, we specify what it takes
to build a decision-tree graph. More specifically, we wish to define a set of construction rules,
or productions, that are guaranteed to produce and maintain valid decision-tree graphs. By
"valid" we refer to at tributed-graphs that obey the topological and typological constraints
of decision- trees.

Mre base our constructive approach to modeling on a branch of formal languages called
graph-grammars (Nagl, [I 71, [Is], Gottler, 131, 141, [Sj). Whereas string-grammars spec-
ify how to build syntactically correct sentences in a certain language, graph-grammars
specify how to design and maintain syntactically correct graphs using a predefined set of
productions. Our basic premise is that graph-grammars are well-suited to support the
building and maintenance of certain families of management science models; in this paper,
we demonstrate this proposition in the case of decision-trees.

The uninitiated reader is advised that graph-grammars entail programming and modeling
styles which are quite different from those of conventional languages. This formalism will
be presented below gradually, as it unfolds in the context of building a "package" for
decision-tree modeling. The package, which is essentially a collection of graph-grammar
productions, offers all the conventional services for building and analyzing decision-trees,
as well as novel tree-manipulation techniques that were directly inspired by the use of

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

Figure 2: The "world of NET~ORKS:" the geneml development environment (bottom block) can
be used to create a variety of specialized modeiing environments, like the decision-trees package
enclosed in the vertical block. Through this package, an end-user who knows nothing about
KET~ORKS can create and maintain a library of decision-tree models. All the models and the
productions are archived in a model-base and in a productions-base, respecti\dy, which are
managed by a models-management module (the vertical block on the left).

User's View of
A Spcciaiizcd

Model Decision
Adminislrator's Tree Environment

Model- J

Mamgemcnt
1

Soinvarc Decision -L Semantic --
Production . . .

Productions . Base
Productions Productions

I
I

1

I I I

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

' NEIWOFXS Sofware for Creating S p b i a i i d Modeling
Environments

NETWORKS

(;;?er

Figure 3: A snapshot of a typical NET~ORKS session. The windows in the backpound contain
two different, and possibiy unrelated, target-graphs. The window in the foreground contains
the production g a p h of CON, shown also in figure 11. The choice of the three graphs and the
positioning of the windows are arbitrary.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

graph-grammars. It is important to note: though, that we are not interested in presenting
here yet another decision-tree package. Rather, our objective is to expose the reader to the
benefits and limitations of the graph-grammar approach to modeling, using decision-trees
as a familiar domain of application.

The work described here has been developed with the help of NETWORKS, an extended imple-
mentation of the graph-grammar formalism of Nag1 and Gottler. Built by Jones ([lO],[llj)
to facilitate rapid creation of graph-based models, NETWORKS is a generator of modeling
environments. The NETWORKS approach to modeling is unique in that both models and op-
erations on models are implemented as instances of the same type of object - attributed
graphs. This uniformity of expression provides extreme flexibility in terms of archiving,
retrieving, and combining models and meta-models of different types and purposes. The
general architecture of the NETWORKS environment is depicted in figure 2, and a snapshot of
its user-interface is depicted in figure 3.

The plan of the paper is as follows. Section 2 presents the basic concepts and ter-
minology that underlie the graph-grammars approach to modeling. Section 3 describes
graph-grammar productions for building decision trees, whereas section 4 describes graph-
grammar productions for manipulating decision-trees. Section 5 summarizes the research
and discusses the pros and cons of using graph-grarnrnars as a modeling tool in decision
theory.

2 Basic Constructs

Our "low-level" modeling syntax was inspired by Prolog. Constants (otherwise called
"labels," or "ground terms") are represented by identifiers beginning with lower-case letters,
e.g. graph18 or edge193. Variables (otherwise called 'Lunknowns'') are represented by
identifiers beginning with upper-case letters, e.g. GraphID or NodeType.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

2.1 The Graph Database

An attributed graph is a collection of typed nodes and edges. Each node in the graph is
uniquely identified by the term node (GraphID , NodeID , NodeType) , representing the graph-
identifier, the node-identifier, and the node-type, respectively (the existence of the first
argument allows the system to manipulate multiple graphs, or models, simultaneously). In
other words, any nodeis uniquely identified by its graph-identifier, node-identifier, and type.
Similarly, each edge is uniquely identified by the term edge (GraphID , EdgeID ,EdgeType ,
FromNodeID, ToNodeID) .' The last two arguments identify the nodes connected by the edge.

For example, the graph topology corresponding to the decision-tree depicted in figure 1 can
be represented through the following database of node and edge terms:

node(treel,nodel,choice).
node(tree1,node2,outcome).
node(tree1 ,node3 ,chance) .
node(tree1,node4,outcome).
node (tree1 ,nodes, outcome) .
edge(treel,edge1,echoice,nodel,node2).
edge(tree1,edgeZ,echoice,nodel,node3).
edge(treel,edge3,echance,node3,node4).
edge(treeI,edge4,echance,node3,nodeS).

It's important to emphasize that the graph database is neither created, nor is it ever seen,
by the end-user (the model builder). The end-user draws his models on the screen by
moving the mouse around, clicking menu items, and directly manipulating node- and edge-
images. The graph database is created and maintained by the software automatically, as a
transparent side-effect of the user's activities.

The node(.) and edge(*) terms play two different roles in the NETWORKS implementation. In
their "ground" version, when they involve constants only, they serve as the building-blocks

'This is a shorthand notation of the term edge (GraphID , EdgeID , EdgeType , FromGraph, FrornNodeID ,
FromType, ToGraph, ToNodeID , ToType). The latter notation is necessary when edges cross the bound-
aries of a single graph - something that doesn't happen in this paper.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

of the graph-database, as seen above. In their "predicate" version, when they involve one
or more variables, they are used to do pattern-matching, Prolog-style. This is illustrated
in the following three examples, which refer to figure 1. Example (1): the expression node(
t r e e 1 ,node3 ,NodeType) will instantiate the variable NodeType to the type of node3, which
happens to be chance. Example (2): the expression node (t ree1 ,NodeiD, outcome) will
match all the outcome nodes in t r e e 1 by repetitively binding the variable NodeID to the
labels node2, node4, and nodes. Example (3): the expression edge(tree1 ,-, -, node3,
Node1D) will match all the children-nodes of node3, i.e., node4 and node5. The two
underscore characters indicate that in this particular predicate, the arguments EdgeID and
EdgeType are immaterial, meaning that they can match anything.

2.2 Attributes

In order to retrieve the attribute values of specific graph objects, we use two general-purpose
look-up functions: na(-) , for nodes, and ea(.), for edges. The syntax of these functions is
as follows:

n a (~ t t r i b u t e I ~ , raph hi^, ~ o d e i ~ , ~ o d e ~ ~ ~ e) (1)

e a (~ t t r i b u t e ~ ~ , GraphID, EdgeID, ~ d g e ~ y p e) PI

The nac.1 and ea(.) functions are designed to return values, much like function calls in
a traditional third-generation language. For example, the function call ea (probabi l i ty ,
t r e e 1, edge4 , echance) will return the number 0.8 - the probability associated with that
edge (see figure 1). In order to simplify the use of these functions, some of the vari-
ables in (1-2) are allowed to attain default-values, representing the LLcurrent-graph,'y the
"current-node," and the "current-edge." To illustrate, the function ea(probabi1ity , * , * ,
*), or ea(probabi1ity) for short, returns the value of the p robab i l i t y attribute of the
current-edge in the current-graph. The notion of "currency" is maintained automatically
by NETWORKS. A more formal definition of attributes and defaults can be found in (111.

The "contents" of an attribute can be either a constant, as in p robab i l i t y or l a b e l ,
or a user-defined formula, as in value. The formulas interact with other objects in the
graph, resulting in a dynamic spread of activation similar to that of a spreadsheet program.

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-30

(Unlike spreadsheet formulas, though, our formulae understand about graph concepts .) To
summarize, an attributed-graph is essentially a database of node and edge terms. These
terms define a connected collection of typed objects, each characterized by a different set of
user-defined attributes. The attribute values are computed "as-needed," to borrow a term
from frame-oriented programming.

2.3 Formulas

The notion of graph-based formulas is central in our approach to modeling. In order to
illustrate it, we'll describe how formulas are used to "roll-back," or "evaluate," a decision-
tree graph. First, recall that in a decision-tree, each sub-tree represents a prospect, or a
lottery, whose outcome is governed by a known probability distribution. Hence, the value
attribute of each node x, denoted hereafter v (s) , is typically set to the expected-value of
the prospect represented by the sub-tree rooted at x. This value is calculated by "rolling"
the tree "backward," as follotvs. Suppose that x has n 2 0 outgoing edges, leading to the
children-nodes X I , . . . , x,. If x is an outcome node (n = O) , v(x) is a given constant. If x is
a choice node, v(x) is set to max{v(zl), . . . , v(x,)), i.e., the value of the course of action
that offers the highest reward at the choice junction rooted in x. Finally, if x is a chance
node, v(x) is set to x;=, p(x, xj)v(zj), where p(x, xj) denotes the value of the p robab i l i t y
attribute associated with the edge (x, xj). This formula computes the expected-value of
the random-variable represented by x.

Two comments are in order here. First, note that the value formulas are recursive: the
computation of v(x) propagates from x all the way down to the leaves of the sub-tree rooted
at x, where outcome nodes that carry constant values v(-) are encountered. Second, note
that the roll-back procedure is based on normative assumptions on decision-making under
uncertainty. That is to say, the procedure describes how an ideal automat on who follows the
axioms of subjective probability and utility theory will evaluate the risky prospects that the
tree represents. It is an embarrassing fact of reality, however, that most decision-makers,
experts and laymen alike, exhibit systematic violations of these axioms. In fact, the very
same problem, framed in two different (but normatively-equivalent) decision-trees, may
weLl lead people to make two contradictory decisions. One of the objectives of this research
is to use graph-grammar techniques to "debias," or at least highlight, such inconsistencies.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Going back to the roll-back procedure, we now show how graph-grarmnar formulas are
used to compute the contents of the value attribute, namely the function v(x). As we saw
above, this function depends on the type of x. If x is a choice node, its value attribute
will be computed by the formula:

imax(edge(*, Edge, echoice, x, Y), na(value, *, Y, -))

If x is a chance node, its value attribute will be computed by the formula:

sum(edge(*, Edge, echance, x, Y),
ea(probabi l i ty , *; Edge, echance) * na(value, *, Y, -)) (4)

The function imax (P , V) (standing for "indexed-maximum") computes the largest value of
the expression V, given all the possible instantiations of the predicate P. In the particular
case of (3), P stands for the predicate edge (* ,Edge, choice, x , Y) , which is repeatedly
instantiated to all the children-nodes of x in the current-graph. For each such instantiation,
na(va1ue , * , Y , -1 returns the value attribute of the child-node (Y). (The type of the child-
node is immaterial here, a fact which is denoted by the underscore character, indicating
that NodeType in (1) can match anything). The glue that holds the two arguments edge (.)
and na(.) together is the shared variable Y and the unification logic of Prolog.

In a similar vein, the function sum(P ,v) accumulates the sum of the V values, given all
the possible instantiations of the predicate P. In (4), this function is used to compute the
expected-value of the random-variable represented by x, namely Cjn,, p(x, xj)v(xj). Viie
leave it to the reader'to verify that the declarative expression (4) indeed carries out this
algebraic computation.

Hence, we see that recursive operations on trees such as "averaging out and folding back"
(Raiffa, [19]) and "rolling back" (Howard, 171) lend themselves nicely to declarative pro-
gramming, in general, and to the NETWORKS language, in particular. Now, the fact that a
Prolog-like language can be used to represent a set of nodes and edges is neither surpris-
ing, nor new. What sets NETWORKS apart from conventional logic-programs is its ability to
understand (i) that the nodes and the edges have an important graphical interpretation;
(ii) that the nodes and the edges have an important modeling interpretation; and (iii) that

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

these two interpretations are tightly interrelated. This, in a nutshell, is the key idea behind
the NETWORKS approach to modeling.

2.4 Displaying Graphs

One feature that sets NETWORKS apart from other logic-programs is its ability to draw the
database of nodes and edges that constitute what we call an "attributed graph." The
display characteristics of the graph are determined by special system-at tributes, called
bindings, which are automatically assigned to every node created by the user. The bindings
have names like shape, color, and pos i t ion , and they contain either constant values or
user-defined formulas, just like ordinary attributes. This flexibility gives the model designer
full control over the display characteristics of his graphs.

In the case of decision-trees, the designer can program the system to highlight certain
areas in the graph that deserve special attention from the user. For example, different
colors can be used to distinguish promising courses of action from other edges in the graph.
Specifically, recall that each node of type choice represents a choice among alternative
courses of action, each leading to a different sub-tree, or prospect. When the tree is "rolled-
back," the values of the sub-trees are computed, and one of them emerges as the course
of action which offers the highest payoff in the decision junction under consideration. S;Ve
call the edge that leads to that sub-tree the optimal choice edge, and the union of all these
edges in the graph the optimal choice path. The optimal choice path is a road map that
tells the user, in every choice junction along the way, which course of action will maximize
his expected payoff.

Therefore, it would be nice to have a built-in mechanism that continuously highlights the
optimal choice path implied by the tree's data. For example, we can decide to color all the
echoice edges green, with the exception that optimal edges are colored red. This coloring
scheme can be implemented by setting the c o l o r binding of each echoice edge (x,y) in
the tree to the following formula:

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

i f ((edge(*, *, echoice,X,Y) ,
na(value,*,X,-)=na(value,*,Y,-)),
red ,
green)

The value of the function i f (Condition, TrueExp , FalseExp) is TrueExp if Condition
is true, and FalseExp otherwise. In the above example, Condition is a conjunction of
the two expressions edge(*, *, echoice ,X,Y) and na(value, * ,X, -) =na(value, * ,Y ,-) .*
The first expression binds the variables X and Y to the two nodes that reside at the end-
points of the edge whose color we wish to determine. The second expression is t r u e if the
value of both nodes is equal, indicating that the edge is optimal (recall that the value of
a parent choice node is set to the maximum value of its children nodes. Hence, if x is a
parent of y and v(x) = v(y), the edge (x, y) is optimal). To sum up, if the conjunction is
t rue , the value of the i f expression will be red; otherwise, it will be green. Since the i f
expression is bound to the c o l o r attribute of the edge (x, y), the edge will be drawn on
the screen in that color.

This example illustrates the notion of dynamic graphics, where images are automatically
redrawn by formulas which are continuously recalculated. Since the formulas establish links
among various graph objects, any change in one object immediately effects all the other
objects that depend on it, either directly or indirectly. This comes particularly handy
in the case of sensitivity analysis. If the user wishes to see what will be the impact of
different probability or payoff assumptions on his decisions, all he has to do is select certain
objects in the decision-tree graph and make the necessary changes in their attributes. These
changes will propagate via the formulas throughout the entire tree, causing the system to
"automatically" redraw the new optimal path implied by the new assumptions.

21n the Prolog language, the expression (p , q) reads p and q. Hence, the expression
i f ((p l , . . . ,pn) , x ,y) will evaluate to x if and only if all the predicates pi, . . . ,pn are true. If a t least
one of these predicates is false, the expression will evaluate to y.

Center for Digital Eco~lomy Rerearch
Stem School of Business

. W o r h g Paper IS-91-30

Productions

As is typically the case with programmable environments, NETWORKS has two types of "stake-
holders": designers, and users. The designer (programmer) is the person who builds a
specialized modeling environment for a certain family of models, say vehicle routing. The
user (e.g. a transportation analyst) is the person who uses the environment to define, ma-
nipulate, and solve, specijic transportation models. The designer has to have some basic
understanding of the user's world, but the user needs know nothing about the world of
graph-grammars. As far as the user is concerned, the modeling environment consists of
an intelligent scratch pad that "understands" what it takes to build and analyze vehicle
routing models.

In principle, end-users can build and manipulate graphical modeIs in NETWORKS directly,
by means of a graph-oriented editor, or indirectly, by invoking programmed producliions,
Graph-grammar productions are conceptually similar to general-purpose subroutines, or
macros, in a conventional language. For example, a specialized environment for vehicle
routing will consist of a library of productions designed to assist transport ation analysts
and dispatchers in their typical tasks, e.g. adding customers, deleting customers, rerouting
subtours, changing capacity and demand constraints, etc. These productions will be written
by the designer of the vehicle routing modeling environment, and will be accessible to the
end-users via a graphical interface consisting of multiple windows and pull-down menus
(see figure 3).

A production is a general purpose piece of code, designed to operate on a wide variety of
target graphs, just like a spreadsheet macro can be applied to many different areas in the
same spreadsheet. In spite of this functional similarity, though, spreadsheet-macros and
graph-grammar productions are conceptually far apart. A macro is essentially a stored
sequence of keystrokes, whereas a production is a graph, quite similar to the target-graphs
on which it is designed to operate.

Formally, a production P is a triplet P =< GL, GR, T >3. When applied to a target-graph
G, P checks if there is a subgraph E~ C G which is isomorphic to GL. If such a subgraph is
found, P transforms G into a new graph, in which G~ is replaced with GR. This operation
consists of two conceptual steps, as follows. First, the subgaph cL m well as additional

3For historical reasons, GL and GR are called the "left-side" and the "right-side," respectively.

Center for Digital Eco~lomy Rerearch
Stem School of Business
W o r h g Paper IS-91-30

nodes and edges in its boundary (the "left side") are removed from G in order to create
room, or embed, the new subgraph GR. The result is a "temporary" graph, denoted G \cL
(G with cL removed). Next, GR as well as a new set of connecting edges (the "right
side") are implanted in G \ cL. The exact details of this tricky surgery are specified by the
production's embedding transformation - T .

The nodes and the edges of production-graphs are similar, but not identical, to those
of ordinary graphs. To begin with, each object (node or edge) in a production-graph
is characterized by all the user-defined attributes of its corresponding (matched) target-
object. However, the contents of the attributes is somewhat different at the production
level. Specifically, when a new node (or edge) is added to a target-graph via a production,
one has to specify the formulae that will "reside" in its attributes. The specification
mechanism is called an attribute transformation expression, which is essentially a meta-
formulae, as it calculates target formulae rather than scaler values such as integers, reals,
and strings of characters.

In addition to the attributes of its corresponding target-object, each object in a production-
graph is characterized by four mandatory production-specific attributes: $hand, $de l e t e ,
$selectbef ore , and $selectaf t er. Finally, a production-graph can refer to two special
object-types that are unique to productions only: $universal , and $path. The description
of these "system" attributes and object-types are given in tables 1 and 2, respectively.

The special attributes and object-types enumerated in tables 1 and2 provide all the nec-
essary building-blocks for encoding the two essential ingredients of graph-grammar pro-
gramming: (i) the pattern-matching logic that identifies the graph-pieces on which the
production should operate, and (ii) the manipulation logic that specifies the transforma-
tion that those graph-pieces should undergo. Trie resulting programming formalism is
Turing-complete [17].

We see that one intriguing feature of productions is that just like the objects on which they
operate - graphs - they themselves can be represented as graphs. This elegant idea went
through several steps of refinement. In Nagl's (171 original version of graph-grammars, the
embedding transformation was specified as a set of textual expressions. Gijttler [3] showed
how Nagl7s graph-grammar formulation could be represented as a graph. Jones extended
this work further and developed a demonstrable prototype. As a result of these extensions,

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Description
Find one corresponding copy of this object in

Attribute Name

f ind- a l l

i Deiete the corresponding target object after
d e l e t e the production is complete. For f ind-one ob-

Possible Values
f ind-one

the target-eraoh.
k'ind all corresponding copies oi this object in
the target-araph.

add-al l

add-one I ~ d d one copy of this object to the target-
waph.
Add one copy of this object to the target-
graph for each corresponding connected set of
find-one and f i n d - a l l objects found in the
target-graph.

I t v a l t ~ ~
e corresponding target object must have i t r u e been selected. For find-one objects, this is

I jecti. th/s is the default.
Do not delete the corresponding target object

r e t a i n

I objects. this attribute is ignored.
e corresponding target object must have

(Label) I.?e",n selected and assigned the specified se-

after the production is complete. For all ob-
jects except find-one nodes, this is the de-

$selectbef o re

I t h ~ T i ~ f a ~ ~ i l t v a 1 1 1 ~
'I'he corresponding target object may not have

$ s e l e c t a f t e r

Table 1: Production-specific attributes, used t o control "production programming." Note
tha t the labels f ind-one, f i n d - a l l , add-one and a d d - a l l replace the "historical" labels
l e f t , embedding, r igh t and connec t ing &t were used by Jones in (101 and [ll]. We
believe tha t the new labels are less cryptic and more informative than the original ones.

f a l s e

(Label)

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

been selected. For allob jects except f ind-one
objects, this is the default value. For add-one

target object will be se-
t r u e

completes.
object will not be

lected and assigned the specified selection la-
bel after the production completes.

f a l s e selected after the production completes. This
1s t h e r l ~ f a i i l t v a l i i ~

('I'he corresponding target object will be se-

Table 2: Production-specific node- and edge- types, also used to control production pro-
gramming.

hTode/Edge Type

$universal

$path

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Description

A node or edge in a production graph labeled
un ive r sa l will match any type of node or
edge in the target-graph.

An edge in a production-graph labeled pa th
will match a path of of indeterminate length
in the target-graph.

the production-graphs that are iIlustrated below are considerably more concise than would
be possible using Nagl's and Gottler original formulations.

Since a production-graph is a special instance of attributed graphs, the designer can create
productions in NETWORKS via an editor specifically designed for production-graph program-
ming. Once created and tested, the user can invoke the production quite simply, as follows.
First, the user places the target-graph in a certain work-area (window). Next, he uses a
pointing device like a mouse to "select" certain objects (nodes and edges) in the target-
graph. Finally, the user invokes the production by pulling down a menu and clicking
the mouse on the name of the production that he wants to invoke. This will cause the
production to go to work on the selected objects in the target-graph.

The details of production-graph programming are somewhat obscure, and one needs to see
several examples in order to appreciate the simplicity, power, and limitations, of this novel
computational paradigm. In the next section we present many such examples, given in the
context of decision tree graphs. In particular, we will show how decision trees can be built
and edited using two families of productions: one for inserting nodes to, and the other for
deleting nodes from, a tree-shaped graph.

3 Model Definition Productions

As with database management, model management activities fall into two distinct cate-
gories: model definition, and model manipulation. This section discusses graph-grammar
mechanisms for defining, or rather building, graph-based modeIs.

Since a decision-tree is a special case of an attributed-graph, we could have let users build
models directly, by giving them unabridged access to a general-purpose graphical editor
that allows the creation and connection of nodes and edges in a free-form fashion. How-
ever, this freedom of expression may well turn into chaos, as it would allow users to develop
invalid models, namely attributed graphs that violate the topological and typological con-
straints of decision-trees. Hence, rather than providing the user with a set of primitives
for defining unconstrained graphs, we seek to develop higher-order construction opera-
tors that understand the special nature of decision-trees. Our approach is inspired by
research on syntax-directed editing 1201, which first came to prominence in the context

Center for Digital Economy Research
Stem School of Business
Worhng Paper IS-91-30

of writing computer programs. A syntax-directed editor "is atvare" of the special nature
of the target-text on which it operates. For example, a specialized Pascal editor offers a
variety of Pascal-specific editing services such as nested indentation, tests of variable decla-
rations, and insertion of I F and WHILE templates with single keystrokes. In a similar vein,
specialized editors can be created to support program-writing in any other programming
language. These context-sensitive editors speed up the software development process, and,
more importantly, promote the construction of correct and readable programs.

Just as a specialized editor can be tailored to support the process of writing Pascal pro-
grams, a specialized graphical environment can be tailored to support the process of build-
ing and maintaining decision-tree graphs. This is because decision-trees, like Pascal pro-
grams, are not born in a vacuum; they must obey a set of well-defined structural constraints.
With that in mind, our approach to designing a graph-grammar environment for building
decision-trees is based on three steps, as follows: (a) Enumerate all the generic operations
that underlie the design and maintenance of valid decision-tree graphs; (b) Define each
operation as a separate graph-grammar production; and (c) Wrap the resulting library of
productions with a congenial user interface.

3.1 Insertion

The construction of any decision-tree graph can be seen as a sequential application of a
subset of twelve generic insertion-operations, as follows:

Insert a new {choice I chance l outcome) node as a child
of an existing {choice l chance} node.

Insert a netv {choice 1 chance} node as a parent
of an existing {choice I chance I outcome) node.

We assume that before an insertion-production has been invoked, the user has selected some
node in the target-graph (the graph on which the production operates), using a pointing-
device like a. mouse. The selected node, which will become the production's "anchor," is
denoted hereafter 7. Each one of the above twelve insertion-productions can be applied

Center for Digital Eco~lomy Rerearch
Stem School of Business
W o r h g Paper IS-91-30

either uniquely, or repetitively, with respect to T, A unique insertion of a new node Tj as
the child (parent) of 5 attaches one copy of j7 below (above) Z. A repetitive insertion of a
new node with respect to i attaches one copy of below (above) every node in the tree
whose label attribute is identical to that of To illustrate the resulting family of twenty
four productions, we now turn to describe one representative exarnple - unique in se r t i on
of a n e w ou tcome node as a child of a n existing choice node. This production was chosen
because of its relative simplicity; as we introduce additional productions, we will gradually
increase their level of complexity.

Consider a decision-tree in which a certain choice node, labeled drilling-decis ion, leads
to two children nodes, labeled drill and no-drill. Suppose that it is now required to
refine this binary choice by adding to it a new node, labeled drill-t est. If you were to
carry out this editing operation using paper and pencil, how would you go about it? First,
you would locate, or select, all the nodes in the tree that are labeled drilling-decision.
Nest, you would draw a new node labeled drill-t est below one of the selected nodes, and
connect both nodes with a new edge. Finally, you would repeat the exact same operation for
each node selected in the first step. The production that carries out node insertion operates
in precisely the same manner. The name of the production is INS, and its production-graph
is depicted in figure 4.

The logic of the INS production is very similar to that of its "paper and pencil" version.
Node x represents the choice node that is about to be extended. Node y represents the
new outcome node that has to be connected to x. We assume that before the production
has been applied, the user has aIready selected one or more nodes, denoted 5, in the
target-graph. (Note that we use an overbar to distinguish a node in the target-graph, e.g., - s, from its corresponding node in the production-graph, e.g., s.) The specific operation
of INS is determined by the special labels that mark its objects. The selectbefore label
indicates that x must have been selected by the user before the production was invoked.
The f ind-all label specifies that the production will operate on all the nodes selected by
the user.

The add-all labels that mark the edge (x, y) and the node y are instructions to add
copies of these generic objects to the target-graph. Specifically, they indicate that for each

4Repetitive insertion is a natural operation in decision trees. Since a tree might contain multiple copies
of the same sub-tree (representing a prospect that can be reached at under different contingencies), the
insertion of a new branch to that prospect must be repeated in all its occurrences in the tree.

Center for Digital Economy Research
Stem School o f Business
%'orking Paper IS-91-30

add-all 0
find-all,

add-all

selectbefore

Figure 4: The insertion-production INS, designed to add a new outcome. node to a selected
choice node.

Center for Digital Ecollomy Research
Stern School of Business
Working Paper IS-91-30

selected and found node F, the production should (a) create a new outcome node - ij; and
(b) connect 5 to ijby a new echoice edge - (T, Tj). In other words, one copy of each add-all
object will be added to each f i n d - a l l object that was actually found in the target-graph.
(Note in passing that f ind-one and f ind -a l l translate roughly to the notion of 3 and V
in logic.)

\ire conclude this section with a few words about the user-interface of INS. In order t o
invoke this production, the user (model builder) should first identify the target-nodes that
ought to be extended (multiple selection is done by pressing a special key while clicking on
the nodes with the mouse). Having marked the nodes of interest, the user would pull down
an "insertion operations" menu and select an entry entitled "insert a new outcome node."
This entry will invoke the INS production, which will go to work on the selected areas in
the target-graph.

3.2 Deletion

Deletion productions are designed to delete selected nodes from a decision-tree graph. As
we did in the case of insertion, we assume that before a deletion-production is invoked,
the user has already selected a certain target-node, denoted F, as a candidate for deletion.
The user may want to delete 2 in two alternative ways: (a) delete the node T and all but
one of its children-nodes, which should be reconnected to 5's parent-node; or (b) delete the
node 5 and all the nodes that descend from it, i.e. the sub-tree rooted in 5. In this section
we demonstrate the latter operation, which is implemented by a single production - DEL -
whose graph is depicted in figure 5.

The node z, which is marked find-one and selectbefore in figure 5, represents the
root of the sub-tree that has to be deleted. The universal label attached to y allows
this production-node to match target-nodes of any type, meaning that the production is
insensitive to the type of the children of the deleted node. Nodes x and y are connected
by a pa th edge - a special production-level edge-type which represents a directed-path of
indeterminate length in the target-graph. Finally, the label f i nd -a l l which marks the
path (x, y) as well as node y will cause the production to operate on all the paths, of any
length, that emanate from 5 in the target-graph. In a similar vein, y will match all the
nodes that can be found along these paths.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

Y
find-one, path end-all,
selectbefore, universal,
delete delete

Figure 5: The deletion-production, DEL, designed t o delere a selected chance node (z) and all
the nodes and edges that descend from it.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

Figure 6: A decision-tree before and after applying t h e DEL production to the shaded node. The
shaded node marks the node selected by the user.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

It is interesting to note that all the labels that were mentioned thus far in the context
of DEL are used for pattern matching only. In other words, these "passive" labels don't
do anything - they just enable the operation of the production, similar to the left side of
an I F condi t ion THEN ac t ion rule. The only "active" instruction in DEL's definition is
the de l e t e label, which marks the node x. This will cause the production to delete the
selected node (E), all the edges attached to it, as well as all the nodes that descend from
it and their attached edges, thus accomplishing the original plan for this production. The
actual operation of the production is demonstrated in figure 6, where the user is assumed
to have applied it to the shaded node in the left decision tree. When the production ends,
the left tree is transformed into the right tree.

4 Model Manipulation Productions

The application of proper insertion and deletion productions is a necessary, but insufficient,
condition for designing and maintaining good decision-tree graphs. In this section we turn
to describe productions that are capable of reframing a decision tree in a number of different
ways. We define "reframing" as an editing operation that transforms a given tree t into a
new tree t' in such a way that leaves t and t' normatively equivalent, i.e. U (t) = U(t l) , U
being a standard Von-Neumann h~lorgenstern utility function.

The notions of reframing and equivalence in decision trees have been discussed in detail in
the literature both from a normat ive perspective, e.g. [13] 1141, [15], and [25], as well as
from a descript ive perspective, most notably by Tversky and Khaneman (e.g. [27]). The
normative line of research focuses primarily on the axiomatic validity of various reframing
operations. The descriptive studies indicate that decision trees that are normat ive ly equiv-
alent are not necessarily psychoEogically equivalent, leading to decision making behavior
which is sometimes inconsistent with expected utility theory.

Our own treatment of refrarning is based on the premise that users of decision trees are not
automatons, but rather human beings, guided by bounded rationality and equipped with
limited computational devices [22]. In particular, we assume that different representations
of the same decision tree might invoke different sets of cognitive biases in the user's mind.
Furthermore, we follow Tversky and Khaneman [27] in assuming that users (a) %rill be
unaware of the existence of alternative tree representations; (b) will not be willing to

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

go through the trouble of constructing such presentations; and (c) will be incapable of
comparing the impact of different (but normatively equivalent) representations on their
decisions.

Hence, the need for decision support arises here because "there is a human tendency to
act on the most readily available frame, which may be attributed to the mental effort
required to explore other alternatives" [27]. With that in mind, we wish to provide the
user with an arsenal of reframing operations which we divide into four categories: pruning,
optimizing, consolidating, and reversing. The remainder of the paper motivates the need for
these operations, presents their conceptual definitions, and provides their graph-grammar
implementations.

4.1 Pruning

A decision-tree model describes a sequence of junctions. Choice junctions represent alterna-
tive courses of action, whereas chance junctions represent alternative contingencies. When
some of the alternatives that emanate from the same node overlap, the result is typically
an unnecessarily cluttered model. For example, consider a chance node that branches into
three probabilistic outcomes: a 50% chance of gaining $100, a 25% chance of losing $30,
and a 25% chance of gaining $100. Clearly, a more parsimonious description of the same
prospect would be a two-way junction, representing a 75% chance of gaining $100 versus
a 25% chance of losing $30. When a chance (choice) node has two or more outgoing edges
that represent identical or similar contingencies (courses of action), we say that the node
is superfluous.

Superfluous nodes arise because of three reasons. First, the decision problem that the tree
represents may contain a genuine element of redundancy, in which case the "superffuous"
nodes give an accurate picture of reality, and there is nothing wrong with it. Second,
since superfluous nodes do not violate the topological restrictions of "being a tree," one
can create them either unintentionally, or by bad design, through the use of valid tree-
construction productions. Finally, superfluous nodes emerge as a degenerate side-effect of
certain tree-manipulation productions, as we'll see in later in the paper.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Regardless of the reasons for their existence, though, it is necessary to be able to detect
superfluous nodes, and, if the user so desires, proceed to delete their redundant edges and
subtrees. We call this operation pruning. The following two problems motivate the need
for a pruning production.

Problem 1: The following game begins by spinning a roulette wheel which is
numbered 1 to 50. If the lucky number is 10, 20, 30, 40, or 50, you win
$100. Otherwise, you win nothing. The cost of playing the game is $10.
Do you want to play?

Problem 2: The following game begins by spinning a roulette wheel which is
numbered 1 to 100. If the lucky number is between 1 and 10 (inclusive),
you win $100. Otherwise, you win nothing. The cost of playing the game
is $10. Do you want to play?

Note that both games represent the same prospect - a 10% chance of winning $90 versus
a 90% chance of losing $10, problem 2 being the pruned version of problem 1. Yet the
problems "look" different, as the frame of game 1 seems to offer a better "spread," and
thus a better chance, of winning. So which problem gives a better representation of the
true odds for winning - 1 or 2? We argue that at least on the grounds of parsimony and
clarity, a pruned decision-tree is a better decision aide than a superfiuous tree, provided of
course that the pruning operation does not distort the original setting of the problem.

The pruning logic is simple. Let x be a node with n outgoing edges, leading to the children-
nodes XI,. . . , x,. Suppose, without loss of generality, that XI and x2 are deemed redundant.
Pruning consists of removing the edge (x, 22) and .the sub-tree rooted at s~ from the sub-
tree rooted at x. If x is of type choice, this completes the pruning operation. If x is of
type chance, the probability of the removed alternative, P(x, x?), should be added to the
probability of its remaining twin, namely to P(x , sz). If node x contains more than two
identical alternatives, the same procedure can be applied repeatedly.

figure 8 depicts a graph-grammar production, PCI, designed to prune nodes of type chance.
The key players here are the chance node, x, and its two children-nodes, X I , and 1.2 (node
y will be discussed later). The three nodes are marked find-one, meaning that a copy
of each must be found in the target-graph in order for the production to be applied. The
selectbef ore and s e l e c t a f t e r labels of rc indicate that, the user must select this node

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-30

F$ure 7: Problem 1 (left) and Problem 2 (right).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

add-onc
I"---\

find-one,
find-one,

selcctsiter, univcrsai,

find-one. 2:;; find-all,
universal, universal
delete delete

true
n

(~-)~$qb*(j=) false

Figure 8: The pruning production PC1 (top) and the pruning program PC (bottom).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

before the production starts, and that the node will remain selected after the production
ends. The universal labels indicate that the production is insensitive to the types of xl
and 52, as long as they have the same type. Node x? is marked for deletion, but only if i t
is deemed redundant to xl. The redundancy-test, which is not explicit in figure 8, is stored
as an applicability-predicate, to be discussed shortly.

Note that the edge (x, xl), which is marked for deletion, will be immediately replaced with
a new edge, marked add-one. This structural trick is required because of a technical reason.
Recall that the probabi l i ty value associated with the edge (x, xl) should be incremented
by the probability attribute associated with (x, x2). In NETWORKS, however, a production
can only change the attributes of objects that are added to the graph. That's the reason
behind the deletion and immediate reincarnation of the edge (x, xl).

TVe now turn to discuss the applicability-predicate that tests whether or not nodes XI and
x2 are redundant. In order for a production to be applied, two conditions must be satis-
fied. First, there must be a topological match between the objects marked f ind-one and
f i nd -a l l in the production-graph, and corresponding objects in the target-graph. Second,
the production's appl icab i l i ty -pred ica te - a graph-level attribute which is unique to
production-graphs only - must evaluate to t rue. The appl icab i l i ty -pred ica t e is es-
sentially a logical expression that can be used to enforce additional constraints on the
execution of a production. In the specific case of Pel, the applicability-predicate consists
of the following expression:

Recalling that the definition of the na function is na(AttributeID,GraphID,NodeID,
NodeType) , we see that (5) will be t r u e if and only if the target-nodes corresponding to xl
and x? have the same l a b e l values, implying redundancy. The underscore characters in the
fourth argument indicate that the node-types of xl and x2 are immaterial. It's important
to emphasize that from a software engineering standpoint, other redundancy-tests can also
be implemented with similar ease. For example, the application might render XI and xz
redundant if Iv(xl) - v(y?)I < E , for a certain tolerance level E > 0. Whichever redundancy-
test we choose to adopt, the test can be easily implemented via an applicability-predicate
such as (5).

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Let us suppose then that (5) evaluates to t rue. This will cause the PC1 production (top
of figure 8) to delete node T2 and all the nodes that descend from it in the target-graph.
The scope of the deletion operation is specified in the production-graph by the path edge
(x2, Y) and the node y , which are both marked f ind-al l and delete . Note, however,
that PC1 is a single-step deletion operator. As written, it is programmed to delete one
redundant edge from a selected node, provided that such an edge exists. The case of m > 2
redundant nodes can be handled by writing a program-graph that applies PC1 to the same
node repetitively, until the node contains no further redundanc~r.

Program-graphs are the graph-grarnmar equivalent of flow-charts, except that their build-
ing blocks are productions, rather than instructions or subroutines (as in a procedural
language). The flow of control of a program-graph is governed by the values that the pro-
ductions return. Typically, each production is designed to either succeed, or fail; success
indicates that the target-graph has been changed according to the production's specifica-
tions, whereas failure indicates that the production could not match its "left side" (GL)
with an isomorphic subgraph in the target-graph, and thus could not be applied (see sec-
tion 2.5). Using the truth values that the productions return, program-graphs enable the
implementation of repetitive graph manipulations in the spirit of WHILE and REPEAT loops.

In the specific case of pruning, the repetitive application of PC1 to the same node is carried
out by a program-graph named PC (bottom of figure 8). The logic of PC is as follows.
First, PC invokes PCI, which then tries to detect a pair of duplicate nodes that emanate
from the selected node. If such a pair is found, PC1 proceeds to delete one of its members,
returning the value t rue . This causes PC to invoke PC1 once again to the same node. (Note
that rl is marked both selectbef ore and s e l e c t a f t e r in PCI). The cycle continues
until PC1 returns the value f a l s e , indicating that the selected node contains no further
redundancy. This, in turn, will cause PC to terminate its execution. The application of PC
is demonstrated in figure 7, where the tree on the right represents the result of applying
PC to the shaded node in the tree on the left.

We conclude this section with three comments on program-graphs. First, like WHILE and
REPEAT constructs in a procedural language, they are theoretically not needed (21; however,
it is frequently more convenient to use a concise program-graph instead of a single, but
hopelessly complex: production that accomplishes the same task. Second, program-graphs
are a special case of attributed graphs. Therefore, they can be built and edited by the stan-
dard graph-oriented machinery of NETWORKS. Finally, program-graphs are invoked exactly

Center for Digital Eco~lomy Rerearch
Stem School of Business
W o r h g Paper IS-91-30

the same \say as graph-grammar productions: directly, from menu-selections, or indirectly,
from other program-graphs.

4.2 Optimizing

Each node in a decision-tree, say x, represents a junction of alternatives whose value, v(x),
depends (recursively) on the values of the children-nodes that emanate from s. Recalling
that v(-) represents an expected, rather than a determinate, value, it is clear that v(x) > v(y)
does not necessarily imply that x is a "better" prospect than y. For example, it might be
that one of y's children represents a risky prospect whose potential value is significantly
higher than any one of the values of x's children. In such a case, we say that x and y are
incomparable, because their relative attractiveness depends on subjective risk-attitudes
that vary from one decision-maker to another.

There exist situations, however, in which it is possible to compare two sibling-nodes, z
and y, and conclude that x dominates y under all possible states of nature, and under all
possible (Von-Neumann Morgenstern) utility functions. For example, consider the decision-
tree depicted in the left of figure 9. Node al dominates node a2 because it represents a
prospect whose most pessimistic outcome, 10, is better than the most optimistic outcome
of a2, which is 8. In a similar vein, a4 dominates al, and as dominates a4. Note that neither
a3 nor as dominates each other.

In this section we present graph-grammar productions for detecting and eliminating inferior
sub-trees from a decision-tree graph. In order to compute dynamically the notion of domi-
nance (or inferiority), we assign to each node in the tree two additional attributes, named
uppervalue and lowervalue, whose values are denoted hereafter v+(x) and v-(z), respec-
tively. These values depend on the type of x, as follows. If x is an outcome node, we define
v'(x) = v-(x) sf ~ (x) ; If s is a chance or a choice node with children-nodes X I , . . . , x,,

de f deli we define v'(x) = max{v+ (xl), . . . , v+(x,)) and v-(x) = min{v-(xl), . . . , v-(x,)).

The "dominates" relation can noxi be defined as follows: let x and y be two sibling-nodes
(children of the same parent). Node x is said to dominate node y (x > y) if v-(x) > v'(y).

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-30

Figure 9: A decision-tree with inferior alternatives: a1 dominate a*, a4 dominate a l , and as
dominates a4. The application of the OPT production to the shaded node would transform the
left tree to the right tree.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

It is easy to show that the t- relation is partial, irreflesive, transitive, and antisymmetric5.
Hence, it forms a partial order on every set of sibling-nodes in a decision-tree graph.

The graph-grammar formulae for uppervalue and lowervalue for a given choice or
chance node x are as follows:

Given (6) and ('7): the graph-grammar implementation of the relation xl + x? is as follows:

We see that (8) will be t r u e if and only if the lowervalue of xl is greater than the
uppervalue of x2, implying that xl dominates x2 (or, equi.ialently, that x2 is inferior to
xl). Hence, the (8) predicate is essentially a detector of dominant and inferior nodes.

Once a set of nodes is found to be inferior in a certain sub-tree, it should be deleted from the
graph. This operation is carried out by a production, named OPT1, and a program graph,
named OPT, which are essentially identical to the pruning production P C 1 and the pruning
program PC, respectively, from section 4.1 (see figure 8). The only difference between the
two pairs is that the applicability-predicate of OPT1 is (8), rather than (5).

When the user applies OPT to a selected node, say x, OPT begins its execution by applying
OPT1 to the same node. OPT1 then tries to find a pair of children-nodes, xl and z2, that
satisfy (8). If such a pair is found, OPT1 will proceed to delete x2 from the target-graph,
returning the value t r u e to its calling environment - OPT. This will cause OPT to apply
OPT1 to x once again, until z contains no additional inferior edges.
- -

5Proof: Partial: Let v f (x) = 3, v - (2) = 2 , v + (y) = 4 , and v - (y) = 1. The data are such tha t
neither v'(x) > v'(y), nor v - (y) > v + (x) . Hence, x does not dominate y and y does not dominate z .
Transzfive: assume that x >- y and y)- z. Hence, v ' (z) > v f (y) and v - (y) > v + (=) . No\\-, b y definition,
~ ' (9) >_ v - (y) . Hence, we get v - (2) > v C (~) 2 v - (y) > v + (z) . Hence, v - (x) > v f (:) and I* >- r.
AnZisymmetric: let x >- y. Assume that y >- x . Hence, v - (t) > u + (~) and v - (y) > v f (x) . By definition,
v f (x) > v - (x) , and v + (Y) > v - (~) . Hence, me get V - (I *) > v * (~) 2 v - (Y) > v f (x) >_ v - (z) , leading t o
v f (x) > v i (x) , which is a contradiction.

Center for Digital Economy Research
Stern School o f Business
W o r h g Paper IS-91-30

Since the production-graphs of OPT and OPT?. are identical to those of PC and P C I , we will
not repeat them here. To illustrate the execution of OPT, consider the decision tree graphs
depicted in figure 9. If the user were to apply OPT to the shaded node in the tree on the
left, he would end up with the tree on the right.

4.3 Consolidating

Decision-trees often contain a series of two or more consecutive nodes of the same type. A
sequence of two chance nodes represents two consecutive random events. A sequence of
two choice nodes represents two consecutive decisions. If a sequence of nodes of the same
type provides an accurate description of the user's problem, then there is nothing wrong
with it. For example, consider a chance node labeled po l l - r e su l t s , followed by a chance
node labeled e lec t ion- resu l t s. This sequence makes perfect sense in a certain context,
and therefore it should not be altered. On the other hand, there exist situations in which
a sequential presentation of nodes of the same type serves to befog, or even distort, an
otherwise simple problem. Consider the following example:

Problem 3: You may enter a two-stage game of chance whose outcome de-
pends on the number drawn from spinning a roulette wheel which is num-
bered 1 to 100. In the first stage of the game, the wheel is spun. If the
lucky number is in the range 1-16, you enter the second stage of the game.
Otherwise, the game is over and you win nothing. In the second stage of
the game, the wheel is spun again. If the lucky number is even, you win
$500. Otherwise, you win nothing.

Problem 4: You may enter a game of chance whose outcome depends on the
number drawn from spinning a roulette wheel which is numbered 1 to 100.
If the lucky number is in the range 1-8, you win $500. Otherwise, you win
nothing.

Note that problems 3 and 4 (see figure 10) offer the same prospect - an 8% chance of
winning $100. In spite of this normative equivalence, though, descriptive decision theory
predicts that most people who are given this option would prefer to play game 3 on game 4.
If this is indeed the case, the seller of the game could make i t appear more attractive if he

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

=>.

CON

Figure 10: Piobiem 3 (top) and Problem 4 (bottom). The middle nee is an intermediate i su i t ,
discuss& in the paper.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

add-all

selectafcer,
retain

Figure 11: The consoiidation prduczion CON, designed t o consoiidate txo consecuri~e chance
nodes into a single chance node.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

could cast it in terms of problem 3, rather than in terms of problem 4. Once again, we see
that the frame of the problem - the topology of its decision-tree - plays a significant role
in the user's decisions.

There may be several reasons why people prefer game 3 over game 4. First, it can be argued
that game 3 is simply more interesting than game 4: although both games offer exactly
the same value, the former game offers more excitement along the way. A more compelling
explanation, inspired by Tversky and Khaneman's "pseudocertainty effect," [26] goes as
follows. When people are presented with a sequence of two risky prospects, they tend to
evaluate each prospect separately. As a result, the second prospect in game 3 is analyzed
with a false feeling of certainty. In other words, the 50% chance of winning in the second
stage tends to overshadow the fact that there is only a 16% chance of ever reaching that
stage.

How can we eliminate, or at least reduce, the adverse impact of the pseudocertainty effect?
Taking a graph-grammar approach, we provide the user with an optional production de-
signed to detect paths that contain series of two or more consecutive chance nodes, and,
if the user so desires, collapse them into single chance nodes. Formally speaking, let x
be a node of type chance with n outgoing edges, leading to the children-nodes XI , . . . , x,.
Without loss of generality, assume that xl is also of type chance, and denote its children-
nodes xll , . . . , XI,. Our goal is to remove xl from the sub-tree rooted in x, and reconnect
all of xI1s children directly to x. The probability value of each reconnected edge, (x, xlj),
j = 1,. . . , m, should be set to the product p(x, xl) p(xl, xlj) (the joint-probability that
both xl and x l j have occurred). We call this operation consolidation.

The production that carries out this transformation is called CON (figure 11). The production-
graph consists of three nodes: x and xl, representing the two connected chance nodes, and
y, a typical child of xl. Node x is marked se lec tbefore , s e l e c t a f t e r , and find-one,
indicating that (a) it must be selected before the production starts; (b) it will remain se-
lected after the production has ended; and (c) only one such node is sought after in the
target-graph. Node xl is marked f i nd -a l l and de l e t e , indicating that all such nodes
should be found and then deleted from the target-graph. Note that the types of x and x l
are the same. This constraint need not be specified explicitly, since both nodes appear as
circles in CON'S production-graph.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-30

The typical child of the deleted node is represented in the production-graph by y. The
un ive r sa l label indicates that the type of this node is immaterial for the production. The
add-al l label for edge (3, y) indicates that this is a new edge, to be added to the graph
by the production. The value of the p robab i l i t y attribute of edge (x, y) should be set
to the product of the probabi l i ty attributes of the edges corresponding to (x,xl) and
(xl, y) in the t arget-graph. This is achieved through the following attribute transformation
expression:

ea(probabi l i ty , *, (x, X I) , echance)*

ea(psobabili ty, *, (xl , y), echance)

The consolidating example (figure 10) illustrates how the "output" of one production can
be piped into another production as "input." Denoting the trees in the figure from top to
bottom tl, t z , and tg, the overall graph manipulation can be described in terms of the chain

CON t1 - tZ 3 t3, or in terms of the functional form t 3 . P ~ (CoN(t 1)) . Such combinations
are possible because the inputs and outputs of all productions (as well as the productions
themselves) are instances of the same thing - attributed graphs.

4.4 Reversing

Let t be a decision-tree. If -t' is the decision-tree obtained from t by (a) pruning all the nodes
of t (section 4.1); and (b) consolidating all the branches of t (section 4.3), then ti contains
only alternating sequences of choice and chance nodes. In other words, the decision-tree
that emerges from pruning and consolidating operations has the "normal" game-theoretic
form of a 2-player game, in which a person (choice nodes) plays against nature (chance
nodes). Typically, the order of the nodes is dictated by temporal constraints: player 1
makes the first move, player 2 makes the second move, player 1 makes the third move, and
so on. In other words, the sequence of decisions and consequences unfolds in a fixed order
which is determined by the rules of the game. There exist situations, however, in which
there is a certain degree of latitude regarding the ordering of the moves. In these cases, the
model builder would benefit from a production that enables him to reverse the direction of
some nodes and edges in a sensible way, without violating the essential characteristics of
the underlying decision problem.

Center for Digital Economy Research
Stern School of Business
Worhng Paper IS-91-30

Furthermore, note that most decision-trees are not cast, at least initially, in their normal
form. As we mentioned elsewhere in the paper, many trees contain "genuine" sequences
of chance-chance or choice-choice branches that the user may not want to consolidate,
perhaps in order to preserve the original setting of the problem. Here, too, it may be
desirable to reverse the order of some nodes, for two different reasons. First, node-reversal
is a useful editing operation that comes handy in correcting or modifying the structure
of an existing tree. Second, node-reversal is an effective analytic tool; with it, the user
can create alternative frames of the same decision problem, gaining new insights into the
problem's structure.

With that in mind, we seek to provide the user with four generic reversal operations, as
follows:

1. reverse a chance-chance sequence
2. reverse a choice-choice sequence
3. reverse a choice-chance sequence
4. reverse a chance-choice sequence

Although the four operations are equally important from a functional standpoint, some are
more interesting from a graph-grammar perspective. (1) is interesting because it involves
recalculation of probabilities, using Bayes rule. (2) is a deterministic version of (1). (3)
is interesting because it reverses nodes of different types, whereas (4) is the inverse of (3).
Technically speaking, each one of the four operations represents a graph manipulation that
is significantly more complex than what we've seen thus far in this paper. Therefore, and
because of space limitations, we'll present here the implementation of one illustrative ex-
ample - reversing a chance-chance sequence. The need for this operation can be motivated
by the following example:

Problern 5: A seasonal virus is known to infect one predisposed person out of
every 100 people in the population. The virus causes a mild illness that
lasts a few days. A new vaccine that completely eliminates the virus attack
costs $100. You have just undergone a test which came out positive, indi-
cating that you are predisposed. The test's hit-rate (positive result when
the person is predisposed) is 80%. The test's false alarm-rate (positive

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-30

result when the person is not predisposed) is 20%. Will you purchase the
vaccine?

The top left tree in figure 12 gives a compact description of the problem's data, showing
clearly the clinical characteristics (type I and 11 errors) of the test. At the same time, the
tree fails to answer the key question here, which is not clinical, but diagnostic, in nature:
what are the chances that I am predisposed, given that the test comes out posiiive? In order
to answer this question, one needs to transform the tree from its present, clinical, frame
(top left tree in figure 12) into its dual, diagnostic frame (bottom left tree in figure 12). As
we see, the chance of being predisposed if the test says so is strikingly low - less than 4%.

This is not to say that the top left tree in figure 12 is invalid or misleading. In its present
frame, the tree serves the interests of one party, namely the vaccine's manufacturer. The
other party involved - the prospective user who is considering taking the test - can learn
nothing from the tree about the actual validity of the test. In order to make a reasoned
decision, the user must reverse the sequence of the nodes pre-disposed and t e s t - r e s u l t s
to the sequence t e s t - r e s u l t s , followed by pre-disposed. This reversal operation, which
involves a delicate graph manipulation and an appIication of Bayes rule, is clearly beyond
the bounded rationality of most decision-makers. Hence, an automated aid, in the form of
a reversal production, is called for.

This is yet anothkr example in which the given frame of a decision-tree does not lend itself
to answering all the relevant questions that may be posed against it. In other words, even
though the tree contains all the raw information necessary for reaching a reasoned decision,
key parts of this information are implicit and not readily accessible.

The general case of node reversal is depicted in figure 13. Let t be a sub-tree with a root-
node of type chance, denoted s. Node x has n outgoing edges, (x, y;), i = 1,. . . , n, each
leading to a chance node y;. The edges are parameterized by the probability distribution
of X, i.e., by the set of values P(x;), i = i , . . . , n . Each of the yi7s has m outgoing edges,
(y;, zjj), j = 1,. . . , m, leading to a node z;j which may be of any type. Note that each of the
yi's represents the same random variable - Y - whose probability distribution is conditioned
on the occurrence of the random event X. Hence, each edge (y;, zij) is parameterized by . .
the conditional probability P(yjlx;), j = 1 , . . . , m, z = 2 , . . . , n. For the sake of brevity, we
denote this tree t = (q, x, y, z) (q and z are nodes of any type, whereas x and y must be
of type chance). With this notation, the goal of the reversal operation is to transform the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

Figure 12: Exampie of the application of progrrm-gaph RCC (figure 14) to revele a
c h c e - c i ~ c e sequence. ?D and i?. reier to the rrndom 'ariabies preLis?osad and
tesi-ras&:, res-tiwiy (problem 5) . Shaded nodes are nodes tha t have been r e l e n d , ei-
ther by rhe Froduction or by the user. Shaded e d g ~ (lower right) represent edges that have
been deleted by the production.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

Figure 13: The goal of the reversal operation is to reverse the order of two consecut i~~ chance
nodes, i.e. to transform the top tree, denoted (q. x , y , z) , t o the bottomtr-, denoted (9, d ! itl '1.
q and z may be of any type, whereas s and y are assumed to be of tlpe chance.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

find-onc
,~lccbciorc.
sclecnhrr.
re- -

fmd-IIL add-all.
uri-fd d c k k

add-slf

find-on:.
s c l ~ ~ f a c fmd-A!.

find-aU.

Grindall +(-y'-
find-one. fiib-all
bslcczbcfac(rmL).
retain

Figure 14: The RCC progam (bottom), designed to reverse a chancechance sequence. This
program consists of two productions, RCCl (top), and RCC2 (middle) executed in sequence.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

sub-tree t = (q,x, y,z) into the sub-tree t' = (q, y', x', z) and, of course, carry out all the
necessary probability calculations implied by the reversal. It's important to remember that
t will typically be embedded in a larger tree, adding to the complexity of this manipulation.

The overall reversal operation is carried out by a graph-grammar program, named RCC,
which applies two productions, named R C C 1 and RCC2, to the target-graph (see figure 14).
We assume that before the program has been invoked, the user has selected a certain
target-node, denoted Ic, as the operation's anchor, or "pivot." If Z has no child node of
type chance, the RCCl production will fail to match its left hand side on the target-graph.
As a result, the production as well as the RCC program will terminate their execution
(see bottom of figure 14), and the tree will remain intact. If RCCl succeeds to match the
sequence x, y on the target-graph, it will proceed to create a reversed copy of this pair,
denoted (y', x') in the production-graph. The second production - RCC2 - links the edges
that imrnanent from the newly created node LC' to the children of the old node y , and then
deletes the old sequence z, y from the target-graph.

The logic of the productions RCCI and RCC2 is rather simple, but they involve complex
probability calculations that require several graph grammar tricks that we haven't seen
yet. In order to avoid clutter, we delay the step-by-step description of these productions
to a technical appendix. Readers who are not interested in the details of graph-granunar
programming can skip this material without losing the main thread of the paper.

Conclusion

This section summarizes our work along the two dimensions that characterized the entire
paper: graph-grammars (engineering) and decision theory (application).

Graph Grammars as a Modeling Tool: Generic families of models (like decision trees)
can be built and manipulated in two different ways: through general-purpose languages,
like Pascal or C, or through dedicated packages, like Arborist [I] or Supertree 1161. Each
implementation vehicle offers a different set of pros and cons. General-purpose languages
are flexible, but hard to use, whereas specialized packages are user-friendly, but functionally
limited. In this paper we presented an interim solution to model building, in the form of a

Center for Digital Economy Research
Stern School of Business
Worljrig Paper IS-91-30

GBMS (Graph-Based Modeling System). We argue that the GBMS approach offers both the
flexibility of free-form programming, on the one hand, and the predictability and ease of
use of specialized modeling environments, on the other.

In particular, the graph-grammar approach to modeling offers the following tangible ben-
efits. Flexibility: graph-grammars are Turing-complete, meaning t hat they are just as
powerful as any general-purpose programming language. Formality: the use of graph-
grammars enables us to define all the permissible manipulations on a certain family of
models precisely and unambiguously, using a mathematical language. Ezecutability: the
graph-grammar specifications can be implemented on a computer, so that model definitions
can be directly executed. Elegance: in a graph-grammar, both graphs and operations on
graphs are defined in terms of a uniform language - graphs. i t lodularity: New productions
can be easily defined to manipulate models in ways not envisioned by the original designers.
Generali ty: The graph-grammar formalism is a general-purpose modeling tool; it can be
used to construct a n y at tributed-graph, not just decision- trees. Hence, decision-tree mod-
els built in a GBMS can be archived and managed along with other graph-grammar models,
forming a "model-base."

The latter point is quite important. In addition to its ability to support the construction
and manipulation of decision-trees, NETWORKS can be applied to many other modeling do-
mains, e.g. influence diagrams, game trees, and mathematical modelling 191. Moreover,
the system allows models from different paradigms not only to coexist, but also to inter-
act. For example, the contents of a value attribute of an outcome node in a decision
tree model might be calculated by another model, e.g., the optimal objective function of a
linear programming problem. The link between the two models can be easily established,
as the attributes of one graph are allowed to refer to attributes in any other graph in the
model-base. This connectivity, along with the ability to work on different models in mul-
tiple windows, enable the implementation of many ideas in model management that up to
now were considered quite abstract.

The decision tree "package" that resulted from this research was implemented in NETWORKS
in about one week. NETWORKS runs on a Macintosh computer model I1 and requires at least
4 MB of main memory. It is written on AAIS Prolog, and can interface with native Prolog
code.

Center for Digital Economy Research
Stem School of Business
W o r h g Paper IS-91-30

Decision Theory: One fundamental requirement in the normative theory of decision
making is that the preferences of rational persons should be independent of problem de-
scription. The expected utility model and the theory of subjective probability provide
mathematical tools that are completely devoid of any "graphical" or "presentation" con-
texts. However, numerous studies on actual (rather than normative) decision making under
uncertainty revealed a persistent and predictable framing effect. Tversky and Ichaneman,
who studies this phenomenon in detail, have summarized their findings as follows:

"Individuals who face a decision problem and have a definite preference (i)
might have a different preference in a different framing of the same problem,
(ii) are normally unaware of alternative frames and of their potential effects
on the relative attractiveness of options, (iii) would wish their preferences to
be independent of frame; but (iv) are often uncertain how to resolve detected
inconsistencies. In some cases, the advantage of one frame becomes evident
once the competing frames are compared, but in other cases it is not obvious
which preferences should be abandoned." [2T]

We argue that this passage should motivate the development of a new breed of decision
support systems - systems that not only support the technical aspects of building decision
models, but are also sensitive to the cognitive limitations and biases that creep into their
normal use. The "intelligent" decision tree package presented in this paper is a step in this
direction. In addition to the standard functions of building, editing, and analyzing decision
trees, we have developed a library of productions that enable the user to manipulate decision
trees and create alternative frames of the same problem, thus gaining more insight into the
problem's structure and into the decision maker's own set of preferences.

To summarize, the reframing productions that were presented in this paper fall into four
categories: pruning, consolidating, optimizing, and reversing. Pruning consists of removing
superfluous nodes and edges from an otherwise well-structured tree. Consolidating is the
act of collapsing a branch of two or more nodes of the same type into a single node.
Optimizing consists of removing sub-trees that have no impact on the optimal choice path.
Reversing deals with altering the order of nodes and edges in the tree. One additional
operation that we haven't implemented yet can be termed combining - the act of merging
two separate decision trees into a single tree. This graph manipulation will be a powerful
debiasing mechanism, as it would allow users to overcome a natural inability to analyze

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

concurrent decisions, a bias which was reported and analyzed in [27]. Combining graphs is
also a challenging operation from a graph-grammar perspective, and we intend to report
about it in future work.

6 Appendix: Node Reversal Productions

This appendix describes the productions RCCI and RCC2, whose respective graphs are de-
picted in figure 14. These productions are designed to reverse the order of two consecutive
chance nodes in a decision tree graph - a transformation which is depicted symbolically in
figure 13. With that figure in mind, the R C C l production performs the following operations:

1. Create the node y'.

2. Create the nodes xi, j = 1,. . . , m. (Each of the m new nodes is a copy of
the old x node.)

3. Create the edges (y', x:), j = 1 , . . , , rn
4. Set the p r o b a b i l i t y attribute of each edge (y', xi) to P($) via the formula
E;="=, (Y j fxi)P(xi).

The second production, RCC2, performs the following operations (see figure 13 and bottom
right of figure 12):

1. For each new node xi, j = 1, . . . , n, create a new set of edges, (xi, zij),
i = 1, ..., R .

2. Set the p r o b a b i l i t y attribute of each edge (xj,zij) to P(x:jyi) via the
formula P (y j]xi) - P(x;)/ P(yj), j = I , . . . , m, i = 1, . . . , n

3. Delete the old z node and its outgoing edges (x, yj), j = 1,. . . , rn.

Product ion RCCI: The production (top of figure 14) begins its operation by looking for
an edge (5,~) in the target-graph such that 5 was selecetd by the user and both 5 and j7

Center for Digital Eco~lomy Research
Stern School of Business
W o r h g Paper IS-91-30

are of type chance. The edge and its two end-nodes are labelled f ind-one and re ta in ,
since only one instance of them should be found in the target-graph, and they should not
be deleted (at least temporarily, as we'll see shortly). Node x is labelled selectbefore ,
since it must have been selected before the production can proceed, and s e l e c t a f t e r , in
preparation for the second production (R C C ~) .

After x and y have been matched with corresponding nodes in the target-graph, the
production proceeds to add a new node, denoted yf, to the graph. The node is labeled
s e l e c t a f t e r (r o o t) - a label which will help the next production (R C C ~) distinguish be-
tween the old root x and the new root yf, which are both selected (root is an arbitrary
label chosen by the production designer). Since at the end of the reversal operation y' must
inherit the parent of x, both nodes are connected to q (a node of any type, i.e. universal)
in the production-graph.

The node q and its outgoing edges are labeled f ind-a l l and add-all, rather than f ind-one
and add-one, because of a subtle contingency. The problem is that T might be the root
of the overall decision tree, in which case q will not match any node in the target-graph.
In such an event, if q were labeled f ind-one, the production would fail to match and thus
terminate its operation. The f ind-a l l label, on the other hand, is more liberal, as it
instructs the production to seek 0, 1, or more such nodes in the target-graph.

Recalling that nodes x and y represent two random variables, our next task is to link every
possible outcome (outgoing edge) of y to an identical copy of x. The reversed nodes are
denoted y' and xf, and the reversal logic is carried out by the three edges (y, z), (yf, x'),
and (x ' , 2) . The labels of these edges cause the production to (a) enumerate (find-all) the
possible contingencies of y, copy them (add-all) to y', and then attach their corresponding
outcomes to XI. The curious pair of labels (add-all , delete) which marks (x', z) forces
the system to add one copy of x' to each (found) outcome of y.

The value of the l a b e l attribute of edge (yf,x') is set to the value of the l a b e l attribute
of edge (y, z) by the attribute transformation expression:

ea(labe1, *, (y, z), echoice) (10)

Finally, the value of the probabi l i ty attribute of (yf, XI) (for a certain outgoing edge j) ,
which represents P(yJ), should be calculated according to the following formula:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

The graph-grammar implementation of this formula is as follows:

sum((edge (*, Edge1 , echance ,x,Y) ,
edge (*, Edge2, echance , Y, 2) ,
ea(labe1, * ,Edge2 ,echance)=ea(label,*, (y) , x)) , echance)) ,

ea(probability,*,Edgel,echance)*ea(probability~*,Edge2,echmce))

In shorthand, this is essentially a sum (P , V) function in which the selector P consists of the
three boolean conjuncts (edge, edge, and ea=ea, and V is the numeric expression ea *
ea. The function sums up all the ea * ea values for which the three conjuncts are true, -
where:

1. The first conjunct, edge (* , Edge1 , echance , x, Y) , finds a child Y of x. This corre-
sponds to xi.

2. The second conjunct, edge (* , Edge2, echance , Y, Z) , finds a child 2, of the Y which
was found above. This corresponds to yjlx;.

3. The third conjunct insists that the label of the edge (y, z) (Edge2) be equal to that
of (y', xi). Recalling that we are calculating P(yj) for some j, this conjunct assures
that we only use those conditional probabilities, P(ykJx;), for which k = j .

4. Given the nodes and edges that the selectors have matched, the expressions
ea(probability,*,Edgel,echance) andea(probability,*,Edge2,echance)) cor-
respond to the probabilities P(x;) and P(yj /xi), respectively.

Hence, the overall sum function evaluates to the value of 11.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

Product ion RCC2: Once production RCC1 has completed, a new node, represented by y',
will have been added to the graph. In addition, new edges will have been added to the
graph, Ieading from y' to x', one edge for each possible outcome of y. Furthermore, the
probability values of each of those edges (the P(yj)'s) will have been calculated. What
remains to be accomplished is to connect the x's to the children of the original y. This
operation is carried out by RCC2.

If the selected nodes x and y' are matched in the target-graph, the production deletes the
former and retain the latter. Next, the production proceeds to match the edges (y,r) ,
(x', Z) , and (y', x'). The f ind-a l l and add-all labels ensure that all the children of y (the
z's) will be reconnected to x', subject to the requirement that the edge (y, r) has the same
label as the edge (y', z'). This is forced through the applicability predicate:

ea(labe1, *, (y, z) , echance) = ea(labe1, *, (y', x'), echance) (I2)

Next, the labels that emanate from node x' are bound to the original labels that emanate
from x. This is done by setting the labe l attribute of the edge (xf,z) to the following
at tribute transformation expression:

ea(labe1, $, (x, y), echance) (13)

Finally, the probabi l i ty attribute of (x', z), which corresponds to P(xilyj) for some i
and j, must be calculated through Bayes rule: P(x;lyj) = P (X ;) P (~ ~ ~ X ;) / P (~ ~) . Now,
the values P(x;), P(yjlx;), and P(yj) are already stored in the graph in the probabi l i ty
attributes of the edges (x, y), (y , r), and (y', x'), respectively (the latter was computed by
the RCCl production). Hence, RCC2 computes the probability of (x', z) through the following
attribute transformation expression:

ea(probabi l i ty , *, (x, y), echance)*
ea(probabili ty, *, (y, z), echance)/ (I4)

ea(probabili ty, *, (y', x'), echance)

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-30

Since the topology of the production takes care of all the necessary matchings, the indices
associated with each of these edges match up automatically, and there is no need to write
any explicit matching predicates (as we have done in RCCI).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

References

[I] Arborist decision-tree Soft~vare, Texas Instruments, Inc., PO Box 2909, Mail Station
2240, Austin, TX 78769.

[2] Bunke, H. 1982. On the generative power of sequential and parallel programmed graph-
grammars. Computing 29, 89-112.

[3] Gottler, H. 1979. Sernantical description by two-level graph-grammars for quasihier-
archical graphs. Applied Computer Science 13, 207-209.

[4] Gattler, H. 1983. Attributed graph-grammars for graphics. In Graph-Grammars and
their Application to Computer Science, pp. 130-142. H. Ehrig, &I. Nagl, and G. Rozen-
berg (eds.), Lecture Notes in Computer Science 153, G. Goos and 3. Hartmanis (series
eds.) Springer-Verlag , Berlin.

[5J Gottler, H. 1987. Graph-grammars and diagram editing. in Graph- Grammars and their
Application to Computer Science, Ehrig, H., Nagl, &I., Rozenberg, G., Rosenfeld, A.
(Eds.), Springer-Verlag, Berlin.

[6] Hopcroft, J. E. and J. D, Ullman. 1979. Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, Reading, Massachusetts.

171 Howard, R.A. 1968. The Foundations of Decision Analysis. IEEE Transactions on
Systems Science and Cybernetics, SSC-4, 211-219.

[S] Hutchins, E. L., Hollan, 3. D. and D. A. Norman. 1986. Direct Manipulation Interfaces,
in User Centered System Design: New Perspectives on Human-Computer Interaction,
Norman, D. A. And S. W, Draper (eds.), Lawrence Erlbaum, Hillsdale, New Jersey,
87-1 24.

[9] Jones, C. V. 1989. An Example Based Introduction to Graph-Based Modeling, Proceed-
ings of the Twenty-Third Annual Hawaii Conference on the System Sciences, ICona,
HI, pp. 433-442.

[lo] Jones, C. V. 1990. An Introduction to Graph-Based Modeling Systems, Par t I:
Overview. ORSA Journal on Computing, 2:2, 136-151.

[ll] Jones, C. V. 1990. An Introduction to Graph-Based Modeling Systems, Part 11: Graph-
Grammars and the Implementation, forthcoming, ORSA Journal on Computing.

Center for Digital Economy Rerearch
Stern School of Business
!A70rh1g Paper IS-91-30

[12] Jones, C. V. 1990. An Integrated Modeling Environment Based on Attributed Graphs
and Graph-Grammars, forthcoming Decision Support Systems.

[13] Lavalle, I.H. 1978. Fundamenta2s of Decision Analysis, Holt, Reinhart & lvinston,
Inc., New York.

[14] Lavalle, I.H., and Fishburn, P.C. 1987. Equivalent decision-trees and Their Associated
Strategy Sets. Theory and Decision, 23, 37-63.

I151 Lavalle, I.H., and Wapman, K.R., 1986. Rolling back Decision Trees Requires the
Independence Axiom. illanagement Science 32: 382-385.

(161 &fcNamee, P. and J. Celona, 1987. Decision Analysis f o r the Professional with Su-
pertree, Scientific Press, Palo Alto, CA.

[17] Nagl, bf. 1976. Formal languages of labelled graphs. Computing, 16 , 113-137.

[IS] Nagl, bf. 1987. Set theoretic approaches to graph grammars. In Graph-Grammars and
their Application to Computer Science, Ehrig, H., Nagl, hl. Rozenberg, G. and A.
Rosenfeld (eds.), 41-54, Springer-Verlag, Berlin.

[19] Raiffa, H. 1968. Decision Analysis. New York: Random House, p. 129.

[20] Reps, T. and T. Teitelbaum. 1984. The synthesizer generator, Proc. ACM Sig-
soft/Sigplan Symposium on Practical Software Development Environments. ACM Sig-
plan Notices, 1 9 3 , 42-48.

[21] Shneiderman, B. 1983. Direct manipulation: a step beyond programming languages,
IEEE Computer, 16:8, 57-69.

[22] Simon, H.A., Q. J. Econ. 69,99 (1955), Psychol. Rev. 63, 129 (1956).

[23] Suppowit, K. J. and E. M. Reingold. 1982. The complexity of drawing trees nicely.
Acta Informatica, 18, 377-392.

1241 Tamassia, R., Di Battista, G., and C. Batini. 1988. Automatic graph drawing and
readability of diagrams. IEEE Trans. on Systems, Man and Cybernetics, 18:1, 61-79.

[25] Thompson, G.L. 1972. Simplification of games in extensive form. Internat. J. Game
Theory 1, 147-159.

Center for Digital Economy Research
Stern School of Business
Worljrig Paper IS-91-30

[26] Tversky, A. and Khaneman, D. 1974. Judgement Under Uncertainty: Heuristics and
Biases. Science 185, 1124-1131.

[27] Tversky, A. and Khaneman, D. 1981. The Framing of Decisions and the .- Psychology
of Choice. Science 211, 453-458.

[2S] Vaucher, J. G. 1980. Pretty-printing of trees. Sofiware Practice and Experience, 10,
553-561.

[29] Warfield, J. N. 1977. Crossing theory and hierarchy mapping. IEEE Transactions on
Systems, Man and Cybernetics, SMC-7, 505-523.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-30

