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Abs t r ac t  

Techniques for analysis and validation of software requirements specifications written in the 
knowledge representation language Templar are presented. Templar specifications are analyzed 
in terms of ambiguity, non-minimality, contradiction, incompleteness, and redundancy. Since 
Templar is a powerful knowledge representation language supporting a rich set of modeling 
primitives, it is difficult to reason directly on Templar specifications. To solve this problem, 
Templar specifications are mapped into equivalent temporal logic programs which are analyzed 
in terms the criteria listed above. However, it is hard to reason about Templar specifications 
because some of the criteria cannot be formally proven, and the verification of other criteria 
constitute undecidable or intractable problems. To overcome these difficulties, we consider a 
set of tractable conditions for each criteria, which serve as "alarms" for the user. If a condition 
is violated then it means that the specification either definitely has or potentially can have a 
problem. Furthermore, the user is notified about the source and the nature of the problem in 
certain cases. 

1 Introduction 

The size and complexity of software systems increased dramatically over the past decade [DavSO]. 

As a result of this, the probability of making errors in specifying and designing these systems has 

also increased [DavSO]. One way to  reduce these errors is to develop suitable techniques for analysis 

and validation of requirements specifications. 

Meyer [Mey85] described seven problems commonly found in requirements specification docu- 

ments. He called them seven "sins" of the specifier. Subsequently, Dubois and IIagelstein [DH87] 

consolidated them into five problems: 

ambiguity: a specification admits multiple interpretations 

'Address: 40 West 4th Street, Room 624, New York, NY 10003; Internet: atnz11ilinOstern.ngl1.edu. 
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non-minimality: the presence of an element in the specification that corrcsponds not to a 

feature of the problem but features of a possible solution (also called over-specification) 

incompleteness: omission of relevant aspects of the system being specified (also called under- 

specification) 

contradiction: a specification ha,s two or more incompatible features (also called inconsistency) 

0 redundancy: repetition of information. 

In this paper, we present some formal methods for validating requirements specifications writ- 

ten in the ltnowledge representation language Templarl in terms of these five criteria. Templar is a 

software specification language based on knowledge representation methods designed to meet the 

following objectives: specifications written in Templar should be easy for the non-computer oriented 

users to  understand, should have formal syntax and semantics, and it should be easy to  map them 

into a broad range of design methods. A Templar specification consists of a set of rules and a set 

of activity specifications that describe composite activities in terms of its subactivities. It explic- 

itly supports rules, events and activities, time, hierarchical decomposition of activities, sequential 

and parallel activities, static and dynamic integrity constraints, and data modeling abstractions of 

aggregation, generalization, classification, and association. The relationship of Teinplar to otlzer 

knowledge representation languages for requirements specifications will be discussed in Section 3 

after we introduce the features of the language. 

It is difficult to reason about arbitrary Templar specifications because Templar supports a 

rich set of modeling primitives and some of these primitives are not based on logic and, therefore, 

not amenable to  reasoning. For this reason, we map Templar specifications into a certain type of 

equivalent temporal logic programs [AM89, BFGS89, KKN+SO, TuzSlb] and the11 try to  validate 

these programs, thus validating Templar specifications. Since temporal logic programming is based 

on souild theories of logic programlniilg [Llo87] and temporal logic [I<roS7], it is much easier to 

reason on temporal logic programs than on Templar specifications. 

Any attempt to  determine a1gorithmica;lly if a software specification has any of the five problems 

listed above, encounters the following difficulties: 

Informality. Some of the five problems described above cannot be detected with any formal 

method even if the specification itself is stated in formal terms. These problems cannot be 

lTemplar stands for Temporal logic as a requirements specification language. Templar also means, according to 
the American Heritage Dictionary, "A knight of a religious military order founded at  Jerusalem in the 12t.h century 
by the Crusaders." 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-28 



detected because they are not formally defined. For example consider the problem of incom- 

pleteness. It says that a specification is complete if it captures all the relevant knowledge 

about the real-world system the user has in mind. Clearly, it is impossil~le to  define for- 

mally what knowledge the user perceives as "relevant" and what as "irrelevant." Therefore, 

incompleteness of a requirements specification cannot be formally validated in general. For 

the same reason, non-minimality condition cannot be formally validated unless there exists 

a formal definition of a problem space, a solution space and of the boundary between these 

two spaces. 

* Undecidability and Intractability. Even if some of the five problems can be formally defined, 

such as contradiction, redundancy, and ambiguity, it may turn out that validation of these 

problems can be an undecidable problem. For example, the problem of showing that one 

of the logical statements follows from the set of other statements is undecidable in general 

[Chu36]. Furthermore, although the implication problem can be made decidable by restricting 

formulas to  some smaller classes [DG79], it can still be intractable, i.e. cannot be decided in 

polynomial time. 

The specification language ERAE [DHLf 861 addresses these problems by providing a combina- 

tion of manual deductive reasoning techniques and interactions with the user. Also, the specification 

language Tempora [LMPS90] addresses these problems by using a validation technique called se- 

mantic prototyping [TWLSO]. This technique also involves an active participation of the user in the 

validation process. 

In this paper, we have chosen another approach to solving these two problems. We formulate 

a set of tractable conditions for some of the five problems in software specificatio~ls listed above. 

These conditions serve as "alarms" for the user and are divided into two types. If the condition 

of the first type holds, then the software specification definitely has a problem, and the user is 

notified about it. If the condition of the second type holds, then the software specification may 

have a problem, In this case, the system only warns the user about the potential problem and 

shoxvs the source of the problem. Then the user has to  decide if he or she wants to  change the 

specification or leave it unchanged. 

The rest of the paper is organized as follows. In Section 2, we overview temporal logic and 

temporal logic pr~gra~mming since they will be extensively used throughout the paper. In Section 3, 

we present the language Templar. In Section 4, we show how Templar specifications can be snapped 

into temporal logic programs of a certain type. Finally, in Section 5, we address the issue of 

validation of Templar specifications and their corresponding temporal logic programs. 
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2 Preliminaries: Overview of Temporal Logic and Temporal Logic 
Programming 

Since Templar is based on temporal logic (TL) and since we will map Templar specifications into 

temporal logic programs (TLPs) in Section 4, we briefly review temporal logic and temporal logic 

programming in this section. Books by Kroger [KroS7] and Rescher and Urquhart [RU71] provide 

a good introduction to  temporal logic. Also, some of the TLP systems are described in [AM89, 

BFG+89, KKN+90, Mos86, Tuzglb]. 

The syntax of a predicate temporal logic is obtained from first-order logic by adding various fu- 

ture temporal operators such as sometimesin- the-future  (o), alwaysin- the-future  ([I), next  

(o), unt i l  and their past "mirror" images sometimesin- the-past  (+), a lwaysin- the-past  (B), 

previous (e), and since to  its syntax. Note that function symbols are allowed in temporal logic 

formulas since they are based on first-order logic. 

The semantics of temporal logic formulas is defined with temporal interpretations. A tempord 

interpretation for some temporal logic language defines the domain of discourse, the model of 

tirne (e.g. discrete or continuous, bounded or unbounded, linear or branching), assigns values 

to  constants and function symbols in the language as in classical logic, and specifies a temporal 

structure [I<roS7], i.e. the values of all the predicates in the language at  all the time instances. We 

assume any arbitrary structure of the domain of discourse and also assume that time is discrete, 

linear, bounded in the past and unbounded in the future (i.e. time can be modeled with natural 

numbers). A temporal structure is defined for each predicate Pi in the language as a sequence of 

its instances Pit for all the moments of time t = 0,1,2, . . .. We denote a temporal structure of 

a temporal logic language at  tirne t as Kt. Then fit(Pi) = Pit, since it defines the instance of 

predicate Pi at  time t. 

A temporal structure can be extended from predicates to arbitrary temporal logic fornzulas in 

the standard inductive way [I<roS7]. For exarnple, I c t ( ~ )  is true if for all t' such that t' > t ,  ICtl(A) 

is true. The meanings of the four standard future temporal operators are defined in Fig. 1. The 

meanings of past "mirror" images of these operators are defined similarly to  the future operators 

except that time is referenced only in the past. A temporal interpretation is a nzodel for a set of 

temporal logic formulas if all the formulas are true at all the times in this interpretation. 

Besides these eight standard operators, other temporal operators can be defined, such as 

before, af ter ,  while, w h e n  [Kro87], and bounded necessity, for-t ime (T) (m), and possibility, 

within-time (T) (oT), operators [Tuzglb]. For example, A for-time (T) is true now if A is 

alwa,ys true within the next T tirne units. These additional temporal operators have the same 
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- 

CLA: is true now if A is always true in the future 

oA: is true now if A is true at some time in the future 

o A: is true now if A is true at the next time moment 

A unt i l  3: is true now if B is true at some future time t and A is true for all the 
moments of time from the time interval [now, t )  

Figure 1: Operators of Temporal Logic 

expressive power as the until, since pair [Gab891 and are introduced only for the ease of use. 

After reviewing temporal logic, we consider temporal logic programming. There are different 

types of temporal logic programming systems described in the literature. We will briefly review 

the system based on [Tuzglb]. 

A present temporal literal or just a literal is either a predicate or a negated predicate. A past 

(future) temporal literal is a temporal literal with the past (future) temporal operator associated 

with it. 

A temporal logic program (TLP) is a set of temporal clauses. A temporal clause has the form 

BODY -+ HEAD,  where BODY is a conjunction of present and past temporal litcsals and H E A D  

contains a single present or future temporal literal. It follows from this definition that the body of 

a rule refers to  the present and/or to  the past, whereas the head of a rule refers to the present or 

to  the future. It also follows from this definition that negations are allowed both in the head and 

the body of a rule. 

Example  1 The statement 

If an employee has been fired from a company (worked there in the past but not now) 

then he or she cannot be hired by the same company in the future. 

can be expressed as a temporal logic programming clause 

.*EMPLOY(company, person) I\ -tEhdPLOY(company, person) -t 

mEMPLOY(company, person) 

or using a different syntax as 

IF sometimesin- the-past  EhfPLOY(company,person) and not EMPLOY(compclny,person) 

THEN alwaysin- the-future  not EA4PLOY(conzpany,person) 
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The meaning of a tempora.1 logic program is associated, as in the case of a logic program, 

with a certain model of that program. As it follows from the previous definition, a model of a 

program is a temporal interpretation, the temporal structure h' of which satisfies the condition 

that I i t (body;  4 head; )  is true for all the rules i in the program at  all the moments of time t. 

Additional discussion of the semantics of this specific temporal logic programming system can be 

found in [Tuzgla]. 

A model of a TL program is finite if all the program predicates have finite instances in its 

temporal structure2. We will consider only temporal logic programs with finite models in this paper. 

For example, the following program consisting of two rules q ( x )  -+ o p ( x )  and p ( x )  --+ p ( x  + 1) and 

a fact q ( 0 )  is not a valid program because at  time 1 predicate p has an infinite instance. 

3 Description of Ternplar 

In this section, we briefly describe the software specification 1angua.ge Templar. For the complete 

presentation of the language refer to  [Tuzgla]. The development of Templar was guided by the 

following design objectives [TuzSla]: 

1. Templar specifications should be easily understood by non-computer oriented people, and the 

requirements specifications stated in some form of a restricted natural language should easily 

be translated into Templar specifications. 

2. Requirements specifications written in Templar should be easy to  map into a broad range of 

existing software design methods, such as object-oriented design methods [RBPESl], com- 

bination of data flow and ER diagrams, and other process and data modeling languages, 

such as Telos [MBJKSO] and Tempora [LMPf SO]. This can be achieved by making Tenlplar 

independent of various design specification languages. This will allow the systems developer 

to  postpone decisions about which data and process modeling paradigm to  choose until the 

design stage. Therefore, he or she has a freedom to  select those paradigms in the design stage 

that are the most suitable for the requirements specifications produced in the requirements 

stage. 

3. Templar specifications should be rigorous. Otherwise, there can be many translation errors 

from informal requirements into formal design specifications. 

2We assume that  the  Universe of Discourse (UoD) is infinite. In case of the  finite UoD, we can replace the  
requirement of a finite model with the requirement of a safe model, where safety is defined as in the  case of safe 
queries in databases [U1188]. 
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Templar is designed so that it can be used at different stages of the software development life 

cycle. In particular, it can be used in two substages of the software requirements specification stage. 

In the problem analysis substage [DavSO], it can be used for the purpose of conreptual modeling. 

In the substage of actual writing of software requirements specifications [DavSO], it can be used 

as a language used in these specifications. Furthermore, Templar can be used in the design stage 

of the software life cycle, especially for the applications in which the data is stored in an active 

database [dMSSS, MDS9, VVFSO, SJGPSO] in the implemented system. 

A Templar specification consists of a set of rules and a set of activity specifications. It explicitly 

supports rules, events and activities, time, hierarchical decomposition of activities, sequential and 

parallel activities, static and dynamic integrity constraints, and data modeling abstractions of 

aggregation, generalization, classification and association. We describe Templar informally in this 

paper with a set of examples. Formal definition of the language can be found in [TuzSla]. 

Examples of Templar specifications will be based on the description of an IFTP Working Confer- 

ence [01182, Appendix A]. Organization of a working conference involves several activities: sending 

a call for papers, receiving paper submissions and registering these submissions, sending papers to  

be refereed, receiving reports back from referees, making acceptance/rejection decisions and so on. 

A Templar specification of such a conference consists of a set of rules and activities that will be 

described in turn below. 

Rules, A Templar rule is based on temporal logic and on the Activity-Event-Condition-Activity 

(AECA) model. AECA is an extension of the Event-Condition-Action (ECA) model of rules in 

active databases [dMSSS, MD89, IZTFSO, SJGPSO], and of rule-based design methodologies in In- 

formation Systems [MNP+!31] that provide a more comprehensive support for time. 

Tlie following is an example of a Templar rule. To make an example simple, wc consider a rule 

of the ECA type and describe an AECA rule in Example 3. 

Example 2 The user specification 

When a reviewer receives a pamper to  be refereed, which was sent by the conference 

program chairperson, he/she evalua.tes the paper and sends it back to  the d ~ a i r .  

is expressed with the Templar rule 
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when  end.send(paper,chairperson,reviewer) 
if referees(paper,reviewer) 
t h e n  nex t  located(paper ,reviewer) 
then-do  review(paper,reviewer) ; send(paper ,reviewer, chairperson) 

This rule is interpreted as follows: when an event end. send(paper , chairperson,reviewer) 

occurs (reviewer receives a paper) and if the condition referees (paper ,reviewer) is true then 

the post-condition located(paper,reviewer) is also true at the next time momcnt and the activi- 

ties review(paper ,reviewer) and send(paper ,reviewer, chairperson) are initiated sequentially 

(i.e. when the first activity finishes, the second one starts). 

This rule illustrates three major modeling primitives in Templar: activities, events, and con- 

ditions. Activity is a process that occurs over time, e.g. a paper is being reviewed by a reviewer for 

some time. An event is a change to  the system state that occurs instantaneously, e.g. a reviewer 

receives a paper a t  some moment in time. Prefix "end" in "end.sendfl in Example 2 specifies the 

event "activity send(paper , chairperson ,reviewer) has finished." A condition is a logical for- 

mula that describes the state of the system, e.g. predicate referees (paper ,reviewer) indicates 

that in the current state of the system, objects paper and reviewer are engaged in relationship 

referees. 

The rule presented above consists of clauses when,  if, t hen ,  and then-do.  Each clause deals 

with only one type of a modeling primitive: w h e n  clause pertains to  events, if and t h e n  clauses to 

conditions, and then-do clause t o  activities. This means that in the previous rule referees and 

located are predicates, review and send are activities, and end. send is an event (the end of an 

activity). This relationship between clauses and types of modeling primitives that can be used in 

clauses forces the user to think more structurally when writing specif cations. 

Besides the clauses described above, Templar supports other types of clauses, such as while, 

before, af ter ,  and user-defined clauses. Figure 2 shows the relationship between clauses and 

activities, events, and conditions. For example, events can occur only in when ,  before,  and a f te r  

clauses, and the if clause can take only conditions. 

In general, a Templar rule has not only events and conditions in its antecedent, as rules in the 

ECA model have, but also activities, as the following example shows. 

Example  3 Assume the organizers of a conference have a rule: 

While the paper is being reviewed, any request to withdraw the paper will he granted 
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conditions 

Figure 2: Types of Clauses 

clauses 
if, t h e n  

events 
activities 

by the program chairperson. 

w h e n ,  before,  a f t e r  
t hen-do. while, before,  a f t e r  

This requirement can be expressed in Templar as 

whi le  do_reviewing(chairperson ,paper) 
w h e n  withdrawal_request (paper) 
if submission(paper , author , s t a tus )  
t h e n - d o  withdraw (paper, author) 

where doreviewing(chairperson,paper) is the activity of sending a paper by the program chair- 

person for reviewing, submission(paper , author, s t a tus )  is a condition stating that  an author 

submitted a paper t o  the conference, withdrawalrequest(paper) is an event indicating that 

the request t o  withdraw the paper was received, and withdraw (paper, author) is an activity of 

withdrawing a paper from the conference. 

This rule says that  while a certain activity lasts, and when an event occurs, and if a condition 

holds, then do a new activity. In this rule, unlike the rule from Example 2, the activities in the 

t h e n - d o  clause depend not only on some conditions and events but also on some other activities. 

Therefore, we call this type of a rule the Activity-Event-Condition-Activity (AECA) rule bccalise it 

generalizes the Event-Condition-Activity (ECA) rule as defined in [dh/IS88, MD80. 1TTF90, SJGPSO] 

by 

allowing activities in the antecedent part of the rule; 

supporting not only w h e n ,  if, and t h e n  clauses of the ECA model bu t  several additional 

clauses, including the clauses shown in Fig. 2; 

r providing a comprehensive support for time, as will be described below. 

It is argued in [SJGPSO] that  an ECA model of a rule is a powerfill model becanse it can support 

such1 diverse database concepts as views, special semantics for updating views, materialized views, 
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partial views, procedures, special procedures, and cashing of procedures. Since ECA is a special 

type of the AECA model, this means that AECA is a very powerful model of a rille. 

Activity. Templar distinguishes between atomic and composite activities. A composite activity 

consists of sub-activities. For example, the activity review(paper, reviewer) from Example 2 

consists of reading the paper and then evaluating it. This can be expressed in Templar with an 

activity specification as illustrated in the following example. 

Example 4 

A specification for the activity review can be stated in Templar as 

activity review (paper ,reviewer) 

read(paper,reviewer) 

evaluate(paper ,reviewer) 

e n d a c t i v i t y  

An activity specificastion can be compared to a procedure in conventional programming lan- 

guages or to the body of a method in object-oriented programming, except it is defined in terms 

of temporally oriented modeling primitives (activities). 

An atomic activity cannot be divided into subactivities. It is defined with an (optionally 

negated) temporal predicnte describing how one of the relational predicates changes over time. For 

example, consider the activity specification 

activity read(paper ,reviewer) 

T = reading-time(paper ,reviewer) 

reading(paper ,reviewer) for-time T 

end-activity 

where reading-time (paper, reviewer) is a function that specifies how much time it takes a re- 

viewer to read a paper, and reading is a temporal predicate. Then "reading(paper ,reviewer) 

for-time T" is an example of an atomic activity. It states that the predicate 

reading(paper,reviewer) will be true for the next T time units. 

Ternplar allows the mixture of composite a,nd atomic activities inside an a.ctivity specification. 

For example, the previous composite activity review(paper,reviewer) can bc rewritten as 

activity review(paper ,reviewer) 

T = reading-time(paper,reviewer) 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-28 



reading(paper  ,reviewer) for-time T 

evaluate(paper  ,reviewer) 

end-activity 

Since subactivities in an activity specification can also be composite activities, Templar sup- 

ports the process of hierarchical decomposition of a complex activity into progressively more and 

more simple subactivities. 

Templar also allows multiple subactivities in the then-do clause of a rule. For in- 

stance, the then-do clause in Example 2 has two subactivities review(paper,reviewer) and 

send(paper , reviewer,  chairperson).  Alternatively, these two subactivities could be combined 

into one composite activity, and the then-do clause would refer only to  this single activity. 

The combination of activity specifications and rules makes Templar a pomcrful specification 

method. If Templar specifications had only rules then they coiild contain hundreds of rules, and 

it would be difficult for the user (and often for the developer) to  understand clearly how the 

rules interact. On the other hand, if Templar specifications consisted only of activities, then it 

could be difficult t o  describe the control logic with only the if-then-else statements for certain 

applications. With Templar specifications, the user has the flexibility of combining rules and 

activities in such a way that there are much fewer rules then for the strictly rnlc-based methods, 

and activity specifications tend to be small, simple and easy to  understand, as the case study in 

[Tuzg la] shows. 

Temporal predicates. Templar predicates can change over time. For example, the predicate 

submission(paper, au thor ,  s t a t u s )  can have different truth values a t  different moments of time 

depending on the value of s t a t u s  at those moments. Therefore, temporal operators, described in 

Section 2, can be applied to  these predicates in if and then clauses, 

Example 5 The rule 

Only the original papers are accepted for the conference, i.e. if a paper has been 

published in some journal in the past, it cannot be submitted t o  the conference 

can be expressed in Temp1a.r as 

if submission(paper , author ,  s t a t u s )  and 
sometimesin-the-past published(paper , author ,  j ournal)  

then-do r e j e c t  (paper,  author)  
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where sometimesin-the-past is the temp0ra.l possibility operator defined in Sect ion 2 and r e j e c t  

is the paper rejection activity. 

Constraints. Templar also supports static [Nic82] and dynamic [CF84, LS87, ITS911 constraints 

by specifying rules only with if and then clauses. The static constraint does not ]lave any temporal 

operators neither in the head nor in the body of a rule. For example, the following static constraint 

A paper can have only one specific status a t  a time 

can be expressed in Templar as 

if submission(paper , author,  s t a t u s )  and submission(paper , author ,  st  a tus  ' ) 
then s t a t u s  = s t a t u s '  

Note that this constraint specifies that paper and author functionally detcrnline s t a t u s  in 

predicate submission. 

A dynamic constraint is defined as an if-then rule where some predicates take temporal 

operators. For example, the following dynamic constraint 

If a paper is accepted to  a conference, it cannot be publisl~ed elsewhere in tlic future. 

can be expressed in Templar as 

if submission(paper , author ,  s t a t u s )  and s t a t u s  = accepted and 
publ ica t ion  # this-conf erence 

then alwaysin-the-future not published(paper,  author ,publ icat ion)  

where this-conf erence is a constant representing the conference being modeltd . 

Other features. Furthermore, Templar snpports data modeling abstractions of classification, ag- 

gregation, generalization, and association [TL82, HK871, parallel activities, external events, events 

defined by explicit specifications of time, periodic events and temporal precedence operators before 

and after. These features of Templar are described in [TuzSla]. 

In summary, Templar sapports a rich set of modeling primitives, including a powerful AECA 

model of a rule, that are integrated into one coherent specification language. 
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1) the paper is with the chairperson, a,nd the reviewer does not have the paper 
2) the reviewer has the paper and the chairperson does not have the paper 
3) the paper is with the chairperson, and the reviewer does not have the paper 
4) the paper is accepted for the conference 

Figure 3: Sequence of Conditions Consistent with the Specificat ion. 

1) the paper is with the chairperson, and the reviewer does not have the paper 
2) the paper is accepted for the conference 
3) the reviewer has the paper and the chairperson does not have the paper 
4) the paper is with the chairperson, and the reviewer does not have the paper 

Figure 4: Sequence of Conditions Inconsistent with the Specificat ion. 

The meaning of Templar specifications is defined in terms of sequences of predicates (condi- 

tions) over time that are consistent with the specification, i.e. in terms of nzodels of specifications. 

A sequence of predicates over time is consistent with a specification if it makes all the rules in the 

specification to  be true at all the moments of time. For example, in the IFIP rase, the sequence 

of conditions ("fragments" of predicates) shown in Fig. 3 is consistent with the specification. On 

the other hand, the sequence of conditions shown in Fig. 4 is not consistent with the specification 

because condition (2) ("paper accepted for the publication") should follow conditions (3) and (4). 

More detailed description of semantics of Templar specifications can be found i n  [TuzSla]. 

Related Work There have been many IS specification methods proposed in the literature. Books 

by Davis [DavSO], Yourdon [You89], Olle et a1 [OHM+88], Rumbaiigh et a1 [RBPl?91] describe some 

of these methods. A variety of different specification methods exist because different applications, 

or even different parts of the same application, can best be specified wit11 different nicthods [DavSO]. 

Since in this paper we are interested in the knowledge-based methods describing evolution of in- 

formation systems in time, ure will compare our work to existing knowledge-1)ascd specification 

methods dealing with rules and with time, such as RML [BGh485], Telos [hInJT<90], Tempora 

[LMP+90], ERAE [DIIT,+86], and RDL [ G H I I ~ ~ ] ~ .  

RML, Telos and Tempora are powerful knowledge representation languages supporting a rich 

set of modeling primitives. Among other features, RML [BGh185] and Telos [RIDJKSO] support 

deductive rules, object-oriented specifications, time, and data modeling abstractions of aggregation, 

classification and generalization. Tempora [T,hlP+90] supports time, complex ol)jccts, an extended 

entity-relationship data model, and deductive rules. However, all the three la,ngi~agcs do not satisfy 

3We do not make any claims about the completeness of this list. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-28 



our design objective of being independent of specific design data models. They depend heavily on 

specific design specification methods, such as object-oriented design, complex objects and entity- 

relationship diagrams. Furthermore, the rule structure of RML, Telos and Tempora do not support 

the powerful AECA rule model of Templar. The rules in Telos have the if-then structure and are 

based on some variant of many-sorted first-order logic. The rule structure of Tempora is based on 

ECA model [MNP+91] and on temporal logic and is closer to  the rule structure of Templar than that 

of Telos. However, Tempora mainly supports events and conditions, and does not treat activities 

on the equal footing with events. For example, it does not allow activities in the antecedent part 

of the rule (e.g. in the while clause). 

ERAE is still another specification language supporting time, entities and relationships among 

them, events, deductive reasoning system based on first-order logic, and some data mocleling ab- 

stractions, such as association (is-in predicate) [DITL+86]. It can support a broader range of design 

methods than Telos and Tempora because it is less dependent on specific moclrling constructs, 

such as complex objects and ERT diagrams of Tempora and object-oriented features of Telos. For 

example, association is modeled with predicate is-in, and is not built into the data model, as is 

done in Telos. However, the rule structure of ERAE is based on the if-then model, as in Telos, 

and does not support the AECA rule model and temporal logic operators in rules. 

Finally, RDL [GHHSl] is a specification language for the requirements and design of time- 

dependent systems based on the intuitionistic temporal logic. RDL has a rigorous and very general 

specification language and, as a result of this, its specifications can be easily mapped into most 

of the design specification languages and also can be formally verified. However, RDL does not 

support many of the modeling primitives described in this p a p ~ r ,  such as an explicit support for 

events and activities, hierarchical decomposition of activities, and the support for the parallel and 

sequential composition of activities. As a result of this, RDL specifications may be difficult to  

understand by non-computer oriented users. 

In summary, none of the software specification methods considered in this section satisfies all 

the three design goals sta,ted above. Furthermore, the rule structures of these metllods are not as 

universal and powerful as the AECA rule model of Templar. 

In this paper, we are interested in the problem of validation of Templar spccificatiolls that 

were described in this section. However, Templar specifications support a ricli set of modeling 

primitives, including such procedural features as activity specifications. Therefore, they are less 

suited for reasoning about software specifications. To solve this problem, we have choselz the 

following strategy. We will map Templar specifications into equivalent specifications expressed as 
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temporal logic programs (TL programs). Then we will validate these TL programs i11 terms of 

the five criteria listed in the introduction. Since the mapping from Templar specifications always 

produces an equivalent TLP specification, the validation results obtained for TT,P specifications 

will be applicable to the original Templar specifications. 

In the next section, we describe the mapping of Templar specifications into eqnivalent temporal 

logic programs, and in Section 5, we describe how to reason about these programs. 

4 Mapping Templar Specifications into Temporal Logic Programs 

In Section 2, we briefly described temporal logic (TL) programs. In this section, we show how Tem- 

plar specifications can be ma.pped into these programs. We will not describe the precise algorithm 

that converts Templar specifications into TL programs but illustrate this process with an example. 

Example  6 Consider the rule from Example 2: 

when end.send(paper,chairperson,reviewer) 
if ref erees(paper ,reviewer) 
t h e n  next  located(paper ,reviewer) 
then-do review(paper ,reviewer) ; send(paper ,reviewer, chairperson) 

where activity review, as defined in Example 4, is 

activity review(paper ,reviewer) 

read(paper ,reviewer) 

evaluate (paper ,reviewer) 

end-activity 

and activity send is 

activity send(what,from,to) 

T = transfer-time(what,from,to) 

next not located(what ,from) 1 1  transf er(what ,to) for-time T 

endac t iv i ty  

The first step in the conversion process replaces all composite activities with atomic 

activities. To show how this can be done, notice that the end of the compos- 

ite activity send(paper , chairperson ,reviewer) coincides with the end of atomic activity 

transfer (paper, reviewer) for-time T, i.e. 

end. send(paper , chairper~on~reviewer) = end(transf e r ( ~ a ~ e r  ,reviewer) for-time T) 
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Therefore, if we replace all the composite activities in our rule with the corresponding atomic 

activities, we obtain the rule: 

when end(transf er(paper ,reviewer) forfime 
transfer-time(paper,chairperson,reviewer)) 

if referees(paper,reviewer) 
then next located(paper , reviewer) 
then-do read(paper ,reviewer) ; evaluate(paper ,reviewer) ; 

(next not located(paper ,reviewer) 1 1  transf er(paper , chairperson) 
for-time transf er-t ime (paper ,reviewer, chairperson) ) 

We will refer t o  this rule as the "main" rule subsequently. 

In the second step, the rule is split into several rules so that each rule contains one atomic 

activity from the then-do clause. In our example, the main rule is split into rules: 

when end(transf er (paper ,reviewer) for-time 
transfer-time(paper,chairperson,reviewer)) 

if referees(paper,reviewer) 
then next located(paper ,reviewer) 
then-do read(paper ,reviewer) 

when end.read(paper,reviewer) 
then-do evaluate (paper ,reviewer) 

when end. evaluate (paper, reviewer) 
then next not located(paper ,reviewer) 

when end. evaluate(paper ,reviewer) 
then-do transfer (paper, chairperson) for-time 

transfer-time(paper,reviewer,chairperson)) 

Notice that these rules follow the sequence of operators in the then-do clause. For example, 

if the activity read(paper,reviewer) is in the then-do clause of the first rule and tlze activity 

evaluate(paper,reviewer) sequentially follows it in the main rule, then the sccond rule contains 

the event end. read(paper ,reviewer) in the when clause and evaluate (paper, reviewer) in the 

then-do clause. In case two activities occur in parallel, they have the same action in the when 

clause (as in the case of the last two rules). 
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To summarize, after the second step, a rule has only atomic activities in its clauses and the 

then-do clause contains only a single activity. 

In the third step, we convert all the (atomic) activities and events t o  temporal logic formulas. 

To illustrate this, consider the first rule in the set of rules produced in step two: 

when end(transf er(paper ,reviewer) for-time 
transf er-t ime (paper, chairperson ,reviewer) ) 

if ref  erees(paper ,reviewer) 
then next located(paper ,reviewer) 
then-do read(paper ,reviewer) 

The event end(transf er (paper ,reviewer) 

for-time transf er-t ime (paper, chairperson ,reviewer) ) can be expressed as the condition 

previous transf er(paper ,reviewer) and not transf er(paper ,reviewer), which says that 

the transfer process was true at the previous time moment and is completed now. Also, the 

atomic activity read is replaced with the corresponding temporal expression (as defined in Exarn- 

ple 4): reading(paper ,reviewer) for-time reading-time (paper ,reviewer). F~~rtlrermore, all 

the clauses are mapped into the if and then clauses. Then and then-do clauscs are mapped into 

the then, and the rest into the if clause. Therefore, the previous AECA rule bccomes: 

if previous transf er(paper ,reviewer) and not transf er(paper ,reviewer) and 
referees (paper ,reviewer) 

then next located(paper ,reviewer) and 
reading(paper,reviewer) for-time reading-time(paper,reviewer) 

This completes the conversion process from Templar specifications to  TL programs. 

However, we want t o  simplify the structure of TL programs even further. itre want to  convert 

TL programs with necessity, possibility and other temporal operators to  equivalcrlt TL programs 

with only previous (a) and sometimesin-the-future (0) temporal operators. In other words, 

we want the rules to  have the form 

body --. ( 1 ) ~  

body 4 (1) o p  

where body has only previous (e) as a temporal operator, and the negation sign is optional. 

The solution to  this problem for some of the temporal operators was prescntcd in [I<I<Nf SO]. 

For example, the TLP rule p -+ can be replaced by two rules p -+ q and mq - q. Similarly, the 

rulep -+ o q  can be replaced with rules p --+ q ,  p -+ t = T,aqAt > O -+ q, andmqAt > O -+ t = t-1.  
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Also, the rule a p  A q --+ o r  can be converted to a 2 p  A a q  --+ r .  Notice that the conversion process 

requires the use of function symbols, such as subtraction, in some of the rules. 

Finally, the TL programs can be simplified even further as follows. Assumr we have a rule 

a p  A q --+ r. Then this rule can be converted to the following three rules a p  --+ p', ell' A 7.1) -+ l p ' ,  

and p' A q --+ r. Therefore, a TL program can be converted to an equivalent program with two 

types of rules. The first type does not have any temporal operators in them, and the second type 

of the rule (with temporal operators) is in one of the forms 

aP -+ P' 

aPf A 7.p -+ yp' 

body -+ o p  

where body does not contain any temporal operators. If a TL program is simplified to this form, 

i.e. temporal operators in such a program can appear only in rules of the form (I) ,  then we say 

that this program is in the cnnonicol form. 

In this section, we presented a method that converts Templar specifications into temporal logic 

programs in the canonical form. TL programs have a simpler form making them more suitable for 

reasoning than Templar specifications. Therefore, we will reason about them and not about their 

equivalent Templar specifications. 

5 Validation of Templar Specifications 

As was described in the introduction, Dubois and Nagelstein [Dl1871 present five problems occurring 

in software specifications: 

(I ambiguity: a specification admits multiple interpretations 

(I non-minimality: the presence in the problem of an element that corresponds not to  a feature 

of the problem but featt~res of a possible solution (over-sprcification) 

(I incompleteness: omission of relevant aspects of the system bcing specified (nil dcr-specification) 

(I contradiction: a specification has two or more incompatible features 

redundancy: repetition of informa,tion. 

As was also described in the introduction, the validation process cannot be fully automated 

because of the following reasons. First, some of these problems cannot be detected wit11 any formal 
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method because they are not formally defined. For example, completeness of a specification cannot 

be formally defined because it is impossible to formalize the "relevant" aspects of the real-world 

system the user has in mind. Second, certain problems, such as redundancy, cannot be fully 

automated because they can be reduced to the decision problem of the first-order logic, which is 

undecidable in the most general setting [Chu36]. 

Therefore, we propose the following partial solution to the validation prohlem. We formulate 

a set of tractable conditions for some of the five problems listed above. These conditions serve as 

L'alarms" for the user and are divided into two types. If the condition of the first type holds, then 

the software specification definitely has a problem, and the user is notified about i t .  Tf the condition 

of the second type holds, then the software specification may have a problem. In tlris case, the 

system only warns the user about the potential problem and shows the source of the problci~~. Then 

the user has t o  decide if he or she wants to change the specification or leave it nnrhairged. 

We will examine each criterion in turn now. 

5.1 Consistency 

A Templar specification is consistent if it has a model, i.e. a sequence of predicates satisfying that 

specification4. To determine if a Templar specification is consistent, we propose to convert it into 

an equivalent TL program, as described in Section 4, and verify that the corresponding program is 

consistent by showing that it has a model. 

Existence of a model of a set of temporal logic formulas is a hard prohlcin. It is shown 

in [Har85] that for the general case of arbitrary fist-order temporal logic formi~las it is a highly 

undecidable problem (is Iii-complete). For certain restricted cases, the problem 1)ccomes decidable 

but still intractable. For example, assume that we impose such strong restrictions as considering 

only the static (snapshot) case when TL programs have no temporal operators a t  a11 and disallowing 

function symbols and the equality operator in the formulas. Then, as it follows from the Expalision 

Theorem [DG79], checking if a (temporal) logic program has a model is a decidaltle prol~len~ and 

is equivalent to the satisfiability problem, i.e. is NP-complete. 

Since the verification of consistency of TL programs is an intractable problcm. we propose the 

following partial solution. First, we want to identify the parts of a TL program tliat can produce 

inconsistencies. Then we try to see if these sources of inconsistencies are "false alarms," i.e. if 

they can never produce inconsistencies. If they can produce inconsistencies, then we alarm the user 

about these sources and identify them in the original Templar specification. Filrtl~crmore, we will 

4See the definition of a model of a Templar specification in Section 2). 
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give the user some "reasona,ble" suggestions on how to avoid these inconsistencies in certain cases. 

Then it is the user responsibility to eliminate these potential inconsistencies. 

We identify the following two sources of inconsistency in TL programs 

Predicates in the heads of two rules can conflict, i.e. we can have a situation when one rule 

has the form bodyl -. q and another rule bodyz -+ l q .  These two rules can, potentially, have 

a conflict and, therefore, a model may not exist. 

e A rule can be a constraint, i.e. have a form body -. A < r e l o p  > B, wlicre < re lop  > is 

a relational operator =, <, <, etc. A program may have no model because the constraint 

A < rekop > B may be violated. 

We will look at these conditions in turn now. 

5.1.1 Conflicting Predicates 

As was stated before, it is a computationally hard problem to determine if two rules bodyl -- q  

and body2 -+ l q  will always conflict at some time and, therefore, a TL program has no model. 

Therefore, we propose the following methods that check for potentially conflicting coilditio~ls and 

warn the user when these conditions occur. 

In order to  state these conditions, we first introduce some preliminary concepts. The depen- 

dency  graph of a TL program is a graph with program predicates as its nodes (predicates 11 and i p  

form two different nodes, bat p and e p  correspond to one node). There is an arc 1)etween nodes p 

and q in the dependency graph if there is a rule in the program containing predicates p in its body 

and q  in its head, and these predicates do not have temporal operators, Depcnrlency graphs, as 

defined in this paper, are very similar to dependency graphs defined in [Ull88]. 

Let bodyl -+ q and body2 -+ -.q be two conflicting rules in a TL program, whrre body,, for i = 1 

and 2, has subformula 4; consisting of all the temporal predicates in body; (predicates preceded by 

the temporal operator e )  and all tlie relational operators. Then warn the user about a potential 

conflict between these two rules if one of the following two conditions holds: 

1. the dependency graph of the program has a cycle going through nodes q  and i q ;  

2. the formula A 42 is satisfiable. 

Example 7 If a program has two rules - ~ p  -+ p and p -p then the user is warncd bccsuse the 
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Figure 5: Dependency Graph from Example 7. 

dependency graph for these two rules, as shown in Fig. 5 has a loop going through the nodes p and 

' P  . 
Also, if a program has rules @p -+ q and .p -+ i q  then the warning will be issued because the 

formula a p  A a p  is satisfiable. However, if the program has rules a p  -+ q and a l p  -+ l q  then the 

warning will not be issued because the formula a p  A a l p  is not satisfiable. 

Both conditions warn the user that it is possible to have a situation when q and l q  are true 

at the same moment of time, i.e. when the program has no model. However, conflicts can occur 

for different reasons. Case 1 detects the situation when conflicts occur because of the "time- 

independent" (static) recursion, whereas Case 2 detects possible direct conflicts between the rules. 

Furthermore, if a TL program has two rules of the form bodyl -+ o q  and body2 -+ l q  or of 

the form bodyl -+ q and bodya -+ o l q  then always warn the user about a potential conflict. The 

reason for this comes from the following consideration. If the rule bodyl -+ o q  is replaced with 

the rule aTbodyl -+ q for some time l" greater than any references to  time in body2, then eT bodyl 

and body2 are satisfiable (because the predicates refer to different moments of time). Therefore, 

the warning to the user will always be issued for rules aTbodyl -+ q and bodyz - l q .  Since rule 

bodyl + o q  implies rule aTbodyl for some T ,  then to  avoid potential conflicts, the user has to  be 

issued a warning for the two original rules. 

After conflicting rules in a TL program are detected and the warning to the user is issued, it 

is important for the user to locate the source of the conffict in Templar rules. Since each TL rule is 

obtained as a result of the transformation of one Templar rule, it is possible to identify conflicting 

Templar rules as long as the record is kept about the correspondence between TL and Templar 
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Furthermore, the user can also be given a suggestion on how to eliminate the source of inconsis- 

tency. If the inconsistency is of the type described in Case 1, then the cycle producing the recursion 

can be identified and the user should check if he or she really needs that recursive definition. If 

the inconsistency is of the type described in Case 2, e.g. the program has rules bodyl -+ q and 

bodyz -+ l q ,  then the user can resolve the inconsistency by replacing these rules with -tqA bodyl -+ q 

and q A bodyz --+ l q ,  since these new rules can never conflict. This is a reasonable choice for the 

user because, most of the time, it is a good strategy to check if a predicate is true before making 

it true. 

5.1.2 Constraints 

As was stated before, the problem whether or not a constraint is satisfied is an intractable problem 

and we do not have any general "warning" techniques for that. This means that constraint spec- 

ification in Templar can lead to inconsistent specifications, and the user should be aware of this 

situation. 

5.2 Ambiguity 

A specification can have many different models in general. For example, in tlle case of an IFIP 

conference, it does not matter how much time it takes a reviewer to review a paper or how much 

time it takes to send a paper from a reviewer back to the chairperson. Depending on the timing, we 

can get different sequences of events and different sequences of predicates over time, i.e. different 

models. For example, the program committee can meet either before or after a referee returns 

his or her evaluation report of a paper to the chairperson, depending on how much time it takes 

himiher to review the paper. 

However, existence of multiple interpretations of a specification does not assume that it is 

necessariIy ambiguous because the user might have specified the problem in this way on purpose. 

In fact, any further attempt to reduce the number of different interpretations may result in an 

over-specification of the problem, which is one of the "sins" of a specifier [Mey85]. 

Nevertheless, there can be specifications that are ambiguous. For instance, consider the fol- 

lowing part of the IFIP conference specification (stated informally): 

if the chairperson receives an evaluation report from a reviewer he/she records the 

results of the review 
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i f  a l l  t h e  evaluat ion repor ts  of a  paper a re  ava i lab le  a t  t h e  program committee 

meeting then t h e  committee makes an acceptance o r  a  r e j ec t ion  decis ion.  

This part of the specification is ambiguous in the following sense. If the chairperson received 

an evaluation report before the program committee meeting then nothing in the specification says 

that this report is available at the time of the meeting. This means that both interpretations of the 

specification are valid: the one that assumes that the report is available and the one that assumes 

it is not available. 

To resolve this type of ambiguity the user can provide a metarule: 

if condition P holds at time t and at the next moment of time t + 1 the conrEition -tB 

does not hold then condition P holds at time t + 1 

This type of rule is known as inflationary condition in logic programming [AV88, KP88]. If we 

assume inflationary conditions for Templar specifications and for TL programs then the ambiguity 

of the type described above is resolved: we conclude that the report will be available at  the time of 

the program committee meeting. This observation is true in general: once we select the inflationary 

conditions, Templar specifications become unambiguous; the meaning of a Templar specification is 

associated with all the models satisfying the inflationary conditions. 

However, the user may still not be satisfied with the set of models for his/her specification, 

i.e. he or she may still feel that some of the models are wrong. This means that the user has to  

provide more precise spe~ifica~tions to be able to reduce the set of models. Therefore, the original 

specification is not ambiguous but incomplete. We will address the problem of incompleteness of 

Templar specifications in the next section. 

5.3 Iiicoinpleteness 

According to [Mey85, DH871, a specification is incomplete if it omits relevant facts about the real- 

world system. Since only the user knows what facts are relevant and what are irrelevant, it is 

impossible for the system developer to determine formally if a Templar specification captures all 

the relevant facts the user has in mind. Therefore, Templar specifications cannot be formally proven 

to be complete in general. 

However, in certain cases, it may be possible to  determine if a specification is certainly incom- 

plete even without consulting with the user. In this paper, we consider only one such case when 

a Templar specification has a,n infinite model, i.e. when there is a predicate and an instance of 
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time such that the predicate has an infinite instance at  that time5. If a specification has an infinite 

model then it is incorrect and incomplete because some additional facts that make the model finite 

are missing in it. Therefore, we assume that 

complete specifications have only finite models 

Example 8 

Consider the following rule: 

When a chairperson receives a paper submission, he/she sends it to  a reviewer: 

when receives (chairperson,paper , author) 
then-do send(paper , chairperson ,reviewer) 

This specification rule is incorrect because it says that the chairperson sends the paper to all 

the reviewers (that exist in the universe of discourse), i.e. to  potentidly infinitely many reviewers. 

Clearly, this specification is incomplete because it does not specify to  which reviewers the paper 

should be sent. 

One way to  correct this specification is to assign some reviewers to  review the pa.per, thus 

restricting the number of reviewers to  a finite number. For example a new rule can have the form: 

when receives(chairperson,paper,author) 
if assignedreview(reviewer,paper) 
then-do send(paper , chairperson ,reviewer) 

We will state the conditions that guarantee finite models for TL programs, and therefore for 

Ternplar specifications. However, we introduce some preliminary concepts first. 

A rule of a TL program is snfe [U1188] if all of the variables appearing positively in the head of 

the rule also appear positively in its body. A Templar rule is safe if all the TL rules obtained from 

the Templar rule with the conversion algorithm described in Section 4 are safe. For instance, the 

first (incorrect) rule from Example 8 is not safe because the variable reviewer does not appear in 

the when clause of that rule. However, the corrected rule in that example is safe. 

Next, we consider static and dynamic recursion in TL programs. Intuitively, we say that a TL 

program is statically recursive if one of its predicates is defined recursively and the "recursive loop7' 

'Finite and infinite models were defined in Sect,ion 2. 
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does not contain temporal operators (a and o in our case). To define static recursion formally, 

we use the dependency graph of a program [U1188], as defined in Section 5.1. ?Ire say that a TL 

program is statically recursive if the dependency graph of that program has a cycle. Furthermore, 

we say that a TL program is statically functionally recursive if it is statically recursive, and there 

is a cycle in the dependency graph and one of the predicates in the cycle has a function symbol as 

an argument in one of the program rules. For example, consider the following program consisting 

of two rules 

--+ p(x) 

and a fact q(0). Its dependency graph has two nodes p and q and only one arc going from p to  

p. Therefore, it has a cycle of length one, and no predicate in the cycle has a temporal operator. 

Furthermore, the predicate p has a function symbol + in the rule. Therefore, the program is 

statically functionally recursive. 

A TL program is dynamically reczrrsive if it has recursive definitions of predicates involving 

temporal operators. For example, the program consisting of a single rule ep(x) -t p(x) is dynami- 

cally (but not statically) recursive. 

Proposition. A safe statically functionally non-recursive TL program can haz~e onlly finite mod- 

els. 

Sketch of Proof: If such a model exists, then take the first moment of time when one of the 

predicates has an infinite instance. Since rules are safe, this cannot happen as a result of transition 

from the previous to  the present time. Therefore, the instances of predicates "passed" from the 

previous stage are finite. Since TL programs are statically functionally non-recnrsive, we cannot 

get infinite models out of finite instances of predicates "passed" by previous stages. Tlris leads to  

contradiction. 

It follows from this proposition that recursion does not always lead to  infinite moclels. For 

example, safe statically recursive programs without function symbols produce only finite models (a  

well-known result for Datalog programs and some of its extensions [Ul188]). Also, dynamic recursion 

does not produce infinite models by itself (unless it is accompanied by static functional recursion), 

as the example ~ p ( x )  -4 p(x) shows. 

It is easy to  check if a TL program is safe and statically functionally non-recursive. Tlre former 

requires a simple syntactic check. The latter is reduced to  finding cycles in the dependency graph 

of a program and checking that predicates along these cycles do not take any filnctiolr symbols. 
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Therefore, this proposition provides a tractable condition for checking if TL programs have finite 

models. 

5.4 Redundancy 

In order t o  study redundancy of Templar specifications, we propose to  reduce them to TL programs 

using the mapping described in Section 4. A TL program is redundant if one of its rules is logically 

implied by the set of other rules. 

However, the problem of logical implication is undecidable for a general class of well-formed 

formulas in first-order logic [Chu36]. Nevertheless, it easily follows from the techniques developed in 

[DG79] that this problem is decidable for TL programs containing no temporal operators, function 

symbols and the equality operator. 

Nevertheless, this problem is still intractable even in this very simple case. It follows from the 

same arguments as presented in Section 5.1 that this problem is still NP-hard. This Incans that 

there is no tractable procediire that determines if a given Templar specification is redundant. 

5.5 Over-Specification 

As was already mentioned in the introduction, Templar was designed so that reql~irernents specifi- 

cations stated in the language should be easy to  map into a broad range of existing software design 

methods. This means that requirements specifications written in Templar are independent of these 

design methods. Therefore, the language does not encourage the system developer to  ovcr-specify 

the real-world system by introducing design elements in the requirements stage. On the other 

hand, the language does not discourage such practices because the language supports hierarchical 

decomposition of activities into subactivities. 

However, the boundary between the stages of requirements specifications and design is not 

clearly and formally defined. Therefore, unless such boundary is well-defined, it is impossible t o  

prove formally that a Templar specification is not over-specified. 

6 Summary 

In this paper, we studied the problem of analysis and validation of requirements specifications 

written in language Templar. We were interested in analyzing software specifications in terms of 

completeness, unambiguity, non-contradiction, non-redundancy, and mini~nality [DfI87]. 

Since Templar has a rich set of modeling primitives, some of which are procedural in nature, 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-91-28 



it is difficult t o  reason about Templar specifications. To solve this problem, urc mapped Templar 

specifications into equivalent temporal logic programs and then analyzed these programs in terms 

of the five properties listed above. 

We encountered two problems with formal validations of Templar specifications in terms of 

the five criteria listed above. First, some of these properties, such as completeness and minimality 

cannot be formally proven because they are not formally defined. Second, other properties, such as 

contradictions and redundancy, can be undecidable in general. Even for special cases, when these 

properties become decidable, the solutions are still impractical because they are still intractable 

(NP-hard). 

To solve these two problems, we proposed the following solution. We stated trclctable conditions 

for some of the properties that served as "alarms:" if these conditions do not hold then the property 

either does not or may not hold. For example, if a Templar specification admits an infinite model 

then the specification is incomplete. Then Templar specifications can be partially validated by 

checking these conditions. 

We believe that some of these conditions are good working partial solutions for the original 

undecidable or intractable problems. For example, detecting if the dependency grapli of a TL 

program has a cycle going through nodes of the type q and l q  and detecting satisfiability of 

certain simple formulas described in Section 5.1 is a good practical approximation to the intractable 

problem of detecting conflicts among predicates in Templar specifications. 

On the other hand, some of the other partial solutions constitute only "mild" checks if a certain 

property holds. For example, checking if a specification accepts only finite models is a "mild" check 

for completeness. This observation raises an issue if there are "stronger" checks for some of these 

conditions that are still tractable and issues of theoretical trade-offs between the strengths of these 

checks and tractability. These issues constitute a topic of future research. 
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