
AUTOMATED SOFTWARE METRICS,
REPOSITORY EVALUATION AND SOFTWARE

ASSET MANAGEMENT: NEW TOOLS AND
PERSPECTIVES FOR MANAGING INTEGRATED

COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE)

by

Rajiv D. Banker

Robert J. KauEman

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

AUTOMATED SOFTWARE METRICS,
REPOSITORY EVALUATION AND SOFTWARE

ASSET MANAGEMENT: NEW TOOLS AND
PERSPECTIVES FOR MANAGING INTEGRATED

COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE)

by

Rajiv I). Banker
Arthur Andersen Chair in Accounting and Information Systems

Carlson School of Business
University of Minnesota

and

Robert J. Kauffrnan
Assistant Professor of Information Systems

Leonard N. Stern School of Business
New York University

May 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-91-5

An earlier version of this work was presented at the Workshop on IT Strategy and Architecture, Wharton School of
Business, University of Pennsylvania, Philadelphia, PA, June 22, 1990.

The authors wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis, and Vivek Wadhwa for the access they provided
us to data on software development projects and managers' time throughout our field study of CASE development at
the First Boston Corporation and Seer Technologies. We also thank Gig Graham and Michael Oara for their recent
assistance. Our colleagues Eric Fisher, Charles Wright and Dani Zweig contributed to various aspects of the work
reported on in this paper. Finally, we thank the National Science Foundation for partial funding of the data collection
under grant #SES-8709044, and Rachna Kumar for useful comments on prior drafts of this paper. All errors in this
paper are the responsibility of the authors.

KEYWORDS: CASE, code reuse, computer aided software engineering, function point analysis, integrated CASE, I-
CASE, object-based, repositories, software asset management, software costs, software development, software metrics,
productivity.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

AUTOMATED SOFTWARE METRICS, REPOSITORY EVALUATION

AND SOFTWARE ASSET MANAGEMENT:

NEW TOOLS AND PERSPECTIVES FOR MANAGING

INTEGRATED COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE)

ABSTRACT

Automated collection of software metrics in computer aided software engineering (CASE) environments
opens up new avenues for improving the management of software development operations, as well as
shifting the focus of management's control efforts from "software projectn to "software assets" stored in a
centralized repository. Repository evaluation, a new direction for software metrics research in the 1990s,
promises a fresh view of software development performance for a range of responsibility levels. We discuss
the automation of function point and code reuse analysis in the context of an integrated CASE (I-CASE)

environment deployed at a large investment bank in New York City. The development of an automated
code reuse analysis tool prompted us to re-think how to measure and interpret code reuse in the I-CASE
environment. The metrics we propose describe three dimensions of code reuse -- leverage, value and
classification -- and we examine the value of applying them on a project and a repository-wide basis.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

1. INTRODUCTION

As the 1990s begin, large-scale investments in computer aided software engineering (CASE) are becoming

increasingly common as firms seek new ways to deal with the problem of managing the costs of software
development. But such investments also raise many questions for management (BOUL89, SENN90). For

example, what are the features of an integrated CASE (I-CASE) tool that enable a fum to maximize

development productivity across the entire systems development life cycle, while maintaining acceptable

quality and functionality? How does a CASE tool affect the activities associated with different phases of
the software development life cycIe? Are the benefits balanced, or are they concentrated in analysis and

design rather than construction and testing? Does the storage of reusable code in a firm's centralized

repository create an appropriate amount of leverage to power up software development productivity? Are

the benefits of CASE sufficient to justify the high costs of implementing it? Is the move to modular, object-

based software development paying off (POLLW)?'

The only way to obtain answers to these and other questions about the performance of investments in

CASE is to develop measurement methods and programs that are well-suited to the emerging I-CASE

environments of the 1990s. In this paper, we present a vision for "software asset management" that differs
from the traditional focus on software development project management (KARI90). Instead, its focus is on
the contents of the repository of software -- the firm's unique software assets -- and how the repository can

be evaluated using automated facilities to measure a range of new metrics that will help management to

gain insight into the leverage that CASE can create. This "software asset management" perspective is

based on our experience in evaluating an I-CASE environment that has provided major gains in software
development productivity (BANK90A).

2. FINDINGS FROM OUR RECENT RESEARCH ON INTEGRATED CASE

Our research on development productivity gains associated with "High Productivity Systems" (HPS), a large-

scale I-CASE tool deployed at the First Boston Corporation and Seer Technologies led to a number of

interesting discoveries. (For a brief overview of the content of the tool and the rationale behind its
implementation, see Sidebar 1.)

l"Object-based" refers to the use of objects in modular application design, without the requirements that
are associated with the "object-oriented" paradigm. In addition to object-based modular application design
these include: the use of abstract data types, the deallocation of memory space for unused objects without
programmer intervention, the use of "object classes," and an "inheritance mechanism" which allows one class
of objects to become an extension or restriction of another. (See MEYE88 for an authoritative treatment of
the complexities of this approach to software construction.) In addition, Booch (BOOC89) provides additional
descriptive information on the evolution of "object-based" design into "object-oriented" design.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

INSERT SIDEBAR 1 ABOUT HERE

Pint, we found that the amount of code reuse that occurs in an application represents a significant portion

of its functionality, and that traditional metrics fail to take this into account. Code reuse involves using

previously written code as an alternative to writing new, possibly identical, code that serves a similar

function. Our research has shown that effective code reuse has the potential to be the single most
important cost driver during the construction phase of the systems development life cycle. This discovery

about the effects of code reuse also led us to consider new models for development productivity in which

traditional development productivity measures are adjusted to consider the level of code reuse

(BANWOA).

Second, we also learned that there was very little research that has addressed how code reuse should be

measured. The primary result has simply been not to measure it at all (BANWOD). We believe this to be

less an oversight of prior research than a reflection of the realities of 3GL software development. There

were few tools to help a developer identify opportunities for reuse, since code was not stored in a central
repository. In this environment code reuse could be expected to deliver little leverage.

Third, we learned that the functional organization of an HPS application into objects makes it practical to

automate analysis of code for the computation of a range of software development performance indicators,

including metrics for productivity and complexity. The central repository also makes the automation of

code reuse measurement practical, since it maintains a record of each object and where it has been used or

reused in the form of an object hierarchy. As we have shown in other research (BANWOC), this hierarchy

can be "traversed" or navigated from top to bottom, and this supports the exhaustive identification of all

objects comprising an application.

Fourth, we found that the new development environment encourages the use of new approaches to cost

estimation associated with application development. For example, function point analysis (which we will

discuss in more detail shortly) is traditionally used to estimate development labor and to measure the

resulting productivity of a development effort. However, we have learned that more intuitive and
simplified metrics may serve equally well for HPS applications (BANKSXIB). In this context, we also found

that obtaining metrics that are traditionally used to gauge software development productivity in 3GL

environments remains a very costly process when we translated them for use in the HPS development

environment, despite the much improved quality of the documentation stored in the repository.

Fiifth, and perhaps most interesting, was our discovery that repository-based I-CASE for the first time offers

senior managers an opportunity to think about managing software assets, rather than just software

development projects. (The first example of research that reports on the results of a repository evaluation is

contained in Banker, Kauffman and Zweig (BANmE).) With this "software asset managementn

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

perspective in mind, we set out to develop new measurement methods centered around the idea of
"repository evaluation." Repository evaluation enables the examination of a firm's changing software assets
directly. It can be conducted at the level of a software project, for groups of projects, or for many other
levels of analysis that do not involve projects at all. For example, such analysis can be conducted by object
type, for objects developed by specific programmers or for repository-wide reuse at a specific point in time.

3. FUNCTION POINT AND CODE REUSE METRICS IN INTEGRATED CASE ENVIRONMENTS

In this section, we examine two kinds of software metrics -- function points and code reuse metrics -- and
their role in estimating software size and assessing performance in I-CASE environments.

Function Point Analysis in Traditional Development Environments

The magnitude of a software development effort depends upon several factors: the amount of information
processing accomplished by the system, the quality and the extent of the input and output interfaces
provided to meet the users' needs, and environmental factors ranging from the quality of the hardware
used by the programmers to the sophistication of the users requesting the software (SYMO88). M a n
Albrecht of IBM originally proposedfunction points as a metric to capture the size of an application, so
that software development activities could be evaluated for the outputs they create (irrespective of the
development language used), and so that software development managers would have a tool to estimate
the resources required to build systems of various sizes (ALBR83). An equally important use of function
points is as an output metric in the context of software development productivity evaluation. Productivity is
normally measured in function points per person month of development labor. (For a brief description of
the function point analysis methodology, refer to Sidebar 2.)

INSERT SIDEBAR 2 ABOUT HERE

One concern in traditional development environments is calibrating the people who carry out the function
point analysis. Our experience in a recent study of software development productivity suggested that even

when a group of well-trained individuals performs function point analysis for the same set of software
projects there are bound to be discrepancies which have to be resolved (BANMA). Individual differences
in interpreting the documentation, knowledge of an application and experience in conducting function point
analysis can all drive these differences. Recent research by Low and Jeffrey (LOW90) found that
significant training in the use of the complexity measures is necessary to ensure that the correct constructs

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

are being m e a s ~ r e d . ~ Finally, calculating function points is very time-consuming and requires highly-skilled

analysts who can understand and interpret imperfect documentation.

Function Point Analysis in I-CASE Environments

Unfortunately, none of these problems disappears when applications developed using I-CASE tools are

measured manually using function point analysis. Although the quality of the documentation is much

improved due to its automation and storage on a central repository, manual function point analysis remains
a very costly and time-consuming process. Our research program suggests the following additional

difficulties:

Components of the Function Point Analysis Procedure and Mental Models of Sofhvare Functionality. The

components of the function points procedure (including Inputs, Outputs, External interfaces, Queries and

Files) do not readily match the object building blocks of the I-CASE development environment we studied.

As a result, project managers reported to us in individual and group interviews that mapping HPS objects

to function point analysis concepts was not easy. Function point analysis appears to require them to depart

from the mental model they have for the user functionality and size of software. They also indicate that

expending significant effort to examine the code within a module or an object still would result in a
subjective classification of FUNCTION-COUNTS and potentially lower consistency in resulting function

point estimates by different analysts.

Complexity Weights in Function Point Analysis. Classification of FUNCTION-COUNTS into simple, average

and complex levels of complexity according to the function points methodology is also problematic

(BANK91). The rationale for decomposing function types into simple, average and complex was based on

the observation that they required a different amount of time to code. However, in HPS development the
ratio between the time required to code a simple type and a complex type may not be as large as it was in

traditional development environments.

One might conclude from this that the complexity classification dimensions and weights used in the function

point analysis method may not do as well in estimating the actual level of software development labor

consumed. The weights applied to the different complexity levels were determined by Albrecht by trial and
error (ALBR83). Moreover, Symons (SYM088) recently suggested that a new set of weights might need

to be recalibrated for any new technology, organization or development atmosphere. Clearly I-CASE

qualifies as a technology that might require Albrecht's weights to be recalibrated.

2Computerworld recently reported on research results obtained by Chris Kemerer of the Sloan School of
Management at MIT that showed that function point estimates of software size, regardless of the specific
technique employed to obtain them, tend to vary little more than plus or minus 10%. This suggests their
robustness for comparative measurement purposes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Automatical& Generated Code. A major source of the power of I-CASE tools comes from their ability to

generate code during the testing and implementation phase. Yet a programmer or an analyst who has not
written the actual code and done only the logical design would be forced to deal with the automatically
generated code. The code is unlikely to closely match what a person would write. Thus, analyzing I-

CASE-generated code would be an onerous and, most likely, an inefficient task. The alternative is to

analyze object-based documentation directly.

Impact of Code Reuse on Labor Estimates in Construction, Testing and Implementation. The I-CASE

methodology used in HPS development enforces modularization of application code and object-based

design, which both promote more efficient system development and maintainability. Straightforward

identification of FUNCTION-COUNTS is prone to double-counting of the labor consumed, since
functionality derived from code reuse would consume comparatively little labor. The presence of a cennal

repository in HPS plays a significant role. Although counting the five function types (or the number of

objects, for that matter) provides a ballpark reading on the size of the product, function point-based

estimates of labor will need to be adjusted for the leverage that code reuse creates.

In the I-CASE environment we have been studying, reuse seems to affect effort expended during the

construction phase far more than any other factor. Yet reuse also contributes to productivity gains in the

testing and implementation stages of the system development life cycle (BANK90A). Reused objects will

have been tested in other applications previously. Reuse, together with the availability of the automatic

code generation facility, may reduce the development labor required to incorporate higher levels of

complexity measured by the subjective COMPLEXITY FACTORS of the function points method. CASE

utilities for graphics generation and screen painting are good examples that can produce major time savings

for developers. As a result, whether the COMPLEXITY FACTORS remain the relevant dimensions by

which to adjust FUNCTION-COUNTS is an open question.

Code Reuse: A Measurement Void in Software Metrim

The preceding discussion suggests the importance of measuring the impacts of code reuse to improve labor

estimation and I-CASE productivity assessment. Intuitively, the level of code reuse may be computed as

the number of times a particular piece of code, data element or object is reused within the context of a

program, application or information system (POLS%). Yet as Hall (HALL87) and others (BANKSH)C)

have shown, this intuitive definition does not really offer a perspective that helps managers to understand

the extent to which code reuse leverages development productivity, software costs or software functionality
in a meaningful way.

There are few rigorous definitions of code reuse as it applies to software development performance

evaluation (LANE%, NUNA89, RAJ89). This measurement void is explained by the fact that prior

research on code reuse in traditional development environments concentrated on the problems of
encouraging it; they did not attempt to measure it. Another issue is just what a "code reuse metric"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

actually measures. Standish (STAN84), for example, argued that reuse should be measured at the line of
code level in 3GL environments. But, this approach does not make sense for machine-generated code

associated with CASE development. Generated code is likely to be verbose and bear little resemblance to

what a human developer would produce in similar circumstances. Another problem is the extent to which

this view of code reuse fits other aspects of CASE development, especially in terms of the conceptual
model of a system. Neighbors (NEIG84) argued in favor of abstracting from source code to represent
reuse in a meta-language. We find this view to be more useful in conceptualizing "code reuse" in I-CASE

environments such as HPS or IEF. Both share a common feature: a high-level representation of an

application that uses "information engineering" concepts as its basis (TI90).

4. OB JECT-BASED SOFTWARE METRICS FOR INTEGRATED CASE

Object-based I-CASE environments offer interesting opportunities to examine new metrics for measuring

software development performance. For example, HPS offers support for object-based software metrics

through its storage in a central repository of all objects enabling a historical record of application

development to be maintained, and an abstract object hierarchy that defines the functionality of an HPS

application. (Our prior research has shown that the structure of this hierarchy can be exploited to support

automated function point analysis.)

Object-Based Development in HPS

The central repository used in HPS stores information about different kinds of objects used in applications

developed with the tool. Examples of object types defined for use in HPS include: RULE SETS, 3GL

MODULES, SCREEN DEFINITIONS and USER REPORTS. Each object type is defined precisely and

rigorously in order to make the process of software development conducive to object reuse. A RULE SET

contains most of the instructions that observers unfamiliar with CASE would call "the program". A 3GL

MODULE is a precompiled procedure, originally written using a 3GL. A SCREEN DEFINITION is the

logical representation of an on-screen image. A USER REPORT means the same thing as it does in
development environments other than HPS.

All objects associated with an application are functionally organized into an object hierarchy. An
application consists exclusively of these objects and each application can be identified by a high-level

BUSINESS PROCESS, which calls other RULE SETS. These RULE SETS in turn use other RULE

SETS or 3GL MODULES. These in turn can communicate with a SCREEN DEFINITION, or create a

USER REPORT. (See our other work for detailed illustrations and sample object hierarchies for typical

investment banking systems (BANKSKIA and BANWC).)

The relationships between objects (which RULE uses which 3GL MODULE, which invokes which

SCREEN, etc.) are themselves stored in the central repository. Collectively, the set of object instances and

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

relationships between them make up the meta-model of the application, and this can be used to identlfy the

objects comprising an application.

Object-Based Code Reuse Metrics for I-CASE

Creating code reuse metrics to match the needs of object-based environments like HPS is a natural next

step. We have suggested elsewhere that code reuse be measured in terms of managerial dimensions that

identify the scope, value and effects of this practice. This resulted in a proposal for three classes of code
metrics: reuse leverage, reuse value, and reuse classification (See BANK90C for additional details on these

metrics, and an illustration of their application to a representative investment banking system.). The

metrics we proposed rely on an analyst being able to identify objects that are reused, rather than lines of

codes or modules included in an application.

Reuse leverage measures the number of times that an object is used within a system. This provides a very

rough estimate (unadjusted for labor) of the extent to which developers "leveragen the contents of the

repository. More formally, reuse leverage within a system is defined as:

REUSE LEVERAGE = TOTAL HVMBER OF OBJECTS USED
NUMBER OF NEW OBJECTS BUILT

This measure can be used at several levels of analysis, for example, in aggregate form for all the objects in

an application, or by object type within the repository such as RULE SETS, SCREEN DEFINITIONS or

USER REPORTS. The primary value of examining reuse leverage is that it enables an analyst to identiSy

what is being reused and how much reuse is occurring.

To measure the productivity gains associated with code reuse in terms of their value to the firm, we must
distinguish between the reuse of easily-programmed objects and the reuse of more costly objects. We

compute reuse value by weighting the level of reuse by the cost of programming the various types of objects

that are reused. A more formal definition of reuse value is:

COSTj

REUSE VALUE = 1 - j"
.T

where

COST = the standard cost in person days of building object j;

J = the total number of occurrences of objects in an application meta-model hierarchy;

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

K = the total number of unique objects built for this application.

This gives the analyst a reading on the relative savings obtained from reuse.

We normally include in our computation of code reuse for a project any object which is found in the

repository, rather than just those that are written from scratch. But for some managerial purposes, it may

be useful to classifi reuse according to its origin, how much it occurs in work by project teams or
individuals or over time, and whether it extends beyond the boundaries of an application or a project. Two

important categories of reuse are internal and external reuse. Internal reuse refers to code reuse within a

system or subsystem, as defined by its meta-model hierarchy. External reuse refers to the reuse of objects

that are in the repository, but where those objects "belong" to and were originally developed for a different

system. Though both kinds of reuse are valuable, different managerial policies may be required to

encourage them.

For example, the degree of internal reuse will probably depend upon the size of the team developing a
given application, and the quality of the communications within that team. The degree of external reuse,

on the other hand, will depend more upon the quality of the indexing system used to help programmers to
identify existing objects which they might be able to reuse. The latter is desirable since observing its

occurrence indicates that developers are leveraging the contents of the I-CASE repository.

Object-Based Functionality Metrics for I-CASE

The function point analysis approach can be adapted to support the measurement of software outputs in

object-based systems more directly. We have expIored two object-based functionality metrics. The first,

OBJECT-COUNTS, is determined by summing the occurrences of individual objects types in an application.

(It is similar in spirit to FUNCTION-COUNTS as shown in the definition of function points in Sidebar 2.)

The second, OBJECT-POINTS, is defined as follows:

3 4

C C OBJECT-EFFORT- WEIGHTwt * OBJECT- OCCURRENCE,,
w=1 t=l

where

OBJECT-EFFOR T- WEIGHT,,, = average estimated development eflort associated with object type t of
complexity w (LOW, AVERAGE, HIGH), based on project
manager heuristics;

OBJECT-OCCURRENCEw - - number of occurrences of one of several object types t of complexity
w (including RULE SET 3GL MODULE, SCREEN DEFINITlON
and USER REPORT and othm) in an HPS application.

The reader should note that OBJECT-POINTS incorporate information that distinguishes among the levels

of complexity for each object type in terms of the labor required, rather than with summary effort weights

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

that only distinguish between object types. Exploratory research we have conducted showed that OBJECT-
COUNTS provide estimates of software size that are wellcorrelated with the labor required to produce

them (BANMC). Additional research on this issue is in process at our research site, and we are

extending it to incorporate a more detailed effort weighting scheme based on project manager heuristics

(KUMA91).

5. AUTOMATED SOFTWARE METRICS IN INTEGRATED CASE

The metrics we have propose are not meant to be collected manually, although it may be reasonable for

managers to make preliminary estimates of the number of objects a system will contain, or the extent to

which external reuse is possible, Instead, we advocate the use of speciallydeveloped automated analysis

tools that are as much a part of the I-CASE deveIopment environment as the rapid screen and report
painters, and automated documentation-generationand software testing facilities are a part of the CASE

tool. We now consider the means and rationale for automating function point and code reuse analysis for

object-based I-CASE.

Automated Analysis in the HPS Environment

Automating software metrics in HPS begins with a major advantage over similar efforts in 3GL

environments. For example, the hierarchical application meta-model that is stored by HPS can be used to

exhaustively identlfy objects associated with any application system. Following the chain of relationships

between objects enables an "automated analyst" to identify all the objects accessed or invoked by a given

object. As a result, much of information needed to calculate function points, OBJECT-POINTS, and code

reuse exists in the application meta-model. In traditional environments, this task must be accomplished on

the basis of documentation, which is rarely complete or up-to-date, and software naming conventions which,

even when they are followed, rarely identify the use of code by multiple applications.

Another important feature of the I-CASE tool we studied is the HPS development language. It permits a
precise mapping to be made between every object and its associated functionality. (In traditional

environments, the only way to perform the mapping between programs and functionality is to manually

figure out what each program is doing, again with the aid of such documentation as may exist.)

Automating Function Point Analysis

Using this approach we designed an architecture for an automated fknction point analyzer for HPS with our
colleagues Eric Fisher, Charles Wright and Dani Zweig (BANKWC). The architecture has three main

components -- an Object Identifier, a Function Counter and a Complexity Factor Counter -- and is shown

in Figure 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

INSERT FIGURE 1 ABOUT HERE

The Object Identifier traverses the meta-model in order to identify all the objects used in an application that
have to be evaluated for functionality. It starts with a BUSINESS PROCESS or high-level RULE SET
chosen by the project manager that defines the application (or part of the application) being analyzed, and
navigates the hierarchy downward until all relevant objects have been found. The Function Counter

performs a mapping from objects and entity relationships, to function types and complexities, and finally to
FUNCTION-COUNTS. The Conlplexity Factor Counter computes environmental complexity, used in
function point analysis as an adjustment factor to allow for the overall complexity of the task and the
environment in which it is implemented. The scores for fourteen complexity factors are computed through
a combination of objective, automated measures and online inputs provided by project managers familiar
with the technical aspects of implementation. In the current implementation, the objective measures are
computed in parallel with managers' inputs, which only take a few minutes.

Automating Code Reuse Analysis

Karimi (KARI90) has observed that unmanaged reuse of code in CASE environments is likely to result in
suboptimal development performance. An object-based I-CASE environment like HPS also provides a
major assist for the implementation and control of code reuse. HPS code exists at a level of granularity
more conducive to the implementation of code reuse. While it is rare that an entire 3GL program will

prove to be reusable, such programs frequently contain routines which could be reused, with a little
modification, were the programmer aware of their existence. An object-based system may be designed so
that each such routine is a unique object. This makes reuse opportunities considerably easier to identlfy
and to exploit.

HPS also serves to support the control of code reuse, and this increases the value managers will attach to
measurement. With the design of the entire system stored centrally along with the software itself, instances
of code reuse can be identified as multiple calls to an object within the repository.

To follow up on these ideas, we designed an automated code reuse analyzer for use within HPS. The tool
analyzes an existing software application, reporting the levels of reuse for the various elements comprising
the application. The code reuse analyzer shares many features in common with the function point analyzer.
For instance, it identifies all the relevant objects for a given analysis by systematically navigating the
hierarchy of calling relationships within the repository. Once all the objects within an application have
been identified and the instances of reuse have been noted, a range of managerially useful code reuse
metrics, such as the ones we discussed earlier, can be computed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Automating Object Analysis

The object point analyzer operates along the same lines. By-products of automating the analysis of an HPS

application for function points and code reuse delivers a portion of the OBJECT-POINT information for

free. This is accomplished when the Object Function Table (shown in Figure 1) is instantiated based on

the function point analyzer's scan of the application meta-model stored in the central repository. This in
turn results in information about the typed OBJECT-COUNTS for an application. Additional functionality

is required to represent the relative levels of effort required to build objects of different levels of
complexity. This information can be obtained through empirical analysis of the characteristics of repository

objects of different levels of complexity and the time expended to build them. Then, the results of this
analysis can be stored in a table that is accessible to the object point analyzer, so that it can adjust
OBJECT-COUNTS to arrive at a measurement of OBJECT-POINTS (BANK91).

6. AUTOMATED REPOSITORY ANALYSIS FOR SOFTWARE ASSET MANAGEMENT

Automating the collection of software metrics provides management with new tools to manage software

development projects, as well as the "software assets" of the f ~ m . A 1980s definition of the term "software

assets" would involve identifying the sum total of the code, routines and code libraries, and databases that

deliver the functionality and content of 3GL software applications. The value of such applications would be

largely derived from the extent to which the applications improved cost control or helped to generate

revenues -- in the firm's business activities.

It would be hard, however, to value an installed base of 3GL code in terms of the leverage created for

future development. The same is not true for I-CASE, however. I-CASE opens up opportunities for code

reuse, which means that repository software becomes a "leveragable" asset. We now turn to a discussion of

automated software project tracking, repository evaluation and our proposal for a new software asset

management perspective for I-CASE.

Automated Software Project Tracking

Previously, obtaining a point estimate (i.e., at one point in time) of development productivity for a project

required significant effort. The correct documentation had to be obtained, development labor information
had to be pieced together, and then finally function point and productivity analysis had to be performed.

But, point estimates only described the outcome of development activities; they failed to describe the process

leading to the delivery of completed software. Yet this process is what management needs to fine-tune so

that the outcome can be improved.

With object-based I-CASE, it is possible at the project level for management to replace point estimates of
productivity with a full software development life cycle trajectory of performance estimates by using

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

automated software metrics (BANK90F). For example, upon reaching significant project development

milestones, automated measurement of function points, OBJECT-POINTS and various reuse metrics can be

carried out, based on the software stored by the repository at that time. Additional measures can also be

made on demand when management has specific questions about the development performance of a

specific project.

Software development life cycle performance trajectory estimates can be made following the natural course

of the development of a software application. For example, at the inception of a project, very little will be

known about what the software finally will look like, but there will be significant information available
about the kinds of objects that are required to achieve such functionality. Order of magnitude estimates

can be made to identify the overall costs associated with going ahead with a project. A rough estimate of

the number of objects can be made prior to the start of the creation of the functional design of a system.

This estimate can be refined further as the project progresses through technical design. By this time,

however, it will be possible to obtain information from the repository about the future contents of the
application, though it may not be entirely built.

Automated software metrics will be even more useful as a project moves into the construction and testing

phases. Figure 2 below depicts the quarterly progress of two projects (marked A and B) in terms of
metrics that can be captured automatically: function points per person month and the observed level of
reuse leverage. (We assume that the capability exists for the automated analysis tools to access data in a

separate accounting system that tracks the billable hours developers spend on projects.)

INSERT FIGURE 2 ABOUT HERE

If a simple average productivity rating were assigned to the two projects, Project A would clearly exhibit a

higher level of productivity overall (in terms of function points per person month) than Project B. Yet

without the additional information provided by the trajectory shown in the upper graph of Figure 2,

important information would be lost to management For example, note that A's productivity is maximized

in the middle of the construction phase, when the project was likely to have been fully staffed, but it fell

later, perhaps due to implementation problems, the slippage of deadlines, changes in the development

environment, or interference from new projects that were taking more of management's time. In addition,

B's productivity met or exceeded the targeted minimum in only four of the eight quarters.

Coupling this information with the reuse leverage trajectory shown in the lower graph of Figure 2 provides

additional illustrative information. Note that the targeted level of code reuse leverage was only met in one

of the eight quarters. Although these graphs do not provide a complete picture of what was occurring as

the applications were being developed (for example, it is possible that the more productive project was

much larger and provided more opportunities to make effective use of the design and code reuse

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

capabilities of the CASE tool), they nevertheless suggest the possibility to management to take additional
steps to manage code reuse to avoid substandard development productivity results. .

Automated Repository Evaluation

Although the example we have used is highly simplified, other useful comparisons of descriptive project
performance metrics based on automated repository evaluation would pave the way for management to

obtain a fuller understanding of the dynamics of software development. For example:

* reuse classification metrics can be used to compare the relative productivity gains obtained from
internal versus external reuse, since as the repository matures, the leverage created by external
reuse should increase;

* both function points and OBJECT-POINTS can be tracked to identify the performance of each in
estimating the final level of development labor required;

* projects can be compared over time for baseline changes in the level of productivity observed, as
the fim's use of an I-CASE tool matures and new capabilities become available;

* the evaluation of project managers can also be tied to trajectory measures of project performance;

* productivity and reuse metrics for the full development life cycle can later be used to gauge the
effects of other variables including team size, experience levels, developer training and the size of
an application.

Tracking the software development life cycle of an I-CASE application with automated performance

trajectory metrics offers management the chance to obtain a more comprehensive understanding of a firm's

software development operations. As our sketch of the function point analyzer suggested (see Figure I),
metrics can be obtained for use by individuals with different levels of management responsibility, for

example, a project manager, the vice president of systems development or the chief information officer.

Having such information available to these management levels can lead to better decisions to control the

costs of large scale software deveIopment, and offer the firm a new range of opportunities to achieve

competitive advantage.

However, repository analysis need not be confined to the project meta-model hierarchy level. The real

potential of this approach is to examine the contents of the entire repository in terms of its objects or

object-based modules it stores. Analysis of "repository demographics" will enable a new range of questions

about code reuse to be answered by senior managers. For example:

* Is reuse biased by object type? Module type? Mostly limited to a programmer's reuse of his own

or his project's objects? Does it occur more within project teams than across them?

* How does reuse change over time? Does it increase as the number of objects in the repository

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

increases? Or, is increasing reuse related to the maturation of the CASE toolset?

* Is there a small subset of objects that receive the highest levels of reuse? What are they like?
How are they reused? Are there other kinds of objects that one might expect to be included in
this subset that are not members? If so, why are they missing?

* Do "expertn programmers or relative newcomers exhibit the highest levels of reuse? Is this related
to the training they receive on the tool or their knowledge of the repository?

* On a repository-wide basis, what levels of reuse are exhibited? Overall object reuse leverage?
Reuse value?

In addition to code reuse, other issues can be studied directly as well. Automated repository evaluation can
yield information on the relative frequency with which different kinds of objects are created. Such analysis
can help management to focus on those aspects of the I-CASE environment that need special attention.
This could lead to the creation of more powerful facilities to assist with the design and construction of
these objects. It would also be possible to examine whether object size is growing or shrinking on average,
reflecting system analysis, design and development practices in a more mature I-CASE environment.

The Software Asset Management Perspective

When this kirid of information is obtained, senior management will be in a position to estimate the overall
leverage that CASE creates in achieving cost reduction and boosting software functionality. Perhaps even
more important for the long haul though is that management understand the qualities of the firm's software

development environment. In our recent repository evaluation study with Dani Zweig (BANKgOE), we
proposed three kinds of potential bounds on development performance that management can address
based on repository demographics:

(1) There will be a technical bound on development productivity that k athibutable to the contents of the

CASE tool set.

Most development managers are acutely aware of the strengths and weaknesses of the technical
development environment. At the First Boston Corporation we have obtained evidence that the W s

CASE facilities do well in promoting code reuse. (See BANK90A and BANK90E for additional details.)
But additional repository analysis evidence suggested that the company probably has not reached its
technical bound on development productivity. Repository evaluation can be used to gauge the extent to
which new CASE tool features to be implemented in the future can raise this bound.

(2) There will also be an organizational bound on development productiviq that can be explained in terms

of how well software development management is able to motivate developers to achieve high levels of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

reuse.

Our research has shown that there are many issues that will need to be resolved to lift the organizational
bound on development performance. For example, at First Boston we observed conflicting interests

between the builder of a given object and a potential reuser of that object. The problem is that the builder

of the object also is required to be the "guarantor" of the object's performance when it is reused. Since this
may require effort on the part of the original developer (when he perceives his work on the object already

to be complete), there may be incentives for the reuser to revise the object in a way that meets the need,

without directly involving the original deveIoper. (We call this practice "hidden reuse.")

One potential organizational solution that management should consider to deal with the "object ownershipn
problem is to transfer all objects to a neutral third party when the project requiring its construction reaches

completion. This could be an "object administrator" (parallelling the role of a "database administrator" for

an I-CASE environment), who is charged with identifying and promoting firm-wide reuse of a core set of
reusable objects. If this core set of reusable objects contains the right building blocks, and management

promotes reuse well through training, monitoring and incentives, the leverage on development productivity

that can be created by the repository should increase. This, in turn, will increase the overall business value

of the firm's software assets.

(3) There also will be an architectural bound on the sofhyare project development process, and this bound
may have the most important implications for the long-term.

Repository evaluation can also shed some light on the architectural aspects of I-CASE development. The
basic questions of interest here are: How is development carried out? For example, how large are the

typical applications developed with I-CASE? What guidelines do developers follow in programming to

achieve reuse? What happens in the early life cycle phases? Is the firm's architectural perspective on

software development that high levels of reuse should be tied to activities conducted in the analysis and

design phases, and not just construction? What levels of code reuse can be targeted? What minimum

levels should be mandated? How will they change over time?

Each of these questions can be understood better by management when evidence is available from

repository evaluation. With answers to some of these questions, management can then fine-tune

development activities to minimize the costs of project development, while maximizing the business value of

the software assets stored in the repository to support future development activities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

REFERENCES

BANKSOA

Albrecht, A. J. and Gaffney, J. E. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Transactions on
Software Engineering 9,6 (November 1983), pp. 639-647.

Banker, R. D., and Kauffman, R. J. An Empirical Assessment of Computer Aided
Software Engineering (CASE) Technology, A Study of Productivity, Reuse and
Functionality. Forthcoming in MIS Quarterly.

Banker, R. D., Kauffman, R. J., and Kumar, R. Output Measurement Metrics in a
Computer Aided Software Engineering (CASE) Environment: Critique, Evaluation and
Proposal. In the Proceedings of the Twenty-third Annual Hawaii International Conference in
Systems Science, January 1991.

Banker, R. D., Fisher, E., Kauffman, R. J., Wright, C. and Zweig, D. Automating
Software Development Productivity Metrics. Working Paper, Center for Research on
Information Systems, Stern School of Business, New York University (June 1990).

Banker, R. D., Kauffman, R. J. and Zweig, D. Metrics for the Code Reuse in Software
Development. In preparation.

Banker, R. D,, Kauffman, R. J, and Zweig, D. Factors Affecting Code Reuse. Working
paper, Stern School of Business, New York University (December 1990).

Banker, R. D., Kauffman, R. J., and Kumar, R. Managing the Performance of Computer
Aided Software Engineering (CASE) Development with Dynamic Life Cycle Trajectory
Metrics. Working paper, Stern School of Business, New York University (October 1990).

Banker, R. D., Kauffman, R. J., and Kumar, R. An Approach to Constructing Productivity
Assessment Metrics in Computer Aided Software Engineering (CASE) Environments.
Working paper, Stern School of Business, New York University (April 1991).

Booch, G. What Is and What Isn't Object-Oriented Design. Ed Yourdon's Software
Journal, 2(7-8), pp. 14-21, Summer 1989.

Bouldin, B. M. CASE: Measuring Productivity -- What Are You Measuring? Why Are
You Measuring It? Software Magazine, 9:10 (August 1989), pp. 30-39.

Hall, P. A. V. Software Components and Reuse -- Getting More Out of Your Code.
Information and Software Technology 29, l (January-February 1987), pp. 38-43.

Karimi, J. An Asset-Based Systems Development Approach to Software Reusability. MIS
Quarterly, June 1990, pp. 179-198.

Kumar, R. Development Effort Estimation in Integrated Computer Aided Software
Engineering Environments: An Object-Centered Approach. Doctoral dissertation, Stern
School of Business, New York University, in progress.

Lanergan, R. G. and Grasso, C. A. Software Engineering with Reusable Designs and
Code. IEEE Transactions on Software Engineering SE-10,5 (September 19&4), pp. 498-501.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Low, G. C., and Jeffrey, D. R. Function Points in the Estimation and Evaluation of the
Software Process. IEEE Transactions on Sofnyare Engineering 16, 1 (January 1, 1990), pp.
64-71.

Meyer, B. Object-Oriented Software Construction. Prentice Hall, New York, NY, 1988.

Neighbors, J. M. The DRACO Approach to Constructing Software from Reusable
Components. IEEE Transactions on Sofnvare Engineering SE-10,5 (September 1984), pp.
564-574.

Nunamaker, J. F. Jr., and Chen, M. Software Productivity: A Framework of Study and an
Approach to Reusable Components. In Proceedings of the 22nd Hawaii International
Conference System Sciences, IEEE, Hawaii (January 1989), pp. 959-968.

Pollack, A The Move to Modular Software. New York Times (April 23, 1990), pp. Dl-2.

Polster, F. J. Reuse of Software Through Generation of Partial Systems. IEEE
Transactions on Sofnyare Engineering SE-10,5 (September 1984), pp. 402-416.

Raj, R. IC and Levy, H. M. A Compositional Model for Software Reuse. The Computer
Journal 32, 4 (April 1989), pp. 312-323.

Senn, J. A, and Wynekoop, J. L. Computer Aided Software Engineering (CASE) in
Perspective. Working Paper, Information Technology Management Center, College of
Business Administration, Georgia State University (1990).

Standish, T. A An &say on Software Reuse. IEEE Transactions on Software Engineering
SE-10, 5 (September 1984), pp. 494-497.

Symons, C. R. Function Point Analysis: Difficulties and Improvements. IEEE Transactions
on Somare Engineering 14, 1 (January 1988), pp. 2-10.

Texas Instruments. A Guide to Information Engineering Using the IEF: Computer Aided
Planning, Analysis and Design, Second Edition. Dallas, TX (1990).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Sidebar 1. High Productivity Systems (HPS) -- An Integrated CASE Environment

The First Boston Corporation, a large investment bank located in New York City made the initial
commitment to design and develop an object-based, repository-based integrated CASE (I - W E) environment
called "High Productivity Systems" (HPS) at a cost of nearly $90 million over the course of three years. HPS
was built by the firm as a response to the problems it faced in developing and maintaining technically
complex systems. Similar to its competitors in the investment banking industry, the firm had been
experiencing rapidly mounting software costs that were expected to skyrocket as its trading activities
expanded to provide global coverage.

To achieve competitive performance in this environment required the firm's developers to program
applications which ran on each of three hardware platforms (mainframe, minicomputer and
microcomputer) in a different language -- COBOL, PL/I and C+ +, respectively. A CASE tool was needed
that would support the programming of "cooperative processing" systems that run simultaneously on all
three platforms, and reduce the firm's reliance on three sets of highly skilled and costly programmers.

HPS applications are written in an object-based language (BOOC89) which buffers programmers from the
complexity of the firms's operating environment. Applications are later compiled in the appropriate
languages for the relevant hardware platforms, and communications protocols for cooperative processing
across platforms are handled without programmer intervention. The organization of the code into objects
tends to be functional, and the various software functions can be allocated across hardware platforms in the
most appropriate manner. (Note that we use the term "object-based" to distinguish this environment from
others that involve "object-oriented" concepts, where the inheritance properties of objects are central.

A special feature of HPS is its object repository. This includes all the definitions of the data and objects
that make up the organization's business, and also all the pieces of software that comprise its systems. The
motivation for having a single repository for all such objects is similar to that for having a single database
for all data: a program, or a procedure, or a screen, or a report need only written once, no matter how
many times it is used. Such reuse has the potential to decrease software development costs, and it forces
the firm to more carefully engineer an information and information systems architecture which will form. a
solid base for the firm's business.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-91-08

Sidebar 2. Function Point Analysis: An Overview

Function points are computed by measuring the degree of functionality actually delivered to the user of the

system, in terms of reports, inquiry screens, and so on. This functionality is determined by the number and

complexity of inputs, outputs, internal Ties, external interfaces and queries that comprise a system. The
result obtained from this intermediate measure of function types is called FUNCTION-COUNTS. Function
counts are further adjusted by a measure of environmental complexity. The mathematical definition of

function points is shown below:

14

P(mrCTI0N POINTS = FUNCTION COUNT * (.6 5 + (-01 *x COMPLEXITYf))
f =l

where

FUNCTION-COUNT = instances of the five function types;

COMPLEXlTY = a complexity factor, f; associated with each of fourteen descriptors of

the implementation complexity of a system.

Function points are meant to provide a language-independent and implementation-independent measure of

the functionality actually produced and delivered to the user. They differ from output measures, such as

those based on source lines of code, that focus on how much code constitutes an application. Thus,

function points are not sensitive to the level of the language in which an application is written. Since its
introduction in the late 1970s, function point analysis has evolved into a well-accepted and operationally

welldefined methodology.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Figure 1. The Automated Function Point Analyzer: A Schematic

USER

1 OBJECT IDENTIFIER

I. - - 1
/ 11 E n t i t y 11 1 I d e n t i f y I 11 o b j e c t 1) I
I II~elationshi~II-/ Objec ts t o 1-11 Repos i tory 11
(11 Tab le I Analyze I 41 META-MODEL 11
; I - / - ;
,-,-,,---,,,,---,,,, --,-,,--- . ,,-,--,,, ,-,,,,----,,,-----,, i

I
i
I

- ' - FUNCTION COUNTER ---------------------------I-- -- I - f - I
I II o b j e c t II I Determine I 11 Funct ion / I I
I 1) Func t ion I+---+Function Type]-]I D i f f i c u l t y 11 I

11 Tab le 1t-l I I n s t ances I 11 Table 11 I
; - I u
I - I

I I ' t

+---l I I - - 1

I 1 Funct ion 11 I Determine I 11 Funct ion 11 f
f 11 Count /}-I Function 1-11 W e i g h t i n g))
I II Tab le [I I s c o r e s] 11 able 11 /
f - u - !
,--,,,,,---,,,--,,,----------- . --,,,,---,-,-,,,-------------,

H C u s t o m i z e d - - R e p o r t s
11 H i s t o r i c a l 11 I Ca l cu l a t e 1- P r o j e c t Manager
11 Database 11-1 Function 1- VP, IS Development
11 f o r FPS 11 I Po in t s (FPs) 1- Chief Informat ion O f f i c e r - ENVIRONMENTAL

COMPLEXITY FACTOR COUNTER
,------,---,---,,,,---------,- . ,-,,-,------,-,,,,,-----------

I - I
I Repos i to ry Query .-I Determine I 11 Complexity 11 f
I
I I Complexity I-{/ Table 11 I
I Manager I n p u t s - Scores I
I ' / I I1 I
I

The function point analyzer uses the HPS application meta-model to identify objects. It then assigns FUNCTlON-

COUNTscores to those objects and weights them according to their compkify. The final step further revises the
FUNCTION-COUNTS based on the environmental complexity of the development effort. This requires
programmer or manager input in parallel with repository queries.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Figure 2. Software Development Performance Trajectories: Function Points and Reuse

Quar ter ly Estimated
Function Po in t s /
Person Month

* Projec t A

+ Projec t B

I + + Targeted
I--------------------+----+------------------ Produc t iv i ty

I +
+ * Level

I + +
I *

0 1 2 3 4 5 6 7 8 Quar ters

Design Construction

* Projec t A

+ Pro jec t B

Testing &

Implementation

Quar ter ly Level of
Reuse Leverage
(t i m e s reused)

I
I
I
I
I
I
I
I * * *
I * Targeted
I-----------------------*----+---------------- Reuse

I + + x + + Leverage

I +
+ + * *

0 1 2 3 4 5 6 7 8 Quar ters

Design Construction Testing - &

Implementation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-08

