
DEPENDENCY BASED COORDINATION FOR CONSISTENT
SOLUTIONS IN DISTRIBUTED WORK

Hardeep Johar
The Leonard N. Stern School of Business

New York University
Information Systems Department

New York, NY 10012

and

Vasant Dhar
The Leonard N. Stern School of Business

New York University
Information Systems Department

New York, NY 10012

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working PaPer Series

STERN IS-92-38

Proceedings of the First International Conference on
Information and Knowledge Management 1992,

ISMM Press - 1992

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

Depe~ldency Based Coordination for Consistent Solutions in Distributed

Hardeep Johar
Information Systems Department

New York University
New York, NY 10003

Abstract

Many orga~lizat~ional problems can be decoinposed into
nearly iildepeizdent subproblems the solution of which
is the responsibility of independent agents. In this kind
of work, which we call distributed work, the problems
are only nearly independent since dependencies exist
between the comlllitinents required from each agent.
As a consequence of these dependencies, the coordina-
tion problelll becoines one of maintaining a consistent
global solution in the face of the possibly conflicting
activities of each agent. We define a normative model
for coordination pr~t~ocols that indicates the formal re-
quirements for maintaining a globally consistent solu-
tion. The model identifies several properties that the
protocol must enforce, namely serializability, atomic-
zty, conzplete~iess, and soundness. We show that these
properties are desirable in coordination protocols for
distributed work problems.

1 Introduction

Work*

Vasant Dhar
Information Systems Department

New York University
New York, NY 10003

Many organizational problems are ill-structured in the
sense that the specifications of the problems emerge
durzizg the problem solving process [26]. Often, these
probleins require the coordination of many develop-
ers (agents) usually working reasonably independently.
We refer to work involving these kinds of ill-structured
probleills as dtstrzbuted work. In such problems, al-
though there may be identifiable global states and
goals of the problem-solving process, each agent has
only a partial and inexact view of these [19]. Fur-
thermore, each agent is required to create and execute
plans for the purpose of goal (or sub-goal) fulfillment.
Since these activities are never completely independent
[27, 261, coordination of the activities of these agents is
an important aspect of purposeful work. A key aspect

of this coordination is to ensure that the object un-
der development remains consistent to the extent pos-
sible, i.e. attainment of the overall goal stays plausible,
in the face of the purposeful activities of each agent.
Examples of these problems include engineering design
[I], software design [3], and many other organizational
problems. For example, the design of the Boeing 777
involves 5600 designers scattered over 18 locations each
working on independent parts of the aircraft that must
fit together. In addition, Boeing subcontracts pieces
of the design to external entities who must also design
parts that fit with the parts being designed by Boeing

[221-
Inconsistencies in the object under development

arise because agents search for locally consistent so-
lutions which may conflict with the locally consistent
solutions found by other agents. Agents search locally
rather than globally because of two kinds of uncertain-
ties associated with their tasks: (1) uncertainties due
to incomplete knowledge about what states of nature
will prevail 1291 which arise partly because the agent
does not know what design decisions other agents will
make; and (2) uncertainties that result from the am-
biguous nature of task specifications [l l] which arises
because tasks are ill-structured. These locally found so-
lutions lead to global inconsistencies because there may
be dependencies between the tasks of agents, and they
may make assumptions that conflict with the assump-
tions made by other agents. It is possible that either
the ramifications of these dependencies goes unnoticed,
or these dependencies themselves remain unidentified.
The problem of local control versus global coherence
has been recognized a9 an important problem in the
literature [16] and we present a model that addresses
this issue utilizing dependencies to aid coordination ac-
tivities. The model outlines a set of properties that a
coordination protocol must satisfv and we show that

* W e thank Ales Tuzhilin and Albert Croker for their con- these properties are useful in ensuring globally consis-
structise cornrnents on early versions o f this paper. tent solutions.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

SYSTEM Chris : Database expen
Susan : User specialist
John : Hardware exper

Jane : Programmer

Database
Design

Chris

terface
Design

Figure 1: Task Decomposition in the Library Infor-
mation System

2 Formal Model
2.1 Tasks
The basic unit of activity in distributed work is a task.
Each task has two identifying characteristics, a set of
related goals the achievement of which signifies that
the task is completed, and an agent responsible for the
task. An agent is a problem solving entity that utilizes
dolnain knowledge to find a solution that satisfies all
goals of the task. Each task has one agent associated
with it , though the agent may be a single human, a
group of humans, or a computer program. For exam-
ple, in the design of an aircraft, the agent responsible
for wing design could be the wing design group, the
agent responsible for deigning trailing edge panels could
be Rlr. Smith, and the agent responsible for selecting
landing gear could be a computer program (perhaps an
expert system).

An agent may either complete a task 011 his or her
own, or may decolnpose the task either t o reduce com-
plexity 15, 26, 271, or to exploit differences in agent ex-
pertise [lG] . The Lzbrary Informatlo?i Systent example
in Figure 1 illustrates both these reasons for task de-
composition. The decomposition process involves iden-
tification of goals that need to be satisfied for task
completion, ancl parceling out groups of goals to other
agents in the form of subtasks. In Figure 2 the Inter-
face Deszgn task has three goals that have been handed
over to two agents to satisfy. Any of these agents
may further subcontract the goals. Susan's task will
be coillplete when all three of her goals are satisfied1.

'.4llowing multiple goals in a task is useful because (1) it al-
lows agents to make partial commitments and (2) often it is de-

Goals:
language(?X), rnode(?Z),

Interface
Design n Imperatives(?Yl ,..,?Pn)

Goals:
Select Ianguage,Design Imperatives Select mode

Figure 2: Goals and Tasks

Since these problenls may be ill-structured, the goals
could change over time. For example, perhaps Susan's
original goals were language(?.Y), iMode(2Y) and the
imper.atives(?Yl, , ?Y,) goal was added later when
Rajiv and Joan decided 011 a command driven inter-
face. In the remainder of this paper Ti refers to a task,
agent(Ti) refers to the agent responsible for the task,
and G(3A&(Ti, t) refers to the set of goals associated
with the task a t time t .

2.2 Commitments and dependencies

The problem solving process for each agent's task can
be viewed as a process of identifying alternative solu-
tions and the choosing of a subset of these alternatives
as a solution. The set of alternative solutions is re-
ferred to as a choice set [a], and we call the subset of
this set that the agent identifies as a solution, a com-
mitment. Because of the two types of uncertainties
associated with tasks, each agent makes assumptions
about possible states of the world that nlay occur either
resulting from the activities of other agents, or from
the ill-structured nature of the task. Therefore, each
choice in a choice set has associated with it a set of as-
sumptions under which the choice is feasible. Since as-
sumptions are associated with uncertainties, the truth
or falsity of a particular assunlption may change, in-
validating an existing commitment and forcing the
agent to make a new commitment. CXOZCE(Ti) =
{CHOICE1(Ti) , , CHOICE, (T)) represents the
choice set for task Ti::, CT,,t represents the commitment
made by agent(Z) at time t , and A(CHOICEj(7;:))
represents the set of assulnptioas under which

sirable to package related (conjunctive) goals together and hand
them to an agent (perhaps a planner such as TWEAK [6]) .

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

C H O I C E j (El is valid. We provide a formal defini- exhibit this behavior where designs are often modified
tion of commitment below and then explain the intu- or extended for the reasons listed above. Commitments
ition behind the definition. must also be valid local solutions in the sense that the

Defini t ion 1 C o m m i t m e n t : Let A (x) be t h e se t o f
as sumptzons f o r a chozce x, S, be a s tate of t h e world ,
GOAC(T,, t) be f h e s e t o f goals of task T, at t z m e t . A
chozce CT,,t zs a c o m m i t m e n t zf
(2) fintent~on) a g e n t (T ,) reaso~znbly znteizds t o fulfill t he
chozce [7]
(z z) commitments) t zs t h e tame at whzch t h e
agent j irsf coin7i7~~nzcates the choice t o at least oiie o ther
agent
(z z z) (local feasibility) 3,V,,J S3 A CHOICE, (T,) E
CT, ,~ + A(CNOICE,(T,)) C S,, where S, represents
a conszs tenf s ta te of t h e world.
(zv) (goal satisfying) I f Sf I S t h e s tate resul tz~ig
f r o m t h e nppllcafioia o f CT,,t t o S, t h e n V j g o a l j E
GOAL(T,, t) =+ 3 e g ~ a l k E Sf A goal, = goalk (z.e. t h e
commztinerzf sntz$es all goals of t h e task tha t exzsfed
at t z ~ ~ z e t)

For example, the choice set for R a j i v and
Joan (Figure 2) may be {iizterface(command-driven),
interface(~l~e~a,u-driven)) . Al-
ternative inferface(command- drive^^.) may be valid un-
der the assumpt,ions {desired-inferface(flexible), user -
literacy(lt.igh)}. Since the problem is ill-structured,
they may be forced to make assumptions about the
user. For example, they may assume user-li teracy(high)
and may commit to a command-driven interface as
their commit,ment. If, a t some later point, it emerges
that this assumption wa,s not valid, they would retract
this commit,ment (it would not satisfy the local consis-
tency condit,ion) and make a new one.

Definit,ion 1 st,at.es first that a conln~itment is an in-
tention. C o ~ ~ ~ l ~ ~ i t m e n t s as intentions is fairly common
in distribut.ed work settings. For example, in engineer-
ing design a commitment corresponds to a part drawing
or a process p1a.n for ~nanufact~uring, in software devel-
opment a. commitment corresponds to a program spec-
ification or to dat.a flow diagrams. A choice becomes a
conlmitnlent when it is comnlunicated or made avail-
able to some other agent. At this point the second
agent has tShe expectation that the commitment will
be met and can use this knowledge in making its own
coln~llitments (see [7] for a discussion on commitment
and intent,ion in plans). The definition includes a tem-
poral conlponent because commitmellts may be tenta-
tive. A commitment may need t,o be changed because
of a change in goals, because of the introduction of a
new constr;lint,, because of c0nflict.s with ot,her com-
nlitments, or because the agent discovers a better so-
lution. Bot,ll engineering and software design problems

assumptions on which they are based should not be mu-
tually inconsistent, and the commitment should satisfy
all goals of the task at the time the commitment is
made.

That assumptions form the basis for reasoning about
problem solutions and therefore are a basis for selecting
a commitment has been well documented in the liter-
ature. For example, assumption surfacing as a basis
for conflict resolution has been the focus of some dis-
tributed architectures [23], the use of preconditions and
filters to guide operator selection in automated plan-
ners [14, 63 is an example of assumption-based com-
mitment (the preconditions, and the current state em-
body the assumptions), and the use of assumptions has
been empirically validated in some distributed problem
solving domains such as software development [9].

Commitments made by one task may constrain the
~ossibilities for other t,asks. For e x a m ~ l e , once a Dar- . ,

ticular database software has been selected by Chris,
the hardware platform choices available to John may
be constrained. Commitments constrain tasks options
because dependencies exist between tasks. We define
two types of dependencies, temporal dependencies and
desig~a dependenc ies , below.

Defini t ion 2 A depen,de~zcy Ti - 7 j i s a t e m p o r a l
dependency i f there i s a n a-prior i ordering of com-
m i t m e n t s s u c h t h a t task Ti m u s t c o m m i t before task 7 j .

Defini t ion 3 A dependency - 7j . i s a design
dependency i f t here i s at least one C H O I C E I (T)
t ha t inval idates (i s iiaco7asisfent w i t h) s o m e e lemen t
CHOICE,(7;.).

Temporal dependencies are usually based either on
relationships that have been recognized by the design-
ers and made explicit., or on the creation of an ordering
of tasks to reduce complexity. PERT charts and data
flow diagrams reflect these dependencies by directed
arcs between tasks. In Figure 1 the directed arcs re-
flect these dependencies.

Design dependencies, on the other hand, reflect in-
herent relationships between tasks that have not nec-
essarily been identified by an agent and may or may
not be temporally specifiable. The essential relation-
ship between the tasks is that the outcome of one
task may have the potential to clobber another task
(perhaps by invalidating one of the second tasks pre-
conditions [6]). In ill-structured problems, however,
this relationship between two commitments may be
hard to detect. For example, in Figure 2 it may not
be obvious that there is a dependency between the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

Interface La~tguage and Interface Mode tasks. How-
ever, there is a dependency between the tasks since
some choices of interface invalidate some choices of lan-
guage. For example, the selection of a touchscreen
interface would invalidate the possibility of using a -
command driven interface language. This dependency
would be detected only if a constraint of the form
~ l a n g u a g e (c o m m a n d) V ~ m o d e (t o u c h s c r e e n) were ex-
plicitly mocleled in the system.

In a normative sense, design dependencies arise be-
cause agents may make incompatible assumptions when
attempting to make a commitment. If the problem
were not ill-structured, then these assumptions would
have taken on the status of premises and though the de-
pendency would remain, it would not be a conflict caus-
ing dependency. For example, the assumption behind
the selection of a touchscreen interface device could be
that Tsaz believes that the target user of the Lzbrary
Infornzafton S y s i e n ~ is not good at using co~llputers,
while the selection of a command-driven interface may
depend on the assumption that the user is good a t using
computers and would therefore want a flexible inter-
face. The two agents have made incompatible assump-
tions that results in a conflict causing design depen-
dency. If the problem had been clearly specified, the
type of user would have had the status of a premise,
and would have been known to both agents, and the
dependency would not have been conflict causing. Def-
inition 4 forillalizes this idea.

Definition 4 Let a (x , y) be a?. assumption of the form
object s is a y. A Dependency Ti - T j is a conflict-
causing des ign d e p e n d e n c y i f 3 1 , , , , C H O I C E I (z) E
C T , , ~ A CHOICEnz(7;-) E C T , , ~ * 3z ,y , ,y2a(2 , Y I) E
A (C H O I C E I (T)) A a,(x, y 2) E A (C H O I C E , , (T j)) A

Y1 Z ~ 2 .

The above definition states that a design dependency
is conflictm-causing only if the t,wo t,a.sks make different
assumptions. If they make exactly the same assump-
tions then t.he assumption is elevat,ed to the status of a
premise. The only design dependencies of interest are
the ones t,hat cause conflicts and in the remainder of
this paper we use the term desig12 depende~tcies to refer
to conflicf-catisi12g design dependencies.

2.3 Coordination Protocols

Because of the possibility of conflicts, whenever an
agent esecutes a task, he or she may have to corn-
municate inforn~ation about the task to other agents,
determine if a conflict has arisen, and seek to resolve
the conflict. JIThenever an agent makes a commitment,
three questions need to he answered: zs a comnzunzca-
tzon ilecessnry, what needs t o be co~~tnzunzcated, and t o

Interface Mode

Figure 3: Atomic Dependencies

whom should the communication be addressed. A coor-
dination protocol is a system designed to help the agent
answer these three questions. The answers to these
questions are important because if coilflict related in-
formation is not communicated, then an inconsistent
artifact that needs extensive modification may be the
result. If, on the other hand, communication is exces-
sive, then the coordination costs may raise the overall
cost of the project prohibitively. For example, Durfee
and Montgomery [12] show that the cost of planning
could be excessive in either a no communication, or an
over communication scenario, and the implication is
that the ideal amount of coinmunication depends upon
task cl~aracteristics. Since the need for communication
arises from conflict-causing design dependencies, coor-
dination protocols that handle comnlunication should
use these dependencies to determine what, when, and
to whom to communicate. In this section we exam-
ine four properties related to task dependencies: atorn-
icity, serializability, completeness, and soundness that
coordination protocols need to satisfy so as to provide
answers to these questions.

2.3.1 Atomic Dependencies
The ability to represent relationships concisely has been
recognized as a desirable property of any system [2].
I11 distributed work problems the primary relationship
between tasks is the presence of design and temporal
dependencies. A coordination protocol should, there-
fore, ensure that the dependencies in a system are ex-
pressed concisely. We refer to this conciseness property
as atomzcity.

The importance of ensuring that dependencies are
concisely expressed is illustrated by the example in
Figure 3. The two tasks in the figure are the select
language and interface mode tasks of Figure 2. As-
sume that while decomposing the problem, Susan in-
dicated a temporal dependency between the two tasks
as shown in Figure 3 perhaps recognizing that the in-
terface language affects the mode. Rajiv Sc Joan, the
agents responsible for the znterface language task de-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

compose the task further. As stated in the previous
section, a design dependency exists between the select
language and i n t e r face m o d e t,asks and domain knowl-
edge shows that no real dependency exists between de-
s ign inzperatzves and in ter face mode. The existence of
the temporal dependency implies that each time a com-
mitment is made (or changed) by any of the subtasks of
in ter face language, the impact of the commitment has
to be evaluated by the agent responsible for the in ter-
face m o d e task even though this should not be neces-
sary for colni~litments made by the design imperat ives
task. Thus, non-atomic dependencies could lead to un-
necessary communication which result in wasteful or
darnaging problem solving activity.

Defini t ion 5 A dependency Tt - zs a n atomzc
dependency zf a n d on ly i f
(2) 73kTkAGC?AC(Tk) g GOAL(T,)ATk # T,ATk -
T? ,

(i i i) - d k 7 l T , ~ x A T k + EAG'OAC(7j) 2 G O A C (~) A
GOAC(Tk) n GQAC(?;.) = q5 r\ # z, an.d
(iv) -13k,1TkAzATk -+ ~ ~ A G O A C (T ~) c GOAC(T~)A
GOAC(Tr) n GOAL(?) = 4 A Tk # Tj

Statement (i) says that if Tj is dependent on 3 then
Tj is not dependent on any subtask of Ti. Statement
(ii) says t,liat if depends on x then no subtask of
Tj depends on ?;:. Statement (iii) and statelllent (iv)
require that a dependency should be minimal with re-
spect to other dependencies that involve subtasks of
the tasks in tthe dependency.

2.3.2 C o m p l e t e and S o u n d Pro tocols
C o m p l e f e n e s s refers to the property that it should be
possible to propagate causal relations between tasks to
other related tasks. For example, if T, - 7j and
7j - Tk then it follows that there is an implicit de-
pendency between T, and Tk. Completeness in a pro-
tocol requires that it should be possible to make this
inference. If the coordination protocol is not complete
then there is the possibility that inconsistencies in the
artifact will persist because of relationships that remain
undetected. Formally:

Defini t ion 6 C o m p l e t e protocols: G i v e n a se t o f
dependencies F , A coordinat ion protocol i s comple t e
iffV(Ti - T j) F I=: (?;. - Tj) + F t- (Ti - Tj).

S o n n d n e s s refers to the property that every depen-
dency identified by t,he coordination protocol is a valid
dependency. If the dependencies determined by the
protocol are not sound then inappropriate instances of
coordination may be identified resulting in higher co-
ordination costs. Formally:

Figure 4: Design dependencies

Definition 7 S o u n d protocols: G i v e n a se t of de-
pendencies F, A coordination protocol i s sound z$

V (x - 7 j) F t (z - T j) + F + (z - q) .

2.3.3 Serializability of c o m m i t m e n t s
The literature on database concurrency control dis-

cusses the notion of serzalzzabilzty as a test for ensuring
the integrity of a database that is accessed concurrently
[28]. Recent research in software design has extended
the notion of serializability t o the modification of soft-
ware artifacts [24, 181. Serializability in database lit-
erature [28] and software development literature [18]
focuses on the effects of transactions or modifications
to an artifact (a database or a software artifact) and
uses techniques such as locking protocols t o ensure in-
tegrity. However, in distributed work problems, incon-
sistencies arise because of dependencies between tasks,
rather than because two or more agents are attempting
simultaneous modification of a database or a program
module. For example, Figure 4 illustrates a dependency
network for the Library I n f o r m a t i o n S y s t e m described
earlier. A change in commitment by the agent(?;) may
affect the commitment possibilities for agent(T2), per-
haps forcing a change in commitment. A locking pro-
tocol would lock access to TI, and perhaps also to T2
while the commitment was being revised, but would do
nothing to ensure that T2 modified its commitment.

The notion of serializability as discussed above does
not consider dependencies or commitments. A se-
quence of commitments containing Tl and T 2 will be
serializable only if there is a t least one commitment
made by the agent(T2) after every occurrence of a com-
mitment by agent(Tl). More generally, a sequence of
commitments will be serializable only if the above re-
lationship holds for all dependencies present in the set
of tasks. Formally:

Defini t ion 8 Let , 7 = {TI,, Tn) be a se t of ta sks
and C (7) be t h e sequence of t empora l l y ordered c o m m i t -
nzents of t a s k s i n 7. Let F be the se t of dependencies

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

defined 01, 7 and F f be t h e closure of F. C i s a ser ia l
sequence i.ftl'i,j (x -+ T j E F +) 3 - d l , m C ~ , , t r E
C A CT,,l, E C A tl < tm . C i s serializable i f it i s
equivalent t o s o m e ser ia l sequence.

I11 Figure 4 one possible serial sequence of com-
mitments is { C T , , ~ , C T ~ , ~ , C T ~ , ~ , CTS,6, C T ~ , ~) . A se-
rial sequence is a dependency preserving sequence
of com~llitnlents. A sequence { C T ~ , ~ , CT3,2, C T ~ , ~ ,
CT1,4, CT,,s. C T ~ , ~ , C T ~ , ~ , C T ~ , ~) is serializable since it
is equal tho the serial sequence above if only the final.
commitments of a task are considered. Thus equzva-
lence in t,he above definition has the same meaning as
in database notions of serializability (c.f [28]).

3 Properties of the model
The llorlnative model of coordinat.ion described above
can he used to show the validity of some intuitive as-
pects of coordination. In this section we state some of
these result,s and outline intuitive proofs.

T h e o r e m 1 I f a coordinat ion protocol i s complete a n d
sound , the protocol wi l l detect a minimal set o f agen t s
potell t ially ' i ~ a f ~ o l v e d in a coordinat io~z act iv i ty .

This follows from the followillg lemmas:

leinilla 1 If a coordinatzon protocol zs complete , t h e
prolocol u : ~ / / d e f e c t a covering set of agents potentzally
znvolved 2 1) a coordznatzon actzvity.

l emina 2 I f a coordinat ion protocol i s sound , t h e co-
ordinatio7i protocol wi l l detect only agents actual ly in -
voloed i n t h e coordinat ion act iv i ty .

Completeness guarantees that given a particular de-
pendency, all dependencies that follow from it can
be determined. For example, if a g e n t (T 1) (Figure 4)
makes a new commitment, effective coordinatioli re-
quires that this commitment be commu~licated to the
agents responsible for all other tasks in the figure. This
will be possible only if the protocol is capable of detect-
ing T3 - T4 and T3 T5 (presuming that the other
two dependencies have been independently detected).
(The possibility of cycles is briefly taken up below.)
Since conlpleteness does not guarantee that every de-
pendency detected will be a true dependency, the set of
agents may contain agents not affected by the cornmit-
ment. Soundness ensures that only true dependencies
will be detected and that the set is minimal.

While the possibility of cornmunicati~lg commit-
ments to the entire set of agents may appear t o im-
pact communication costs adversely, it is important to
note that the purchnse devzces task is affected by the
outcome of the select language task, and that , based
on some previous commitment by a g e n t (T l) , agent(?;)
may have already purchased some devices or expended

problem solving resources. Thus a g e n t (T 5) is poten-
t ia l ly affected by the change in a g e n t (T 1) ' s commit-
ment. Completeness and soundness help answer the
question t o w h o m should a communica t ion be sent .

T h e o r e m 2 If dependencies are a t o m i c t h e n minimal
i n f o r m a t i o n wi l l be communica ted i n a coordination ac-
t iv i ty .

Intuitively, atomicity guarantees that the tasks in a
dependency will be as specific as possible. For example,
in Figure 3, if the true dependency is between select
language and in ter face m o d e only information relating
to the select language task should be communicated. If
the dependency was not atomic, information relating
to the entire task would be communicated adding to
the communication cost. Atomicity helps answer the
question what should be communica ted .
T h e o r e m 3 Serial izabi l i ty o f a sequence of c o m m i t -
m e n t s i s a suf f ic ient cond i t ton for global coherence.

If a sequence of commitments is serializable, then
there exists some equivalent serial sequence which con-
tains exactly one instance of a commitment for each
task. By the definition of serial sequences, this equiv-
alent serial sequence orders tasks according to depen-
dencies and for every Ti - Tj , the commitment by
a g e n t (T i) precedes the com~nitment by a g e n t (T j) , and
a g e n t (q) would have incorporated a g e n t (z) ' s com-
lnitrnellt as a constraint, thus, ensuring a consistent
artifact. Serializability helps answer the question w h e n
i s a conzmunicat ion necessary , and a simple answer is
whenever serializabili ty i s compromised. A serializable
sequence can be constructed to remove the potential in-
consistency. Note that serializability is defined on the
closure of the set of dependencies and therefore we also
have the following lemma:

l e m m a 3 C o m p l e t e ? ~ e s s i s a necessary condi t ion f o r
serializabili ty.

Often a dependency 11et\~ork may contain cycles. In
fact, most design dependencies will be bi-directional.
For example, the select m o d e and select language tasks
in Figure 4 are each, in a true sense, dependent on
the commitments of the other. However, in most dis-
tributed work problems, this problem is alleviated by
the presence of temporal dependencies provided at the
time the problem is decomposed (as in PERT charts
and Data Flow Diagrams). These temporal dependen-
cies can be used to force a direction on those lower level
dependencies that are bi-directional, as has been done
in Figure 4 where T4 belongs to the program design sub-
task, and T5 belongs to the configure s y s t e m subtasks in
Figure 1. However, cycles canilot be completely elimi-
nated and Figure 5 illustrates a simple cycle.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

arrive at an interpretation of data, is also better suited
for interpretation and diagnosis. A major difference
between our work and the research described above (as
well as some other DAI approaches e.g. [lo, 121) is
that they assume that the decomposition and problem
knowledge is known beforehand, or a t least a t the time
the problem is decomposed. When a problem is clearly
specified at the time of decomposition, the coordination

Figure 5: A Simple Cycle. problem reduces to one of constructing a serial sequence
rather than a serializable sequence of commitments.

Theorem 4 When a dependency network contains cy-
cles, a negofiated commitment is a necessary condition
for seria1i:ability.

When cycles are present, a sequence of.cornmitments
will be serializable only if, in the equivalent serial se-
quence, all agents responsible for the tasks in the cy-
cle corninit simultaneously. For example, in the simple
cycle in Figure 5, the two tasks have to commit si-
multaileously for Definition 8 to be satisfied, and the
equality condition will ensure that it is satisfied. The
simultaneous cominitmellt has to be negotiated since
each agent has to know the other agent's commitment
before making his/her own commitment. The proof ex-
tends this reasoning to larger cycles. Interestingly, this
result has been a normative guideline in the software
development domain where it is recommended that if
two programs are interrelated then they should be mod-
ified siinultaneously (negotiation) and only a t the level
of specificat ions (commitment) 1251.

4 Related Research
Multiple agent systems have been the focus of research
in recent years though the development of protocols
that support coordination of the activities of human
agents has received little attention. Gasser et al. [17]
and Fox [l5] examine the organizatioil of distributed
systems with the objective of discoveri~lg how systems
are distributed using organizational paradigms. Our
focus is more on supporting cooperation in organiza-
tional problern solving, and on forinalisms for reduc-
ing uncertainty and conlplexity amongst agents, and
in this sense, is complelnentary to that stream of re-
search. Our researcb is perhaps closest to the FA/C
paradigm [21, 41 where agents exchange tentative and
partial solutions with the objective of converging on
a solution. The FA/C paradigm is, however, better
suited for diagnosis applications rather than a t finding
solutions, and for groups of agents solving overlapping
problems (as also are blackboard systems [13]). Sim-
ilarly, the DAThlS architecture [23], where agents ex-
change knonyledge about inconsistencies and results to

5 Conclusion
We have outlined a formal model for protocols that
support coordination in activities that involve decom-
position of the problem into nearly independent parts,
and that require a globally coherent solution. We
are working on an architecture for supporting organi-
zational problem solving using the formalisms devel-
oped in this paper. The architecture uses a multi-
ple agent assumption-based truth maintenance system
(MA-ATMS) [20] as a reasoning mechanism and an ad-
ditional component for ensuring that dependencies are
atomic, and commitments are serializable. We are in
the process of developing and testing algorithms for
detecting non-serializable commitments, constructing
serializable sequences, and for guiding coordination ac-
tivities to ensure that a sequence is serializable. The
MA-ATMS records problem solving knowledge and in
that sense is different from the DATMS [23] where each
agent has an ATMS. It permits agents to have incon-
sistent assumptions, enforces global consistency at the
level of design decisions, and can maintain a record of
alternative solutions, and is, therefore different from
the DTMS [2].

References

[I] A. H. Bond. The Cooperation of Experts in En-
gineering Design. In L. Gasser and M. H. Huhns,
editors, Distributed AI Volume 11, pages 463-486.
Morgan Iiauf~nann, Sail hlateo, 1989.

121 D. M. Bridgeland and M. N. Huhns. Distributed
Truth Maintenance. In Proceedings Eighth Na-
tional Conference on Artificial Intelligence, pages
72-77, Boston, Ma., July-August 1990.

[3] F. P. J . Brooks. The Mythical Man-Month. In
P. Freeman and A. I. Wasserman, editors, Tu-
torial 011 Software Design Techniques, pages 35-
42. IEEE Computer Society Press, Silver Spring,
Maryland, 1983.

[4] N. Carver, Z. Cvetanovic, and V. Lesser. Sophis-
ticated Cooperation in FA/C Distributed Prob-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

lein Solving Systems. In Proceedin,gs of AAAI-91,
pages 191-198. MIT Press, 1991.

[5] B. Chandrasekaran. Design Problem Solving: A
Task Analysis. A I Magazine, 11:59-71, Winter
1990.

[GI D. Chapman. Planning for Conjunctive Goals. Ar-
tificial I~ttelligence, 32:333-377, 1987.

[7] P. R. Cohen and H. J . Levesque. Intention is
Choice with Commitment. Artificial Intelligence,
42:213-261, 1990.

[8] A. E. Croker and V. Dhar. A Knowledge Rep-
resentation for Constraiilt Satisfaction Problems.
Technical Report STERN-IS-90-9, New York Uni-
versity, New lrork, August 1990.

[9] B. Curtis, H. Krasner, and N. Iscoe. A Field Study
of t,he Software Design Process for Large Systems.
Comm. of the ACrl, 31(11), November 1988.

[lo] R. Davis and R. G. Smith. Negotiation as a
Metaphor for Distributed Problem Solving. Ar-
tlficial Intelligence, 20:63-109, 1983.

[ll] V. Dhar and M. H. Olson. Assunlptions Underly-
ing Systems that Support l\rork Group Collabora-
tion. In R f . H. Olson, editor, Techrtologzcal Sup-
port fo r M'ork Group Collaboratzon, pages 33-50.
Lawrence Erlbaum Associates Inc., Hillsdale, New
Jersey, 1989.

[12] E. H. Durfee and T . A. Montgomery. A Hierarchi-
cal Prot-ocol for Coordirla,t,ing Multiagent Behav-
iors. In Proceedi~tgs of the Eighth National Confer-
ence on Artificial Intellige~,ce, pages 86-93, 1990.

[13] L. D. Erinan, F. Hayes-Roth, V. R. Lesser, and
D. R. Reddy. The HEARSAY-I1 Speech Un-
derstanding Systeln: Int*egrating Knowledge to
Resolve Uncertainity. A Chl Con~~u t ing Surveys,
12(2):213-253, 1980.

[14] R. E. Fikes and N. J . Nilsson. STRIPS: A New
Approach to the Application of Theorem Proving
to Prohlern Solving. Artificicll Intelligence, 2:198-
208, 1971.

[15] M. S. FOX. An Organizational View of Distributed
Systems. IEEE Tra~tsacfions on Systems, Man,
and Cyhernefzcs, SMC-ll(l):70-80, January 1981.

[16] L. Gasser. Social Conceptions of Knowledge and
Action: DAI Foundations and Open Systems Se-
mai~t~ics. Artificial I~ttellzgence, 47:107-138, 1991.

[17] L. Gasser, N. F. Rouquette, R. W. Hill, and
J . Lieb. Representing and Using Organizational
Knowledge in DAI systems. In L. Gasser and M. N.
Huhns, editors, Distributed Artificial Intelligence
Volume 11, pages 55-78. PitmanIMorgan Kauff-
man, London, 1989.

[18] W. H. Harrison, H. Ossher, and P. F. Sweeney.
Coordinating Concurrent Development. In CSCW
90 Proceedings, pages 157-168, New York, 1990.
The Association for Computing Machinery.

[19] M. N. Huhns, editor. Distributed AI Volume I.
Morgan Kaufmann, Los Altos, California, 1987.

[2O] H. Johar and V. Dhar. An Extended ATMS for De-
composable Problems. Technical Report STERN-
91-3, New York University, 1991.

[21] V. Lesser and D. D. Corkill. Functionally Ac-
curate, Cooperative Distributed Systems. IEEE
Transactions on Systems, Man, and Cybernetics,
SMC-11(1):81-96, January 1981.

[22] J . Markoff. Boeing Takes Off. The New York
Tinzes, 10th. November 1991.

[23] C. L. Mason and R. R. Johnson. DATMS:
A Framework for Distributed Assumption Based
Reasoning. In L. Gasser and M. H. Huhns, editors,
Distributed Artificial I~rtelligence V~lume 2, pages
293-318. Morgan Kaufinann, Sail Mateo, 1989.

[24] C. Pu, G. E. Kaiser, and N. Hutchinson. Split-
Transactions for Open-Ended Activities. In Pro-
ceedings of the 14th. International Conference on
Very Large Databases, pages 26-37> August 1988.

[25] M. Shaw. Abstraction Techniques in Modern Pro-
gramming Languages. IEEE Software, l(4): 10-26,
October 1984.

[26] H. A. Simon. The Structure of Ill-structured Prob-
lems. Artificial Iratelligence, 4(1):181-202, 1973.

[27] M. Stefik. Planning With Constraints. Technical
Report STAN-CS-784, Stanford University Com-
puter Science Department, January 1980.

1281 J . D. Ullman. Principles of Database and
Knowledge-Base Systems: Volunze I. Computer
Science Press, hlaryland, 1988.

[29] 0. E. Williamson. Markets and Hierarchies. Free
Press, New York, 1975.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-38

