
PROVIDING INFORMATION SYSTEMS WITH
FULL HYPERMEDIA FUNCTIONALITY

Michael Bieber
New Jersey Institute of Technology

Department of Computer and Information Science

Visiting Assistant Professor
Information Systems Department

Leonard N. Stern School of Business

October 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Workins Paper Series

STERN IS-92-29

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

Providing Information Systems with Full Hypermedia Functionality*

Michael Bieber*"
New Jersey Institute of Technology

Department of Computer and Information Science

Abstract

The goal of this research is to provide hypermedia
functionality to all information systems. In this paper I
present the architecture of a system-level hypermedia
engine, designed both to manage fill hypermedia finc-
tionality for an information system and to bind intelface-
oriented 'Ifront-end" systems with separate computation-
oriented "back-end "systems. The engine dynamically su-
perimposes a hypermedia representation over a back-end
application's knowledge components and processes. I
then describe a set of minimal requirements for integrating
the hypermedia engine. The more sophisticated and coop-
erative the information system, the higher the level of hy-
permedia support the engine will provide.

1: Hypermedia and information systems

I envision a world in which information increasingly
empowers people. Decision makers, analysts, researchers,
trainees, students and casual browsers all will have access
to information they need or desire, in a format tailored to
their individual tasks and personal preferences.

The concept of hypermedia embraces the spirit of such
access to information and eventually, I believe, will be in-
corporated in the interfaces of all information systems that
interact with people. My research goals are to facilitate
this integration and to produce tangible results. Once an
information system includes hypermedia functionality, the
specific applications it supports (e.g., worksheets within a
spreadsheet package, models within a linear programming
package and expert systems within an expert system shell)
automatically become hypermedia applications. Users
communicate in hypermedia's direct, context-sensitive
fashion and hypermedia functions supplement the sys-

* ~ o r t h c o m i n ~ in Proceedings of Hawaii International
Conference on Systems Science HICSS-26 (Maui, 1993). An
expanded version of this paper is available from the author.

**Author's e-mail address: bieberQcis.njit.edu. The author
currently is Visiting Assistant Professor of Information
Systems at the Stern School, New York University, 1992-93.

tem's original comands.
The goal of this paper is to encourage an ongoing dis-

cussion about providing the users of all information sys-
tems with dynamic hypermedia functionality. I began this
discussion in [7, 81 by proposing a solution-a hyperme-
dia engine that builders can integrate with their systems.
From this I derived a starting set of minimal requirements
for hypermedia integration, which I believe apply to all
integration efforts, not just my own. This paper extends
the architecture I originally introduced in [7, 81. Here I
deepen the description of the hypermedia engine's internal
structure, develop an alternate architecture for information
systems not abandoning their interfaces and expand my set
of minimal requirements for hypermedia integration.

In $2 I briefly review the concepts of hypermedia and
our enhancement, generalized hypermedia. Generalized
hypermedia is at the heart of my hypermedia engine's ar-
chitecture. In $3 I introduce two versions of the engine's
architecture and describe its internal structure. In $4 I dis-
cuss the minimal requirements for hypermedia integra-
tion-the commitment information system builders have
to make to use my architecture. I conclude in $5 by
briefly comparing my work with other current approaches.

2: Hypermedia and generalized
hypermedia

Hypertext 13, 14, 45, 49, 50, 591 is the concept of
specifying relationships among pieces of information and
providing computer-mediated navigation among them.
For example, we can automatically link a document with
a stage in a decision analysis, a keyword with its defini-
tion and a calculation with its explanation. Hypermedia
expands this concept to include media other than text. We
refer to the information at either end of the link as nodes,
and to the entire node and link structure as a hypermedia
network. We signal the existence of a link from a node
by highlighting a portion of the node's display contents,
which we call a link marker. When a user selects a link
marker, the system traverses this link and displays an ap-
propriate representation of the destination node. Figure 1
shows a hypermedia-oriented interactive document similar

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

Ordering Recommendation I /
To: Samuel Adarns, Purchasing Department

From: Samantha Stevens, Analyst

Subject: Product Reorder T i m i ng and Cost

Date: 6 / 5 / 9 2

Our calculations indicate that we should order 60 units o f *=every 6

months. This i s the lowest-cost arrangement, w i t h a total cost o f $60-00.

Figure 1

I n f o r m a t i o n Avai lab le :

(1) e x p l a i n
(2) re -eva lua te
(3) show comments
(4) s tar t new user l i n k
(5) c r e a t e new comment I

Accessing Application and Hypermedia Functionality in a Hypermedia-Style Interface
..... I ...

BACK-END
Specific Back-End Application

Specific Back-End Application
(computation-oriented)

I Back-End Communications Speciffc Back-End Application
1 Language

i Figure 2

_ ~ y p e r m ~ Engine \ Front-End
Comrnunrcabons Language Communications Language I

i Hypermedia Engine Architecture (Version 1):
i Binding Independent Back-End and Front-End Information Systems ... I

Figure 3
Hypermedia Engine Architecture (Version 2):
Serving an Information System with Adequate Computation and Interface Functionality -

Specific Application

Specific Application

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

Computational
Functionality

SYSTEM -

Interface
Functionalty

HYPERMEDIA ENGINE

External Systems
Communications
Language

-
INFORMATION

to those our Max prototype produces 110,341. This docu-
ment node represents a report generated by a decision sup-
port system @SS) and passed on to the hypermedia
engine for display. The underlined and boldfaced text
strings are link markers, each associated with one or more
links. In Figure 1 the user has selected the marker
"$60.00" representing the result of a DSS calculation.
The hypermedia engine inferred three links associated with
this marker's underlying calculation: to a node represent-
ing an expert system explanation, to a node representing
its dynamic recomputation and to a node containing user
comments about it. The two remaining links represent
hypermedia engine commands for annotating elements of
the DSS. The user navigates through the DSS thus, by
selecting some item of interest and traversing a link repre-
senting an appropriate DSS (or hypermedia engine) com-
mand. The hypermedia engine would support other types
of information systems in a similar fashion.

Hypermedia embodies a methodology of flexible access
to information incorporating the notions of navigation,
annotation and tailored presentation. Tailoring is inherent
in other hypermedia functions, e.g., in customizing the
network the user navigates and its annotations. Together,
these features constitute what I call "full hypermedia func-
tionality," an ideal level of functionality that few of to-
day's hypermedia systems achieve. (Many systems call-
ing themselves "hypermedia systems," in fact, provide
only forward navigation-i.e., direct manipulation-and
perhaps commenting [38] .)

Users navigate "forward" by selecting an item of inter-
est (a link marker) about which to retrieve comments, an-
notations, definitions, explanations or any other inferable
information. Link markers act as embedded menus [35],
giving "context-sensitive" access to an underlying applica-
tion's knowledge and operations. We have dubbed this the
-1 ("what you want, when you want it") prin-
ciple [5]. Users normally traverse from node to node at
the detail level, i.e., with each node occupying a window
on the screen. Users also should be able to navigate via
(graphical) overviews [18, 36, 45, 50, 611 of the hyper-
media network. Overviews (often [16]) help alleviate the
network disorientation [14, 501 associated with hyperme-
dia's nonrestrictive, user-directed access.

Information retrieval-style queries provide an alterna-
tive method of forward navigation 117, 20,631. Queries
return a relevant subset of an application's components,
which is mapped to a hypermedia representation. Users
then can navigate within this tailored subenvironment
[211.

Users can navigate "backwards" as well, returning to
prior stages or "screens" in their analysis, i.e., the previ-
ously visited computer screens, but in their current state.
Backtracking is another important weapon against network

disorientation.
Annotation comprises features such as user-declared

links and comments. Analysts and instructors can use
these, for example, to tie specifk data, techniques and re-
sults together in trails [60] or guided tours [21, 421.
Trails and guided tours both direct and constrain forward
navigation. They can document analyses or serve as tuto-
rials, and can be tailored for specific users or tasks. In a
DSS, for example, annotations can provide justification
for courses of action [9].

In summary, hypermedia is a technique for providing
direct, context-sensitive access to application data, the
commands that manipulate this data, and rnetainformation
about the data and commands. Such access should im-
prove the quality and users' understanding of applications
and their inputs and outputs, and increase the confidence
people have in these.

There are two basic limitations with most of today's
"first generation" hypermedia systems. First, they im-
plement a static and explicit model of hypermedia; the
nodes, links and link markers must be declared explicitly
and be fully enumerated (as opposed to being declared vir-
tually and generated upon demand). Most applications,
however, are dynamic and too large to mark up manually.
Imagine a spreadsheet designer having to calculate all
what-if analyses in advance. Second, most of today's hy-
permedia systems are ". . .insular monolithic packages that
demand the user disown his or her present computing en-
vironment to use the functions of hypertext and hyperme-
dia" [MI. Users who want hypermedia functionality often
must abandon the software they currently use-an imprac-
tical restriction [30, 391. The first limitation motivated
us to develop generalized hypertext or generalized hyper-
media [6, 10, 1 11. The second motivated my hypermedia
engine, which will provide hypermedia functionality to an
information system's applications. The engine incorpo-
rates our dynamic model of generalized hypermedia.

In generalized hypermedia we broaden the underlying
model of hypermedia components-nodes, links, link
markers, etc.-with three of Halasz' proposed extensions
to hypermedia [23]: virtual specifications, dynamic com-
putation, and filtering or tailoring. We use these to gen-
erate a hypermedia representation "on the fly" from basic
declarations we call bridge laws that describe the internal
structure of an information system. As we shall see in
53.2, bridge laws enable generalized hypermedia to super-
impose a hypermedia network on an information system's
application, generating all node, link and link marker rep-
resentations dynamically from the application's original,
non-hypermedia data or knowledge base.

T h e aspects combined distinguish generalized hyper-
media from other hypermedia approaches: (1) all mapping
and computation in generalized hypermedia is dynamic; (2)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

through bridge laws, generalized hypermedia can provide
system-level support to any information system with a
well-defined internal structure; and (3) bridge laws map a
hypermedia representation without altering an information
system's data or knowledge bases. No other approach
supports all three criteria [9]. This does not mean that in-
formation system builders simply can plug in the hyper-
media engine without adjusting their systems. Each
builder will have to declare a small set of bridge laws, reg-
ister the system's communication protocols and add a rela-
tively small number of routines to his or her system to
route information formatted for these bridge laws to the
hypermedia engine. This will suffice to provide hyperme-
dia engine support for all specific applications written in
this information system. Builders, however, will not
have to make their systems or applications "hypermedia-
aware" in any way. This is because (1) as mapped repre-
sentations, nodes, links and link markers do not alter the
original, underlying application information, and (2) the
hypermedia engine maintains all other hypermedia con-
structs (e.g., comments and trails) in its own knowledge
bases separate from its client information systems. The
engine adds no hypermedia constructs to its client systems
or their applications.

3: The system-level hypermedia engine

Figure 2 shows a version of the proposed hypermedia
engine's architecture that binds independent back-end and
front-end information systems. By back-end systems, I
mean information systems that primarily provide compu-
tation functionality, such as decision support systems,
expert systems, intelligent tutoring systems, database
management systems, project management systems, etc.
Byfront-end systems I mean those that primarily support
interface-level functionality such as word processors and
graphics packages. Instead of being tightly coupled, the
hypermedia engine runs concurrently with-and indepen-
dent of-the information systems it binds, communicat-
ing through external message passing. The engine em-
beds link markers in messages the back-end passes to the
front-end for display and handles requests for back-end
functionality or supplementary hypermedia support when
a user selects one of these markers. As a result, the user
can access a back-end through the interface of his or her
choice, which now provides full hypermedia functionality.
(This assumes that the front-end and back-end builders
have complied with the requirements I discuss in $4.)

This architecture also allows users to access multiple
back-end systems at once and incorporate information
(linked objects) from different back-ends in a single front-
end document [52]. Eventually this architecture will sup-
port workgroups of multiple simultaneous users on

heterogeneous front-ends.
Many computation-oriented information systems, of

course, have high-quality interfaces. Among these are
spreadsheets and CAD systems, as well as specific cases
of the aforementioned front-end and back-end systems. A
second version of the hypermedia engine, shown in Figure
3, would run concurrently with such systems and manage
hypermedia functionality for them. In this architecture,
internal communications between the interface and compu-
tation modules must be routed through the hypermedia
engine.

For the rest of this paper I shall use the terms "front-
end" and "back-end" to indicate interface-oriented and com-
putation-oriented functionality respectively in both ver-
sions of the architecture.

3.1: An example

I describe the hypermedia engine's architecture through
Figure 1's simple text-based example. (My model also
supports non-text content and link markers.) Figure 1's
interactive document entitled "Ordering Recommendation"
started as a message from the DSS back-end. As an illus-
tration, suppose the second sentence of that message had
the following format:

'... This is the low-cost arrangement, with a
<vaiiable(tc), "total cost "> of
<calculation(variable(tc), model(eoq), sce-
nario(eoq(Z))), 60, currency(US)> . . . '

Italicized text within angle brackets denotes a back-end ob-
ject. The back-end tagged each object with its display
value, any relevant formatting information and an internal
identifier. The hypermedia engine superimposed a hyper-
media structure over the entire message and converted its
contents to a document component set for display by the
front-end. (The document component set contains the
message contents after the hypermedia engine has filtered
them and embedded hypermedia link markers.) As part of
the conversion the hypermedia engine added the identifier
of the owning back-end, "DSS1," to each object's tag
along with a unique hypermedia engine identifier for dis-
tinguishing among multiple instances of a back-end ob-
ject. Assume the corresponding portion of document
component set had the following internal format:

'... This is the low-cost arrangement, with a <[6,
DSSl, variable(tc)], value("total cost"), fom(text)>
of <[7, DSSI, calculation(variable(tc), model(eoq),
scenario(eoq(Z)))], value(60),
fom(currency(US))> . . . '

When the user selected the link marker "$60.00," the
hypermedia engine managed the process of gathering all
possible links to the underlying object,
"calculation(variable(tc), model(eoq), scenario(eoq(2))),"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

which is owned by the back-end system "DSS1." We see
the resulting link ensemble representing two back-end
commands and three hypermedia engine commands in
Figure 1. Now the user chooses link #l. In traversing
this link the hypermedia engine invokes DSSlYs explana-
tion generator, which returns the explanation as a mes-
sage. The engine converts this to a document component
set for display.

In the following sections I examine different aspects of
the hypermedia engine and integrating it into information
systems.

3.2: Bridge laws and fiIters: techniques for
automating hypermedia

In this section I discuss filters and bridge laws. As
part of compiling the document component set, the hy-
permedia engine must determine the locations (i.e., infer
the existence) of link markers in back-end messages.
Bridge laws enable this inference. Filters tailor it.

The hypermedia engine uses filters to customize the
user's interaction in many ways. For example, filters can
direct:

which report form or template the engine uses to con-
struct a document component set from back-end mes-
sages,

how detailed to make report contents,
which objects to represent as link markers for the
user's current task, and

which links to prune to avoid overwhelming a novice
user.

Through filtering, the hypermedia engine can assume
responsibility of managing mode or task changes, altering
the available documents and commands as the user navi-
gates through the back-end. For example, in a project
management system the hypermedia engine would use 81-
ters to tailor the user's view to his or her current project
subtask. For more details see the discussion of "contexts"
in [6].

The hypermedia engine uses logical rules called bridge
laws to map a hypermedia representation over the compo-
nents of a back-end system. We adopted the term "bridge
law" [25, 33, 461 because these logical rules serve as a
"bridge" or connection between objects defined in the lan-
guage of the back-end (e.g., models, variables, calcula-
tions) and those in that of the hypermedia engine (e.g.,
nodes, links, link markers). Bridge laws employ logical
quantiJication, i.e., they apply to every instance that satis-
fies the set of conditions specified. Logical quantification
(i.e., specifying "for each" or the logical symbol "V") en-
ables individual laws to map entire classes of back-end ob-
jects to hypermedia components; the same bridge law will
map every object in the application knowledge base that
satisfies the bridge law's conditions.

In Figure 1's example, the hypermedia engine used a
bridge law similar to the following pseudo version to
identify the object "calculation(variable(tc), model(eoq),
scenario(eoq(2)))" within the "DSS 1" back-end's original
message and tag it as a link marker in the document com-
ponent set.
For each calculation with attribute values satisfying the set of
conditions Y and filter settings 2:

map a hypermedia link of type "explain" from the object
to the DSSZ explain function, and

map a hypermedia link of type "re-evaluate" from the ob-
ject to the DSS1 re-evaluate function.

As I shall discuss later, because it is specific to a par-
ticular back-end, the back-end's builder would have de-
clared this bridge law. The hypermedia engine maintains
its own set of general bridge laws that pertain to all back-
ends. For example, the following general bridge law finds
objects with comments registered in the hypermedia
engine's knowledge bases.
For each object with a user-specified comment that satisfies
filter settings Y and access security specifications 2:

map a hypermedia link of type "comment" between the
object and its user-declared comment.

Together, generalized hypermedia and its bridge laws
provide a logic-based knowledge representation that enable
the hypermedia engine to reason about the components
(models, data, commands, etc.) of the underlying informa-
tion systems they map. For example, full hypermedia
functionality includes both producing an overview of an
application's components, and searching or querying over
these components. As part of my research, I shall deter-
mine whether a complete set of bridge laws suffices for
the engine to perform both structure search and content
search [22, 231, and generate a network overview.
(Producing an overview for a static hypermedia network is
not a trivial task (see, e.g., [61]). No one, as yet, has
tackled overviews for virtual environments involving
computation, such as my own.)

Several other knowledge representation approaches
have appeared in the literature, e.g., Petri nets [57, 581,
structured object representation [31], schemata [22, 28,
411, object-oriented hypermodeling [37] and high-level
specification languages [55]. Other systems that make
use of a knowledge representation include gIBIS [15], Hy-
permedia-based Argumentation DSS [26], Electronic
Working Papers 1161, MacWeb [47], Dl3 1291 and Rel-
Type 121. In future papers I hope to compare implementa-
tions using bridge laws and a generalized hypermedia
engine with systems using other knowledge representa-
tions.

The hypermedia engine stores bridge laws and filter set-
tings in knowledge bases belonging to its Internal Control
Subsystem. For an in-depth discussion of bridge laws see

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

3.3: Internal Control Subsystem (CS)

The hypermedia engine has two major components: the
Internal Control Subsystem (CS) and the Internal Display
Subsystem @S).

The CS performs all configuration-independent pro-
cessing. It handles the communication link between the
hypermedia engine and the back-end systems. Back-ends
pass messages containing reports, queries and menus.
From each message the CS compiles the configuration-in-
dependent contents of a document component set or query
component set, which the CS passes to the Internal Dis-
play Subsystem, perhaps using a HyTime representation
(an SGML-based hypermedia communications standard
[481).

The CS maintains the following knowledge bases,
each containing facts and rules for a different domain of in-
ferencing.

Hypermedia Knowledge Base: The "Hypermedia
Kl3" contains all types of hypermedia information regis-
tered by users including keywords and the nodes they rep-
resent; comments, links and other annotations (e.g.,
bookmarks [5 I]), and guided tours and other trails. The
hypermedia engine maintains these independent of any
back-end elements upon which they are based. Back-end
systems need no record of the user's hypermedia activities.

Back-End Knowledge Base: There is one "Back-End
KB" for each back-end system that users can access. The
Back-End KB contains network access information for its
back-end, as well as its bridge laws, keywords, and any
other information necessary to build messages for it and
parse its responses. An early version of our TEFA model
management system back-end prototype [4,5] provides an
example of supplementary parsing information. TEFA
prefixed the display text of its objects with an ampersand.
Registering this format would enable thc CS to strip the
ampersand to make the display less confusing and to rein-
sert the ampersand in user requests it passes to TEFA.

Balasubramanian et al. present an alternative system
architecture that insulates bridge laws as much as possible
from changes to the engine or back-end. Their architec-
ture includes a separate bridge law manager between the
hypemedia engine and back-end [I].

Control System Knowledge Base: The "CSKB"
contains general parameters and routines for cornmunicat-
ing, and for processing messages and responses. Its con-
tents include:
- default and current settings for the hypermedia engine,

including filter settings
- the functionality behind the hypermedia commands (e.g.,

querying link markers, creating user-specified links and
comments)

- hypermedia engine bridge laws for mapping user-speci-
fied hypermedia elements such as comments to back-
end objects

- standard document templates-forms dictating the gen-
eral content and layout of documents [6] that the
engine uses to create document component sets
(similar to abstract containers in the Trellis Hyperme-
dia Refe~nce Model 1191)

- standard query templates-forms dictating the general
content and layout of queries that the engine uses to
create query component sets

Active Knowledge Base: The hypermedia engine
records all back-end and user-declared objects currently dis-
played on the front-end screen in the "Active KB." The
CS uses this for dynamically updating the front-end's dis-
play when elements of the back-end, such as a stock price,
change. (In a multi-user environment, this would be a
global knowledge base representing the displays of all ac-
tive front-end systems. One function this would facilitate
is screen sharing among users on heterogeneous systems.)

3.4: Internal Display Subsystem (DS)

The DS has two major responsibilities. First, it trans-
lates the configuration-independent document component
set for the specific front-end that will display it. Second,
it provides whatever "behind the scenes" support its front-
end needs to provide hypermedia functionality. The DS
maintains the following knowledge bases:

Session Knowledge Base: The DS stores all user ac-
tions and hypermedia engine responses in the "Session
KB." From these the DS can tailor a session log for hy-
permedia-style backtracking and guided tours. The
Session KB serves a role similar to that of the history
component in the Dexter Hypertext Reference Model [24].

Depending on the detail of user interaction the front-
end passes to the DS, the Session Kl3 could support mul-
tiple-level undo and redo functionality [62] for both hy-
permedia commands and the front-end's own commands.
A highly cooperative front-end would pass user actions
down to the exact keystroke. This also would enable the
DS to serve as a monitoring and experimentation tool for
particular front-end and back-end systems and settings.
Several researchers have called for such functionality in
hypermedia systems (e.g., [12]).

Display Knowledge Base: The "Display KB"-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

analogous to the session component in the Dexter
model-records all hypermedia objects displayed on the
front-end. Depending on the level of hypermedia support
the DS must provide, this can include an object's internal
identifier and the actual content of the front-end representa-
tion. The DS uses this to determine what the user has se-
lected and whether the user has permission to alter or
delete it. Altering a back-end object's content (e.g., a cur-
rent stock price or the result of a calculation) can destroy
its validity. The DS also uses this knowledge base to
map link ensembles to the commands they represent.

Front-End Knowledge Base: The "FEKB" contains
the information the DS needs to communicate with a spe-
cific front-end. In it, the DS maintains protocol formats,
current parameter settings and the internal routines for co-
ordinating hypermedia support with the particular front-
end. With this knowledge, the DS can translate the con-
figuration-independent document and query component sets
the CS passes for display, as well as the user requests the
front-end passes.

4: Hypermedia enginelclient cooperation
and coordination

The hypermedia engine requires the cooperation of its
client front-ends and back-ends. The more sophisticated
and coordinated each is, the higher the degree of hyperme-
dia functionality the engine can provide. To provide ubiq-
uitous hypermedia support, however, the engine must ac-
commodate front-ends and back-ends that do not meet the
standards I would prefer [301. As part of my research I am
investigating the minimal level of cooperation among
front-ends, back-ends and the hypermedia engine. ([30,
40, 541 also investigate a set of various requirements.
[28, 271 report on an integration architecture using state-
change messages that clairns to require less coordination
among the hypermedia engine and its external systems.)

In [7] I introduced a preliminary set of minimal re-
quirements for clientlengine cooperation. Now I augment
this set, addressing the interaction between the engine and
interface-oriented front-end systems in $4.1, and between
the engine and computation-oriented back-ends in $4.2.
These apply to information systems from either version of
my architecture.

These requirements stem from our own research. I be-
lieve, however, that they provide a starting set of general
guidelines for all system-level approaches to hypermedia
integration, including those not employing an external
hypermedia engine. (Approaches that integrate hypermedia
directly into individual -, e.g., [37], do not re-
quire my degree of generality.)

4.1: The hypermedia engine and front-ends

The hypermedia engine provides the front-end and its
users with simultaneous access to multiple back-ends.
The engine manages hypermedia constructs (e.g., link
markers representing user-defined and back-end objects,
comments, trails, and overviews) and hypermedia control
(e.g., filtering, context-sensitive forward navigation and
backtracking). In return the front-end should provide the
following functionality.

Identifying objects in front-end workspaces
Front-ends must track the location and identifiers of ex-
ternal objects (i.e., hypermedia link markers), and re-
turn the corresponding identifier when a user selects a
link marker.

Front-ends must gain editing permission from the hy-
permedia engine

Users may alter the display contents of some types of
link markers but not others. For example, users may
delete, but not modify, back-end object markers. Users
may alter a keyword, but the CS will deregister its
marker as a keyword and direct the front-end to dehigh-
light it. A sophisticated front-end could manage this
on behalf of the hypermedia engine, thus speeding in-
terface operations. For most front-ends, however, the
hypermedia engine will have to manage editing per-
mission (as in our Max prototype) and the front-end
must request this every time the user inserts or deletes.

Copying and pasting provides an additional editing
challenge. Whenever it pastes a link marker, the front-
end should register the new instance with the DS and
obtain a new unique identifier for it.

Front-ends must provide hypermedia prompts
I expect front-ends to support three standard hyperme-
dia-style requests: a short description of a marker's ob-
ject, a list of hypermedia and back-end commands ap-
plicable to that object, and command assistance.
Front-ends should provide some mechanism for users
to invoke each of these (e.g., a keystroke combination
or a special mouse button).

Manipulating documents with embedded hypermedia ob-
jects

When the front-end saves a document with embedded
objects, it could save the objects as well. Otherwise
the DS will have to regenerate the link markers when
the front-end reopens the document. In any case the
front-end must inform the DS when it opens an exist-
ing (or new [551) hypermedia-oriented document so the
DS can provide hypermedia support and dynamic updat-
ing.

In most information systems users create documents
manually. With a hypermedia engine, front-ends must
accept the externally-generated documents that the DS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

passes with embedded objects. The front-end should
handle dynamic changes as well. The DS may add ad-
ditional objects to open documents (e.g ., when users
create their own comments and links on the front-end
workspace [53]). Dynamic updating (which requires
the front-end to accept external interrupts) may change
the display value of hypermedia link markers [28].
Sophisticated front-ends will accommodate these de-
mands. If not, the hypermedia engine may not be able
to provide full hypermedia functionality.

4.2: The hypermedia engine and back-ends

The hypermedia engine provides the back-end and its
users with access to a variety of front-ends. It manages
hypermedia functionality (linking, annotation, backtrack-
ing, filtering, network overviews of applications) on be-
half of the back-end. In return the back-end should supply
the hypermedia engine with specific information about its
structure, and its applications' documents and data ele-
ments. Even if a back-end declares no bridge laws or
keywords, however, and passes messages without objects,
the hypermedia engine still will provide standard hyperme-
dia functionality (user annotation, backtracking, etc.) In
this case the user will not be able to access back-end ob-
jects or operations in a hypermedia fashion.

Builders must write bridge laws
The person who knows the back-end the best-the sys-
tems programmer who builds or maintains it-should
develop its bridge laws. This information system
builder must be both willing to and capable of develop-
ing a set of bridge laws that accurately captures the
structure of his system. Once in place the bridge laws
should map a hypermedia network to any of the sys-
tem's specific applications. (Application builders and
users need have no knowledge of bridge laws. To
them, hypermedia functionality occurs automatically!)

Currently builders must represent bridge laws in
predicate logic. I hope to remove this restriction by
accepting other formats, perhaps through a bridge law
editor.

Back-ends should embed objects in their messages
The CS cannot infer magically which portions of back-
end messages to highlight as link markers. The back-
end must mark objects within the messages or provide
some content analysis routines for interpreting their
messages. The only content analysis the CS automat-
ically performs is keyword search. (An advanced CS
could employ, for example, sophisticated content anal-
ysis techniques such as lexical affiity [32] to infer un-
declared keywords.)

As I demonstrated in 53.1, back-end messages
should include dimensional information for objects or

other content, for which the engine or user might want
to alter the display format. For example, a user may
wish to change a number's precision.

Back-ends should support the standard hypermedia engine
commands

Just as the front-end should allow users to request short
descriptions, command lists and context-sensitive help,
back-ends should generate this information on demand.

Additional Guidelines: In [7] I also discussed the fol-
lowing requirements.

When the back-end message contains a previously-
generated report, the hypermedia engine sometimes
has trouble locating the positions of the user anno-
tations that were in the previous version. Including
the internal structure of each message's content
provides additional orientation for the engine. (The
back-end could incorporate a standard document pro-
tocol such as ODA or SGML [I 31 .)

To assist in validating user responses to back-end
queries, the back-end could provide control informa-
tion for validity checking.

5: Conclusion

We have yet to see hypermedia availability as a com-
mon interface feature. Information system builders wish-
ing to incorporate full hypermedia functionality today
must do it themselves. Few new system builders would
be willing or able to do this. Fewer builders would put
forth the effort to convert existing systems. "A more
modest [and practical] goal is to create rules and tools that
could be used to allow slightly modified existing applica-
tions to produce data accessible in hypermedia style." [59
pg. 81) Certain operating systems, for example, provide
system-level hypermedia toolkits for adding hypermedia
constructs-nodes, links, markers, etc.-to application
data (e.g., the Andrew Toolkit [56], and Maurer and
Tomek's proposed "core system" [43]). Apple Com-
puter's new operating system, System 7, provides publish
and subscribe capabilities, but these, in themselves, fall
far short of full hypermedia functionality. There are hy-
permedia services that run concurrently with distributed
applications in networked environments (e.g., the com-
mercially-available Sun Link Service [53] and PROXHY
[30]). We find few methods, however, that externally su-
perimpose hypermedia constructs over an application
without adding to its data or knowledge base (e.g., Put-
tress and Guimaraes' Hypertext Object-oriented Toolkit
[54]). When completely developed, my hypermedia
engine will provide full hypermedia functionality to dy-
namically changing applications while running concur-
rently with them and mapping a hypermedia representation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

that does not alter them.
Through my preliminary architecture I have identified

many challenges for hypermedia support of dynamic in-
formation systems. I have started developing techniques
to address these, which I will implement in an improved
prototype soon.

Hypermedia should be a widely implemented paradigm
for information presentation. I invite information system
developers, and challenge both information system and
hypermedia researchers, to join us and make this goal a re-
ality.

Acknowledgment

Steve Kimbrough of the University of Pennsylvania has
played an integral role in the development of these ideas.
It is he who originally applied the concept of bridge laws
to hypermedia. Tom& Isakowitz of New York University
and Bob Minch of Boise State University both made in-
valuable suggestions, as did anonymous reviewers. This
work was motivated and supported in part by the U. S.
Coast Guard under contract DTCG39-86-C-E92204
(formerly DTCG39-86-C-80348), Steven 0. Kimbrough
principal investigator.

References

[I] P. Balasubramanian, T. Isakowitz, H. Johar and E. Stohr,
Hyper Model Management Systems, in: Proceedings of
HICSS-25 (Kauai, 1992) 462-472.
[2] D. Barman, RelType: Relaxed Typing for Object-Oriented
Hypermedia Representations, in: Object-Oriented Program-
ming in AI: Workshop Notes from the Ninth Annual National
Conference on Artificial Intelligence (Anaheim, 1991).
[3] E. Berk and J. Devlin, Eds., Hypertexrnypermedia Hand-
book (Intertext Publications/McGraw-Hill Publishing Co.,
Inc., New York, 1991).
[4] H.K. Bhargava, A Logic Model for Model Management,
Ph.D. dissertation (University of Pennsylvania, Philadel-
phia, PA 19104, 1990).
[5] H. Bhargava, M. Bieber and S.O. Kimbrough, Oona, Max,
and the WYWWYWI Principle: Generalized Hypertext and
Model Management in a Symbolic Programming Environ-
ment, in: Proceedings of the Ninth International Conference
on Information Systems (Minneapolis, 1988) 179-192.
[6] M. Bieber, Generalized Hypertext in a Knowledge-based
DSS Shell Environment, Ph.D. dissertation (University of
Pennsylvania, Philadelphia, PA 19104, 1990).
[7] M. Bieber, Issues in Modeling a 'Dynamic' Hypertext In-
terface for Non-Hypertext Information Systems, in: Hyper-
text '91 Proceedings (San Antonio, Dec. 1991) 203-218.
[8] M. Bieber, On Merging Hypertext into Dynamic, Non-
Hypertext Systems, Boston College Technical Report BCCS-
91-14 (Nov. 1991).
[9] M. Bieber, Automating Hypermedia for Decision Support,
Hypermedia (forthcoming).
[lo] M. Bieber and S.O. Kimbrough, On Generalizing the
Concept of Hypertext, Management Information Systems
Quarterly 16, No. 1 (1992) 77-93.

[l l] M. Bieber and S.O. Kimbrough, On the Logic of General-
ized Hypertext, Decision Support Systems (forthcoming).
1121 P. Brown, Assessing the Quality of Hypertext Docu-
ments, in: A. Rizk, N. Streitz and J. AndrB, Eds., Hypertext:
Concepts, Systems and Applications, Proceedings of Euro-
pean Conference on Hypertext (ECHT) '90 (Cambridge
University Press, Versailles, Nov. 1990) 1-12.
[13] F. Cole and H. Brown, Standards: What Can Hypertext
Learn From Paper Documents?, in: Proceedings of the Hyper-
text Standardization Workshop, SP500-178 (NIST, Gaithers-
burg, Jan. 1990) 59-70.
[14] E.J. Conklin, Hypertext: a Survey and Introduction, IEEE
Computer 20, No. 9 (1987) 17-41.
1151 E.J. Conklin, and M.L. Begeman, gIBIS: A Tool for All
Reasons, Journal of the American Society for Information
Science 40, No. 3 (1989) 200-213.
[16] L. De Young, Linking Considered Harmful, in:
Proceedings of ECHT'90 238-249.
[17] E.A. Fox, Q.F. Chen and R.K. France, Integrating Search
and Retrieval with Hypertext, in [3] 329-355.
[IS] M.E. Frisse, S.B. Cousins and S. Hassan, WALT: A Re-
search Environment for Medical Hypertext, in: Hypertext '91
Proceedings (San Antonio, Dec. 1991) 389-394.
1191 R. Furuta and P.D. Stotts, The Trellis Hypertext Refer-
ence Model, in: Proceedings of the Hypertext Standardization
Workshop, SP500-178 (NIST, Gaithersburg, Jan. 1990) 83-
94.
[20] L. Gallagher, R. Futura and P.D. Stotts, Increasing the
Power of Hypertext Search with Relational Queries, Hyperme-
dia 2, No. 1 (1990) 1-14.
1211 F. Garzotto, L. Mainetti and P. Paolini, Navigation Pat-
terns in Hypermedia Data Bases, in this proceedings.
[22] F. Garzotto, P. Paolini and D. Schwabe, HDM - A Model
for the Design of Hypertext Applications, in: Hypertext '91
Proceedings (San Antonio, Dec. 1991) 3 13-328.
[23] F.G. Halasz, Reflections on Notecards: Seven Issues for
the Next Generation of Hypermedia Systems, Comunica-
tions of the ACM 31, No. 7 (1988) 836-855.
[24] F. Halasz and M. Schwartz, The Dexter Hypertext Refer-
ence Model, in: Proceedings of the Hypertext Standardization
Workshop, SP500-178 (NIST, Gaithersburg, Jan. 1990) 95-
134.
1251 J. Haugeland, The Nature and Plausibility of Cogni-
tivism, in: John Haugeland, Ed., Mind Design: Philosophy,
Psychology, Artificial Intelligence (MIT Press, Cambridge,
1981).
[26] H. Hua and S.O. Kimbrough, On Hypermedia-Based Ar-
gumentation Decision Support Systems, in this proceedings.
1271 T. Isakowitz, Hypermedia in Information Systems and
Organizations: A Research Agenda, in this proceedings.
[28] T. Isakowitz and E.A. Stohr, Hypertext-based Relation-
ship Management for DSS, NYU Stern Working Paper IS-92-
22 (Jul. 1992).
[29] D.S. Jordan, D.M. Russell, A.S. Jensen and R.A. Rogers,
Facilitating the Development of Representations in Hyper-
text with IDE, in: Hypertext '89 Proceedings (Pittsburgh,
NOV. 1991) 93-104.
[30] C. Kacmar and J. Leggett, PROXHY: A Process-Oriented
Extensible Hypertext Architecture, ACM Transactions on In-
formation Systems 9, No. 4 (1991) 399-419.
[31] H. Kaindl and M. Snaprud, Hypertext and Structured Ob-
ject Representation: A Unifying View, in: Hypertext '91 Pro-
ceedings (San Antonio, Dec. 1991) 313-328.
[32] S.M. Kaplan and Y.S. Maarek, Incremental Maintenance

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

of Semantic Links in Dynamically Changing Hypertext Sys-
tems, Interacting with Computers 2, No. 3 (1990) 337-366.
[33] S.O. Kimbrough, On the Reduction of Genetics to
Molecular Biology, in: Philosophy of Science 46 No. 3
(1979) 389-406.
1341 S.O. k b r o u g h , C. Pritchett, M. Bieber and H. Bhar-
gava, The Coast Guard's KSS Project, Interfaces 20, No. 6
(1990) 5-16.
[35] L. Koved and B. Shneiderman, Embedded Menus: Select-
ing Items in Context, Communications of the ACM 29, No. 4
(1986) 312-318.
1361 G.P. Landow, Popular Fallacies About Hypertext, in:
D.H. Jonassen and H. Mandl, Eds., Designing Hypermedia for
Learning (Springer-Verlag, 1990) 39-59.
[37] D. Lange, Object-Oriented Hypermodeling of Hypertext
Supported Information Systems, in this proceedings.
[38] A. Littleford, Artificial Intelligence and Hypermedia, in:
[3] 357-378.
[39] K.C. Malcolm, S.E. Poltrock and D. Schuler, Industrial
Strength Hypermedia: Requirements for a Large Engineering
Enterprise, in: Hypertext '91 Proceedings (San Antonio, Dec.
1991) 13-24.
1401 C. Marshall, Standards: A Multi-Tiered Approach to Hy-
pertext Integration: Negotiating Standards for a Heterogenous
Application Environment, in: Proceedings of the Hypertext
Standardization Workshop, SP500-178 (NIST, Gaithersburg,
Jan. 1990) 167-178.
[41] C.C. Marshall, F.G. Halasz, R.A. Rogers and W.C.
Janssen Jr., Aquanet: A Hypertext Tool to Hold Your Knowl-
edge in Place, in: Hypertext '91 Proceedings (San Antonio,
Dec. 1991) 261-275.
[42] C.C. Marshall and P.M. Irish, Guided Tours and On-Line
Presentations: How Authors Make Existing Hypertext Intel-
ligible for Readers, in: Hypertext '89 Proceedings
(Pittsburgh, Nov. 1991) 15-42.
[43] H. Maurer and I. Tomek, Broadening the Scope of Hy-
permedia Principles, Hypermedia 2, No. 3 (1990) 201-220.
[44] N. Meyrowitz, The Missing Link: Why We're All Doing
Hypertext Wrong, in: E. Banett, Ed., The Society of Text:
Hypertext, Hypermedia, and the Social Construction of In-
formation (MIT Press, Cambridge, 1989) 107-114.
[45] R. Minch, Application and Research Areas for Hypertext
in Decision Support Systems, Journal of Management Infor-
mation Systems 6, No. 3 (1990) 119-138.
[46] E. Nagel, The Structure of Science: Problems in the Logic
of Scientific Explanation (Harcourt, Brace & World, Inc., New
York, 1961).
1471 J. Nanard and M. Nanard, Using Structured Types to In-
corporate Knowledge into Hypertext, in: Hypertext '91 Pro-
ceedings (San Antonio, Dec. 1991) 329-343.
[48] S. Newcomb, N. K p p and V. Newcomb, The 'HyTime'
HypermediaITime-based Document Structuring Language,
Communications of the ACM 34, No. 11 (1991) 67-83.
1491 J. Nielsen, Hypertext Bibliography, Hypermedia 1, No.
1 (1989) 74-91.
[50] J. Nielsen, Hypertext and Hypermedia (Academic Press,
1990).
[51] H.V.D. Parunak, Hypermedia Topologies and User Navi-
gation, in: Hypertext '89 Proceedings (Pittsburgh, Nov.
1991) 43-50.
[52] H.V.D. Parunak, Toward Industrial Strength Hypermedia,
in [3] 381-395.
[53] A. Pearl, Sun' s Link Service: A Protocol for Open Link-
ing, in: Hypertext '89 Proceedings (Pittsburgh, Nov. 1991)

137-146.
[54] J.J. Puttress and N.M. Guimaraes, The Toolkit Approach
to Hypermedia, in: Proceedings of ECHT'9O 25-37.
1551 R.N. Robson, Using Hypertext to Locate Reusable Ob-
jects, in: Proceedings of HICSS-25 (Kauai, 1992) 549-557.
1561 M. Sherman, W. Hansen, M. McInerny and T. Neuendor-
fer, Building Hypertext on a Multimedia Toolkit: An
Overview of the Andrew Toolkit Hypermedia Facilities, in::
Proceedings of ECHT'90 13-24.
[57] P.D. Stotts and R. Furuta, Petri-net-based Hypertext:
Document Structure with Browsing Semantics, ACM Transac-
tions on Information Systems 7, No. 1 (1989) 3-29.
[58] P.D. Stotts and R. Furuta, Hierarchy, composition,
Scripting Languages, and Translators for Structured Hyper-
text, in: Proceedings of ECHT'9O 180-193.
[59] I. Tomek, S. Khan, T. Muldner, M. Nassar, G. Novak and
P. Proszynski, Hypermedia-Introduction and Survey, Jour-
nal of Microcomputer Applications 14, No. 2 (1991) 63-103.
[60] R.H. Trigg and M. Weiser, Textnet: A Network-Based
Approach to Text Handling, ACM Transactions on Office In-
formation Systems 4, No. 1 (1986) 1-23.
[61] K. Utting, and N. Yankelovich, Context and Orientation
in Hypermedia Networks, ACM Transactions on Information
Systems 7, No. 1 (1989) 58-84.
1621 A. Van Dam, Hypertext '87: Keynote Address, Communi-
cations of the ACM 31, No. 7 (1988) 887-895.
[63] E. Wilson, Links and Structures in Hypertext Databases
for Law, in: Proceedings of ECHT'90 194-211.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-29

