
HYPERTEXT-BASED RELATIONSHIP
MANAGEMENT FOR DSS

Torn& Isakowitz
Information Systems Department

Leonard N. Stern School of Business
New York University
New York, NY 10012

and

Edward A. Stohr
Information Systems Department

Leonard N. Stern School of Business
New York University
New York, NY 10012

July 1992

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working Paper Series

STERN IS-92-22

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Hypertext-Based Relationship Management for DSS

Tomas Isakowitz and Edward A. Stohr
Information Systems Department

Stern School of Business
New York University

July 13, 1992

Abstract

There is a need for integrated access to a wide range of information related to the development and
use of DSS in organizations. This information comes in many forms, both formal and informal, and
is highly interrelated. To handle this complex information base, we argue that a separate relationship
management component should be added to the three traditional components of a DSS (namely, the
database, user interface and model management systems). The role of the relationship management
component is to relieve DSS application programs of the need to maintain and provide access to the
complex set of relationships that can exist between elements in the application domain. We discuss the
kinds of information and relationships that arise during the development and use of a DSS, outline the
requirements for an independent subsystem to manage this information base, and propose the use of
an extended hypertext software system, H+, to simultaneously handle relationship management and
provide an interesting and useful interface to users.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Contents

2 ROLE OF HYPERTEXT IN DSS 2

. 2.1 A User-Interface for All classes of User 3

. 2.2 Hypertext as a Cognitive Aid 3

. 2.3 Hypertext in Support of Application Programming 4

3 RELATIONSHIPS I N A DSS ENVIRONMENT 5

4 REQUIREMENTS F O R RELATIONSHIP MANAGEMENT 8

. 4.1 Requirements 9

. 4.1.1 High Level of Abstraction 9

. 4.1.2 Rapid authoring 9

. 4.1.3 Automated establishment and maintenance of relationships 10

. 4.1.4 Support exploration within the application domain 11

. 4.1.5 Coordinate computation within the application domain 11

. 4.1.6 Provide semantics for abstract relationships 12

. 4.1.7 Support for distributed group work 13

. 4.1 . 8 Automated Version Control 14

4.2 Summary of hypertext features for relationship management 14

5 AN ARCHITECTURE FOR RELATIONSHIP MANAGEMENT 15

6 RELATIONSHIP MANAGEMENT THROUGH SCHEMAS 18

. 6.1 A Language for Schemas 22

. 6.2 Representing more intricate relationships 25

. 6.3 A Communications Protocol 26

. 6.4 An example 27

7 DISCUSSION 3 0

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

List of Figures

. 1 An architecture to support schemas 16

. 2 Versioning and sensitivity analysis schema 19

. 3 The energy production-distribution model 2 1

. 3 From schema to hypertext 23

. 5 A portion of a report describing a solution to the energy problem 25

. 6 The evolution of a schema and the user's view 28

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

1 Introduction

The idea of hypertext was first put forward by Vannevar Bush in 1945 [Bus45]. He proposed that the nation's

top scientists, recently released from war-related research, turn their energies to the peace-time accumulation

of knowledge. We conceived this knowledge as a complex web of concepts and relationships between those

concepts. He suggested that scientific knowledge be codified in this form and shared amongst researchers as

a way of developing a store of knowledge as a national and international resource. Englebart [Eng83, Eng881

(inventor of the mouse and windows) and Nelson [Ne180] (who first coined the term hypertext) were early

propoilents of the idea that computers can fundamentally change the way in which information is arranged,

displayed and assimilated. The idea that knowledge consists of chunks of related information lies at the

heart of hypertext and hypermedia research and development today.

A hypertext document contains chunks (hypertext "nodes") of information that are related by hypertext

"links". In contrast to normal text which relies on a primarily linear ordering of ideas (the exceptions being

footnotes and references), hypertext nodes can be visited in any order depending upon the whim of the reader

and the "links" that were embedded in the text by the author. Hypermedia extends the idea of hypertext

to include chunks of information in various media such as graphics, sound and video. Recent advances in

technology, and the development of ccmmercial systems such as OWL, MAC system 7, and others [NieSOa]

have made hypertext and hypermedia an attractive proposition in many applications. Conklin [Con871 and

Rielsen [WiegOa] are excellent surveys of hypertext research and practice that discuss potential applications

in many diverse areas.

Despite rapid developments in other knowledge-oriented areas, hypertext has received surprisingly little

attention by DSS researchers. Minch [MinSO] provides and excellent review of potential applications of

hypertext in the DSS arena using a framework with four dimensions: 1) individual (user) factors, 2) problem

characteristics, 3) situational and organizatioal factors and 4) technologogical factors. Icimbrough, Bieber

et a1 have developed MAX [IcPBBSO], a hypertext-based system for model management. Max provides a

proof of concept of the feasibility of hypertext for DSS. Holsapple, Whinston et a1 [CI-IW92, BWD+89] have

extended the hypertext idea to that of a "hyperknowledge environment" for DSS. This combines ideas from

Model Management Systems (hITvlS), Artificial Intelligence (AI), Database Management Systems (DBMS)

and hypertext. A DSS is seen as a mechanism for managing and exploring a complex world of descriptive,

procedural, reasoning, linguistic, and presentation knowledge (data, programs, language grammars, rule

bases, problem representations and display mechanisms, respectively). It is suggested that hypertext would

provide an excellent interface to such a "hyperknowledge environment".

Balasubramanian et al. [BIIcMSl] suggest the use of hypertext to assist decision making in the context

of portfolio management. Bieber [Biegl] and Bieber and Isakowitz [BIgla] use a logic approach to integrate

DSSs with a Hypertext front-end. Balasubramanian et al. [BIJS92] describe how hypertext tecllnology

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

matches the requirements of DSS in two senses (1) as an attractive style of user interface that should help

users explore a complex problem space and (2) as a software technology that supports the development of

both a model management system (MMS) and specific models. The focus in [BIJS92] is on the elements of

a dynamic hypertext that would be required to support these goals.

In summary, hypertext has several advantages in the context of DSS applications: i t provides an attractive

interface that could reduce cognitive complexity for users and it also automatically handles the connectivity

between related DSS elements. Adopting a broad view of DSS, these elements can include any information

relevant to the decision process including memos, commentaries and e-mail messages as well as data and

nlodels. After a general discussion of the role of hypertext in DSS in section 2, we discuss the kinds of

relationships that occur in DSS in section 3, from which we derive the requirements for a dynamic hypertext

in section 4. An architecture for a hypertext-based "relationship management system" is presented in section

5. Section 6 describes a schema-based approach to the development of a relationship management system.

2 ROLE OF HYPERTEXT IN DSS

Hypertext has shown its effectiveness in a number of different software domains [Con87, NieSOa, RTSS, FriSS].

According to [MSSS], the necessary conditions or "golden rules" for the success of hypertext are that the

application involves a large body of information that is organized into numerous fragments, the fragments

relate to each other, and the user needs to use or view only a small fraction of these fragments at any time.

Furthermore, while hypertext has generally been used in the context of information retrieval and presentation,

it is also a natural metaphore for expressing problem and knowledge structure IMHRJ91, GPS91, BHWSO].

In this paper, we argue that the golden rules apply in the case of DSS applications and that hypertext is a

natural medium for expressing and managing DSS system and problem structure. In particular, we believe

that a hypertext environment for DSS can help:

(1) provide all classes of user (from model developer to end user) with a uniform and effective interface

to all objects that are created during the development, testing, and use of a DSS.

(2) provide cognitive aids to help the user access and view these elements and to travel from one to

another in any order.

(3) reduce the tasks that have to be performed by the DSS application (and that have to be programmed

into the DSS application).

We now briefly discuss the role of hypertext in helping to achieve each of these objectives.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

2.1 A User-Interface for All classes of User

The user-interface is the central mechanism by which decision support is provided: it allows the user to

esplore the space of problems, techniques and solutions. Hypertext systems generally have sophisticated

interface management (windowing) capabilities. Guide [GUI87] for exaple supports multiple scrollable win-

dows. In addition, hypertext systems allow users to "browse" related chunks of information stored on

different kinds of media, to add their own annotations to this information, and to create new relationships

and "trails" through the "application domain". Since DSS usage is inherently interactive and exploratory

in nature, one would assume that hypertext's support for such browsing activities would be useful in DSS.

Only time will tell whether this supposition is correct; as discussed above, the possibilities of hypertext as

an interface to DSS are just now beginning to be explored.

Dynamism and change are at the heart of the DSS concept. The objective of a DSS is to support

decision making in semi-structured or unstructured decision situations which cannot be modeled by closed

form algoritllms. Rather, such situations require that the users be actively engaged in the decision making

process [Spr89]. The development of a DSS often requires a prototyping approach with close cooperation

between the model dez;elopers and end users [I<ee80]. Furthermore, the use of a DSS is often a highly

interactive process in which end users (or managers) engage in complex explorations of the model domain

during which various assumptions about causative structure and model parameters are varied in an iterative

fashion. This calls for a software environment that supports both the evolution and utilization of the DSS.

In this paper, we suggest an environment in which the user interface elements are provided as a given

and are specialized and interrelated throughout the development and usage processes. Every design and

development object has its own built-in display capabilities and is connected to related design elements via

hypertext links. Thus, there is a process of "cascading" the interface down the design hierarchy until it is

in place in the specific DSS that the user utilizes. For example, the traditional view of users interacting

with a user-interface to generate reports is replaced by one in which users communicate with a number

of DSS elements, including reports. Users can questzon the reports about their meaning and change some

of the data or model elements to perform sensitivity analysis. To do this, the user communicates with the

report, and with the Data and 54odel base elements associated with the report. This requires that the report

itself contain user-interface elements - we propose that these consist of hypertext "buttons" that activate

hypertext links to hypertext nodes in the model and data bases.

2.2 Hypertext as a Cognitive Aid

Following [I<S92], we believe that there is a need to integrate all classes of information that are relevant to

a given decision process. This includes such relatively unstructured and informal iterns as internal memos,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

proposals, e-mail messages and reports, as well as the models and data elements that have been the traditional

focus of DSS. It is precisely, this kind of diverse and comples information space that recent forms of hypertext

system are designed to support [h1092]. Hypertext systems, offer a built-in facility to record and maintain

many of the relationships between elements in the DSS domain together with rapid access to many diverse

information sources. That is the good news. The bad news with regard to the use of hypertext systems (at

least for users viewing textual material) has been the danger of being "lost in hyperspace". Users can follow

multiple paths in the text and become hopelessly lost (NieIsen [NieSOb]). To combat this, various cognitive

aids in the form of "browser" or "overview" maps showing a graphical model of the hypertext nodes and links

and the users'current position and "voyage" to date, have been designed and are being actively researched

(Utting and Yankelovich [UY89], Carmel, Crawford and Chen [CCC92]). Since DSS users HAVE to travel

extensively between elements of the application domain as they explore the implications of their models,

it seems reasonable to assume that they would benefit by the kinds of mapping support that is natural to

hypertext systems. Any kind of overview map is probably better than none at all (which is the case in almost

all current DSS).

2.3 Hypertext in Support of Applicatioil Progra~li i l~ing

With regard to objective (3), important advances have been made over the years as functionality has migrated

from the application software itself to independent "software layers" that are used by ~ ~ u l t i p l e applications.

There are a number of stages in this historic development:

Operating systems relieved the application from having to deal with details of hardware device and file

management.

Data base management systems (DBMS) relieved the application of much of the responsibility for logical

and physical data management.

User interface management systems (UIi'fS) relieved the application of many of the chores associated with

providing full screen management of text, forms, menus, and graphics. The highly popular "windowing"

systems provide a standard interface for accessing such user-interface elements.

In the DSS area, model management systems (MRIIS) are being designed and developed with the objective

of relieving the application of the much of the work associated with the development, maintenance and use

of models.

An underlying thesis of this paper is that a fifth reduction in the necessary functionality of user application

software is required:

\Ire should relieve the application program of the need to maintain and provide access to the complex set

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

of relationships that can esist between elements in the application domain of DSS software.

We call this last form of software functionality "relationship management" and envisage an application

development environment that provides device management, file management, data management, model

management, interface management and relationship management. The extended hypertest, " H i " system

described in this paper is designed to provide the latter two capabilities.

In summary, we believe that hypertext can provide an attractive interface to a DSS (objective 1) and that

the overview maps that are provided by many hypertext systems can provide beneficial cognitive support for

DSS users as they interact with the DSS system and explore the ramifications of their models (objective 2).

Finally, with regard to objective 3, we believe that extended hypertext can relieve the application software

of many onerous tasks in two areas: (1) interface management, and (2) relationship management -the

maintenance of access paths through the complex maze of static and dynamic relationships that constitute

the application domain of DSS models. The remainder of this paper is concerned with the potential of

hypertext for providing relationship management.

3 RELATIONSHIPS IN A IISS ENVIRONMENT

Table 1 lists some of the data and program elements that must be created, manipulated, and communicated

by a DSS system. As discussed later, each of these element types constitutes a potential node class in

a hypertext system. Some of the elements are aggregates of other elements; for example, reports can

contain formulae, attribute names, attribute values, etc. The elements in the table have been grouped into

five "components" to show their relationship to the more traditional depiction of a DSS in terms of its

component subsystems (Sprague and Carlson [1979], Bonczec, Holsapple and Whinston [1981]). In these

traditional depictions, a DSS is thought of as being composed of three subsystems: a database management

system (DBMS), a model management system (MMS), and a user interface management system (UIMS).

The DBMS handles the data component, the MMS handles the models and problem solvers, while the UIMS

handles the interface elements. We distinguish between models and problem solvers: models are either non-

procedural statements that exist independently of the problem solver as in the case of linear programming

models, or abstract descriptions used for communication and understanding when the model is embodied

procedurally in the problem solver code as is the case in most simulation models. Some problem solvers

execute standard algorithms and are provided initially with the DSS software; other special purpose programs

are built by the model builder.

SSTe have included a cornrnunacatzons component that comprises the elements through which organization

members communicate decisions and other information pertinent to the decision task associated with the

DSS [r\Ii?JSG]. This coniponent has generally been considered to be outside of DSS. However, in our view,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

MODELS models, formulae, variables, documentation

INTERFACES screens, menus, graphics, reports, documentation

Table 1: Elements of DSS components to be presented within hypertext nodes

Table 2: Dependencies among DSS components and how these are maintained.

DSS COMPONENT

DATA
MODELS
PROBLEM SOLVERS
INTERFACES
COMhIUNICATIONS

the memos, commentaries, and e-mail records related to the DSS in its organizational contest are an integral

part of the decision process and should therefore be supported by the DSS [I<S92].

PROB.
DATA MODELS SOLVS. INTERF. COhIhIS.
DBMS MMS MhfS * *

hfhtS hlhlS * t

* * *
UIhf S *
t *

An automated DSS should support all of the activities associated with the data elements in table 1. I t

should also be capable of recording a history of the decisions it assisted in making, the rationale behind

these decisions, and an evaluation of the results of implementing the decisions. Subsystems associated with

each of the five components in table 1 can store, retrieve and manipulate the relevant elements in their own

domain and usually contain their own documentatzon (offline or online) to guide the user. e.g., relationships

between data are maintained by the DBMS, relationships between screen elements by the UIMS. However,

the relationships between the different subsystems must be patched together by the DSS software to provide

a coherent system for the user. In fact, some useful relationships (dependencies) are completely ignored by

current DSS as shown by the * ' s in Table 2.

There is clearly a need for a system to establish and support relationships that span the boundaries

of the DSS components - the * in the table. In addition, wherever there is no independent subsystem to

handle certain domain elements, a general system for relationship management is needed. For example,

in the communications component, facilities to allow users to interrelate reports generated by the system

and memos generated by users are not generally an integral part of a DSS. But such interrelationships can

be important from the point of view of organizational coordination since many decisions depend on prior

decisions and assumptions.

There are compelling reasons for adopting a DSS architecture in which DBMS, MMS, and UIMS subsys-

tems are purchased or developed separately and then combined by additional software into a DSS system

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

as implied by table 2. These reasons include modularity and the separate historical development and avail-

ability of DBMS, ;"rlhfS and UIilIS software. Nevertheless, it is interesting to consider a second strategy in

which the DSS software design problem is conceived, ab znztzo, as one in which the DSS has to manage all

of the elements in Table 1 and their interrelationships. The major subsystems in such an architecture might

be developed Inore on functional lines to handle expected DSS usage patterns and the separation between

data, models, and interface elements that is inherent in current architectures might not be so profound.

In this paper, we suggest a third DSS software development strategy that involves the use of hypertext

technology to develop a "relationship management system". The "H+" system is designed to interrelate the

various elements both within and between the traditional DSS subsystems. For example, documentation

and user-help can be supported with hypertext links to the appropriate documents within each component,

while reports and memos generated within the communications component can be linked to the results of

specific runs within the model component.

Different types of relationsl~ips must be maintained by a DSS. There are relationships among elements of

a decision environment that arise from the structure of those elements. We call these structzlral relatzo~~shzps.

Relationships between the classes of DSS system elements (such as models, problem solvers, databases, and

reports) that are shown in table 1 are of this kind. Other examples are given by menu and report structures,

and tlte association between software components and their documentation in the form of help screens, etc.

Many structural relationships (dependencies) are static and can be postulated a priori. Others, (for esample

abstract problem structures) rely on domain semantics and can only be determined through interaction with

the user.

Process relattonshzps arise through the interaction of model builders and model users with the DSS

system. Thus, model builders construct a series of model prototypes that need to be tested and refined over

time, while model users build a series of versions of these models and run the models using alternative data

values during the model sensitivity analysis phase. In both cases, complex paths are traced that need to be

recorded and made available so that back-tracking and browsing for the purposes of revision and learning

can take place. The need to maintain process relationships implies that the H+ system should be capable

of automatically adding instances of nodes and links to the hypertext network.

In database systems, it is important to distinguish between the the generic structure of tlle data (as

defined by a database "schema") and realizations or instances of that structure. The same is true in hypertext

systems. As discussed in more detail later, most of the structural and process relationships we have mentioned

can be constrained to follow a fixed pattern or schema to which new nodes and links are added over time.

However, not all such relationships can be extentionally defined and realized through traditional embedded

node and link structures. This gives rise to the need for vzrtual relatzonshzps that are intentionally determined

by tlle user through what amounts to a querying process. There are two classes of virtual relationship:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

(a) Multitudinous instances of relations within a given class of relationship. There may be relationships

that can be anticipated as a class but whose instances are either too voluminous to record under normal

circumstances and/or too uncertain to determine in advance. e.g. the model builder might well anticipate

the need for users to trace backwards from solution results to particular input data values that give rise to

those results. Special algorithms for such "impact analysis" can be provided within the DSS for a particular

class of model - but this is difficult to do in general.

(b) Multitudinous relationships not all of which are explicitly maintained by the DSS. Thus, there may

be unforeseen needs to traverse paths between application domain elements. e.g. the user might need to

investigate the reasoning behind a particular model design and might wish to discover the author of the

model. While it might be argued that the DSS builder should anticipate this need, there are simply so

many possibilities for relationships between components that it may not be worth the DSS developers time

to anticipate them all and to program the necessary user access paths.

TVe emphasize that the information base with which we are concerned is a complex web of relationships

between all of the elements in table 1. This web serves to connect hypertext nodes representing the inputs and

outputs of the various subsystems (database, MhlS, Problem solvers, UIMS, and communications system)

as shown in table 2. At the coarsest level of granularity, the hypertext nodes might consist of the actual

files/documents that are the inputs and outputs of these systems. These nodes could simply be accessed

via read-only or editing windows through which the text is scrolled as in the GUIDE system [GUIS7] or

Notecards [HMT87]. In a sense, these nodes are atomzc because the links do not penetrate the contents of

the nodes. Hence, the internal structure of the DSS elements is ignored by the hypertext. At a finer level

of granularity, if knowledge of the internal structure or logical content of documents such as problem solver

reports and database files is provided, links between elements within these larger data structures could be

made directly - either explicitly by planting anchors in the files or dynamically through the use of queries.

Thus, every data item in an output report might be a "live" button - clicking the mouse on the item would

open up a window through which the value(s) of relevant model parameters could be viewed.

4 REQUIREMENTS FOR RELATIONSHIP MANAGEMENT

The development and use of a DSS may involve multiple human and machine processes and generate many

interdependent data and program elements that must be coordinated. The role of a relationship management

system (RMS) is to support the establishment, maintenance and use of such relationships. We argue that

this can most easilly be accomplished by using an extended form of hypertext technology to maintain a

dynamically changing "state space" that reflects the structure and history of the decision process.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

In this section we discuss eight requirements for relationship management and relate them to the hypertext

capabilities that are needed for their support. As it turns out, all of the hypertext capabilities discussed

below have been provided in either commercial or experimental hypertext systems, however, as far as we

know, no single system as yet contains all the needed features.

4.1.1 H i g h Level of Abs t rac t ion

As in [BIJSSl, BI<92], the RhlS component sits between the user interface and the actual DSS application

software (see Figure 1). I t is not concerned with either the intricacies of user interface displays or the

computational and communication processes associated with the DSS and other associated software. The

RhIS captures and represents generic relationships between elements in the application domain and supports

two-way communication between the interface and the application systems. To be applicable in many differ-

ent DSS applications, the system must represent such relationships in an abstract way and be unconcerned

with the detailed contents of the nodes. Several formal models of hypertext engines have been defined that

capture the important abstractions in a wide range of existing and future hypertext systems ([HSSO, LanSO].

Such models define a high level of hypertext functionality and represent a step towards "open hypertext" in

which hypertext document bases can be freely interchanged and hypertext systems become interoperable.

4.1.2 R a p i d au tho r ing

To support the total decision process as we envisage it , the RMS needs to manage the development and

relationship of inany diverse documents produced by modelers, data entry clerks, and so on, as well as the

ancillary information types that are used directly by end users and are indicated in the "Communzcatzons"

component shown in table 1. Much of this material consists of text and graphics that needs to be created,

combined into documents, and interrelated. All hypertext systems provide some form of authoring capability.

In addition to the features associated with modern editing systems (spelling checkers and so on), users are

able to create buttons and referential links to key pieces of information both within the same document

and between different documents. Some existing systems provide "idea processors" that allow documents to

be produced top-down from a starting outline [HR%T87]. Others allow document creation and composition

viithin the framework of a schema describing the classes of relationship that are possible (see below for a

more complete discussion.) To help coordination between different DSS users, and to foster joint exploration

of the problem space, many hypertext systems also allow users to add their own annotations to hypertext

nodes [YMvDSS].

Center for Digital Economy Research
Stem School of Business
Working Paper IS-92-22

4.1.3 A u t o m a t e d establisllmellt a n d inaiilteilailce of relat ionships

IVhile nlanual authoring capabilities are essential for the reasons indicated above, the hypertext network

required to capture all of the structural and process information in the DSS application domain is so large

and complex that i t would require significant implementation efforts if implemented manually. We propose to

automate the creation and maintenance of the majority of nodes and links in the network by making extensive

use of schemas to describe how elements in the DSS application domain are to be organized into a hypertext

network. Some of these schemas describe the DSS software itself (e.g. hypertext networks for online help,

version control, sensitivity analysis, etc.), while other schemas define data and process relationships specific

to individual models (e.g. the data structures in a transportation model). We call the totality of schemas

used to describe the application domain, the "conceptual model" of that domain.

Similar schemas have been proposed in the area of hypertext authoring. Smith et a1 [SCGLgl] propose

the use of templates to incorporate pre-defined structure into hypertext documents. I<nowledge-oriented

hypertext systems use schemas to represent the structure of knowledge within the hypertext node and link

structure [GPSSl, NN91, I<S91, MHRJSl]. Still others use hypertext schemes to represent arguments and

reasoning processes [CB89, hIHRJ911. A common feature is the ability to classify elements into a taxonomy

of types and to define schemas to represent classes of structures. Instances of these schemas are populated

as the system evolves.

I11 the context of creating conventional hypertext, schemas are associated with "authoring-in-the-large"

i.e. defining the global structure of the hypertext document - the way the information base is structured and

the navigation paths made available to the user. In contrast, authoring-in-the-small involves composing the

test , drawing the graphics, and so on, that constitute the nodes. It is useful to restate these concepts in the

context of DSS relationship management as we envisage it. Here, authoring-in-the-large, is performed by

the tool-smiths and modelers who essentially define the element types in table 1 and the relationship types

that are needed to fill-in the gaps in table 2. Authoring-in-the-small is performed by the modeler when new

models or simulation programs are written, by the DSS programs or problem solvers that produce results to

present to the user, and by managers and others who compose memos, recommendations and proposals and

communicate via e-mail.

While the schemas can define important paths through the hypertext network, there will still be a need

for users to traverse unanticipated paths and to view and manipulate information of finer granularity than

that described by the schemas. Halasz [Ha1881 pointed out that the hypertext model should incorporate

uzrtual structures which are nodes and links that are not extensionally defined within the system but are

generated as needed. Essentially, virtual links are database queries. The system allows the user to use either

a keyword scheme or full test search to link to and access related documents (or the internals of documents).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

4.1.4 S u p p o r t explora t ion witll in t h e appl icat ion doma in

X significant part of problem solving involves exploring the problem and solutioll spaces. For example, a

user might want to locate the data used to reach a particular questionable decision presented in a memo

by following the chain of documents that led to the decision. The RhfS must support the exploration of

such trails. Besides the user's natural desire to explore, the system itself needs this ability. For example, to

support explanation, the system should be able to keep a log of all steps involved in important decisions and

be able to retrace these steps on demand. Such exploratory capabilities are naturally provided by hypertest's

navigation mechanisms. The links among nodes (which represent relationships) can easily be selected and

traversed by both the user and the system.

Two somewhat related problems have been experienced when users search hypertexts for information.

First, hypertest allows users rapid access to information that may or may not be relevant to their particular

task producing a tendency to information overload [NieSOb]. How users can combat information overload

by bringing structure to large information spaces remains an open question. The second problem, network

disorientation, or "getting lost in Hypertextn (Nielsen [NieSOb]) arises because hypertext approaches tend to

fragment information; users lose track of where they are, and can't decide either how to return to a previous

state or which information nodes they should visit next. This problem has been the subject of much research

and a nuluber of mechanisms have been devised to support the user's exploration. These include automatic

backtracking, recording user "trails" through the hypertext, allowing the user to place "bookmarks" in the

text, providing "land marks" or nodes that are easilly recognized, "departure and arrival protocols" that help

orient users by reminding them where they were on exit from a node and where they have arrived on entry

to a node, and the use of "browser maps" and "graphical browsers". Browser maps are graphical displays

of the hypertext network that allow the user to traverse the network by directly selecting links and nodes

(Utting and Yankelovich [UYSS]). See chapter 5 in [NieSOa] for a discussion of these and other cognitive aids

for browsing and search.

4.1.5 Coord ina t e computa t io l l w i th in the appl ica t ion d o r n a i ~ l

Certain relationships represent information flows. For example, a model, its data (or scenarios) and related

solvers are combined in a stream to produce solutions. Hence, the relationships among these elements

(the model, the data and the solver) do not simply specify dependencies, they represent parameter passing

agreements that determine the information flow required for solver execution. A user should be able to create

a **runn relationship and cause the model to execute by pressing a hypertext button associated with the visual

representation of the run. Computational hypertext (Halasz [HalSS, Ha1911) can provide this functionality.

Walasz differentiates between two kinds of computation: "computation over hypertext"and "computation

ill hypertext". "Computation over hypertext" takes place when hypertext calls external programs via

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

special links (DSS Shell [Biegl], PHIDIAS [hfRD+SO]). There are two forms of '.computation i n hypertextn.

In the first, the hypertext itself performs computations to alter node contents using scripting mechanisms

(TiVebtalk [NN91], Schnase and Legett [SL89]). In the second form, the conlputation imposes "browsing

semantics" to control the paths through the hypertext and what is displayed on the screen. For example,

when a "run" relationship is accessed, the browsing semantics might also automatically open windows on

the screen to display the model equations and data tables associated with the run. The Trellis model [SF891

uses Petri nets to support browsing in this way.

The kind of computation required for relationship management, which we call computation wi th in hy-

pertext, is a combination of the above forms. Note that the RMS need not perform complex computations;

that is the responsibility of the DSS applications. The RhIS however should take the responsibility of coordi-

nating computation by transmitting parameter values between nodes and issuing calls to DSS applications.

It is in this sense that we require a coinbination of Halasz' two kinds of computation. The computation

alternates link traversal (which transmits information) and external program calls.

Links that can transmit information are called valuatzon lznks [BII<M91], Isakowitz [Isa92] and in Bieber

and Isakowitz [BIglb], because they transmit values. Upon activation of a valuation link a propagation

process is initiated. Information flows from the activated link to the destination node(s). Valuation links

originating in these nodes will, in turn, propagate information to other nodes, and so on. Note the difference

between valuatzort lznks and actzon h n b . The latter represent calls to external procedures; the former

represent transmission of information. For example actzve reports can be implemented using valuation links

that establish the flow of information among various nodes. Each active field in an active report is associated

with a valuation link that connects the field to a node. When the value at this node changes, the valuation

link is activated and the report updated.

Note that in advanced hypertext systems, links are more than just textual cross-references. In gen-

eral, when a link is activated, a complex series of operations can take place: locate from node, execute

inference/computation procedure, locate to node, execute inference/computation procedure, display results.

4.1.6 P rov ide semant ics f o r a b s t r a c t

The requirement for a high level of abstraction means that conceptual models of the domain have to ignore

details pertaining to domain knowledge. Therefore, relationship management manipulates abstract entities

and abstract relationships among these entities. There is however, a correspondence between these abstract

representations and their domain counterparts: abstract entities correspond to domain elements, and abstract

relationships correspond to domain dependencies. This correspondence needs to be maintained, so that

appropriate meaning can be attributed to the abstract entities.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Hypertext documents are usually highlighted by visual "anchors" or "buttons" that indicate that the

associated portion of the text is related to other information. The relationships can be of many types that

are represented by hypertext links of various types. Usually, the type of a link is indicated by the shape or

color of the button or by a short string of test. The commonest link type is one-to-one reference - a single

related item of information is displayed in a window on the screen when a button is activated. However,

one-to-many and many-to-many links are also supported by some hypertext systems [BBI<88].

The following is a minimal list of link types that are needed to support relationship management in the

DSS domain.

1. Is a part of: elements are grouped into components, which in turn can be grouped into higher level

components. This link has a hierarchical nature.

2. Reference: used to associate selllantically related domain elements. For example, a model variable and

the variable definition which contains detailed information about its meaning.

3. Action: some relationships, such as the run described above, refer to actions in the domain. An action

link is associated with a specific program in the DSS domain. Activation of the link triggers the

execution of the program.

4. l,raluation: A final relationship type that is important in the DSS arena involves the transmission of

information between domain elements via valuation links as explained above.

Hypertext can support these constructs through various link types. For example Guide [GUI87] supports

the first three link types and [Isa92] the last.

4.1.7 Support for d is t r ibu ted group work

Increasingly, organizations need to coordinate distributed decision networks with ever faster cycle times

[Hub&$]. A well-known example is the attempt to coordinate marketing, design and manufacturing decisions

in the area of operations management. Providing decision support in such dynamic environments requires

heavy use of the communications elements listed in figure 1. This is a relatively new area in hypertext

research, however at least one system, Hypernet [M092] provides distributed support for a world-wide

hypermedia database linked through the Internet network. Furthermore, Hypernet supports cooperative

authoring, editing and browsing of hypermedia documents in both syncl~ronous and asynchronous modes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

1. High Level of Abstraction
Independence from application and user interface

2 . Rapid Authoring
Authoring-in-the-small: node and link creation, editing text and graphics
Authoring-in-the-large: schemas

3. Automated Creation and Maintenance of Relationships
Schernas, virtual nodes and links

4. Support exploration in the application domain
Node and link traversal, query capability, annotation
Cognitive aids: backtracking, book marks, browser maps
Ability to define browsing semantics

5. Coordination of computation
Computation "-vvithin7' hypertext: valuation links, calls to external applications

6 . Provide semantics for abstract relationsliips
Multiple link types

7 . Support for distributed group work
Distributed hypertest: synchronous and asynchronous access
Information sharing: multiple users accessing the same information
Individual user views or contexts

S. Version control
Automatic logging of node and network versions

Table 3: Relationship management requirements and hypertext features

4.1.8 Au to ina t ed Version Con t ro l

DSS applications run the gamut from simple spreadsheet models to complex multiperson systems that

require considerable resources to develop and maintain. Regardless of size and scope, prototyping is the

predominant development paradigm. A major objective of mode1 management systems is to provide a

software environment that can help coordinate multiple prototypes and the requirements of multiple users.

Although the emphasis in hypertext is on authoring and coinposition of document collections rather than on

the development of software, similar problems obtain with regard to version control and support for multiple

users. Several hypertext systems provide automatic logging of node and link versions [DS87]. Hypertext

systeins that support collaboration have developed mechanisms whereby individual users are provided with

networli "contexts" or "views" which they can explore and manipulate without endangering the integrity of

the underlying hypertext database [GBS7].

4.2 Sum~nary of hypertext features for relationship management

tVe have discussed the features required to implement relationship management and shown how existing

hypertext-based systems have incorporated these features. Table 3 summarizes this discussion.

\IThile 110 existing hypertext system contains all the features listed in the table, very general, "open"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Table 4: Comparing static and dynamic hypertext

h y p e r t e x t act ivi ty
l inks represen t

ne twork layout

hypertext engines are currently under research and development. Table 4 summarizes the main differences

between the traditional hypertext, which for lack of a better name we refer to as statac hypertext, and the

dynamic hypertext that is now emerging and is needed to support our concept of relationship management

in the DSS domain. Dynamic hypertext has all the properties shown in the static hypertext column plus

those listed in its own colun~n. The DSS Shell [BBI<SS] represents a path-breaking attempt to implement

many of these features in the model management arena.

S ta t ic hyper tex t Dynamic hype r t ex t
browsing, annotation computing
hierarchy and transmission of
cross-reference information

manual automatic through
schema, virtual nodes and links

The remainder of this paper describes a schema-based approach to the use of general purpose hypertext

software as an integrating mechanism in the DSS domain. Although no commercially available liypertext

systems currently provide the dynamic, knowledge-oriented functionality implied by tables 3 and 4, some

research systems do approacl~ it, e.g., Xquanet [TvlHRJSl] and HDM [GPSSl].

5 AN ARCHITECTURE FOR RELATIONSHIP MANAGEMENT

Figure 1 depicts a proposal for an extended hypertext system Ei+ to implement relationship management.

H+ stands between the user interface which handles presentation functions such as screen layout, and win-

dowing, and the application domain programs which perform computations, update databases, run models,

and so on.

A significant portion of the relationships between elements in the application domain are represented

in H+ using schemas which are initially input to the Schema Engine, SE. The hypertext schemas perform

a similar function to database schemas. In addition, SE is able to interpret the schema and to produce

information that is used by H to generate buttons, design window layout, etc. for each node class in the

network.

The communication between the DSS and the H+ is achieved via these schemas. As the decision process

evolves. the DSS populates the schema by sending state-change messages to S E . The SE interprets these mes-

sages in terms of the objects present in the schemas and sends appropriate messages to the Hypertext Engine,

WE ~11ich is responsible for managing hypertext links and nodes, and for browsing operations. Internally,

knowledge about the schernas dictates what commands to send to HE. SE is responsible for transforming

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Figure 1: An architecture to support schemas.

f \
..

DSS
8

Application n *....

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

DSS
commands

..........................

; H-t-
...

Schema
descriptions

State-change messages

v v
Schemata

Engine
(SE)

Hypertext Engine

WE)

A

Hypertext
commands

...

Presentation Messages

v

USER INTERFACE

L J

kno~vledge structures, e.g. schemas, into hypertext structures. It is also responsible for understanding ac-

t l o ~ l s on scheinas and interpreting these as liypertext activities. For example, adding a relationship to a

scheina, results in adding a link to the hypertext.

X mechanism to share contents of nodes (mainly text and figures) between the DSS and H+ needs to be

implemented t o support this architecture. For example, both files and pointers can be used. The H+ system

combines the SE and HE into one system and maintains the state of the DSS as a hypertext network with

~vhich the user interacts via built-in navigational tools. More formally, if we describe the DSS as a finite

state sequential machine, [HS66]:

D = {S, I, 0, d, o)

tvllere: S = set of states of the DSS

I = set of user inputs

0 = set of outputs from the DSS

d : S x I .- S is the state transition function

o : S c, 0 is the output function

Then we need to design H+ as a state machine:

H = {Sf, I ' , d l }

where: S' = the set of hypertext nodes and links

I' = set of input messages from D

d' : S' x I' - Sf is the hypertext transition function,

Since we only need to consider certain states and actions of D as being of interest to the user, we will assume

that S' is isomorphic to a subset of S and I' is isomorphic to a subset of I . Sf is represented by the hypertext

network topology and the contents of the nodes; I' is the communication protocol language explained below;

d' represents the functions (to add nodes and links, traverse the network, etc.) that are associated with the

lil+ sy sk in .

The remainder of the paper shows how the functioilality provided by advanced hypertext systems can

be used to augment and broaden the capabilities of model management systems. We concentrate on the

Aows of information between the application software and H+ that are shown in figure 1. i.e. 011 the schema

descriptions, state-change messages, and DSS commands. Essentially, we need to demonstrate that the

proposed architecture supports the full functionality of the DSS and adds the functionality attributed to

relationship management systems in the last section.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

RELATIONSHIP MANAGEMENT THROUGH SCHEMAS

At the highest level, the user views the application domain via a hypertext network in which each node

represents a DSS application area. Accessing a DSS application node at this level moves the user to a

lower layer of hypertext networks that are associated with the application area and so on in a recursive

fastlion. Thus, each DSS application area is represented as a nested series of hypertext networks t,hat are

themselves connected to each other in a larger hypertext network. As work proceeds in the application

domain, state change messages are sent to SE which then adds, deletes and modifies node and link instances

in the hypertext network that conforms to the pattern defined by the associated schema.

The main idea is to use a "generic schema" from which instances of schemas are generated. We provide

four examples in this section. We use the entity relationship (ER) formalism [Che76] to represent schemas

in this paper, as it is the first, and probably best known example of a language for defining conceptual data

models. In the hypertext domain, there are a number of more specialized schema languages that might be

better suited (e.g., [GPS91, MHRJ911). The ER graphical representation of the schema can be displayed as

an ..overview map" in a window on the user's screen with the currently active entity set highlighted.

Example 1: Our first example, is a schema that might be input by the toolsmith - the person who builds

the DSS system initially. The schema supports model version control and sensitivity analysis. The schema

for our example is shown as an Entity-Relationship Diagram (ERD) in Figure 2. More elaborate] models

have been proposed in the literature (e.g., Stohr and Tanniru [1979], Muhanna and Pick [1990]) but the

model shown in Figure 2 is sufficient for our purposes. The following is a brief explanation of the entities

(represented by rectangles) in the figure.

Mode l Type: This entity class is used to represent generic models (e.g., a transportation model).

Each instance could consist of one or more documents containing a template model in algebraic form,

plus an explanation of the model, its data elements, and potential applications. Certain generic models

would be provided with the system and stored in the "model base" of the DSS.

Mode l Data Schema: Records the relationships between the data elements in a generic model. For a

transportation model, this schema shows the relationships between source supplies, sink demands and

route transportation costs. These relationships could be stated in a number of different forms (e.g. as

a .'structured model" (Shf) definition (Geoffrion [Geo87]), or as an entity-relationship diagram (ERD).

Mode l Version: The model type specialized to the particular user's problem by the modeler. As-

sumptions underlying the generic model might be varied (e.g., a capacity constraint might be added

to the classical transportation model). The model version is accompanied by explanatory material

provided by the modeler.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Key: 1 m one to many relatiosnhsip

Figure 2: Versio~iirig and sensitivity analysis schema

Model Base

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Model Type A
1 m

Model Data
Schema

Model Version
Data Schema Model Version 1 , m v

Model Instance 1 ,, m
v

Model Data
Instance

Solver Class

Solver
Instance

Results
Instance

M o d e l Version D a t a Sclieina: The data schema corresponding to model version. It is the same as

tlie parent lnodel type schema but adjusted to match the structural changes in the model version.

M o d e l Instance: The model version is further specialized by modifying data and variable names in

tile version template to fit the application (i.e. to "bind" the model to its data). Again, explanatory

material can be provided by the modeler.

M o d e l D a t a Instance: The rnodel version schema is specialized to include access paths to the values

of the data items that will be used in a run of the model. Since data values can be updated without

invalidating a Model Instance (assuming that all data is referred to by name in a Model Instance),

there can be a one-to-many relationship between a model instance and the various compatible data

instances.

Solver Class: A family of computer programs that is capable of solving a given class of problem. For

example, the simples algorithm, generalized transportation algorithm and specially designed trans-

portation algorithms are all capable of solving problems that can be classified as members of the

transportation cIass.

Solver Instance: Choice of a particular solver for use in a given model run.

Resu l t s Instance: A model instance together with a compatible data instance are run with a partic-

ular solver instance to produce a result instance (report).

The relationships in the schema in figure 2 are represented by arrows with small diamonds. The "run"

relationship is information bearing in tlie sense that it would have data attributes associated with it that

describe the time and other circumstances pertinent to a particular run of a model.

A database developed according to the above model and maintained by the application software (MMS

in this case) can provide many of the needed services associated with version control and tracking of trial

runs during sensitivity analysis (Stohr and Tanniru [1979]). Our aim in this section is to show how most

of the burden of maintaining this database and supporting user access can be shifted from the application

software (or MMS) to the relationship management system.

Exa~tzp le 2: The second example is a schema that describes the essential relationsllips in a production-

distribution model (see figure 3). This is a complex problem which can be portrayed as a linear programming

problem. In this case, the schema is entered by the model builder. It is, in fact, an instance of the hlodel Type

Schema shown in figure 2. As mentioned above, the schema could be entered in SM or ERD format. In this

case, we choose the latter as shown in figure 3. From the schemas in figures 2 and 3, H+ can automatically

provide unique node types for each entity (and information bearing relationship class) containing hypertext

'-butto~ls" to allow access along each identified relationship in which the entity participates. It is also desirable

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

entity type data attribute

*__---._ -.
relationship name ; attribute value

- - - ____ - - -*' supplied by problem solver

Probleln description:

A national energy planning office wishes to determine how much of each of three types of raw
energy (oil, gas, coal) to purchase from foreign and/or domestic sources to satisfy the demands
of residential, industrial and transportation activities. Raw energy is converted to other forms
by conversion facilities such as power plants and refineries. Each such facility converts one
form of raw energy to one or more output forms of energy. Transportation costs are involved in
bringing the raw energy to conversion facilities and consumers. The goal is to satisfy demand at
minimum cost.

Figure 3: The energy production-distributio~l model.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

to have '.siblingn buttons in each entity class window to allow access to the "next" and prior instances of

that entity. To illustrate, in example 1, a "run" window has (named) buttons leading to the associated

model, data, solver and result instances and sibling buttons leading to the next and prior run occurrences.

IVe will not discuss navigation semantics or the presentation level in this paper, but one can imagine users

accessing a run instance node and clicking buttons to open an edit window for the data instance and a

viewing window for the results instance. They could then repeatedly click on the sibling button to browse

through runs instances to compare the results obtained from alternative data values. The button to the

solver instance could have a label (the name of the solver) and two targets - one a model selection menu and

the other initiating a computation with the selected problem solver.

Note that an instance of the network in example 2 corresponds to an instance of the Model Version

Scllema node in the network of example 1. As such, it inherits all the links which are defined for model

version schemas. The example 2 network can automatically be converted to a relational database schema

with one relational table for each entity and each relationship. The Model Data Instance node in example 1

will then be associated with a number of relational tables. During sensitivity analysis, at least conceptually,

if not in physical reality, there will be one set of data tables for each trial run.

Example 3: Context Sensztzve Help The schema is originally entered by the toolsmith who builds the

DSS. It represents a graphical view of the software architecture augmented by nodes representing sections

of the code for whicll help screens are provided. As the DSS executes a module for which a help screen

exists, it outputs a state-change message to a history file. If the user presses a help function key, the Context

Sensitive Help Hypertext Network is activated, the last state transition message is read from the history file,

H+ accesses the indicated hypertext node, and displays the associated help screen.

Example 4: Compu-ter Conferencing The schema is input by a DSS support person or intermediary

and represents a hierarchical breakdown of the subject areas important to a given decision process. As

modelers and managers interact in the decision process, they can add messages and model output reports to

"conversations" under each topic area node. Hypertext facilities allow managers and others to browse the

conference, annotate the text as desired, add referential links to create new trails through the network, or

even to work cooperatively [M092].

6.1 A Language for Schernas

Independently of the mechanism utilized to implement the SE, a language is required to express the scliemas

and the state-change messages. We describe the elements of a primitive language for expressing schemas in

this section. Note that in addition t o enabling the expression of relationships among nodes, the language has

to support the association of relationships to DSS-application functions (see section 4.1.6). This will launch

appropriate DSS applications when relationsl~ips are activated.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Figure 4: From schema to hypertext

data instance

Figure 4 illustrates how a relationship migrates from a graphical schema to a hypertext structure. At the

sclieiila level, the graphical schemas express relationships among domain elements. At the language level

the same relationships are described syntactically. Finally, the hype r t ex t level represents the relationships

with generic constructs consisting of nodes, buttons and links. The last step, from language to hypertext, is

performed by the SE.

As the figure sho~vs, the SE deduces that nodes of type "Model Ins tance" have two buttons: "Create

Model Data Ins tance" and "Access Model Data Ins tance" . The first button is used to create new d a t a

i n s t a n c e s . It is associated with an action link that executes the " c r e a t e Model Data Instance" routine

of the DSS. The second button is used to access these "Model Data Ins tances" . Similarly the SE deduces

that nodes of type "Model Data Ins tance" have the two buttons shown in the figure. Note that the

"Create Model Data Ins tance" and the "Create Model Instance" buttons are associated with different

DSS programs. This is because the declaration of the relationship d a t a i n s t a n c e restricts to one the number

of "Model Ins tances" that can exist for each "Model Data Ins tance" . In this example, the constraint is

enforced by launching a special DSS routine called "create-once" that ensures that only one such "model

ins tance" will ever be created. This constraint can be enforced at the SE or DSS levels. Here we chose to

do it at the application level. The DSS routine "create" however, allows many data instances to be created

for the same "Model Ins tance" .

hlodel Instance

Although this example concerns only one relationship, the general case, where a schema contains multiple

relationships, is handled by iterating the process for each relationship in the schema. Rlore generally, given

a relatiouship:

A--~--<L>--~--B

.
Model I n s c a n c e - 1 - < d a t a i n s t a n c e > - ~ - Model D a t a I n s t a n c e

Language level

Node t y p e : Node t y p e :
Model D a t a I n s t a n c e

Hypertext level

" c r e a t e Model Data I n s t a n c e ' "c rea re -one Model I n s r a n c e "
DSS-application program DSS-application pmgram

Model Data
Instance

1 A m

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Schema level

Table 5: Hypertext functionality associated with schema relationships.

table 5 dictates the buttons and links to be implanted in nodes of type A. By reversing the roles of A and

B, the table also indicates the buttons and links for nodes of type B. A link L +-+ B is a referential link to

a node of type B; and M(L t-. B) stands for a link with multiple endpoints of type B. Links named X(-)

are links that issue calls to external applications. Note the difference between "create" buttons for

j = 1 and j = n. As explained above, in the first case the routine "create-once-B" is launched, while

"create-B" is used in the second case. To illustrate how the table works let us consider the relationship

-

Model Ins tance --I--<data instance>--m-- Model Data Ins tance

Semant ics

browse
DSS application call
create-once-B

B u t t o n s
in n o d e A

from figure 4. According to the table (using j = m), every node of type "Model Instance" will have two

buttons:

1. A "Create Model Data Instance" button that enables the creation of nodes of type "Model Data

Instance". This button is associated with an action link labeled "X(da ta i n s t ance - Model Data Instance)"

which upon activation, issues a call to the external DSS application "create-Model Data Instance".

Link na lne

access B

create B

2. An "Access Model Data Instance" button that provides access to all "Model Data Instance" nodes

that are "data ins tances" of the current one. This button is associated with a link labeled

..!%"(data i n s t ance - Model Data ~ n s t a n c e) " that has multiple end-points: one per each data

instance of this node.

Link type

To find out the buttons and links to be associated with "Model Data Instance" nodes, we reverse the

relationship:

Model Data Ins tance --m--<data instance>--I-- Model Ins tance

j = 1
reference
action

access B
create B

j = m

The table is now used with j = 1. It indicates two buttons: an "Access Model Instance" button asso-

ciated with a one-destinatzon reference link; and a "Create Model Instance" button associated wit11 the

"create-once Model Instance" DSS application.

L +-+ B
X (L +-+ B)

M (L I-- B)

X(L - B)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

multiple endpoint
reference
action

browse

DSS application call
c rea te -B

Figure 5: A portion of a report describing a solution to the energy problem.

-

DBMS M&IS
cM&l Data Instanao

Transportation &
~" ,uc$~, model

....
......

\
d d v o r Imtana>

15Te have presented a simple language to syntactically represent schemas, and we have explained how to

conzpzle it into hypertext constructs. Although this is not meant to be a complete design, it demonstrates

the feasibility of our approach. The discussion also exposed one of the roles the schema engine (SE) plays

in the overall architecture. It acts as a cornpzler translating schemas into hypertext constructs (also called

'Lschemas" in Aquanet and HDM). ii. second role of the SE, upon which we will be elaborate in sections 6.3

and 6.4, relates to the propagation of DSS events to the hypertext.

Data Instance

.....

The user

6.2 Represelltillg inore intricate relatiollships

The kinds of relationships we have represented in the previous sections are of the referentzal kind: one object

referring to another one. A different kind of relationship is znclusion: severaI objects being part of another

one. For example, a report contains numbers obtained from computations and data from the Data Base.

Hence computed values and data are objects of the DSS-application domain which are part of another object:

the report. Figure 5 illustrates this. The report shown is a solution to the previously mentioned energy

problem. The portion of the report shown contains the input data for the supply of coal, which originates

in the Data Base; and the computed solution obtained from a specific execution of the model. The figure

shows that the elements within the report can themselves participate in relationships.

Report

....... Coal Supply ; c,,,;&
; 340,00j'..:
'~,Tc~enessa 250,Om)
:pussia l,soo,ooc):'

Ship - :.' ".... c d 120.0~0 ~ussia
I c d 3 0 , m Canada i

The issues that arise from such rich interaction albeit complex, are manageable within knowledge-oriented

Solution to transp &

eruc2~; for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

.4
C J

.....
................................

Results Instance

.*" I......

\ 1

........

hypertext systems such as HDM or Aquanet. From the decision rnaking perspective, such composite objects

provide tlle functionality to drzll-down elements of the process. report can be broken into pieces and each

piece analyzed in greater detail. The support of such capabilities only requires the availability of schemas

describing the structure of reports. In this way, H+ is able to present and manage information at various

granularities. A link might associate an entire report to another node, as well as portions of the report to

portions of other nodes. It all depends upon the kinds of schemas supplied to H+. This ability to parametrize

illformation is another of the powerful aspects of the schema approach to RMS.

6.3 A Coil~lnullicatioils Protocol

A conlplex sequence of state transitions takes place in the application domain as a user develops a model

by testing multiple versions and runs these versions using multiple model instances and data instances. By

carefully tracking these state transitions it is possible to construct a realization or instance of the schema in

figure 2. Our strategy is to have the schemas engine (SE) system (rather than the DSS) dynamically build

and maintain a replica of the actual network of relationships that are generated by the user interaction.

Every time an event or state transition occurs, the DSS simply passes a descriptive message describing the

event to the SE. The SE interprets this message using the schema and the past history of events, to decide

tlle nest addition, if any to its network. As state transitions occur in the application domain, the DSS sends

messages to H+ according to the following format:

Current-operat ion : =

[Create-object IModifysbject I Delete-object !]
S t a t e (= o b j e c t type from schema)

User-suppl ied o b j e c t i n s t a n c e name

[(a t t r i b u t e name= a t t r i b u t e va lue> , . . .]

Any of t,he lines of the message might be a procedure instead of a value. For example, instead of supplying

a name for an object, the system might specify that the user should be prompted for one. For example, the

following message originating in the MMS prompts the SE to create a new model instance named "Energy

T&D for NJ". It also resolves the "model-version" relationship by specifying the name of the model of which

this is an instance. The contents, the actual text and graphics, are passed with a pointer.

CREATE

MODEL INSTANCE

"Energy T&D f o r NJ"

[~ o d e l - v e r s i o n = TRANSP+DISTR MODEL

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Contents = < p t r to contents>]

Communication is realized as follows.

r Establishing the communication.

The toolsmith, who first builds the DSS system, and later model builders, who develop models using

the DSS, provide the H+ system with schemas of the application domain.

DSS initiated events.

The results of an activity of a DSS application are propagated to the user. This involves the following

steps:

a-1 The DSS causes events (state transitions) to occur in the application domain.

a-2 Messages from the DSS to the H+ system record these state transitions.

a-3 The H+ system uses the conceptual model of the application domain (a collection of schemas)

plus the messages sent by the DSS to construct and maintain a network of the state transitions

that have occurred to date.

a-4 The schemas allow the H f system to infer virtual relationships as required by the user or the

DSS.

a-5 The H+ system directs the user-interface (UI) to present appropriate aspects of the current ap-

plication state to the user.

4 User initiated events.

b-1 The user interacts with the user-interface by selecting, clicking or typing text.

b-2 The user-interface informs H + about the user actions.

b-3 H+ either handles the request itself - if i t does not require involvement of the DSS - or crafts an

appropriate message to the corresponding DSS application.

b-4 The DSS application carries out the request of the user.

Notice that user initiated events do not directly impact the conceptual model because it is a reflection of the

application domain, not of the user's perception of it. Only the DSS applications manipulate the schemas

via state-change messages.

6.4 An example

We illustrate the proposed communication protocol using the energy production-distribution problem.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

ModeT Ba
I

Mcdd Version Schema Model YersZonSchma

- a - > -
- b -

-
- C -

The evolution of a schema

SOURCES. . (~->
SINKS + Transp 8r Prducrion

SINK! NK, NTC,,,,
SOURCE CAKAak ..

1
- ay - + - b y - * -c l -

The user's view

Figure 6: The evolution of a schema and the user's view.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

The transportation-distribution model is developed top-down. Let us assume that through interaction

with the user, the DSS has evolved into the state depicted in figure 6-u. Two schemas have been defined for

generic models, one using structured modeling [Geo87] and the other expressed in a graphical language such

as LPGRAPI-I [hlMS89]. The model eerszon used is identical to the mode l t ype , i.e. no additional constraints

imposed. The user is viewing the screen as shown in 6-a'. The steps to create a mode l ins tance are illustrated

nest.

1. The user initiates the request by clicking on the Create Model Ins tance button on the LPGRAPH

version. This button is deduced from the Schema by the SE. The user-interface is in charge of identifying

the button activated. It sends a message to the HE system indicating which button has been activated,

e.g., bu t ton 09567 actzvated.

2. H+ retrieves all links originating in but ton 09567, in this case only one link exists. This is an ac t ion

link associated with the message:

CREATE

MODEL INSTANCE

(PROMPT THE USER FOR A MODEL INSTANCE NAME>

[~odel-version = TRANSP+DISTR MODEL]

3. Hf first prompts, via the user interface, for the name of the model instance to be created e.g., T n e r g y

T&D f o r NJ" and then sends the complete message to the DSS model management application:

CREATE

MODEL INSTANCE

"Energy T&D for NJ"

[~odel-version = TRANSP+DISTR MODEL]

Yow the Model Management System (a DSS-application) reacts to the message by creating an object

to represent the Energy T&D for NJ model instance of the distribution and transportation problem.

It then proceeds to

4. send a message to H+:

CREATE

MODEL INSTANCE NODE

"Energy T&D for NJ"

[~odel-version = TRANSPtDISTR MODEL]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Contents = < p t r t o contents f o r model i n s t ance node>]

5. SE augments the schema as shown in figure 6-b.

6. HE requests the user interface to present to the user the updated network. This is shown in figure

6-b'. Note that the buttons Create Model Data Ins tance , Access Model Data Ins tance , Create

Model Ins tance and Access Model Instance are automatically generated.

If the user now clicks on the Create Data Instance, s/he will trigger another chain of events which will

result in the screen as shown in figure 6- c'. The schema engine assists in resolving the Model Version

Schenza link by presenting the user with the choice between the structured modeling and tlte graphical

representations of the model - the latter one was chosen in this case.

Note that some links are handled entirely by H+ while others require the DSS application to become

active. For example accessing the model verszon schema from a given model data znstance is entirely handled

by H+. However, activating the RUN link to generate a resulis znstance requires a call to a specific solver.

The difference lies in that the first activity is part of relationship management and thus is talcen care of by

N+; ~v l~ i l e the second activity requires a call to an external application.

7 DISCUSSION

We have argued that there is a need for an integrated approach to managing and providing access to

the con~plex set of interrelated items of information in the application domain of a DSS. To provide this

functionality, we proposed that a fourth subsystem, specialized to "relationship management", be added to

the traditional three conlponents of a DSS (the database, user interface and model management systems).

The role of RMS is to help DSS application programs create and maintain structural relatlonshzps, that

represent the organization of domain elements, and process relatzonslizps, that represent the evolution of the

DSS. We identified eight requirements for relationship management:

1. High level of abstraction.

2. Rapid authoring.

:3. -Automated creation and maintenance of relationships

4. Exploration in the application domain

5. Coordination of computation.

6. Provide adequate semantics for abstract relationships.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

7. Support exploration of the application domain

8. Support for distributed group work.

9. J'ersion control.

and related these to the capabilities of a number of existing hypertext systems. We proposed an extended

form of hypertext engine H+ to provide both the full functionality of relationship management and an

attractive user interface based on the hypertext paradigm. At the core of H+ lie a knowledge oriented

hypertext and a schema engine. The DSS and H+ communicate using a) schemas, that describe the domain

of application, and b) state-change messages, that describe the outcomes of various DSS processes. The

role of the schema engine is to facilitate the coordination of activities between the DSS applications (in the

background) and the hypertext front-end.

I11 future research, we will investigate a number related issues:

A formal t<reatinellt of relationship management, including a calculus of re la t io i~sh ips .

Ail implementation of a prototype system for relationship management using existing hypertext soft-

ware.

Integrating existing DSSs into new relationship management systems.

An evaluation of the relationship management approach.

We believe that the concept of relationsliip management can play an important role in making DSS more

functional, more intuitive, and easier to use.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

References

[AI<NSG] Lynda M. Applegate, Benn R. IConsynski, and Jay F. Nunamaker. Model blanagement Systems:
Design for Decision Support. Decaszoiz Support Systems, 2:81-91, 1986.

[BBICPS] Hemant Bhargava, Michael Bieber, and Steven 0 . I<imbrough. Oona, hlax and the WYWWYWI
Principle: Generalyzed Hypertext and Model Management in a Symbolic Programming Envi-
ronment. In Janice I. DeGross and Margarethe B. Olson, editors, Proceedings of the Nznth ICIS,
pages 179-192, 1988.

[BH'iVSO] R. H. Bonczeck, Clyde Holsapple, and Andrew B. Whinston. Future Directions for Developing
Decision Support Systems. Deczszon Sczences, 11(2):616-631, October 1980.

[BISla] Michael P. Bieber and Tombs Isakowitz. Bridge Laws in Hypertext, a Logic Modeling Approach.
Working paper IS-91-17, Center for Research in Information Systems, New York University,
Information systems Department, New York, NY 10003, 1991.

[BISlb] hlichael P. Bieber and Tom& Isakowitz. Valuation Links: Formally Extending the Computa-
tional Power of Hypertext. Ifrorking paper IS-91-11> Center for Research in Information Systems,
New York University, Information systems Department, New York, NY 10003, 1991.

[Biegl] hlichael P. Bieber. Issues in Modeling a Dynamic Hypertext Interface. In Hypertext' 91 Proceed-
ings, pages 203-218, San Antonio, Texas, December 1991. ACM, ACRiI Press.

[BIJSSl] P. R. Balasubramanian, Tom& Isakowitz, Hardeep Johar, and Edward A. Stohr. Hyper Model
Management Systems. Working paper IS-91-16, Center for Research in Informatiorl Systems,
New York University, Information systems Department, New York, NY 10003, 1991.

[BIJS92] P. R. Balasubramanian, Tombs Isakowitz, Hardeep Johar, and Edward A. Stohr. Hyper Model
Management Systems. In Jay F. Nunamaker, editor, Proceedtngs of the 25th Wawazi Internatzonal
Conference ozn System Sczences, Volume 111, pages 462-472, Kauai, HI, January 1992. IEEE
Computer Society Press.

[BII<RI91] P. R. Balasubramanian, Tombs Isakowitz, Rob Icauffman, and Raghav I<. Madhavan. Exploiting
Hypertext Valuation Links for Business Decision h4aking: A Portfolio Management Illustration.
In Roy Freedman, editor, Proceedzngs of i!he Fzrst Internatzonal Conference on Arizficzal Intellz-
gence Applzcatzons on Wall Street, pages 312-318, New York, NY, October 1991. (forthcoming).

[BI<92] Michael P. Bieber and Steven 0 . Kimbrough. On Generalizing the Concept of Hypertext. :Man-
agement Informatzon Systems Quarterly, 16(1):77-93, March 1992.

[Bus451 Vannevar Bush. As we may think. Atlantic iMonthly, pages 101-108, July 1945.

[BWD'89] Robert Blanning, Andrew Whinston, Vasant Dhar, Clyde Holsapple, Mathias Jarke, Stephen
ICimbrough, Javier Lerch, and Michael Prietula. Precis of Model Management and the Language
of Thought Hypothesis. In Edward A. Stohr, editor, Proceedtngs ISDP-89, 1989.

[CBSS] Jeff Conklin and Michael L. Begeman. gIBIS: A Tool for A11 Reasons. Journal of the American
Society for Information Science, 20(3):200-213, 1989.

[CCCS2] Erran Carmel, S. Crawford, and H. Chen. Browsing in Hypertext: A Cognitive Study. IEEE
Transactioi~s on system.^, ;Man and Cybernetics, Forthcoming, 1992.

[Che'iG] P. P. Chen. The Entity Relationship hfodel: Toward a Unified View of Data. ACM Transactions
on Database Systems, 1(1):9-36, 1976.

[CN'iV92] A. Chang, Clyde W. Holsapple, and Andrew B. Whinston. The Hyperknowledge Environment of
Model Management Systems. In Edward A. Stohr and Ben R. I<onsynski, editors, Ii~formation
and Deczszon Processes. IEEE Computer Society Press, 1992.

[Con871 Jeff Conklin. Hypertext: An Introduction and Survey. IEEE Computer, 20(9):17-41, September
1987.

[DSS7J Norman Delisle and hdayer Schwartz. Contexts-A Partitioning Concept For Hypertext. ACM
Transactions on Ofice Iizformation Systems, 5(2):168-186, 198'7.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

[EngS:3] Douglilas C. Engelbart. Ifistas in Information Uandling. Spartan Books, London, 1983.

[Eng88] Douglas C. Engelbart. The Augmentation System Framework. In S. Ambron and I<. Hooper,
editors, Ixteractzve ilfultlmedza. hficrosoft Press, Redinond, Washington, 1988.

[FriSS] Mark E. Frisse. Searching For Information In A Hypertext Medical Handbook. Comnzut~ications
of the ACM, 31(7):880-SSG, July 1988.

[GBST] Ira P. Goldstein and Daniel G. Bobrow. A Layered Approach to Software Design. In D. Barstow,
H. Sclirobe, and E. Sande~vall, editors, Interactzve Programmzng Envzronments, pages 387-413.
McGraw-Hill, New York, 1987.

[GeoSi] Arthur M. Geoffrion. An Introduction To Structured Modeling. Management Sczence, 33(5):547-
588, May 1987.

[GPS91] Franca Garzotto, Paolo Paolini, and Daniel Schwabe. HDM - A Model for the Design of Hypertext
Applications. In Hypertext '91 Proceedings, pages 313-328, San Antonio, Texas, December 1991.
ACM, ACkl Press.

[GUI87] GUIDE. Guide User's ilIanua1. Owl International Inc., 1428 NE 21 St., Bellevue, TVA 98007,
(206) 747-3203, 1987.

[Hal881 Frank G. Halasz. Reflections on Notecards: Seven Issues for the Next Generation of Hypermedia
Systems. Communications of the ACrM, 31(7):836-852, 1988.

[Hal911 Frank G. Halasz. Seven Issues: Revisited. HypertextJ91 Keynote Talk, Hypert,est'91 Conference,
December 1991.

[HALT871 Franli G. Halasz, T.P. hiloran, and Randy H. Trigg. Notecards in a Nutshell. In Proceedzngs of
the AC'II Conference 012 Human Factors zn Computzng Systems, 1987.

[HSGG] J . Hartmanis and R. E. Stearns. Algebrazc Structure Theory of Sequentzal dfachznes. Prentice
Hall, 1966.

[HS90] Frank G. Halasz and Meyer Schwartz. The Dexter Hypertext Reference Model. In Judi Moline,
Dan Beningni, and Jean Baronas, editors, Proceedings of the Hypertext Standartiration Work-
shop, pages 95-133, Gaithersburg, MD 20899, March 1990. National Institute of Standards and
Technology, NIST special publication 500-178.

[Hub841 George P. Huber. The Nature And Design Of Post-Industrial Organizations. Management
Science, 30(8):928-951, August 1984.

[Isa92] T o m b Isakowitz. MALUAR - A Computational Hypertext Environment. TVorking paper, Center
for Research in Information Systems, New York University, Information systems Department,
New York, XY 10003, 1992.

[I<eeSO] Peter G. W. Keen. Decision Support Systems: Translating Useful Models into Usable Technolo-
gies. Sloan iblanagement Revzew, 21(3):33-44, Spring 1980.

[IiP13B90] Steven 0 . ICirnbrough, Clark 11'. Pritchett, Michael P. Bieber, and Hemant I<. Bhargava. The
Coast Guard's ICSS Project. Interfaces, 20(6):5-16, November/December 1990.

[I<S91] Harinann I<aindl and Mikael Snaprud. Hypertext and Structured Object Representation: A
Unifying View. In Hypertext'gl Proceedzngs, pages 354-358, San Antonio, Texas, December
1991. AC3I, ACM Press.

[IiS92] Ben Iioiisynski and Edward A. Stohr. Decision Processes: An Organizational View. In Edward A.
Stohr and Ben I<onsynski, editors, Informatzon and Deczszon Processes. IEEE Computer Society
Press, 1992.

[La11901 Danny B. Lange. A Formal hlodel of Hypertext. 111 Judi Moline, Dan Beningni, and
Jean Baronas, editors, Proceedzngs of the Hypertext Standartzratzon PVorkshop, pages 145-166,
Gaithersburg, hfD 20899, March 1990. National Institute of Standards and Technology, NIST
special publication 500-178.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

[A1BD+90] Raynloild 3. hfcCal1, Patrick R. Bennett, Peter S. D'Oronzio, Jonathan L. Ostwald, Frank
Nf. Shipinan 111, and Nathan F. Wallace. PHIDIAS: Integrating CAD Graphics into Dynamic
Hypertext. In A. Rizk, N . Streitz, and J . Andre, editors, Proceedzngs ofthe European Conference
on Hypertext, pages 212-223, France, November 1990. INRIA, Cambridge University Press.

[RIHRJSl] Catherine C. Marshall, Frank G. Halasz, Russell A. Rogers, and William C. Janssen Jr. Aquanet:
a hypertext tool to hold your knowledge in place. In Hypertext'gl Proceedings, pages 261-275,
San Antonio, Texas, December 1991. AChf, AChI Press.

[A/fin90] R.P. Minch. Applications and Research Areas for Hypertext in Decision Support Systems.
Journal of iklanagement Irzformatlon Systems, 6(3):119-138, Winter 1989-90.

[;\IhIS89] P. Ma, F.H. Murphy, and E.A. Stohr. A graphics interface for linear programming. CACM,
32(8):996-1012, May 1989.

[i\1092] Nenad hflarovac and Larry Osburn. Hypernet. Working paper, Computer Science Department,
San Diego University, 1992.

[MS88] G. Marchionini and Ben Shneiderman. Finding Facts vs. Browsing Icnowledge in Hypertext
Systems. IEEE Computer, pages 70-80, January 1988.

[NelSO] Theodor H. Nelson. Replacing the Printed Word: A Corflplete Literary System. In S. H.
Lavington, editor, IFIP Proceedings, pages 1013-1023. North Holland, 1980.

[NieSOa] Jaliob Nielsen. HyperText €4 HyperMedia. Academic Press, 1990.

[NieSOb] Jakob Nielsen. Through Hypertext. Communications of the ACM, 33(3):297-310, March 1990.

[9] Jocelytle Nanard and Marc Nanard. Using Structured Types to incorporate Icnowldege in Hy-
pertext. In Hypertext'91 Proceedings, pages 329-342, San Antonio, Texas, December 1991. ACM,
ACM Press.

[RTSS] Darrell R. Raymond and Frank WM. Tompa. Hypertext And The Oxford English Dictionary.
Communications of the .4Chf, 31(7):87l-879, July 1988.

[SCGLSl] Karen Smith-Catlin, L. Nancy Garrett, and Julie A. Launhardt. Hypermedia Templates: An
Author's Tool. In Hypertext'91 Proceedzngs, pages 147-160, San Antonio, Texas, December 1991.
ACM, ACRl Press.

[SF891 P. David Stotts and Richard Furuta. Petri net based Hypertext: Document Structure with
Browsing Semantics. ACM Transactions on Informatio~z Systems, 7(1), January 1989.

[SL89] John L. Schnase and John J . Leggett. Computational Hypertext in Biological Rifodelling. In Hy-
pertext '59 Conference Proceedings, pages 181-197, Hypertext Research Lab, Dept. of Computer
Science, Texas A&M University, College Station, T X 77843, November 1989.

[Spr89] Ralph H. Sprague. A Framework for the Development of Decision Support Systems. In Ralph H.
Sprague and Hugh J . Watson, editors, Decision Support systems, Putting Theory into Practice,
chapter 1, pages 9-35. Prentice Hall, second edition, 1989.

[UYSS] Kenneth Utting and Nicole Yankelovich. Context and Orientation in EIyperinedia Networks.
AChf Trarlsactzons on Ir~formatio7z Systems, 7(1):58-84, January 1989.

[YhlvD85] Nicole Yankelovich, Norman Meyrowitz, and Andries van Dam. Reading and Writing the Elec-
tronic Book. IEEE Compufer, October, 1985.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-92-22

