MALUAR - A COMPUTATIONAL
HYPERTEXT ENVIRONMENT

by

Tomas Isakowitz
Information Systems Department
Leonard N. Stern School of Business
New York University
New York, New York 10012

July 1992

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

Working Paper Series

STERN 15-92-21

Tomds Isakowitz i

Contents
1 Overview of the system 1
2 How to use Maluar 2
21l NOPDES .. s @ i M A D SN & ¥ TN g 2
B3 WWEBRSE | .y i b s eeams s e @n €6 & w5 0o s e 3
28 EBINBS ¢ i i voms v vame mpman mem sx vem s w e s o 3
24 KEYWORDS .50 6 osumommmme neossasdssis 4
3 Architecture of the system 6
B MWOHEY v v v i GO AES GE RS ¥ P w3 6
311 BleMNodes i vvn v e v s a e W os s A om S
J3.1.2 Tredowindowfileniode » ¢ vocov v mne v o e 7
32 WIndowobjeets 5 « « v v v v cw v w0 w s s s mn s n e v s e d 1
33 NodeAddressessownp s i smaaes sa e @i 8
Bhd Kewwords o oo vaminin 36 603w aB s B v E &5 W 8
B TIEEE v v v i 0w g R @ B M B B e g ek s 8
4 The system as a toolbox: functions 10
4.1 Piaetiong on Hod88 « o v v sov v w s m s na 4w ow s @ e i s G 10
411 FileNodes« oo v vnononn e 10
4.1.2 fredwindowfilemode .. <., 0 o iieinvee 11
4.2 Window obj8tts & o s u v v v ms i s v ua s e xw s 11
43 Node Addresses v v v v v v v it i e e 13
R Lol i vamen ro B s s mEd g G8 EE GRS RS 14
441 TKeywordlinksot 17
5 System Details . 18
6 Code 19
B.1 BREbBED « o4 s v s s e s G e e 6w e 20
6.2 hypersystem.disp i 0 v v i e i e e e e e 21
B3 BypetmistsliSn s « « c oo m wom wom omos nd b da s d 8w B E 22
64 BHyper-Combtablisp . . .« o0 vs a5 63 ¢35 63w 4% e 23
68 BERIEE s sn v i nme i @ i 40 9 6% 8§ 55 % 5% G% 5 5 8 24
68 butlonshish o vc o vmaman mam s sa o8 em s e 25
B7 CHbpasteliBh v cow s ws s mompmnn sa 48w 5w 26

Maluar

i
BB memss iy s+ 4 s mss s BE s BameE e v a A 27
6.9 linkdatabaselisp« o v vsms i s m e w e w e owa e 28
6.10 keywords.lisp L 29
Center for Digital Economy Research
Stern School of Busimess

Working Paper 18-92-21

Tomds Isakowitz 1

1 Overview of the system

Maluar is a Hypertext system designed to handle documents and links be-
tween them. It provides a basic set of tools that can be used to create more
elaborate Hypertext Environments.

The system is implemented in Allegro Common Lisp. It uses the Emacs-
like FRED editor which is part of the Allegro Common Lisp programming
environmnent.

The system contains two first class objects: Nodes and Links. The nodes
are used to contain information and the links to establish relationships be-
tween nodes. A link is a reference {from a region of one node to a region
of another node. The system provides interactive functions to support link
and node maintenance: creation, deletion and update.Browsing of Hyper-
Documents is supported by link traversal. The system supports keyword
handling. Whenever a keyword is found. a link is created from the occur-
rence of the keyword to its definition.

The system is Object-Oriented and has an open architecture. The Lisp
funtions it provides cam be called by other Lisp programs. As an example
of this, I have included with the system a program that identifies all Lisp
functions occurring in a node and defines them as keywords. This way any
other program that uses these Lisp functions will automatically have links
to the functions definitions.

Center tor [gital Economy Research

Stern School of Business

Maluar

2

2 How to use Maluar

To start the system double click on the program ”start.lisp” which will launch
Allegro Common Lisp and start the system. Currently, the system is to be
run in interpreter mode. Messages will appear on the screen as the different
components of the system are loaded. The menu-bar will be updated with
new options and the Messages window will appear with the following con-
tents:

sk sk 3 3k 3% 3 3 3k sk ok ol ok ke o o o o ok 3k R oK S ook sk sk sk sk sk sk ik sk s sk e e sk ok sk ok ok ok ok st ok ok ok sk ook sk sk sk sk ok ook sk okok sk skoieokokoskeokskokok

Welcome to Maluar.

" You can start working by selecting the appropiate menues on the
menu bar.

For a demo, open the '"memo-jan-28" node in the DEMO folder.
Sk ok o KK KK K o o K oK K o o o KK R KK Sk o KK oK o S ok sk sk o ok o ok ko o kokakskokok ok sk ook sk ok ok ok ok

The last four menues in the menu-bar pertain exculsively to the Maluar
system, the first five are part of the Allegro Common Lisp environment. Here
is a list of the actions that are supported by the system:

2.1 NODES

All node operations are accessible from the "nodes” menu.
Menu [tems:

e New Node: To create a new node. A dialog box will prompt you for
the name of the new node.

¢ Open Node: To access an already existing node.

e Save Node: To save the contents fo a node (it doen’t close the node).

Center for Digital Economy Research
~tem School of Business
Working Paper 18-92-21

Tomads Isakowitz 3

e Close Node: Closes the window of where the node appears. If the
node has not been saved, you are given the opportunity to do so.

2.2 WEBS

A collection of links is called a WEB. The system allows you to use different
webs on the same set of nodes. This supports node content sharing among
different users while keeping the links that each user defines separate. When
the system starts, the links in the "node:WEB?” file are loaded.

Menu Items:

e Reset Web: clears from memory all links currently in use (Caution:
the links are not saved. You should also "un-highlight” the links before
doing this.)

o Merge a Web: add all links in an existing Web to the current set of
links.

e Load a New Web: clear the current setb of alinks and load all links
in an existing Web.
(Caution: the links are not saved. You should also "un-highlight” the
links before doing this.)

e Save Web: save the current set of links under the name last given to
the Web. :

e Save Web as: give a name ans save the links under that name.

2.3 LINKS

The system supports inteactive link maintenance and manipulation.
To create a link the following procedure should be followed:

1. select the source of the link,

2. choose "Set link source” from the LINKS menu,

Center for Digital Economy Research

Stem School of Business

Workmg Paper 15-92-21

4 Maluar

3. move the mouse to the node where the destination of the link is to be
placed,

4. either position the mouse or select a region to be the specific destination
position of the link,

5. choose ”Set link destination” from the LINKS menu, and
6. choose "Create link” from the LINKS menu.

NOTE: One can also perform the previous proceduer in reverse order,
selecting first the end-point and then the source-point of a link.

To traverse a link: position the mouse within the link source (a button),
and choose "Traverse Link” from the LINKS menu. '
Menu Items:

e Set link source: define the origin of a link.
e Set link destination: define the destination of a link.
e Delete links: dekete all links in the highlighted region.

¢ Highlight Links: show all links in the current document by changing
font.

e Un-highlight links: hide all links by changing the font back to plain
text.

e Traverse Link: traverse the link (see above).

2.4 KEYWORDS

Certain words can be defined as keywords. This entails selecting a word and
specifying its definition. The system will then recognize occurrences of these
keywords and create links to teir definitions.

To create a keyword and its definition do as follows:

1. select the word to he defined as a keyword,

Center tor [gital Economy Research

Stern School of Business

Tomds Isakowitz 5

8]

choose ”Current Keyword to be defined” from the menu,

3. Move to the node where the definition for this keyword is to be placed
4. select the text that defines the keyword

5. choose "Set Current Keyword’s Definition” from the menu.

Menu Items:

e Current Keyword to be defined: to define a keyword (see above).
e Set Current Keyword’s Definition: to define a keyword (see above).

¢ Recognize Keywords in this node: will recognize and create ap-
propriate links for each keyword occurrence in this node.

e Make Lisp functions into Keywords: this only runs on nodes which
contain Lisp programs. It will recognize function definitions and make
each such function into a keyword.

Center tor [gital Economy Research

St School of Business

6 Maluar

3 Architecture of the system

We use an Object-Oriented approach. There are three principal types of ob-
jects: Nodes, Links and Editor windows. The system provides maintenance
for these objects. There are functions to create, delete and update each of
these entities as well as some housekeeping. The system is loaded by running
the program ”start.lisp” which defines the directory from which the called
was launched as the home directory for all file operations. This involves
accessing programs as well as documents. This option supports portability.
Copying the complete folder to another location will not affect it. The pro-
gram “start.lisp” calls "hypersystem.lisp” to define global variables and load
the rest of the code. :
We proceed to describe each type of object.

3.1 Nodes
The code pertaining to nodes is stored in the file: HYPERMACS.LISP. The

following hierarchy is for nodes.

node

file_node
|
|

fred_window_file_node

"file_node” nodes have files associated with them. The node contents are
associated in these files.
"fred_window_filenode” nodes are "filenodes” which are setup so that the
text in the files will be accessible via FRED, the emacs-like editor. Whenever
such a node is accessed, the editor is invoked to allow the user to inreact with
the file contents. This is the most common node in this system.

Center tor [gital Economy Research

Stern School of Business

Tomas Isakowitz 7

2

Each node is named at creation time by passing a ”:name” parameter.
The system keeps a table of all active nodes during a session. This table is
used to determine how the node is to be accessed. If the node is active, there
has to be an active window associated with it, node acyivation consist of
bringing this window to the front. If the window is not active, it is activated
(in the case of filenodes by reading the file contents into a new window).

3.1.1 file_Nodes

These are a subtype of nodes. There is a separation between nodes and their
contents. Each node that has been created is entered into a table (in the
form of a list called "existing nodes_list.”). This table associates with each
node name the complete filename of the file where its contents are stored.
The table i1s automatically updated whenever a node is created. Deletion
when destroying a node is not yet implemented.

3.1.2 fred_window_file_node

These are the most commonly used nodes within the system. Their contents
are to be manipulated via FRED, the emacs like editor upon which the user-
interface of the system is based. Each "fred_window_file node” node has a
FRED window associated with it. Whenever such a node is opened, the
window is displayed and the name of the node i entered into the "nodes”
menu in the menu-bar to make all nodes accessible via the "nodes” menu.
When closing such a node the node’s name is removed from that menu.

3.2 Window objects

The "hyper fred_window” object is defined as a subtype of the built-in *fred-
window™ object type. It inherits all the Emacs-like editing features from
that objects. I have added onto it a set of hypertext features that support
link manipulation. This is achieved by defining object specific functions
such as character insertion, deletion, cutting and pasting which will take
care of manipulating the links properly, and by also changing the effects of
keyboard activity via the comtab concept present in FRED. I define a special
comtab named: *hyper-comtab™. The objects of type hyper_fred_window
have this special comtab associated with them. There are a number of link m

Center for Di pital Economy Research

Stern School of Business

Maluar

oo

anipulation activities defined as object functions for "hyper_fred_window”s,
these are explained further on in the links section.

3.3 Node Addresses

This type of object tantamounts to "buttons” in other systems. It contains
the infomation neccessary to anchor the links. A node_address consist of:

1. node_id which is the name of a node
2. start_pos: which is the starting position within that node and

3. end_pos: which is the ending position within that node.

3.4 Keywords

The system supports the concept of a "keyword”. It associates with each
keyword a definition. Keyword recognition routines will identify keyword
occurrences in a given node and create a link connecting each keyword oc-
currence with its definition. Keywords are thus supported by a special type
of link: keywordlink.

3.5 Links

The folowing is the hierarchy for links:

keyword_link

Center tor Digital Economy Research

Stern School of Business

i

Line P I
working aper |

&_09.27

Tomds Isakowitz 9

Links have a number, a source address, a destination address and a type.
Keyword links in addition have information abaout the actual keyword they
represent. The type of a link is to be used to identify different kinds of links.
Currently, it is only used when determining the font with which to highlight
a link in a document. This is done via a font_table defined by the function
(font_spec link) as follows:

o Links created interactively are of type "menue” and are displayed as
underlined.

e Links generatde by the system are of type "system” and are displayed
shadow.

e Keyword links appear in boldface.
o Other links will appear in italics.

The system keeps track of all links currently in use in a global variable
called "link dist”. Whenever a link is created or deleted this variable is mod-
ified accodingly. .

Whenever a WEB is saved, this list of links is written onto file. Whenever
a WEB is loaded its contents replace those of "link.list”, and whenever a
WEB is merged, its contents are added to "linklist”.

Center for Digital Economy Researc
Stern School of

Working Paper 15-9

1085

221

10 Maluar

4 The system as a toolbox: functions

4.1 Functions on nodes

The system keeps track of the nodes which are active in the current session.
When accessing a node, the system first checks wether that node is active. If
it is, its window is brought to the front. If it is not active, a new window is
opened and the node contents read into it. This is achieved via the following
functions:

o add_to_activenode_base(node)
¢ remove_from_activenode_base(node)

- o activenode (name): if there is a node named "name” which is active,
it is rteturned.

Object Functions for opening and closing nodes are provided:
e nopen: adds the node to the list of active nodes.

e nclose: removes teh nodes from the list of active nodes.

4.1.1 File Nodes

When creating a new node, a filename is specified and the pair is added to
table of existing nodes. This allows links to refer to a node name instead of
a file name, thereby supporting portability (copying a file from one location
to another one involves chaging the entry in the "existing nodes” table. One
can also remove such a pair from the table. This is achieved with the follow-
ing functions:

¢ add_to_existingnodes_list(name fname), and
e removefrom_existing-nodes_list(name).

e existingnode (name): if "name” is in the list of existing nodes, the
pair (name fname) is returned.

Center tor [gital Economy Research

Stern School of Bus

Tomds Isakowitz 11
The table of existing nodes is kept on disk. The following functions are
used to achieve that:
e read_existing_nodes_list (): loads the table from disk.

o write_existing nodes_list (): writes the table onto disk.

4.1.2 fred_window_file_node

Recall that objects of type "fred_window_file node” are file_nodes that have
an EMACS-like window associated with them. The following object func-
tions are provided for "fred_window_file node”. :

e nopen: a window is opened (type hyper_fred_window) and is associated
with this node, the name is added to the "nodes” menu.

e nclose: the window is closed, the node’s name is removed from the
"nodes” menu.

e fwsave: the contents of the node are saved onto the associated file.

e activate_yourself_at_position(position): makes the current node active
placing the cursor at the given position.

o activate_yourself_at_current_position: makes the current node active
leaving the cursor where it was bhefore.

4.2 Window objects

The nodes of type fred_window_file_node have windows associated with them
which are of type hyper_fred_window. The following functions are provided
for this object type:

o get_selectionrange: returns a pair consisting of the start and end of
the current selection within the window.

e selectionlength: returns the length of the current selection within the
window.

Center tor]_‘-!__'ll_:l Economy Research

Stern School of Business

12 Maluar

e hyper-buffer-insert: inserts a stringin the buffer.

e window-close: closes the window. It also tells the owning node to close
itself.

All text editing is performed in this type of window, thisa is achieved by
using the built-in FRED functions. I augmented these functions to support
link maintenance.

¢ ED-INSERT-CHAR (character): a "hyperfred_-window” object func-
tion that inserts a character. It calls ”delete_all links_with_source_affected_by_selection”
in case that the user is typing over a selection (thereby erasing it) and
then "move_links_over position 1”7 to correct the positioning of links.

-¢ ED-DELETE-WITH-UNDO (start end &optional (save T)): a "hy-
per_fred.window” object function that deletes the text in the affected
region and updates the position of all links which occur beyond the end
of the selection.

o cut(): the "hyper_fred-window” object function version of normal cut,
it deals with the links attached to the text being cut.

o copy(): the "hyperfred_window” object function version of normal
cut, it deals with the links attached to the text being copied. It calls
"copyinks” to do this.

e paste(): the "hyper_fred_window” object function version of normal
cut, it deals with the links attached to the text being pasted. It calls
"move_links_over” to do this.

e copy.links (): the "hyper_fred_window” object function that copies all
links within the current selection into a temporary list so that these
can later be pasted onto another location.

e pastelinks (): the "hyper_fred_window” object function that pastes the
links attached to the text in the clipboard.

o hyper_buffer-delete (start end): a "hyperfred_window” object func-
tion that deletes the text and associated links within the boundaries
specified by start and end.

Center tor Digital Economy Research

Stern School of Business

Tomds Isakowiiz 13

e hyper_buffer-insert (str pos): a "hyper_fred_window” object function
that inserts the string "str” starting at position "pos” in the window.

In addition, the comtab which associates keys with functions is changed
to "*hyper-comtab*” which contains the following associations:

e CONTROL-D: hyper-ed-delete-char.
e Backspace Key: hyper-ED-RUBOUT-CHAR
e Tab Key: hyper-ED-INDENT

The functions used are:

e hyper-ED-RUBOUT-CHAR (): A "hyperfred_-window” object func-
tion that is associated with the backspace key. It deletes the chaterbe-
fore the current cursor mark.

o hyper-ED-INDENT (): A "hyper-fred_-window” object function that
is associated with the TAB key. It inserts four spaces properly by
updating the positions of the affected links. ‘

e hyper-ed-delete-char (): A "hyper_fred_window” object function that is
associated with the CONTROL-D key combination. It deltes the char-
acter at the cursor’s position and updates the positions of the affected
links.

4.3 Node Addresses

Recall that node addresses are used as source and destination of links. The
following functions are provided for node addresses:

¢ makenode_address(node_id start_pos end_pos): creates a new object of
type node address, with the given information.

e copy-node_address (node_address): creates a new object which is a copy
of the one given as as input.

Center tor [gital Economy Research

Stern School of Business

14 Maluar

4.4 Links

The set of active links is kept in memory during a session. At the end of a
session it has to be placed on disk. A collection of links is called a ”Web”.
The following set of functions is used to store the Webs in files. These func-
tions are to be replaced by a call to a DBMS.

e reset_web (): erases the currently active set of links.
e set_web (web_fname): loads the web stored in the file named ”web_fname”.

e add_web (web_fname): adds the web stored in the file named ” web_fname”
to the current set of active links.

e save.web (webfname): saves the current set of active links in file
"web_fname”.

Adding and removing liks from the current link repository (the current
Web) is achieved via the functions:

e add_-to.link_base (link), and

e deletelink (link).

The functions to manipulate links are defined in three files: create-link.lisp,
link.lisp and buttons.lisp. Some of these functions are Lisp functions, others
are object functions for different types of objects (not necessarily links).

Here is a list of the functions:

o create new_link (source destination type &optional keyword._string):
Checks if the link is not duplicating an existing one (with the func-
tion same_link.nfo). If not, it calls create_link to create the link.

e createlink (link.id source destination type &optional keyword_string):
creates a new link and adds it to the list of links.

e selectsource_of link (): a "hyperfred_window” object function. It is
used to intertactivelly set the soure of a link when the user manually
creates a link. It uses the global variable link_source.

Center for Di pital Economy Research

Stern School of Business

Tomds Isakowitz 15

e select_destination_of link (): a “hyper_fred_window” object function.
It is used to intertactivelly set the destination of a link when the user
manually creates a link. It uses the global variable link_destination.

e cl (): a "hyperired_window” object function. It is used to intertactiv-
elly create a link connecting the previously set source and destination.

The following are functions manipulate links:

o delete_all links_in (list): deletes from "link_list” all the links appearing
in list.

o delete_all links_originating_in (node_name): deletes all links which orig-
inate in the node with name "node_name”.

o delete_all links_affected_by_selection (): a "hyperdred_window” object
function that will delete all links originating or ending in the region
selected within the window.

e traverse (): a ”link” object function, it accesses the destination node
of the link, it also adds the link to the "backtrack” stack.

e traverselink() : a "hyper_fred_window” object function that will iden-
tify the links affected by the current selection and traverse the first of
these.

e get links_with_source_affected() : a "hyper_fred_window” object func-
tion that will identify the links affected by the current selection.

e find links_originating_here() : a "hyper_fred_window” object function
that will identify the all links originating in a window.

e find_all links_with_source_equal() : a function that will identify the all
links originating in a node.

e collect links_with_source (node_name list_of links): extract from "list_of links”
all links that originate in node_name.

e find_links_ending_here() : a "hyper_fred_-window” object function that
will identify all links ending in a window.

Center tor [gital Economy Research

Stern School of Business

16

Maluar

find_all links_with_destination_equal (node_name): a function that will
identify the all links ending in a node. -

collect links_with_destination (node_name list_of links): extract from
"list_of links” all links that end in node_name.

highlight links() : a "hyper_fred_window” object function that will
highlight the all links originating in a window.

highlight(): a "link” object function that will highlight the link in its
originating window.

un_highlightlinks() : a "hyper_fred_window” object function that will
un-highlight the all links originating in a window. -

font_spec: a “link” objevt function that will decide the font used to
highlight a link depending on its type.

movelinks_over (position delta): a "hyper_fred_-window” object func-
tion that update the position of all links either originating or ending in
the winmdow from position given by the argument " position” by delta
(positive or negative). This is used whenver inserting or deleting text.

Whenever a selection is active in a window, the set of links in that win-
dow is classified into seven sets accoring to the kind of overlap it has with
the selecttion. The classes are:

No match: links that do not intersect with the selection

Partial Right: links that partially intersect on the rhs of the link.
Partial Left: links that partially intersect on the lhs of the link.
Partial Enclose: links that contain the selection.

Exact: links that exactly match the selection.

Enclosed: links that are enclosed by the selection

Error: links that are not covered under the other alternatives, as pro-
gramming mistake.

Center for Digital Econd
Stern School of Business

Working Paper 18-92-21

Tomds Isakowitz 17

Last we have:

e links_clicked(): a ”hyper_fred_window” object function that returns the
six sets of links affected by the current selection (as described above).

4.4.1 Keyword links

Keywording is supported via the special link type "keword link”.

e create_keyword (keyword_string anchor type): makes "keyword_string”
into a keyword. It associates its destination with "anchor”, a node
address. The type can be used to allowd further differentiation among
different classes of keywords.

e current_keyword (): A "hyperfred-window” object function that marks
the text of the current selection as a keyword. Used to interactively
define keywords.

e select keyword_definition(): A "hyper_fred_window” object function that
sets the definition of the current keyword to the selected text.

e create links_for_keywords(): A "hyperfred_window” object function
that will identify all keywords occurring in the window.

Center tor Digital Economy Research
Stern School of Business

W o Berraae TR 0.7
Working Paper IS-92-21

18

5

Maluar

System Details

The global variables used in the system are given next.

link source: the source of a link to be created. Used when manually
creating links.

link_destination: the destination of a link to be created. Used when
manually creating links.

clipboard_size: used to keep track of the size of the text being copied
by the "copy” and "cut” functions. It is used to determine by the
displacement of links when "paste” is performed.

copyinks_list: used to keep a list of the links attached to the text
being copied onto the clipboard by the "copy” "hyper_fred_window”
object function.

linklist: keeps the currently active list of links. (Loaded and saved
onto a web)

keywords_assoc_list: table associting a keyword string with a node
adress (suposedly the location of its definition. .

current_keyword: the keyword being defined, as a string of characters.

*hyper-comtab™: the association between keys and functions used for
hypertext editing.

activenode_list: The list of the currently active (open) nodes

link number: A counter. Each link is automatically given a number
using this counter (which is incremented each time).

hyper_emacs_nodes_menu: The menu for node operations.
hyper_emacslinks_.menu: The menu for link operations..

hyper_emacs_webs_menu: The menu for web operations.

Center for Di pital Econe

Ste chool of Bus

6

Code

The code is stored in the following files:

start.lisp: start the system.

hypersystem.lisp: define importany parameters, load the system.

hypermacs.lisp: Nodes objects.

links.lisp: Lisp objects.

buttons.lisp: address objects.

hypert-comtab.lisp: redefining the keyboard mapping.
cut:paste.lisp: hypertext copy, cut & paste.
menues.lisp : interactive menue definitions.
link_data_base.lisp: storing the links.

keywords.lisp: managing keywords.

Center for Digital Economy Researc

Stern School of |

Working Paper 15-9

1085

221

6.1 start.lisp

Starts the system. It defines some parameters, sets the current directory as
the root for all subsequent file management operations in the system. It the
calls HYPERSYSTEM.LISP.

Cenler for Digital Economy Research

Stern School of Bu

Working Paper 18-92-2

6.2 hypersystem.lisp

Declares theglobal variables.
Loades the rest of the system.

6.3 hypermacs.lisp

All node maintenance functions and Hyper-Windowing functions are defined
here. It loads Hyper-Comtab.lisp.

Center For Dieital Economy Research
Stern School of Busimess

Waorking Paper IS-92-21

6.4 Hyper-Comtab.lisp

Redefines the mapping between keyboard keystrokes and lisp functions. It
customizes the keystrokes to function in the Hypert-Text Environment.

Center tor Dieital Economy Research
Stern School of Business

Working Paper 15-92-21

6.5 link.lisp

Defines Link Objects and their maintenance functions.

Center for Digital Economy Research
Stern School of Business

Working Paper 18-92-21

6.6 buttons.lisp

Defines node_adresses (my version of buttons) and all related functions such

as:

links originating in a node
links ending in a node
links affected by a selection

etc.

Center tor Digital Eco

Stern School of |

Working Paper 1S-92-2

6.7 cut-paste.lisp

Redefines the Cut, Copy & Paste operations to incorporate link manipula-
tion.

Center for Digital Economy Research

Stem School of Business
Working Paper I18-92-11

6.8 menues.lisp

Defines all the menues to use when in manual-inteactive operation mode.

Center for Digital Economy Research
Stem School of Busmess
Working Paper [8-92-21

6.9 link_data_base.lisp

Defines all function related to Web manipulation. That is: loading and saving
collections of links.

Center tor Digital Economy Researcl

Stern School of Business

Working Paper 18-92-21

6.10 keywords.lisp

Defines keyword objects and their functions.

1
1]

Center tor Digital Economy Researc
Stern School of Business

Working Paper 18-92-21

