
TOOLS FOR MANAGING REPOSITORY OBJECTS

Raj iv D. Banker
Carlson School of Management

University of Minnesota

Tomas Isakowitz
and

Robert J. Kauf fman
Stern School of Business

New York University

Rachna Kuniar
College of Business Administration

University of Texas at Austin

Dani Zweig
Department of Administrative Sciences

Naval Postgraduate School

Workina Paper Series
STERN IS-93-46

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

TOOLS FOR MANAGING REPOSITORY OBJECTS

Rajiv D. Banker
Carlson School of Management

University of Minnesota

Tomas Isakowitz
and

Robert J. Kauffman
Stern School of Business

New York University

Rachna Kumar
CoUege of Business Administration

University of Texas at Austin

Dani Zweig
Department of Administrative Sciences

Naval Postgraduate School

1. AUTOMATING REPOSITORY EVALUATION

The past few years have seen the introduction of repository-based computer

aided software engineering (CASE) tools which may finally enable us to develop

software which is reliable and affordable. With the new tools come new challenges

for management: Repository-based CASE changes software development to such an

extent that traditional approaches to estimation, performance, and productivity

assessment may no longer suffice - if they ever did. Fortunately, the same tools

enable us to carry out better, more cost-effective and more timely measurement and

control than was previously possible.

Automated Metrics and the Management of an Object Repository

From the perspective of senior managers of software development, there are

three characteristics of the new technologies that stand out:

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

(1) Productivity enhancement. Development tasks that used to require great

effort and expense may be largely automated. This changes the basis for

software cost estimation and control.

(2) Software reuse. The repository acts as a long-term storehouse for the firm's

entire application systems inventory. It stores it in a manner which makes

reuse more practical. Firms that hope to achieve high levels of reuse (on the

order of 50%) must move from generally encouraging reuse to explicitly

managing it.

(3) Access to measurement. The repository holds the intermediate lifecycle

outputs - of analysis and design, and not just the final software product. As

a result, it becomes practical to automate the computation of the metrics

which managers need in order to take full advantage of the new technologies.

Over the last several years, we have been conducting a research program to

shed light on how integrated CASE supports improved software productivity and

software reliability through the reuse of repository software objects. We have found

that successful management of this effort depends upon a number of factors:

(1) the reliability of cost estimation for CASE projects, in an environment in

which source lines of code are almost meaningless, and in which costs can

vary by a factor of two depending on the degree of reuse achieved;

(2) the extent to which software developers effectively search a repository to

identify software objects that are candidates for reuse;

(3) how software reuse is promoted and monitored; and,

(4) the extent to which various kinds of software objects (especially those which

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

are the most expensive to build) are actually reused.

Managers can only hope to control these factors if they can measure them,

and measure them in a cost-effective manner. In practice, this means automating as

much of the analysis as possible. Fortunately, our research has shown that it is

feasible to do so -- and to a far greater extent than we initially envisioned. By

automating a number of useful repository evaluation procedures, we can provide

senior managers with new perspectives on the performance of their software

development operations.

STRESS: Seer ~echnologies Repository Evaluation Software Suite

Our long-term study of CASE-based software development continues at

several sites that deployed the same integrated CASE tools. Among them are The

Fis t Boston Corporation, a New York City-based investment bank, and Carter

Hawley Hale Information S e ~ c e s , the data processing arm of a large Los Angeles-

based retailing firm. These f m s allowed us to examine extensively and report on

their evolving software object repositories. (For a more detailed discussion of these

studies, see [I] and 121.) Their repositories were created with an integrated CASE

tool called High Productivity Systems (HPS). HPS promotes modular design, object

reuse and object naming conventions. It also enables the programming of

applications that can be run cooperatively on multiple operating platforms, without

requiring a developer to write code in the programming language that is native to

each of the platforms. Instead, HPS simplifies development, by enabling the

developer to create software functions using a single fourth generation "rules

language", which is then processed by a code generator and translated into whatever

3GL source languages best suit the target platforms.

The metrics which we, as researchers, needed in order to analyze software

development were the same ones that the managers needed in order to control it.

The primary insight which made the measurement practical was that all the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

information that was needed could be derived from information that was already

stored within the repository. In cooperation with The First Boston Corporation and

Seer Technologies (the original developers of HPS), we began to develope the

conceptual basis of STmSS, Seer Technologies' Repositov Evaluation Sofnyare Suite,

a set of automated software repository evaluation tools. At present, STRESS consists

of several automated analysis tools:

(1) FPA, the automated Function Point Analyzer,

(2) OPAL, the Object Points Analyzer, a new software cost estimation capability

(3) SRA, the automated Software Reuse Anal'er,

(4) ORCA, the Object Reuse Classijication Analyzer.

The remainder of this paper describes the STRESS tool set in greater detail, and

discusses how it can make repository object management possible.

2. FUNCTION POINT ANALYSIS

The most commonly-used bases for estimating and controlling software costs,

schedules, and productivity are source lines of code andfunction points. The function

point methodology, which computes a point score based on the functionality provided

by the system, is illustrated in Figure 1. A standard weight is assigned to each system

function, based on its type and complexity (e.g., 5 points for an output of average

complexity), and the total count is multiplied by an environmental complexity modifier

which reflects the impact of task-specific factors.

Function point analysis, which measures the amount of data processing

actually being performed by a system, has a number of advantages over counting

source lines of code. Function points are language-independent, they allow for

differences in task complexity between systems of similar size, and they can be

estimated much earlier in the l i e cycle. For example, we can estimate function points

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

during design, when we know what the system will do, but source lines of code can't

physically be counted until the end of the coding phase.

FUNCTION TYPES (FT) FUNCTION WEIGHTS (FW)
I
I I

INPUTS 1 FC FT Weights

FUNCTION '
I OUTPUTS COUNTS @ c) '

FP = FC CM

1 QUERIES 1 - 1 FUNCTION 1
POINTS (FP) 1

i FILES COMPLEXITY
MODlf fER (CM) /

EXTERNAL
INTERFACES , t

ENVIRONMENTAL COMPLEXITY
(Range 0.65 - 1.35)

Figure 1: F~lnction Point Analysis

Despite these benefits and others, source Lines of code remain the more

commonly used measure. Function point analysis requires considerable and expensive

manual effort to compute, whereas the counting of source lines is easily automated.

For integrated CASE environments such as HPS, however, counting source lines of

code is of relatively little use: much of the functionality of the system is represented

in the CASE tool's internal representation, rather than in traditional source code.

Our solution was to use that internal data in automating the Eunction point analysis.

The Function Point Analyzer (FPA)

Function point analysis has been difficult to automate in traditional software

engineering environments, because it requires detailed knowledge of the system being

analyzed. For example, the analyst must know whether the module which wilI receive

a data flow is considered to be part of the application system or external to it. This

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-93-46

information may not be readily available, but it will determine whether the data flow

counts towards the system's function point total. Or, the analyst must know how

many data elements are being passed within a given data flow, as this will determine

the complexity, and hence the value, of that function point contribution. Or, the

analyst may have to examine the code of a data input module to make sure that the

designers didn't use the same module to also perform some output function (e.g.,

display prompts), which might count towards the function point total. Even if such

information is available in the system documentation (as in principle it ought to be,

and in practice it often is not), the number of such decisions which have to be made

add up to a formidable amount of paper-chasing for the analyst.

In an integrated CASE environment, most or all of this information will

already be contained within the repository. The information which an integrated

CASE tool must store about the system whose development it is supporting includes

much or all of the information needed for the function point analysis. Different

CASE tools will store the information in different ways. Figure 2 illustrates the

mapping from the HPS repository representation of a software application to its

equivalents in user functions.

The objects inside the application boundary on the figure are those which

belong to the system being analyzed, and the lines connecting them represent calling

relationships. In traditional systems, the analyst must rely upon naming conventions

to determine which modules belong to a system and which don't. The analyst may

also have to examine the actual code so as not to be misled by, for example, software

reuse or obsolete documentation. In the integrated CASE environment, each calling

relationship between a pair of objects is stored in the repository as part of the tool's

knowledge about the system. The Function Point Analyzer (WA) can identdy the

objects which are part of the application system by searching the repository.

Similarly, the repository has to know precisely what data elements are being

passed to or from each and every object, in order to maintain the control and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

consistency needed by an integrated environment. The Function Point Analyzer can

b

APPLICATION BOUNDARY

Figure 2: Mapping HPS Objects to Function Points

Determining the actual functionality of each object is the most

implementation-dependent step, and the one that will vary the most from CASE tool

to CASE tool. In HPS, the semantics of the 4GL Rules Language (a meta-language

representing the objects and calling relationships that define the functionality of an

application) constrain each object to a well-defined purpose (e.g., controlling one

window, or generating one report segment). Since all interactions between HPS

objects are mediated by database 'views', and since all database views are in the

repository, the Function Point Analyzer can read the type and complexity of each data

flow directly from the repository.

What all these capabilities of the Function Point Analyzer have in common

is that they only depend on the information which HPS maintains, internally, about

the system. At no point does it become necessary to examine the code itself.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

3. OBJECT POINT ANALYSIS

Automating function point analysis gave us a good basis for tracking

productivity improvements, both against the firms' old baselines, and against industry

standards and industry leaders. Interviews with project managers, however, revealed

that there were disadvantages to using Function Points as a basis for controlling

individual HPS projects:

(1) Function points collapse the benefits of enhanced productivity through

CASE-based automation and the benefits of software reuse.

(2) The shift to CASE was accompanied by a growing emphasis on early-life-

cycle activities, particularly enterprise modelling and business analysis, and

function points are more oriented towards design and post-design activities.

(3) HPS developers and managers were used to working directly with HPS

objects, and the mapping from objects to function points wasn't intuitive to

the managers. For the fist time, the mapping was close enough that

managers could think of asking for better. What they wanted was a way to

use the repository objects directly, as a basis for planning and control.

In order to satisfy this demand, we had to first develop an estimation

mechanism that was based on repository objects, and then demonstrate that it could

equal function point analysis in predictive power and automatability.

The Object Point Analyzer (OPAL)

In an integrated CASE environment, the repository objects created in early

phases of the software development life cycle will be high-level abstractions of those

to be created during the coding/construction phase. The more information the

repository contains about those early objects, the better our ability to make early and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

reliable predictions of project costs. As was the case with the function point analyzer,

the spec5cs of the mapping will depend upon the implementation of the CASE

environment.

OPAL, the Object Point AnaLyzer, was developed as a cost estimation facility

for the HPS environment. It differs from the Function Point Analyzer primarily in

providing a direct mapping from HPS objects to cost estimates.

Our interviews with project managers revealed that they were already using

object-based cost estimation informally, assigning so many days of development effort

for each type of object. Using those informal heuristics as a starting point, we used

regression analysis frst to give us more precise estimation weights and later to

validate these results against actual projects.

OPAL computes objectpoints, a metric inspired by function points, but better

suited to the ICASE environment. Object points are based directly upon the objects

stored within the repository, rather than upon the interactions between those object.

In HPS terms, object points are assigned for each WINDOW, for each REPORT, for

each 3GL MODULE, etc. Instances of each object type can be simple, average, or

complex, with the more complex objects receiving higher object point scores. The

computation of object points is illustrated in Figure 3. The objects depicted are part

of a much larger application. Each object is assigned a complexity rating, based on

empirically derived factors such as the number of objects it calls in turn, and then an

object point score.

Because the CASE environment limits the functionality allowed to each

object type, this is a true measure of application system functionality as well as of

programmer effort. It was practical to automate the classification of objects because

of the information the repository maintains about each object. L i e FPA, OPAL uses

the repository's internal representation of the application system to determine which

objects should be considered in the analysis, and what complexity ratings to assign

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

each object. The corresponding effort estimates are taken from OPAL'S object-effort-

weight tables. These store standard cost estimates, derived through prior empirical

analysis, for simple, average, and complex instances of each object type.

RULE SET

I I
3GL COMPONENT RULE

Figure 3: I l l u s t r a t i on of Object Point Computation

We used nineteen medium-to-large software development projects to test

OPAL'S cost estimates against those based on function point analysis. The two

estimators were found to be equally good predictors, but managers found object

points easier to use and to interpret.

OBJECT POINTS

1

2
2
8

The results of the object point analysis can be presented in various ways,

according to the requirements of the manager. Figure 4, for example, gives an object

point breakdown of a subsystem, by object type.

COMPLEXITY
CLASS

average
simple
complex

OBJECT TYPE

WINDOW
REPORT
3GL COMPNT . . .

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

COMPLEXITY DEFINING
CHARACTERISTICS

3 VIEWS; 1 RULE
2 SECTIONS; 1 RULE

V

Entities Processes Windows Reports 3GL Components

OBJECT TYPES

Simple Average 0 Complex

Figure 4: Object Point Breakdown by
Object Type for Subsystem "Reorder"

4. SOFTWARE REUSE ANALYSIS

Software reuse is known to be a major source of productivity gains in

software development. Based on claims that are often seen in the popular press,

some organizations routinely expect reuse levels of 30 to 50%. But such high levels

of reuse require an environment in which software reuse is supported from both a

technical and a managerial standpoint; appropriate incentives for developers to reuse

software; and a measurement program that provides a feedback mechanism to tell

developers how much their efforts are paying off.

Object-based integrated CASE tools such as HPS provide the requisite

technical support: they store software objects at a level of granularity which is far

more conducive to reuse than traditional procedure-based software. They may also

automate the mechanics of implementing reuse. HPS, for example, atlows developers

to reuse an object by simply adding a calling relationship to the repository.

Measurement of reuse is also possible with CASE, especially when there is a

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

repository that stores objects and their calling relationships. Such measurement is a

prerequisite for accurate cost estimation. After all, software project cost estimation

isn't going to be very reliable if we don't know whether to expect 30% reuse or 70%

reuse of pre-existing software in a new system!

The Software Reuse Analyzer (SRA)

The repository-based architecture of HPS makes it practical, as we saw in the

description of the function point analyzer, to query the repository to determine the

extent of software reuse. This is accomplished through SRA, the Software Reuse

Anal'er, which begins its analysis by creating a list of objects belonging to a given

system. (This part of the analyzer's software was first developed for FPA and then,

appropriately enough, reused in SRA.) We can also query the repository to

determine how many times each object has been reused. Finally, the CASE tool

maintains an object history which allows us to distinguish between internal reuse and

external reuse. Internal reuse occurs when an object is created for a given application

system and then used multiple times within that system. External reuse, on the other

hand, occurs when the object being reused was initially created for a different

application. The latter is more difficult to achieve, but is also more profitable.

SRA was built to deliver a number of useful managerial metrics. For

example, it reports on two related metrics that offer an at-a-glance picture of the

extent of reuse in an application: new objectpercent, the percentage of an application

that had to be custom-programmed, and reuse percent, the percentage of the

application constructed from reused objects. As we pointed out above, managers will

further wish to distinguish between internal and external reuse percentages, to gauge

how effectively developers are leveraging the existing repository. SRA can decompose

reuse percent into internal reuse percent and external reuse percent.

A second important piece of information that managers will want is the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

business value of software reuse that is occurring. This is captured by SRA in a

metric called reuse value. Reuse value is computed by translating the standard cost

of the effort that would have been required, had the software objects that were reused

been built from scratch. This is a highly useful metric because it helps managers to

determine whether reuse pays off in development cost reductions.

Management of Software Reuse

SRA may be used to track software reuse within a given project, but such

analysis generally comes after the fact. The main power of the tool is guiding the

organization's long-term software reuse efforts. Figure 5, shown below, tracks our

two sites' software reuse efforts over a comparable 20-month period.

FBC

Rule Sets Reuse Percentege

GHH

-- Slm -* Reuse - Slze -&-- Reuas

Figure 5a: Reuse and Repository Growth .(

Figure 5b: Reuse and Repository Growth

The striking result is that while repository sizes grew steadily throughout the

observation period, reuse levels almost immediately stabilized around the 30% level.

Further use of SRA enabled us to analyze these results. Since HPS maintains a

repository history of each object, it was possible to determine who created and who

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

reused each object, and for which applications. The results were enlightening, as

suggested by Figures 6 and 7 below.

Rule Sets (000s)

' i

"
FBC CHH

~3 Internal Reuse a External Reuse

Figure 6: Internal and External Reuse

FBC CHH

Own Software CT? Other Programmers

Figure 7: Reuse of Own Software

There was a strong and expected bias towards internal reuse. Developers

preferred to get as much leverage as possible from the objects of the system under

construction, rather than search the other systems in the repository for reuse

candidates. What was not expected, however, was that most of the instances of

external reuse consisted of programmers reusing objects that they themselves had

previously created. In other words, little effort was being made to search for reusable

objects. If developers personally knew of a reuse candidate, they used it; if not, it was

slrnpler to write a new object than to search the repository for a reusable one. This

went a long way towards explaining why the growth in repository size, and hence in

reuse opportunities, was not resulting in growth in the reuse rates.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

Figure 8 graphs the reuse levels of individual programmers against their

overall output.

Reuse
0.8 ; * t

* - Figure 8:
I - *
I

I 0.7 r o Reuse and

i * 0
Programmer

0.6 -

I Output
* O 0 0

0.5 ; 0 0
1

Output (Rule Sets)

FBC -- * CHH -- o

What the wide variation in programmer performance tends to obscure is the

impact of the extremes. Software reuse analysis revealed that over 50% of the

programmers at the research sites contributed no reuse whatsoever. On the other

hand, the top 5% were responsible for over 20% of the objects in the repository and

over 50% of the reuse. Only a few programmers were taking advantage of the

substantial productivity gains that software reuse offered.

5. OBJECT REUSE CLASSIFICATION

We conclude our overview of the STRESS toolset with a discussion of a tool

which is still in the research and development phase: the Object Reuse Classification

Analyzer. Whereas software reuse analysis measures the level of reuse achieved,

object reuse classification enables us to determine the repository's reuse potential, and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

supports developers in achieving that potential.

Repository Search for Reuse

We observed that one of the striking results of the software reuse analysis

was the propensity of developers to reuse familiar objects, rather than to search

extensively for unfamiliar, but possibly superior, reuse candidates. A mature

repository may easily contain tens of thousands of software objects, only a fraction of

which will be familiar to any one programmer or analyst. A developer who focuses

on familiar objects (and most of the reuse we observed involved developers reusing

software they themselves had created) will miss many software reuse opportunities.

Our interviews with HPS programmers confirmed what others have already

discovered: search is difficult. The high productivity of an integrated CASE

environment such as HPS makes it faster to write a new object from scratch than to

search an enormous repository for an existing object which is a close enough fit.

(This is as true for the analyst trying to design a system which will take advantage of

software reuse as it is for the programmer trying to find an object to perform a

specific task.) A more extended search may pay long-run dividends, in the form of

reduced maintenance costs, but this is an argument which programmers and project

managers have rarely found convincing in the face of immediate schedule pressures.

So, if we want developers to take advantage of the untapped reuse potential, we have

to provide automated search support.

Figure 9 illustrates the conceptual foundation of object classification analysis.

We can think of the repository as consisting of a large number of objects within a

"search space", with similar objects being closer together and dissimilar objects being

further apart. The classification scheme is used to produce a similarity metric that

determines the "distance" between repository objects. We can then give the system

a description of the object we need, and ask for a short list of repository objects

which are 'close' enough to the described object to be reuse candidates.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

Reuse Cluster Ideal Candidate Famil iar i ty Bias

Figure 9: Reuse Clustering

Object Reuse Classification Analyzer (ORCA)

ORC4, the Object Reuse Class@cation Analyzer, has three functions:

classification support, development support, and repository evaluation support.

1) CIassification support. The classification scheme used by ORCA is an

extension of Prieto-Diaz's faceted classification schema [4]. In such a

schema, an object is classified along a number of dimensions - the facets --

and two objects may be 'close' to each other with respect to one or more

facets. Figure 10, for example, illustrates a four-facet classification of a

needed software module, and of two candidates for reuse. In this example,

the functional similarities between the first component and the target object

make it a better candidate than the second component, even though the

second component was written for the target setting.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

NEEDED COMPONENT 1 COMPONENT 2

Function cross-validate cross-validate Purge
Application personnel inventory payroll
Objects dates dates records
Setting bank branch dept store bank branch

Figure 10: A Four-Facet Classification of Software Entities

ORCA supports multiple classijication criteria. Multiple sets of facets may

be defined, instead of a single criterion, or a single set of facets, with

different classifications applying to diierent object types and to different

stages of software d e v e a h set presents a criterion by which to
\

analyze the repository. This allows, for example, for the case of two objects

which would be judged to be far apart during business design, but might be

closely related during technical design. The technical functionality may be

similar, even when the business application functionality appears to be

unrelated. Based on this multi-faceted classification schema, we can compute

a quantitative metric to determine functional similarity between objects.

As the classification example suggested, an object classification scheme will

use a combination of technical characteristics (e.g., object type, application

system) and functional characteristics (e.g., purpose of module). The

technical characteristics can be determined automatically, from information

in the repository. For other facets, the developer can be prompted to choose

from a list of options. The specific functionality-related classes and options

may differ from one site to another, in which case the schema must be

customized on the basis of interviews with software developers.

2) Development Support. The key design principle is to reduce the

developer's involvement in the screening stage to a minimum - to let the

analyzer worry about finding the potential needles in the haystack - and to

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

provide a short enough list of candidates that the developer will be able to

give serious consideration to each. The search for reuse candidates takes

place in two stages:

* Stage 1, screening, involves the purposeful evaluation of a large set

of object reuse candidates from the entire repository to produce a

short list of near matches for further investigation.

* Stage 2, identification, enables the developer to examine individual

objects more closely to determine whether there is a match in terms

of the required functionality.

When systems design is done well, it is very likely that a by-product of the

effort will be a repository representation which can be matched to other

existing repository objects at the time that technical design is completed.

What remains is to ensure that there is a mechanism in place that enables

a designer to test his design against the existing repository to determine what

functionality might be reused as is, what might be adapted from very similar

objects, and what needs to be built from scratch.

3) Repository Evaluation Support. Besides helping developers to find and

inspect candidates for reuse, ORCA may also be used to classify objects and

evaluate the repository as a whole. On the one hand, it can be used to

identify redundancy -- unexploited reuse opportunities. A mapping of the

repository will identify "reuse clusters", sets of objects which are similar in

functionality, and can probably be consolidated into a smaller number of

objects, Figure 11 illustrates the results of such consolidation.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-93-46

-
Fields Rules Windows Views

Unconsolidated Consolidated

Figure 11: Consolidating a Repository
by Detecting Reuse Clusters

Note that different types of repository objects are likely to benefit differently

from such consolidation. On the other hand, such a mapping may identify gaps in the

repository -- application areas in which developers will be less able to rely upon reuse

support from the rest of the repository.

6. TOOLS TO MANAGE THE REPOSITORY: A RESEARCH AGENDA

Our current research efforts on repository object management software tools are

focused on four primary tasks:

(1) hnplenzentation of the tools to sripport measurement will support longitudinal

analysis of productivit), and reuse. With the help of Seer Technologies, we

are working to install the Function Point Analyzer and Software Reuse

Analyzer at a number of fuxns, in the US., Europe and Asia. This will

enable us to carry out a large-scale longitudinal study of development

productivity and software reuse, that expands upon our pilot studies in these

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

domains. As Kemerer [3] has pointed out, one of the most challenging

problems facing software development managers is how to speed the move

down the CASE development learning curve. In the absence of empirical

results that estimate the learning curves that different Firms have actually

experienced, it will be difficult to provide much guidance as to the factors

that enhance or inhibit Firms to achieve better performance more rapidly.

We plan to further aamine opportunities to extend the capabilities of the

repository evaluation software tools to support other kinds of analysis. We

have already done a si@cant amount of this work on an informal basis,

through specially developed repository queries. These queries have enabled

us to investigate aspects of the repository that help to explain the 30%

technical cap on reuse that we observed in the early days of software

development at The First Boston Corporation and at Carter Hawley Hale

Information Services. They also allowed us to determine which developers

reuse software objects the most, and what kinds of software objects are

involved. The results of such analysis has provided senior management at

the firms whose data we analyzed with a fresh perspective on their software

development operations.

(3) The object points concept requires jirrther enzpirical research to salidate it for

use f i t nnlltiple settings. Additional field study work, with Seer Technologies

and its clients, and with other CASE vendors and their clients, will enable us

ro apply and validate the object point metrics we have proposed for software

cost estimation in repository object-based integrated CASE environments.

This process will only be possible through the deployment and application of

the Object Point Analyzer, OPAL. We expect that additional field study

research will enable us to uncover the extent to which the object complexity

weights may vary with diierent software development environments.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

(4) Additional conceptual and empirical research is required to support the

completion of a full design document for object reuse classification. There are

two research challenges related to this portion of our agenda. We are

currently performing a set of structured interviews with software developers

who use HPS to identify unique classificatory facets. Meanwhile, we are

working to construct the elements of the analysis method that, given a

workable classification scheme, will enable software developers to identlfy

potentially reusable objects.

In this article, we have attempted to give the reader an appreciation of the

kinds of measures which it is practical to derive from an automated analysis of an

integrated CASE system. STRESS, the Seer Technologies Repository Evaluation

Software Suite, enhances the ability of managers to control repository-based software

development. It also makes it practical for us, as researchers, to perform data-

intensive empirical analyses of software development processes. Software reuse, as

this paper suggests, is of particular interest in this environment.

REFERENCES

1. Banker, R. D., Kauffman, R. J., Wright, C., and Zweig, D. "Automating Reuse and
Output Metrics in an Object-based Computer Aided Software Engineering
Environment." IEEE Transactions on SofhYQre Engineering, forthcoming.

2. Banker, R. D., Kauffman, R. J., and Zweig, D. "Repository Evaluation of Software
Reuse." IEEE Transactions on Software Engineering, forthcoming.

3. Kemerer, C. F. "How the Learning Curve Affects CASE Tool Adoption", IEEE
Software, volume 9, number 3, May 1992, pp. 23-28.

4. Prieto-Diaz, R., and Freeman, P. "Classifying Software for Reusability." IEEE
Sofnyare, January 1987, pp. 6-16.

We wish to thank .Mark Baric, Gene Bedell, Vivek Wadhwa, Tom Lewis and Gig Graham, for access to
managers, developers and data related to software development activities at Seer Technologies and its
clients. We are also indebted to Len Ehrlich, Michael Oara and Tom Robben for assistance with various
aspects of this research program. We offer special thanks to Charles Wright, currently on assignment with
Seer Technologies in Switzerland; his contributions to the automated function point analysis and software
reuse analysis facilities that are described in this paper helped to make the work possible.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-46

