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Introduction 

Hospitals maintain large administrative databases, which contain interesting demographic 

and medical information such as age, sex, diagnoses and medical procedures. 'While the 

data are being used for administrative operations, such as generating payment reports and 

hospital activity reports, it is particuIarly desirable to make use of the data for other 

value-added purposes. More particularly, assuming the data collected are reliable, 

administrative data may be used in the process of auditing the quality of the medical care, 

tracing possible explanations for delivery of high- or low-quality of medical care, 

highlighting processes embedded in the organization, or indicating of evolving previously 

unknown patterns embedded among hospitalization cases. However, in most cases these 

data are merely utilized for the routine administrative purposes for which they were 

designed in the first place. 

Soaring medical costs [I and harsh competition among health care providers bring 

hospitals' managements to increase efforts in search for higher quality of care and lower 

their expenses. The management of a major medical center in Israel approached the 

authors with these concerns and expressed their frustration from the fact that although the 

hospital is collecting terrnendous amount of data each year, apart from statistical reports 

the hospitals' databases are hardly utilized to address these concerns and to shed light on 

the practices within the hospital. In particular, hospital management expressed its interest 

to discover patterns relating to the quality of medical care embedded in the hospital 

database such as patterns concerned with coarses of treatments that indicate on delivery 

of low/high quality of medical care. Also, may be embbedded in the databse are patterns 

that indicate an uncareful (wasteful) use of hospital resources (e.g., unnecessary 

test/procedures) such as patterns of coarses of treatments that show lowlhigh quality of 

medical care. 

The area of Knowledge Discovery in Databases (KDD) was defined in [FPS96] as the 

non-trivial process of identifying valid, novel, potentially useful and ultimately 

understandable patterns from data. As such it is directly applicable to respond to the 

concerns above by offering new methods and tools to automatically extract knowledge 

and analyze useful patterns from databases. In particulart, one extensively studied issue in 

the field is the problem of association rules [AIS93] [AMSTV95] [CNF96] [MTV94] 
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[SON95]. Association rules seemed to be particularly appealing for our problem since 

they are based on the discovery of sets of attributes and their values. These patterns may 

be useful as they introduce collections of attributes that co-occur in the database. In 

addition, this type of patterns are thought to require relatively limited interpretation. This 

is especially important when the products of a KDD system are not considered the 

ultimate result but rather a possible input to other related processes (e.g., quality 

improvement, decision support systems, etc.). In this study we aimed at employing 

association rules methods to extract patterns from a relational database of hospitalizations 

discharge abstracts. In the coarse of our work, we discovered that when extracting 

itemsets [I, which is the core phase in the algorithm for association rules[], some 

information embedded in the relational database is lost andlor distorted. We thus 

suggested to extract relational patterns that capture not only coocurrences of attributes 

and their values, but also the relationaships between those attributes as they appear in the 

database schema. In this paper we present the concept of relational patterns and our 

approach to extract relational patterns from a relational database. We also describe the 

experiences we had and conclusions we drew from implementing our approach on a 

hospital discharge abstract database. We discuss what dinstiguishes this applications from 

the bulk of association rules applications reported in the literature, the difficulties we 

encountered as a result and how we confronted them. 

The contributions of this paper are first a new approach to extract relational patterns 

from a relational database with multiple tables, that maintain structural relationships 

embedded in the relational database schema. Second, this paper presents a case study of 

an application to extract relationalpatterns from a hospital database, and describes the 

impact of some domain related issues on the application. 

The organization of this paper is as follows: we start in section1 with a definition of 

association rules and sequential patterns both relevant for the approach we present in this 

paper. We then overview existing algorithms to extract association rules and sequential 

patterns from a single table. In section 2 we describe adjustments we made in the 

algorithm to extract sequential patterns to now extract sibling patterns from a transformed 

database. We describe the database schema for the problem and entity representation in 

section 3. In section 4 we discuss the issues posed by relational database with multiple 
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tables, and describe relational patterns. We present our approach and algorithm in 

section 5. In section 6 we discuss the difficulties arose when we applied the presented 

approach on a hospital discharge abstract database, we discuss them and how we 

confronted the. We also suggest other approaches as possible resolutions. 

1. Association Rules & Sequential Patterns 

The approach presented here enables to extend the methods presented in [AMS95] 

[SA9?] to extract itemsets [AIS93], and association rules from a single table, to now 

extract patterns from multiple relational tables' schema. While the methods presented in 

[AMS95] [SA9?] may be are valuable and efficient, 70% of the databases in the world 

are relational and contain multiple tables. By analyzing each table separately valuable 

knowledge embedded among the relationships between entities from different tables may 

not be discovered. The approach presented here, makes use of algorithms designed for 

single tables [AMS95] [AS9?], and it is thus necessary to describe some preliminaries on 

these algorithms as well. 

In this section we bring a definition of association rules [AMS95] and describe the 

concept of itemsets [AIS93]. As will become clear shortly the primary problem is the 

extraction of frequentllarge itemsets, from which it is rather straightforward to generate 

association rules. 

Let I = {i, , i, ,..., i,, ) be a set of attributes (also called items) [AIS93], where an attribute 

can take any value from a discrete set of mutually exclusive values. A conjunction of 

conditions of the form "attribute = value" is called an itemset EAIS931. An association 

rule is an implication of the form A--+ B, where A and B are mutually exclusive itemsets. 

Example for an association rule from a hospital database is {Department = " E R ,  Age = 

"60-65") -+ {length-of - Stay = "5-7"). The interpretation for this rule is that a patient 

aged between 60 to 65 who registered to the emergency room, is likely to stay in the 

hospital for 5 to 7 days. Let D = {t, , t, , . . . , t, ) be a relation consisting of N transactions 

(i.e., records). A transaction t is said to satisfy an itemset if it contains this itemset. 

An association rule holds on a database D if its strength and statistical signzficance are 

greater than some predefined thresholds [AIS93]. The strength of a rule is called support, 

denoted by s and is the percentage of transactions in the database which contain the 
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itenset A u B. All itemsets which satisfy the support threshold, called minimum support 

are called large itemsets. The statistical significance of a rule is called confidence, 

denoted by c and is the percentage of transactions which contain A that also contain B 

[AIS93]. All rules have to exhibit confidence level that is above the threshold called 

minimum conJidence. Algorithms suggested to efficiently extract all association rules that 

hold in a single relation [AMS95] [AIS93] include two phases. In the first phase all large 

itemsets are generated, where the following observation is key in the process: All subsets 

of a large itemsets must also be large. Thus, candidate itemsets of size k are generated by 

using large itesets of size k- 1. All candidates consisting of sub-itemsets that are not large 

are discarded. The support of all candidate itemsets is then computed. In the second 

phase, rules are generated from the set of large itemsets. The confidence factor is 

computed by Confidence ( A  -+ B )  = S U ~ ~ O r t ( A  " . Since both itemsets A u B and A are 
Support(A) 

large, the task of confidence computing and rules generation is quite straightforward. 

Therefore, the problem of generating all association rules is reduced to the problem of 

generating all large itemstes (from which rules are created). The approach presented by 

this algorithm addresses mining large itemsets or patterns within a single relation 

described in [AMS95] as intra-tuple patterns. Stated differently, these patterns exist 

between attributes within a single tuple. 

Agrawal and Srikant proposed another algorithm to extract sequential patterns [AS9?] 

from a single relation. In order to understand the concept of sequential patterns we 

shortly describe the concepts and the proposed algorithm. 

I Customer Id I Dav of Purchase I Items Purchased I 
1 1 I Januarv 12.1998 1 A. B, C I 

I I - 1 3 / M a v  15.1998 I B.C 1 
March 11, 1998 
April 28, 1998 
Mav 21. 1998 H 

D, E 
F, G 
H 

" ,  

Figure 1 : Supermarket purchase database 

1 
2 
2 
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In [AS9?] a sequential pattern is an ordered list of itemsets. A sequence (s, , s, , . . . , s,, ) is 

said to be contained in another sequence {t, , t ,  , . . . , t,,, ) m 2 n , if there exist integers 

j ,< j2< ...< j,,, such that s, G t,, , s, cz t ,2 ,  ..., s,, c: t,,, . Consider the single table 

database in Figure 1 : each transaction can be viewed as an iternset, and all the 

transactions pertaining to a single customer can be viewed as a sequence or an ordered 

list of iternsets. Fig. 2 shows a sequence version of the table in Fig. 1. 

Customer Id I Items Purchased 
1 I ( ( A ,  B, c), ( D ,  E ) )  

Figure 2: a sequence version a supermarket table 

The "strength" of a sequence is determined by a predefined threshold called "minimum 

support". For the database in Figure 1, for example, this threshold would be the 

percentage of customers which contain a certain sequence. Also, a sequence S is said to 

be large if it is contained in at least minimum support of the customers [AS9?]. Assume 

that the minimum support threshold for the database in Figure 1 is 50%, then the 

sequence ({B, c ) {E) )  is large since it is contained in the sequences of 50 % of the 

customers (for customers with Id 1, and 3). The algorithm is composed of 4 phases. To 

explain the algorithm consider the table shown in Figure 1, where each customer can 

have only one transaction in a single date. In the first phase the database is sorted such 

that all transactions pertaining to a single customer appear consecutively sorted by date of 

transaction. In the second phase, the Apriori algorithm [AMS95] is applied to extract 

large iternsets. However, iternsets are counted per customer and not per transaction as in 

[AMS95]. All large itemsets also comprise all large sequences of length 1 (called 1 - 

Page 6 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-98-21 



sequences). Each large 1 -sequence is mapped to unique integer. Fig. 3a shows all large 

itemsets extracted from the database in Fig. 1. In the third phase the relation is 

transformed into a transformed database DT, where each transaction in replaced by the 

set of large iternsets contained in that transaction. A sequence is represented by an 

ordered list of sets of itemsets. Fig 3b shows the transformed database DT. 

-1 
(B,C) 

3a: All extracted large itemsets 

Large itemset I Mapped to 
(B) 

3b: The transformed database DT 

Figure 3 : Construction of the transformed database DT 

In the forth phase, also called the sequence phase large sequences of size > 2 (i.e., n- 

sequences, n > 2)  are extracted, where the key observation is that large sequences must 

be comprised of large itemsets. The transformed database DT constitutes the fundamental 

structure on which the operations to extract n-sequences n > 2 are performed. 

1 

Customer Id 
1 

2 

3 

4 

2. Database Schema for the Problem 

Items Purchased 

({(I)> (21, (6)){(3)}) 

({(4)) ( ( 5 ) )  

({(1),(2),(6)){(3))) 

(((4)) ((5)) 

Page 7 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-98-21 



Before describing the database schema it is helpful to consider the discharge abstract 

database example shown in figure 4 below. Relation R1 contains one tuple for each 

admission to the hospital, and its key is patient Id. R2 contains details pertaining to the 

departments in which a patient stayed during the related hospitalization. One patient may 

stay in one or more departments. 

R1: Hospitalization 
Patient ID I Age Group I Sex I Cost ($) 

100 1 60-65 I M 1 7K-9K 

R2: Departmental Admissions 
Patient ID I Department I LOS* 

100 1 Internal I 2-3D 

R3: Medical Procedures 

400 
400 

Figure 4: An example for hospitalization discharge abstracts database 

Pediatric 1 0  
Orthopedic ( 5-70 

For example, the patient with Id 100 stayed both in the emergency room and the Internal 

department. The key for relation R2 is composed of patient Id, and department. Relation 

R3 contains information on procedures performed for a certain patient while staying in a 

certain department. The key for that relation is patient Id, department and procedure. 

Also, It is possible that no procedure is performed for a patient while in a certain 

department. 

* Length Of Stay : D for days, H for hours 
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Relational databases can be represented as a DAGs, in which each relation (i.e. table) is a 

node and every relationship is an edge in the graph. Any two relations with a one to one 

relationship can be represented as a single node, whereas, a one to many relationship 

I 11 between relations R, (one) and R,  (many), i * J : R, ------+ R, may be represented as a 

directed edge connecting the two corresponding nodes from R, to R, . Apath  is referred 

here to a sequence of connected nodes in the graph. We represent a path with a series of 

relations with consecutive increasing indices R, , R,,, , . . . , R,, , where between any two 

consecutive relations R, , R,,, the following relationship is defined R, --!!!-+ R,,, . In 

this paper we consider a DAG with a single path, where all tuples from related nodes can 

constitute a comprehensive collection of attributes which may comprise a single entity 

(see section 4.1). For example, the database depicted in Fig. 4 may be represented as a 

DAG with the following single path: R, --!!!-+ R, A R, . In addition, the related 

collection of tuples in a tree can constitute a comprehensive single entity for our purpose. 

2.1 Entity Representation. 

We now describe the representation of an entity to which the extracted patterns relate to. 

Figure 5 shows a tree representation which include all the tuples in the database 

pertaining to a single patient (or "entity"), as well as the relations between them as 

determined by the database schema. Each level in the tree corresponds to a node in the 

DAG representation of the database (i.e., a relation). We refer to level i to all tuples from 

relation R, . Each node in Fig. 5 corresponds to a single tuple. The notation tIk represents 

a tuple t, from relation R, . Each directed edge from t: to tf" connects related tuples 

from relations Rk and Rk+, between which the relation: R, ':" > R,,, is defined. The 

tuple t: is a parentimother tuple of the tuple tf" , and the tuple t: is called a 

childldescendant tuple. Descendant is a more general term used for a tuple that is not 

necessarily a direct child of another. For example, in Fig. 5 the tuple t: since not an 

immediate descendant of t,' is a descendant of t,' rather than its child. 
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Figure 5 : Tree representation of a single "entity" 

Tree representations of all hospitalization cases in the databases are shown in Figure 9. 

3. Sibling Patterns - Sequential Pattern Revisited 

Sequential patterns are actually inter-tuple patterns [AS9?]. The concept of sequence is 

derived from the order among a group of tuples according to some time related attribute 

(in the example in Fig. 1 the order is derived by the time of purchase). In this paper, 

however, we refer to inter-tuple patterns as any sequence (unordered) of large itemsets, 

with a mutual parent tuple. 

Now consider for example relation Rr, - in Fig. 4, where there are no time-related 

attributes and thus no sequential patterns are defined. However, tuples in R2 may be 

grouped by their mutual parent in relation R1 positioned one level upward in the 

database's tree representation. These collections of tuples are unordered and are called: 

Sibling Collections. As shown in Fig. 6, relation R2,  for example, includes 4 sibling 

collections: The first collection includes children of the parent tuple with Id 100 in 

relation R1 . Sibling collections number 2,3, and 4 include children of tuples in 

R1 corresponding to patients with Id 200, 300 and 400 respectively. 

I PatientID 1 Department I LOS* I 
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Figure 6: Division of R2 into sibling collections 

A sequence in [ASS)?] is defined as an ordered list of sets of large itemsets, for our 

purpose we define a sibling pattern/collection as an unordered list of sets, therefore, a 

new definition is required to determine whether a sibling collection contains a sibling 

2-3D 
1D 

2-3D 
3-51) 
5-7H 
1 -2tI 

1 D 
5-7D 

100 

200 
300 

400 

pattern. 

A sibling patternp is said to be contained in a sibling collection b if we can map each set 

i np  to an exclusive set in b, such that the set i n p  is a subset of the set to which it is 

mapped in b. Stating this differently we say that a sibling patternp is contained in a 

sibling collection b, if there exist a function f : p -+ b , such that 

1. V x ~ p ,  f ( x ) ~ b a n d  x c  f(x) 

2- V X , , X ~ E P ,  x 1 + ~ 2 - - + f ( ~ l ) f  f(x2) 

For example, the sibling pattern ({(Dept. = ER),(LOS = l ~ ) ) , { ( ~ e p t . =  Internal)}) is composed of 

two sets, one includes the attributes: (Dept.= ER) and (LOS=lD), and the other includes 

the attribute (Dept.= Internal). This pattern is contained in a sibling collections in R, 

corresponding to patient with Id 100. In addition, we use the term sibling pattern rather 

than the term sequential pattern used in [AS9?]. Similarly, the term n-sibling corresponds 

to the notion of n-sequence in LASO?], and it relates to a sibling pattern with n elements 

(i.e., a sibling pattern of length n). For example the pattern 

({(oept.= ER),(LOS = ~ ~ ) f , { ( ~ e p t  =Internal)}) is a 2-sibling pattern: it includes two sets - each 

corresponds to a different tuple in the same sibling collection. 

The change we introduced here with respect to the algorithm for sequential patterns 

[ASS)?], increases substantially the theoretical complexity to determining whether a 

sibling collection contains a sibling pattern. In the worst case where we have to determine 

Internal 
ER 

Pediatric 
Surgery 

ER 
ER 

Pediatric 
Orthopedic 

n ! 
whether an m-sibling patterns is contained in an n-sibling collection we have - 

m ! 
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comparisons to perform. However, in reality, in the database we used, most tables had an 

average length of sibling collections of - 2 . Thus, in practice the complexity did not 

have a significant impact on the application running time. We also believe that in most 

databases the picture is approximately the similar to this one. 

3. Issues posed by multiple relational tables' schema 

While the methods presented in [AMS95] [SA9?] are valuable and efficient, 70% of the 

databases in the world are relational and contain multiple tables. By analyzing each table 

separately valuable knowledge embedded among the relationships between entities from 

different tables may not be discovered 

The algorithms described in section 1 were designed for a single table. However, a 

multiple table database requires more information to be represented in a pattern, to 

capture the relations between tables - information that may be essential to allow the 

pattern convey a complete picture, and thus should not be lost when extracting patterns 

from the database. 

Assume for example that for the database shown in figure 4 we pool all the attributes 

pertaining to each patient and construct a single table. We then apply an existing 

algorithm to extract large itemsets. Consider now the following set of attributes: {(Age = 

60-65), (Dept. = ICU), (Dept. = ER), (Procedure = ECG), (length of stay = ID)). Since 

both Length of stay and Procedures are associated with a certain department, the pattern 

above does not capture the information of where did the patient stayed for one day (i.e., 

in the ICU, the ER or in another department of which attributes are not included in the 

pattern?). Similarly, the pattern does not provide any clue on where the ECG procedure 

was performed. This information is embedded in the relations between the tables. Thus, it 

is important to capture not only frequent sets of attributes but also the structure between 

the tuples from which these attributes are extracted. 

5. Relational Patterns 

To address this problem we suggest to mine relational patterns. 
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Figure 7: A relational patterns ernbeddedin a hospitalization case 

Consider the hospitalization case shown in Fig. 7, which relates to the database in Fig. 4. 

Also assume that the attributes in gray are frequent in the database in that structure, i.e., 

Patients between the age of 60 and 65, stay in the emergency room, where the go through 

a blood count and an ECG test, in addition they stay in another department (none of the 

attributed pertaining to their stay in department are part of the pattern), where they go 

through an X-Ray. The relational pattern also captures the relations between the tuples 

from which the attributes in that pattern were extracted, so that we know, for example, 

where the various procedures were performed. Figure 8 shows this pattern . 

Figure 8: An example for a relational pattern 

The asterisk stands to note that no attribute from the related tuple is part of the pattern, 

however we keep the tuple in the tree representation to maintains the original 

relationships between the various attributes. 
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6. Our Approach 

Consider the tree representation of each "entity" in the database. We may extract 

relational patterns with respect to a certain relation R, in the tree representation of the 

database. These patterns may include attributes from R, and/or from any of its 

descendant relations. 

When we extract relational patterns wrt relation R, , the entities we related to and from 

which we extract these patterns are all sub-trees of hospitalization trees shown in Fig. 9, 

where the root of each sub-tree is a node corresponding to a tuple in R, . For simplicity 

we say that a sub-tree with the root node corresponding to tuple tr , is tuple tr 's tree . 

A relational pattern with respect to relation R, may also be represented with a tree, that 

is a sub-tree of all trees of tuples in R, , and where each node includes an itemset (rather 

than a tuple). We say that a relational pattern T i  with respect to R, is contained in tuple 

t: 's tree, denoted by T, if each node in T' is an itemset that is contained in the 

corresponding node in T. We also adopt the concept of support to be applied for 

relational patterns. A relational pattern with respect to relation R, is said to be large if it 

is contained in more than minimum support of the trees of tuples in R, . For example, Fig. 

9 shows a tree representation of all the hospitalization entities in the database. Fig. 10 

shows a relational pattern from the database depicted in Fig. 4, extracted with respect to 

relation R, : Patients are hospitalized in the Emergency Room, where they go through a 

blood count. Assuming that the minimum support threshold for this database is 30%, this 

pattern is also large, since more than minimum support of the trees of tuples in R, contain 

that pattern. More particularly, 3 out of 8 trees contain that pettern: the itemset {(Dept. = 

ER) is contained in 3 tuples in R, that have a descendant tuples in R, that contains the 

itemset {(Procedure = Blood Count)). 

A descendent pattern with respect to R, is also a relational pattern but it only includes 

itemsets pertaining to descendant tuples of the tuples in R, . Thus, a descendant patterns is 

a sub-tree of a relational pattern with respect to R, , that only includes nodes 
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corresponding to descendant tuples of the tuples in R, . For example, Fig. 11 shows a 

descendant pattern with respect to relation R, , which is a sub-tree of the relational pattern 

shown in Fig. 10. (It is also large since it is contained in 4 of the 8 trees of tuples in R,). 

We include the root node with an asterisk merely to capture the relationships between the 

attributes. 

I 
1 Patient Id = 200 I 
I Age = 5-7 I -male 1 

i 
fipartrnent = Pediatr~c 

LOS = 2-30 

' Patlent ld = 400 / 1 Age=10-12 
, Sex = Male 

Figure 9: A tree representation of all hospitalization entities in the database 
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Figure 10: A relational pattern with respect to R2 

Figure 1 1 : A descendant patterns with respect to relation R2 

6.1 The Algorithm 

As descendant patterns are extracted with respect to a particular relation R we may 

extract relational patterns wrt any relation in the database. This is so since the support 

count for each descendant pattern is computed with respect to R, i.e., we compute the 

percentage of trees of tuples in relation R that contain that pattern. Due to arbitrary tree 

structures, and different number of tuples in each relation in the database, the count for 

support needs to be performed with respect to a certain relations. 

Next we describe our approach to extract relational patterns with respect to an arbitrary 

relation R,-,, , where the leaf relation R, is n levels downward in tree representation of the 

database. 

To extract relational patterns for relation R,-,, , we first extract descendant patterns with 

respect to that relation. We extract descendant patterns bottom up starting from the leaf 

relation up to relation R,-,,,, . Then, we extract relational pattern for R,-,!. The tuples at 

the leaf relation R, have no descendant tuples (i.e., their trees are of a single node), and 

therefore the treatment is different and simpler than for any other relation in the path. 
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In the following description assume we aim at extracting relational patterns with 

respect to relation R,_,, . We extract relational patterns from the leaf relation upward, and 

in the following description we extract patterns at an arbitrary level of relation R., . For 

each level/ relation R we extract relational patterns that include itemsets corresponding 

to a tuple in that relation as well as itemsets from descendant tuples. We then construct an 

alternative database where each tuple in R, is replaced with all the previously extracted 

relational patterns contained in its tree. These patterns are represented with unique 

integers. We extend the patterns to the width by utilizing the alternative database to 

extract sibling patterns. For the leaf level the alternative database does not include any 

descendant patterns. In addition, for the root relation (with respect to which we extract 

relational patterns) we do not extract sibling patterns (this is since there is no parent 

relation with respect to which sibling collections are defined). 

Phase 1 

At the first phase we employ the Apriori algorithm [AMS95] described in section 1 to 

extract large itemsets from relation R ,  , however, differently from Apriori we increase the 

support count of an itemset per tuple in R,_, that the itemset is contained in one of its 

descendant tuples in relation R, . We also map each large itemset to a unique integer and 

store them in the set AL'," , 

Phase 2 

We apply phase 2 only if the current relation from which we extract descendant patterns 

is not a leaf relation. In this phase we generate relational patterns also called Join 

patterns. Join patterns are sub-trees with nodes corresponding to tuples from descendant 

relations ofR, , as well as a root node corresponding to a tuple in R, . If R, is a leaf 

relation its tuples have no descendants and thus we skip this phase. 

DSiIy is the set of all large descendant patterns wrt relation R,-, extracted from all 

descendant relations up to relation R,-, (see phase 4). Each pattern is represented in DS;IY 

by a unique integer. 
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The set z:; includes members of the form (PID, (P,,, )) , where PID is the Id of a tuple 

t in Ri , and the set (P,,,,) contains all descendant patterns in DSi.1; contained in t's tree. 

Each member of E:-" corresponding to tuple t in Ri is thus (~.PID, (ds E DS:" 1 ds is 

contained in t7 s tree } ) . 

To generate candidates for Join patterns, we join all descendant patterns in DS; with all 

the itemsets in AL'," generated from R ,  in phase 1. We then compute the support of each 

candidate. A descendant pattern generated by joining an itemset a E AL';" from relation 

R ,  and a descendant pattern ds E DS;, is contained in tuple t's tree (where t is from in 

R ,  ), if the following are satisfied: 

1. t contains a, and 
- 

2. There exist (PID, (P,,)) E D S ~  , such that PID = t.Id , and ds c where 

t.Id is tuple t's Id. 

A join pattern extracted wrt relation R,-,, is also a descendant pattern, thus, it is said to be 

large if it is contained in more than minimum support of the trees of tuples in Rl-,, . We 

then map each extracted large join pattern to a unique integer. The set Join;" composes 

all large join patterns extracted at relation R ,  wrt relation R,-,, 

Phase 3: 

This phase is applied for descendant relations of R,-,, , and not for relation RI-,  itself. 

Following the algorithm to extract sibling patterns, we construct a transformed database. 

In [ASB?], a transformed database D, is constructed. Here however, we construct a 

different transformation. We use the notation D,, "' for the transformed database 

constructed for relation R,  , while extracting relational patterns wrt relation Ri-n . In 

[AS9?], each tuple is replaced by the set o"f -sequences that are contained in that tuple. 
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For sibling patterns, for an arbitrary relation R ,  that is not a leaf relation we use as 1- 

sibling descendant patterns from three groups: Large itemsets extracted at phase 1, Join 

patterns extracted at phase 2, and descendant patterns from DS;:';. Each entry in Dl 1-11 

I 

includes all large itemsets extracted at phase 1, Join patterns extracted at phase 2, and 

descendant patterns from DSi:; that are contained in the tree of the corresponding tuple 

in R,  (A pattern ds E DS;I; is contained in the tree of tuple t from relation R, , if there 

exist (PID,(P ,.,, ,)) E Ez.  such that PID = t.Id , and ds ( P  ,,,,,) , where t.Id is tuple t's 

Id). 

For a leaf relation we only include large itemsets generated at phase 1. 

A sibling collection is now represented by a (unordered) list of sets of 1 -siblings. Each set 

of 1 -siblings is represented by (b, , b, ,. . . , blI ) where b, is a 1 -sibling. As in [AS9?], if a 

tuple in R, does not contain any 1 -sibling, it is dropped from the transformed database. In 

addition, a sibling collection that non of the tuples that compose it contain any 1 -sinblng, 

it is also discarded from Dl, I-", however, it still contributes to the count of the total 

number of tuples. 

Since the elements that compose D,. I-" are patterns represented by unique integers as are 

large intemsets which compose D,. in [AS9?], we apply the approach used in the 

sequence phase in [AS9?] to extract ( n  2 2)-sequential patterns, to extract ( n  2 2)-sibling 

patterns from D, '-" . Each extracted large ( n  2 2)-sibling patterns is then mapped to a 

unique integer. The set S T  comprise all large ( n  2 2)-sibling patterns extracted at level j 

wrt relation Rj-l, . 

Phase 4: 

In this phase we construct D S ~ "  and Ey". The set DS;-" contains all patterns 

contained in the sets DSiI;', S:" and ~uin,;;". To generate the set E,", for each 

member (PID, (P,,)) E DS," corresponding to tuple t in relation R,+, , the set (P,,) is 

composed of all descendant patterns in DSi-" that are contained in t's tree (i.e., it 
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contains all sets {P,,II,) from the elements (PID, {P,,)) c corresponding to t's 

descendants in R,, all patterns in Join, that are contained in the trees oft's descendants 

in R ,  , and all ( n  2 2)-sibling patterns generated from D, I-'' contained in t' s tree). 

The results of the mining procedure includes all the extracted relational patterns 

(including descendant patterns): U A{;" , US:-" , and U J.;:" where j goes from the 
.I .I I 

leafs index i to i - n . 

It is important to differentiate between relational patterns extracted at different levels, 

since the same sibling pattern extracted at different levels actually represent different 

patterns. Take for example the database in Fig, 4, and assume we mine the database wrt 

relation R, . Now consider the following descendant pattern extracted at level 1 (i.e., from 

relation R, ): ( { ( ~ r  or. = ECG)), ((Pr oc. = ~ l o o d ~ o v n t ) )  . As a descendant pattern 

extracted at the level of relation R, , the interpretation of this pattern is that the two 

procedures are performed on patients while hospitalized in the same department. This is 

so since the sets {(Proc. = ECG))and {(Proc. = Bloodcount)) are contained in sibling 

tuples (i.e., with a mutual parent tuple in R,). However the same descendant pattern 

extracted at level 2 from the transformed database Dli means that each procedure is 

performed on the patient while hospitalized in different departments. This is so, since the 

patterns ((Proc. = ECG))and {(Proc. = B1oodCount))were contained in different entries 

of Djl pertaining to different tuples in R2.  

Example. 

We now show an example for the algorithm described above. Assume we are interested 

in extracting relational patterns from the database depicted in Fig. 4 with respect to 

hospitalization cases (i.e., wrt relation R, ). Thus, we will compute the support for 

relational patterns wrt relation R, . Also assume that the minimum support parameter s is 

30%. 
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We start with extracting descendant patterns from the leaf relation in the database tree 

representation, i.e., relation R, . 

Extracting Descendant patterns from R, wrt relation R, : 

Phase 1: Following phase 1 we extract large itemsets from relation R, , as shown in 

Figure 12 below. 

-4L; 

Figure 12: Large itemsets extracted from R, 

Large Itemsets 
{Proc = BloodCount} 

{Proc = ECG) 
{Proc = X-Ray } 

Since R, is a leaf relation in the tree representation of the database we skip phase 2, 

Phase 3: In phase 3 we construct the transformed database D:; shown in Fig. 13, where 

each entry corresponds to a tuple in R, and contains all the large itemsets that are 

contained in that tuple. D:. is shown in Fig. 13 in its sibling collection form, where a 

sibling collection is represented by an unordered list of sets of integers, and where each 

integer represents a pattern contained in the tree of the corresponding parent tuple in 

relation R, . 

Since relarion R, is a leaf relation in the tree representation of the database, and therefore 

Mapped to 
1 
2 
3 

the tuples in R, have no descendants, we don't incorporate any other patterns in D:? 

apart from large itemsets extracted from R, itself. 
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Figure 13: The transformed table D:: and the et S: of sibling patterns extracted from it 

Sibling patterns 

((1). (2)) 

We then use D:; as it is used in [AS9?], and employ the sequence phase to extract 

Mapped to 
4 

( n  2 2)-sibling patterns. All ( n  2 2)-sibling patterns extracted from D:, are shown in 

Fig. 9. 

1 
Phase 4: We now construct DS: and E i .  The set D S ~  contains all previously 

extracted descendant patterns. Thus it includes all large itemsets, Join patterns, and 

I 
( n  2 2)-sibling patterns extracted up to this stage. D S ~  and E3 are shown in Fig. 14. 

1 
Figure 14: The set of descendant patterns D S ~  and the set E3 

We now move upward to extract descendant patterns at the level of relation R, . 

Extracting patterns at level 2: 
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Phase I :  All large itemsets extracted from R, wrt relation R, are shown in Fig. 15 

below. 

Large Itemsets Mapped to 
{(Dept.=ER)) 

{(Dept.=Pediatric)) 
{(LOS=lI))) 

{(LOS=2-3D)f 

Figure 15: Large iternsets extracted from relation R, wrt R, 

Phase 2: We generate Join patterns by joining members in the set D S ~  with those in the 

set AL: . Figure 16 shows the set J: containing all the large Joins mapped each to a 

unique integer. 

Join Patterns I M a ~ ~ e d  to 1 
5 and 1 
5 and 2 
5 and 4 
6 and 3 8 

Figure 16: The set J: of Join patterns 

Phase 3: The transformed database DL is shown in Fig. 17. Each entry is replaced with 

all previously extracted large itemsets, join patterns and sibling patterns that are 

contained in the tree of the corresponding tuple in R, . 

Figure 17: The transformed database D:; 

We then extract ( n  t 2)-sibling patterns from D:; , however, no large sibling patterns are 

discovered. 

1 
Phase 4: DS; and E2 are constructed to support the discovery of Join patterns at the 

1 
next iteration at level 1. Fig. 18 shows Ds; and E2. 
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1 
Figure 18: The sets of descendant patterns D S ~  and %2 

Extracting patterns at level 2: 

Phase 1: Finally, at level 1, in the first phase we extract all large itemsets in R, wrt 

relation R, shown in Fig. 19. 

Phase 2: At the second phase we extract all large Join patterns as shown in Fig. 19. 

Figure 19: Set of all large itemsets and all Join patterns extracted at level 1 

Large Itemsets 
{ (Sex=Female)} 
{(Sex=Male)l 

As we mentioned earlier, we may extract relational patterns wrt to any relation in the 

Mapped to 
13 
14 

database, and the choice of relation with respect to which we extract patters pertains to 
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the application and analyst requirements. For example, if the subject for the inquiry are 

patients' visits in the hospital's departments, our natural choice would be to extract 

patterns with respect to relation R, 

7. Implementation and experience 

The approach presented in this paper was implemented in a prototype of which 

architecture is presented in Fig. 20. The data source is discharge abstract data, colIected 

for every hospitalized patient on a routine basis. The data are extracted from the patients' 

medical files, comprised during the hospitalization period, whereas only selected details 

from the medical file are entered via remote dumb terminals to a centralized database, to 

comprise a digital medical record. 

The data learning and visualization module enables the user to perform via a graphical 

user interface, simple statistical tasks. These features provide preliminary data 

exploration and visualizations capabilities, through which the user can get a feel of the 

data, and that may also trigger some further investigations . This module includes 

features such as fields distribution via graphs, mutual distributions, and SQL queries. 

The knowledge discovery module, uses the user's specifications for the discovery task. 

The specifications, which are acquired via a graphical user interface, instruct the 

extraction of relational patterns. 

Finally the presentation module presents the resulted analyses and inquiries, in a 

comprehensible manner. 
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Data Collection 

+I 
Knowledge 
Discovery Module 

Figure 20: System Architecture 

We now provide a brief description of some observatioii in light of the use of the system 

A significanat part of the difficulties that emerge are associated with the high diversity in 

the database. Many KDD link analysis applications [FPS96] reported in the literature 

were in the marketing domain (e.g., analyzing basket data) [I [] where the database 

contained items purchased in each transaction. In these cases the extracted patterns could 

be navigated toward decisions on positioning items, for example, or promotion 
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campaigns. The point here is that it is reasonable to mine the database as a whole or 

maybe use some simple segments of it. When extracting relational patterns from hospital 

discharge abstracts based on statistical strength of "support", it was often meaningless to 

extract patterns from an extremely heterogeneous population of which partial list are 

geriatric patients, pregnant women merely arriving to the hospital to give birth, heart 

patients and chronic patients. Since we extract patterns according to their statistical 

strength it is important to perform the investigation on a more meaningful subset of the 

population. It was thus essential to enable the analyst to specify the population for 

analysis, and moreover, since we think of the mining process as iterative it was necessary 

for the analyst to specify different preferences based on the previous iterations. Another 

simple mean we used to specify the analyst preferences is choice of database fields (e.g., 

age, diagnoses, and length of stay). 

Both the choice of population and relevant fields for the mining task supported the 

analyst in focusing the investigation according to one's interest. However these 

capabilities also helped moderating another difficulty: Too manypatterns were extracted. 

An analyst extracting patterns in search for relevant knowledge practically can not 

consider hundreds or even thousands of pattern. This is a known problem, in particular in 

relation to link analysis [FPM91 [KMR94] [BMU97] [ST951 [ST961 [PT98]. Reducing 

the dimensionality of the database also enabled to substantially reduce the number of 

patterns extracted. However, this was still an obstacle. Most of the extracted patterns 

were known and/or of no interest to the analyst. Several interesting studies have been 

done on interestingness of patterns [ST95], [ST963 [PT98]. Some of these studies are 

based on incorporating domain knowledge or beliefs [PT98] which are then used to 

extract only patterns that are not already known andlor patterns that embed knowledge 

which may trigger some corrective action (i.e., actionability [MPM95] [MPM94] 

[AT97]]). Another difficulty the emerged concerns navigating extracted patterns into 

decisions. Whereas in the bulk of KDD applications, patterns required minimal or no 

further analysis to be navigated toward decisions, we learned that as the underlying 

problem is less structured and more knowledge intensive the more analysis is required to 

translate raw patterns into decision making.When quality management utilized the system 

to rip knowledge relating to quality related events it became evident that an additinal 
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layer of analysis is required to refine the extracted pattrns into meaningful knowledge for 

them to act uppon. 
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