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Abstract

Temporal logic queries on Datalog and negated Datalog programs are studied. and their relationship
to Datalog queries on these programs is explored. It is shown that. in general. temporal logic queries
have more expressive power than Datalog queries on Datalog and negated Datalog programs. It is
also shown that an czistential domain-independent {ragment of temporal logic queries has the same
expressive power as Datalog queries on negated Datalog programs with inflationary semantics. This

means that for finite structures this class of queries has the power of the fixpoint logic.
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1 Introduction .

Traditionally, the semantics of a Datalog query on a Datalog program is associated with the compu-
tation of the fixpoint of that program and evaluation of the query on that fixpoint [UlI88]. However,
as will be explained below, it is also interesting to ask questions about the intermediate stages of the
computation of the fixpoint. One way 10 ask questions about sequences of intermediate stages of
the computation is to use temporal logic. Then it becomes interesting to know how temporal logic
queries on sequences generated by Datalog programs are related 1o Datalog queries on fixpoints of

these programs.

on the intermediate stages of the fixpoint computation for that program. where ¢ is the temporal
operator sometimes [MP92]. The inverse question is more interesting: can temporal logic queries on
Datalog or Datalog™ programs be simulated with regular Datalog queries on (some other) Datalog or
Datalog™ programs? It follows from simple monotonicity considerations that the answer is negative
for Datalog programs. However. the answer is much more involved for the Datalog™ programs. In

fact. this question constitutes the focal point of this paper.

The problem of studying intermediate stages in the computation of the fixpoint of Datalog and
Datalog™ programs is interesting for the following reasons. First. researchers have been studying
intermediate stages of the fixpoint computations before. For example. Moschovakis in his book
[Mos74] has a separate chapter on the stages of an inductive definition (Chapter 2) that contains the
Stage Comparison Theorem among other results on intermediate stages of the fixpoint computation.
Also, Abiteboul and Vianu [AV91] and Gurevich and Shelah [GSS6] extensively use intermediate

stages of the fixpoint computations in the proofs of their major resulis.

Second. intermediate stages of fixpoint computations can be used for the specifications of tem-
poral databases. There have been several methods proposed in the past for the specification of
infinite temporal databases. such as temporal logic programs [BCW93. Tuz93], production sys-
tems [KT89, TK91], and linear repeating points [BNW91]. Furthermore. as [AV91] shows. doubly
negated Datalog. Datalog™ [AV91]. is very closely related to certain types of production systems
and. therefore. can also be used for the specifications of temporal databases. Of course, Datalog

e

and Datalog™ differ from Datalog™ in that Datalog™ supports negations in the head of a rule,
whereas the other two languages do not. Nevertheless. Datalog and Datalog™ can also be used for
the specification of temporal data in those applications where data is non-decreasing over time,

assuming that the semantics of these programs is defined in terms of the intermediate stages of
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fixpoint computations.

Finally, intermediate stages of the fixpoint computation become very important in those Data-
log extensions that do not guarantee the existence of the fixpoint. such as doubly negated Datalog.
Datalog™ [AV91]. Since some Datalog™ programs do not have a fixpoint, fixpoint queries on these
programs are not well-defined. To solve this problem. we can use temporal logic queries as an

extension of Datalog queries on such programs.

Temporal logic as a query language has been studied before in the context of temporal
databases [TC90, BNW91. GM91. CCT]. Studying temporal logic as a query language is im-
portant because it serves as a theoretical foundation for various temporal query languages and
algebras proposed in the literature [CCT]. In this paper we continue studying temporal logic as a

query language but on a special type of a temporal database generated by Datalog programs.

The rest of the paper is organized as follows. In Section 2. we define some preliminary concepts,
including a temporal logic query Janguage on Datalog and Datalog™ programs. In Section 3.
we analyze the relative expressive power of temporal logic and Datalog queries for Datalog and
Datalog™ programs. We also formulate the main result of the paper that a certain subset of
temporal logic queries can be simulated with Datalog queries on Datalog™ programs and show how
it is related to the Stage Comparison Theorem [Mos74]. In Section 4. we prove this result. Proofs

of the major technical lemmas stated in Section 4 are presented in the Appendix.

2 Preliminaries

In order to study the relationship between Datalog and temporal logic queries. we first have to

define the meaning of these queries on Datalog and Datalog™ programs.

Datalog queries on Datalog and Datalog™ programs have been extensively studied before
[UlISS]. Specifically. let P be a Datalog program and let £ be a set of EDB predicates. Con-
sider the sequence of database states Dy. Dy, .... D,. .... where D;,1 = EVAL{D;) and Dg = E.
The mapping EVAL computes new facts from the facts in D; by applyving all the Datalog rules
in P simultaneously’. The meaning of a Datalog progran is associated with the least fixpoint
of the mapping EVAL. ie.. with the first value D; in the sequence above for which D; = D,y
[U188]. Similarly. the meaning of a Datalog™ program under imflationary semantics [AV91. KP91].

is defined as the fixpoint of the mapping

D,+] :U,Ufl—lLff),i (])

'For precise definition of EVAL see [Ullss. p. 115)
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A Datalog query for a Datalog or Datalog™ program F is a predicate Q appearing among the
IDB predicates of P. The answer to such a query is defined in the standard way [UlIS8] as the

instance of predicate @ taken at the fixpoint of P.

However, when we define the semantics of a temporal Jogic query on a Datalog program, we
cannot assume the fixpoint semantics of the program as defined above because the meaning of
temporal logic formulas is defined in terms of sequences of predicate instances appearing in them.
To accommodate this difference. we associate the meaning of a Datalog or a Datalog™ program
with the entire sequence Do. Dy. .... Dy, ... of the intermediate stages in the computation of the
fixpoint of the program. We will call it sequential semantics. and, if no confusion arises, we will
also call it inflationary for the Datalog™ programs because the sequence of intermediate stages is

still obtained with the inflationary equation (1).

To define temporal logic queries. we consider the future fragment of predicate temporal logic
[MP92, Eme90], denoted as T'L. with temporal operators o (nezt). and until and with time defined
with natural numbers. oA is true at time 7 if 4 is true a1t time 1 + 1. A4 until B is true at
time 1 if B is true at some time ' > ¢ and A is true for all times t” such that 1 < 1 < t'. In
addition, we consider derived temporal operators possibility (¢) and necessity (O) that are defined
as ©A = TRUE until A. and 04 = -o-4. Finally. another derived temporal operator A
before B is defined as being true at time 1 if for every time ' such that B is true at ¢’. there is

some time ¢ such that 7 < 1" < 1" and A is true at time " [Kro87].

The semantics of a temporal logic formula is defined with a temporal structure I [Kro87),
which specifies instances of all its predicates at all the times in the future. In particular, I\'; defines
instances of all the predicates appearing in the formula at time 7. We make an assumption, natural

in the database context. that domains of predicates do not change over time.

From the database perspective. a temporal structure can be viewed as an infinite sequence
of database states. i.e. Dgy. Dy. Dy..... In this paper. we assume that the temporal structure is
defined by a Datalog or Datalog™ program that generates a sequence of database states in the way
described above?. We denote the temporal structure generated by a Datalog or Datalog™ program

P (for a set of EDBs) as 1’7,

A temporal logic formula © on a Datalog or Datalog™ program P. with all the predicates in

o appearing in program P. defines a query {x | o(x)} on P?. The answer to this query is defined

“The stages of intermediate computations of Datalog and Datalog™ programs can be associated with the discrete
linear model of time. This means that one application of Datalog rules 1akes one time unit. Datalog literature usually
calls intermediate steps of the computation stages. whereas the temporal logic literature calls them time instances.
We will not adhere to any specific terminology in the paper and will nse the 1wo terms interchangeably.

*We will sometimes simplify the notation and refer to this query as o.
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with a first-order (time independent) predicate
op(x) = h'f:'f.o{x}]

where Ii'P is the temporal structure determined by program P (K means that K'F is evaluated
at time t = 0). In otler words, the answer 1o query ¢ on P is the set of tuples x satisfying the
temporal logic formula @ at time 0 with semantics determined by program P. For example, if
é(z) = A(z) until B(a). then ¢p(x) is true if A(x) is always true from time 7 = 0 until B(z)

becomes true.

We associate some, generally infinite. domain DOMp with a Datalog™ program P and assume
that all the constants in P and in EDB’s of P come from this domain. Furthermore, we assume
that all the Datalog™ programs are safe in the sense defined in [UlI88]. This means that a Datalog™
program with the inflationary semantics cannot introduce any new symbols when rules are applied

1o a database and that it always has a fixpoint.

3 Temporal Logic vs. Datalog Queries

In this section. we compare the expressive power of 7L and Datalog queries on Datalog and Datalog™
programs. If Q(x) is a Datalog query on a Datalog or Datalog™ program. then the TL query
{x | oQ(x)} simulates Q(x) for the same program. Therefore. T'L queries are at least as powerful

A(z2) before B(z)]}

is not necessarily monotone in the initial value of B at time ¢ = 0 for all Datalog programs and

as Datalog queries on Datalog and Datalog™ programs. Furthermore. since {2

since Datalog queries on Datalog programs are always monotone in their predicates. we have the

following proposition.
Proposition 1 TL queries have more crpressive power than Datalog queries for Datalog programs.

In the rest of the paper. we will address the question of whether or not temporal logic queries
can be expressed with Datalog queries on Datalog™ programs. Clearly. the answer is negative for

an unrestricted class of TL queries as the following example shows.

Let ¢(x) = =m0 A(a) v od(a). Certainly. o(x) is true for all values of « and for all Datalog™
programs. Therefore, if the domain of a program is infinite then this query produces an infinite
answer. However, (safe) Datalog™ programs can produce only finite answers. This means that the

TL query ¢ cannot be expressed with a Datalog query on a Datalog™ program.

This motivates the concept of domain-independence which is an extension of the same concept

for standard relational queries [UlISS] 1o temporal logic and Datalog™ programs. Let dompgy be
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the set of all the constants appearing in a TL query o. in all the rules of a Datalog™ program P.
in all the EDB predicates of P. and the constants in all the future instances of predicates in P. i.e.
constants inferred by program P*. Then a TL formula o is domain-independent if for any Datalog™
program P the predicate ¢p is the same for any domain DOM p such that DOMp D dompyg. i.e..
¢p does not depend on DOM p.

We are readyv to state the main result of the paper that says that for a certain subclass of

domain-independent queries (which we will call existential queries) the following condition holds:

for any Datalog™ program P and a TL query ¢ on P from that class of queries, there
is a Datalog™ program P’ and a Datalog query @ such that @ on P’ and ¢, define the

same mapping.

3.1 Relationship to the Stage Comparison Theorem

If a TL formula does not contain quantifiers then the main result follows {rom

1. the fact that the answer to a 7L querv without quantifiers can be expressed as a first-order

formula in terms of the ordering predicates Sycp and Sa<p [TKS9)®:

2. the Stage Comparison Theorem [Mos74] that says that the ordering predicates Sicp and

Sa<p can be expressed as the least fixpoints of some first order formulas:

3. the fact that inflationary Datalog™ programs have the power of inflationary fixpoints [AV91],

and therefore least fixpoints [GSNG].

However. if a TL formula contains quantifiers then it can be shown in the general case that
the Step 1 in this argument is no longer valid. Therefore. it is not clear how the Stage Comparison
Theorem can be applied to the general case when quantifiers appear in TL formulas. For this
reason, we provide our own proof of the main result which is independent of the Stage Comparison

Theorem.

The proof of the main result is structured as follows. First. we define a certain class of
configuration formulas for a set of predicates appearing in a query. Second. we show that the

answer 1o a T'L query is equal to the disjunction of some set of configuration formulas. Third, we

“Since we consider only safe programs. no new constants will be added 10 dompg by applying rules from P.
Therefore, the domain of a safe formula contains only constants in o. in EDB predicates. and the constants of P.

As will be defined below. an ordering predicate Sicp(r) (Sscplr))is true if and only if x is inserted in predicate
A before (or at the same time as) r is inserted in predicate B.
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show how configuration formulas can be computed with Datalog™ programs. In-the next section

we provide an example that illustrates these steps. and in Section 4 we prove the main theorem.

3.2 Example

Consider the following temporal logic formula on some Datalog™ program P:®

@(z) = C(z) until (A(2) A -B(x)) (2)

We will show that there is a Datalog™ program P’ and a query @ such that Q and ¢} define the
same mapping. This will be done in two parts. In the first part. we will show that ¢ can be
expressed as a first-order formula over ordering predicates. In the second part, we will show how

this first-order formula can be computed with Datalog™ rules.

Let t4(z), tp(a), and ic:(a) be the time instances when x is inserted into predicates A, B,
and C respectively’. 14(x) and tg(2) are well defined. because under the inflationary semantics of
Datalog™. once a tuple is inserted into a predicate. it will never be removed from it. In general.
0 < ita(z),tplz).ic(x) < oc. 14(2) = o¢ means that o js never inserted into A: similarly for tg
and for 1¢.

We define ordering predicates Syepla). Sa=p(a). Sace{a). etc. as follows. Sacp(a)is true if
and only if t4(2) < ig(x). Other ordering predicates are defined similarly.

Part 1. In this part. we will show that ¢p can be expressed in first-order terms over some order-
ing predicates by evaluating operators in ¢ in the bottom-up manner. Let ¢(2) = ¢"(2) until ¢'(z),
where &'(2) = A(z) A -B(z) and o"(2) = C'(2).

Step 1: ¢'(z) = A(x) A=B(x).

Let T;(:tr) =14(). 73(2) = tg(a). By inspection. if 71(a0) < 75(a) then @' is true on the interval
[71(2). 75(2)). and false outside of this interval. We will call such an interval truth interval hecause
it specifies times when ¢’ is true. We will also call 7{(x) and 75(2) transition functions since at

these time points ¢’ changes its value.

For the reasons to be explained below. we will consider two cases: 7{(x) = 0 and 74(2) > 0.

“Since this formula does not contain quantifiers. it can be simulated with a Datalog™ program using the Stage
Comparison Theorem as was specified in Section 3.1. However. introduction of guantifiers makes any non-trivial
example unmanageable. Therefore. we selected an example withont guantifiers in order to illustrate some of the
major ideas used in the proof of the mamn theorem. The additional difficnlties related to quantifiers will be addressed
directiy in the proof.

"These time instances are related 10 1he stages of inductive definitions in [,’\10574],
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By inspection, if

111(2) = 1j(2) < Tolx) AT 2) =0
then ¢’ is true on the time interval [0.74(2)) and if
T2(2) = m(a) < Tola) A Tyla) >0
then ¢’ is true on [r{(z).7(2)). where 7{(2) > 0. Also. ii
J13(2) = my(x) > ()

then ¢’ is false for all times.

We call 711,712, 13 configuration formulas for ¢' because each formula uniquely determines the
configuration of the temporal structure of ¢': for all values of 2 satisfying a configuration formula,
the temporal structure of ¢@'(x) has the same topology of its truth intervals (e.g. if 2 satisfies
712(x) then @(x)" is true on [r{(2).75(x')) and false elsewhere). Note that 511.712, 713 determine all
possible configurations of truth intervals for ¢’ because they are mutually exclusive and collectively

exhaustive.
Step 2: ¢""(z) = C(x).
Let 7”(2) = te(x). In this case. we have two configuration formulas 4o1(2) and ygo(2). If

_

7a(z) = 72) =0

then ¢"(2)is true for all times. If
a1 > 0

I

v22(2)
then ¢"(z) is true on the interval [7”(2). > ). where 7"(2) > 0.
Step 3: ¢(x) = ¢"(a) until &'(x).

To determine all possible configurations for o. we have 10 consider pairwise combinations of

configurations produced in Steps 1 and 2 (six combinations altogether).

1. ya1(z) = mulz)Aqale) = )< nla)Arr)=0A7"2)=0
The temporal structure of o(x) for the values of » satisfying <4a1(2) has the configuration

consisting of a single truth interval [0.75(x)).

2. 732(2) = nlx) Aqaalx).
To determine the temporal structure of o in this case. we have 1o consider two cases. i.e. when
m(2) < m3(x) and when 7(x) > 75(2). By inspection. in both cases the temporal structure

has only one truth interval [0.75(x)).
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3. q33(z) = 7207) A ().

In this case. the temporal structure for ¢ has onlv one truth interval [0.75(2)).

4. 7a4(x) = 712(2) A y22(2).
In this case, 712(2) A 792(2) is not a configuration formula for ¢(2) because there can be dif-
ferent temporal structures for the values of x satisfving 734(2). To get configuration formulas

for this case. we have 1o split it into the following subcases:

(a) 7"(x) < ()

(b) 7i(2) < 7(2) < T4(x)

(c) m3(z) < 7"(x)

In subcase (4a). we get the configuration formula
341(2) = aal@) A7) < (7)) = ga2(2) Aqaala) A TV(>) £ Ti(2)

and the truth interval [7"(2). 7j(x)).

Both subcases (4b) and (4¢) have 1he same configuration determined by the truth interval
[r4(2), 73(x)) and the combined configuration formula
Y342(2) = 72(2) Ayaa(2) A T"(2) > ()

5. 735(z) = masla)Avyalz).

The temporal structure for ¢ is always FALSE in this case for all the values of 2 satisfyving

vas(2) and all the moments of time.
6. y36(®) = 73(2) A y22().

The temporal structure for ¢ is also always FALSE in this case.

So far, we considered all possible configurations of temporal structure for ¢ and conditions
(configuration formulas) that determine these confieurations. Clearly, op is equal 1o the disjunction
of those configuration formulas. whose temporal structure is true at time 1 = 0, By inspection, this

happens when one of the conditions <3;(2 ). or <as(2 ). or “a3(2) is true. i.e.
Oplr) = 731(2) V 532(0) V 533(2)

This expression can be simplified to

1

op(r) = () V i2(a) Agale) (3)
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If we substitute the expressions for 511(2), y12(2). 591(2) in (3) as defined in Steps 1 and 2 above.
then we conclude that ¢p(z) is true when either 1) A(x)is true at time 0 and B(z) is not true at
that time or 2) C(2) is true at 0 and B(a) becomes true after A(2). Notice that this observation

coincides with the meaning of the TL query defined by (2). and this verifies the formula (3).

Part 2. It follows from the Stage Comparison Theorem [Mos74] and from the fact that
Datalog™ programs have the power of inflationary fixpoints [AV91] that ordering predicates can
be computed with Datalog™ programs. Therefore. ¢p . as defined by (3). can be computed with
a Datalog™ program. However, in the proof of the main theorem (Lemma 8), we will show how
configuration formulas can be computed directly with Datalog™ programs. We delay the treatment

of this issue until then. B

This example illustrates the major idea behind the proof of the main theorem that the answer
to a TL query ¢ can be obtained by determining a finite number of configuration formulas. Fur-
thermore, the answer to the query consists of the disjunction of those configuration formulas whose

corresponding truth intervals start at time 0.

As was pointed out before. we did not consider quantifiers in this example and did not address
the problems associated with them. We will deal with quantifiers directly in the proof of the main

theorem.

4 Main Theorem

In this section. we prove the main result of this paper that existential domain-independent TL
queries on Datalog™ programs can be simulated with Datalog queries. In order to prove this result.

we first provide some preliminary definitions.

A TL formula can have several references to the same predicate. Each such reference will
be called an occurrence of a predicate in a formula. Two occurrences of the same predicate are

identical if they have the same list of variables. e.g. P(xj.....xx): otherwise. they are distinct.

the formula B(x) until (B(y)A C(x..r)) gives 3 predicates. which we could write as A;(2), A2(y).
As{&'}‘ﬂf).

Let x be a sequence of some length m listing in some order all the variables of . For each
predicate occurrence A;, x; will denote the actual variables of A; in the order they appear. Thus
in the above example, m = 2. x = (2.y). X; = (2). X2 = (y). X3 = (2.2 ). As defined in Section 3.2.

let 14,(x;) be the time instance when x; is inserted into 4,. As before. 14 (X;) = oc means that x;
9
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i never inserted into A;.

Let A;(x;) and A;(x;) be two predicate occurrences i ¢. and x be the sequence of variables
consisting of variables from either x; or x,. An ordering predicaie S4,<a,(x) on a Datalog™ program
is true if and only if 1.4,(x;) < 1.4,(x;). In other words. it is true if and only if x; is inserted in A,
before x; is inserted in A;. Similarly. we define other types of ordering predicates: Soca,(x) is true
if and only if 0 < 14,(X;), S4,=4,(x) s true if and only if 74,(x;) = 14,(X;). and 54,<oc(x) if and
only if 14,(x;) < cc. As was pointed out before, the ordering predicates are related to the ordering
relations defined in the Stage Comparison Theorem [Mos74]. In fact they are modified versions of

ordering relations.

liet Q4,....4, be the class of all the first-order formulas over all the distinct occurrences

Ai.Aq. ... A, of predicates from ¢ and over all the ordering predicates based on Ay, As...., A,

For example, (Vy)(C(2.y) = Sacplar.y)) is a formula from Q4 5.

We next define a configuration for a TL formula. A configuration C,(x) for a TL formula ¢
is a triple (y(x).T(x).8). where ~(x) is a first-order formula from €4, 4, called configuration
Jormula. T'(x) = {7o(x). 71(x).. ... Th(X). Tn+]f}{}} is a set of transition funections such that 0 =
To(x) < T1(X) < ... < TalX) < Th41(x) = o for all values of x satisfving the configuration formula
v(x). and & is a boolean variable. called a configuration type indicator (or simply a configuration
indicator). A configuration for a TL formula ¢(x) has a propertyv that the temporal structure of ¢(x)
does not change for the values of x satisfving the configuration formula y(x). and is determined
by its transition functions. More specifically. o is constant (either true or false) on an interval
[7i(x). Tig1(x)), 2 = 0,....n. for all values of x such that 5(x) is true and changes truth values
across adjacent intervals. i.e. if @ is true on [7;(x).7.41(x)) then it is false on [7;41(X), Tix2(x)).
and if @ is false on the first interval. it is true on the second one. In addition, & determines the
truth value of the first interval [7g(x ). 73(x)) (and. therefore. the other intervals as well): if é is true
then ¢ is also true on the first interval. and if é is false then o is also false on the first interval.
The intervals [73(x). Ti41(x)) on which o is true are called 1ruth intervals of the configuration. An

example of a configuration with ¢ = FALSE is shown in Fig. 1.

Intuitively. a configuration specifies one of the possible “topologies™ of a temporal structure of
a TL formula on a Datalog™ program by specifving the set of transition points (transition functions)
at which the formula changes values hetween true and folsc. In addition. the configuration formula
specifies under what conditions this topology is valid. For mstance. in Step 1 of Part 1 of the
example presented in Section 3.2. if the configuration formula is 512(2) = 7{(2) < Tj(a)A7j(2) > 0

then &' has the topology determined by two transition functions 7{(x) and 7§(z). The formula

10
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TRUE TRUE TRUE

FALSE FALSE FALSE

0=19 (%) ) o 1(x) T1(8)= 00

Figure 1: An example of a configuration.

¢'(a) is true for all the values of a satisfying 7;2(2) and for all the moments of time t such that

m1(2) £ 1 < 73(z) and false otherwise.

The proof of the main theorem is based on the idea that. if a TL formula is of a certain type
(which we will call an “internallyv existential™ formula). then the answer to the query defined by this
formula is equal to a disjunction of a finite set of configuration formulas (that belong to 24, .4, )-
This means that in order to simulate a T'L query of that 1vpe. we only have to show how to simulate

formulas from Q4, .4, by Datalog™ programs.

In the proof of the main theorem when we show that ¢p belongs to Q4 . 4,. l.e. it is

“computable” by a Datalog™ program. we have to show that transition functions in configurations
of subformulas of @ are also “computable”™ in some sense. This motivates the following definition

of a “computable” class of transition functions @4, 3, which is defined as follows:

3 3] €Wyt JOF | = Lisaon n.

2. constant functions zero : DO:U}‘;} — 0 and infinity : DOM;"; — o< belong to ®4, . 4, for
all the values of k = 1.2.3... .. where DOMp is the underlving domain of the program P. If

no confusion arises. we denote these functions as () and ~.
3. if a(x,y) € ®4,...4, and 7(x.y) € V4, . 4, then
gix) = maxy{a(x.y) | 3(x.y)} € ®4,.. .4,
hix) = mingd{a(x.y) | 5(x.y)} € O4,. 4,

For example. the formulas a(x.y) = max-{t4(r.y.2) | t4(2.y.2) < =} and B(z) =
ming{a(z,y) | alx.y) > 0} are in &4 since. as it will be shown in Lemma 2. a(a,y) > 0 be-

longs to Q4.

11
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Lemma 2 Let a(x) € P4, . 4,. By) € P4, .4,. Then the expressions ) < a(x), a(x) <

~

Bly). a(x) = B(y). a(x) < oc belong to Q4,4

Proof: The proof is done by induction on the number of operators in a(x) and f(y) and is
based on the observation that maxy{a(x,y) | 11(x.y)} < min.{A(x.2) | 92(x.z)} is equivalent to

(Yy)(Vz)((m(x,¥) Ava(x.2)) = (a(x,y) < B(x.2))) :

As was mentioned before. we will show that for a certain class of 7L formulas, temporal
structures of these formulas are uniquely determined by a finite set of configurations. However, it
is not true for arbitrary TL formulas. To see this. consider the formula (3y)o(x,y). Assume that
o(x,y) has a configuration as shown in Fig. 2. For example. ¢(x,y) could be A(z,y) A =B(z,y),
the program P could be the transitive closure of predicates A and of B, and the initial instances
of A and B at time 7 = 0 and values of » and y are such that A(2.y) becomes true before B(z,y).
Then (3y)é(x,y) can have arbitrarily many truth intervals (Fig. 3): the number of these intervals
depends on x and can grow arbitrarily large in general. For example. assume that for y = yo.
Alz,yo) becomes true before B(x.yp). i.e. 14(x.yo) < 1g(x.yo). assume that the same is true for
Y=y e 1a(x, ) <ig(x,y). and that ig(2. yg) < 74(x.y1). Also assume that for no y and not,
such that tp(x.y0) <1 < talx.y1), Alx.y)A-Bla.y)is true. In this case. (3y)(Alz.y) A-B(z,y))
must be true between times 7 4(x,yg) and 15(2. yo). false between times tg(2.yo) and ta(z,y1),
and true again between times t4(x.y;) and 1g(x.y; ). Note that there can be arbitrarily many
pairs of such values of yo and y; in general. and therefore arbitrarilv many truth intervals for
(3y)(A(z,y) A -B(a,y)) depending on the initial instances of predicates A(x,y) and B(z,y) at
time t = 0. This means that the temporal structure of (Jy)o(x.y) cannot be determined by a finite

number of configurations in general.

However, as Lemima 6 will show. if we restrict TL formulas 1o internally existential formulas
(that will be defined below) then the temporal structure of a TL formula can be uniquely determined

by a finite set of configurations. This motivates the following definitions.

Definition 3 A TL formula is normalized if it has the form

{Q] Wy ) "’lQll'T‘h' Jo I . |

where Q; 1s either un existential or a universal quaniifier. and é&(ay.....x,) s @ TL formula such

that

#Note that this lemma trivially holds for the case when aix| = (a(x) and 3(y] = {&(y) since talx) < tgly) is
the ordering predicate Sacp(X.¥].
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Figure 2: A configuration for ¢(x,y).

Figure 3: A configuration for (Jy)e(x.y).

o the ezisiential quantifier cannot appear in a sub-expression o until ()3 (2)
o the universal quantifier cannot appear in a sub-eaxpression (Va)a(a) until 3
o a quaniifier cannot appear inside a first-order logic subeapression. i.e. a subexpression (Qu)é(z)
can only appear either al the “outcrmost™ level in the formula or inside a temporal operator.
The following lemma says that any TL formula can be normalized.

Lemma 4 For any TL formula. there exists an equivalent normalized TL formula.

Proof: A TL formula can be normalized by “pulling” quantifiers om of the inner scopes of the
formula using the classical equivalences of first-order logic and the following equivalences of temporal
logic:

(Ja)(o until J(a))

il

a until (3u)3(2)
and

((Va)al(a)) until 7 = (Va)la(a) until )

n

13




Definition 5 A TL formula is exisiemial, if it has an equivalent normalized formula with only
existential quantifiers. Furthermorc. « TL formula is imernally existential, if it is existential and

ite normalized form does not have quantifiers in front of the formula. i.e. if n = 0 in Definition 3.

After we introduced all the necessary concepts. we are ready to state the main lemma of
this paper. Intuitively, it says that the temporal structure of an internally existential T'L formula
on a Datalog™ program is uniquely determined by a finife set of mutually exclusive, collectively
exhaustive configurations. Furthermore. each configuration is “computable”™ in the sense that its

configuration formula belongs to Q 4, 4, and its transition functions to ® 4, 4.

]

Lemma 6 For all internally existential formulas o(x) from TL there is a finite set of configurations

Cilx) = (7i(x), Ti(x),6;).2 i = 1.....m. such that

1. if 7i;(x) 1s a transition function i Ti(x) then 7;(x) € $4,.4,:
2. myx)Agzlx)=FALSE fori.j=1..... meid £ J7
3. VL, 1i(x)= TRUE:

The proof of this lemma is presented in the Appendix. The major difficulty in the proof of

this lemma is associated with handling quantifiers.

The next lemma is one of the two major lemmas to be used in the proof of the main theorem

of the paper.

Lemma 7 Let ¢ be an internally cxistential formula from TL. Let 1, be the set of indexes i such
that 7; is a configuration formula for o. as defined in Lemmma 6. and the initial truth interval for

7 starts at 1 = 0, w.e. s left endpoint is 0. Then for all x

op(x) = \/ 7ilx)
el
Proof: Follows from Lemma 6 and from the fact that =;.....~,. as defined in Lemma 6. comprise

a collectively exhaustive set of formulas. K

Since configuration formulas are special cases of T'L formulas without the temporal component,
the concept of domain-independence is also applicable 1o them. The next lemma says, among other

things. that domain-independent confignration formulas can be computed with Datalog™ rules. As

*Note that 7;(x) € Qa,...a, fori=1..... m by the definition of the configuration formula.
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was stated before. this result follows from the Stage Comparison Theorem [Mos74] and from the
fact that Datalog™ programs have the power of inflationary fixpoint queries [AV91]. However, we
provide a constructive alternative proof of the same fact (by presenting Datalog™ programs that

simulate formulas from € 4, ) that is independent of the Stage Comparison Theorem.

Lemma 8 Any domain-independent formula @ from Qy 4. on a Datalog”™ program P can be

computed with a Datalog™ program containing program P as a subprogram.

The proof of this lemma is presented in the Appendix.

We are ready to state the main theorem of the paper now. Consider the existential for-
mula (3z1)...(Fzk)@(x. 2y, . ... 2) on Datalog™ program P. I the internally existential formula
A(X.2y....,2%) on program P can be simulated by querv Q'{x.2y.....23) on a Datalog™ program
P’ then the existential formula (321)...(3xk)o(X.23.....2)) can be simulated by query Q(x) on
the Datalog™ program obtained from P’ by adding the rule Q(x) — Q'(x.2y.....2%) 1o P'. Then
the main theorem of this paper immediately follows from this observation. from Lemmas 7. 8, and
from the fact that v; in Lemma 7 belongs to Q4,. 4, for all values of i = 1,..., m.

Theorem 9 For any Datalog™ program P and any existential domain independent TL query ¢,
there exists a Datalog™ program P' und a Datalog query G on P' such that ¢p and @ define the

same mapping. Furthermore., P’ contains P as a subprogram.
1 4]

5 Conclusions

In this paper. we study the expressive power of temporal logic queries on Datalog and inflationary
Datalog™ programs. The semantics of these programs is associated with the entire sequences
of intermediate stages in the computation of the fixpoint rather than with the fixpoint itself.
We compare the expressive power of temporal logic queries with Datalog queries on Datalog and
Datalog™ programs. We show that temporal logic queries have more expressive power than Datalog
queries on Datalog programs. We also consider the existential domain-independent fragment of
temporal logic. This fragment is interesting because existential TL queries can have only a finite set
of possible configurations of its temporal structures. We show that existential domain-independent
temporal logic queries have the same expressive power as Datalog queries on Datalog™ programs.
This means that on finite structures. existential temporal logic queries on Datalog™ programs have

the power of fixpoint queries [Mos74] since inflationary Datalog™ programs have that power [AV91].
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However. the question whether non-existential domain independent temporal logic queries can be

simulated with Datalog queries on Datalog™ programs remains open.
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Appendix: Proofs of Lemmas 6 and 8

Proof of Lemma 6

As the first step of the proof. we replace o with an equivalent formula that does not contain nezt
operators as follows. Since next operator (o) commutes with 3. A. =. and until operators. it can

be “pushed inside™ ¢. For example. the formula
olx.y) = olA(r.y) until (ocd(y.y)A-Blx.y)))

is equivalent to

d'(x.y) = oA(2.y) until (6*A(y.y)A =0 B(x. y)))
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After that, we remove all the next operators of A from © by replacing them with the equivalent
expressions obtained by computing the value of 4 at the A1l iteration of program P (this can be
done because each application of rules in program F corresponds 1o one time unit). More precisely.
if P has m rules containing A in their heads, i.e. 4 — py.....A — pp. then ofA can be replaced
by o=} (py V...V pn). The process of eliminating the neat operator o can be continued inductively

after this formula is normalized. Clearly. the resulting formula is also internally existential.

As an example. consider formula ¢’ on the Datalog™ program

Alz.y) — Alx,y)A-Bla.y) (4)
Blz.y) — A(z.u)ANA(u.z)A B(z.y) (5)

We replace the first component of ¢'. od(2.y). with &j(2.y) = Alx.y) A -~Blx,y). We also replace
o?A(y.y) with ¢4(y) = oAy . y)A-cBly.y) = (Aly.y)A-Bly.y))A-(A(y. ) ANA(u. 2)AB(z,y)).
Finally. we replace the third component of &'. cB(a.y). with &5(a.y) = A(x,u) A A(u,z) A
B(z,y). Putting the components iogether, we replace the formula ¢' with the new formula

@y (. y) until (¢5(y) A ~¢5(a.y) that contains no next operators.

Let & be the new internally existential TL formula without any neat operators in it, Since
¢ is an internally existential formmla. existential quantifiers appear in it only in expressions
(3y)a(x.y) until F(x). i.e. onlv on the left-hand side of 1the wuntil operator (we denote this
combination of 3 and wuntil as 3/until). Therefore. we prove the lemma by induction on the
number of operators in @, which are —=. A. until. and 3/until operators. At each inductive step.
we maintain a finite set of configurations for ¢ satisfving conditions of the lemma and show how

each of the operators generates a new finite set of configurations satisfving the same conditions.

Base case. If o(x) = A(x) then there are two configurations: Ci(x) =
(So=4(x).{0.00}, TRUE) and Ca(x) = (Syca(x).{0.714(x). > }. FALSE).

Negation. If o(x) = =o'(x) and o'(x) has a set of confieurations (~;(x).Ti(x).é;) for 1 =

1..... I then ¢(x) has the set of confieurations (5;(x). [:(x]). =é;).

Temporal operator until. Let o{x) = o(x)until o"(x). Assume that
Colx) = (7(x){rg(x)e7y(X).....70(x)}.¢") be some configuration for ¢/(x) and Ceu(x) =
(7"(x) {7 (%), (X))o . .. Tlu(Xx)}. 8”) be some configuration for o”(x).

As was shown in the example in Section 3.2 (Step 3.4). ='(x) A v"(x) does not define a con-
figuration formula for ¢ because it is not clear what the transition functions for this configuration
formula are. A configuration formula for o is obtained from +/(x)A~"”(x) by conjuncting it with the

condition determining the relative ordering of the transition functions for é¢' and @”. Only in this
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case we can guarantee that o has the same set of truth intervals for all the values of x satisfving

the configuration formula.

To make this argument formal. we define a merging M(x) = {7o(x), 71(x),....7n(x)} of two
sets of transition functions {75(x), 7{(x)...., 7, (x)} and {77(x), 7{'(X),..., 70, (x)}, where n is some
number in the range of [max{ny.ny}.n; + ny], as follows. Each element in M(x) is either 7/(x), or
T_;’(x], or both (in case 7/(x) = 7}’{);)}. Furthermore. the relative ordering of transition functions
IM(x) = {r!(x)}i=1,n, and T"(x) = {7/'(X)}j=1n, is preserved in the merging, i.e. if To(x) < 7,(x)
then their corresponding counterparts 7,/(x) and 7,(x) in the merging M(x) satisfy the condition
Tp(X) < Tge(x) (the similar condition also holds for the transition functions in I'/(x)). Note that
we can have many mergings of 1wo sets of transition functions depending on the number n and on

a specific embedding of the two sets in the merging.

Two configurations Cgr. Cen and a merging My(x) = {7k0(X ) Tk1(X )s s Tim( %)} of their
transition functions determine a configuration for o because @ has the same temporal structure
(set of truth intervals) for all the tuples x satisfving the configuration formula

FIR)A S (X)A N\ (T (x) < Tr(x)
=1

The set of transition functions for this configuration is obtained from the transition functions in
M(x) by removing those functions 74(x) from it for which o has the same value (either TRUE or
FALSE) on the adjacent intervals [74/_1(x). 7iy(x)) and [74/(X ). Tri41(x)). Finally. the configuration
type indicator & is equal to the value of © on the first interval [Tr(x). T41(x)).

Conjunction. Let o(x) = o'(x)A0"(x). The configurations for @ are produced in a very similar

manner as the configurations for the until operator. and therefore we omit the proof.
Until Combined with Existential Quantifier (3 /until).

Let
o(x) = ((Fy)o'(x.y)) until 0”(x) (6)

We considered 3/until combination and not just an existential quantifier because. as we men-
tioned in Section 4. the lemma does not hold for the existential quantifier: (3y)é'(x.y) can have

an unbounded number of configurations depending on the particular value of x.

However, if an existential quantifier appears in the Jeft operand of the until operator, as in
formula (6), then we claim that the number of transition functions in any configuration for a(x)
based on some configurations for o'(x.y) and &”(x) is not greater than the number of transition

functions in the corresponding configuration for o”(xj. The proof of the claim follows from the
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observation that each truth interval in o contains a truth imerval of ¢”. To see this.let [r{(x). 75(x))
and [r{'(x),79(x)) be truth intervals in some configurations for formulas (3y)d'(x,y) and ¢"(x)
respectively. Then if [7{(x),75(x)) does not intersect any truth interval for ¢”(x) then transition
functions 7{(x), 75(x) do not appear in any configuration for ¢(x) (this follows from the definition
of until). If r{(x) < 77"(x) < 75(x) then o has a vruth interval [7{(x), a). where 7J(x) < a. Finally,
if 77(x) < 7{(x) < 75(x) then & has a truth interval [7{(x ). a), where 7)'(x) < a.

We next show that the bounded number of transition functions in any configuration of ¢
obtained from configurations for ¢'(x. y) and ¢"”(x ) is defined with a finite number of configurations.
Furthermore, we explicitly determine these configurations and show that they satisfv conditions of
the lemma.

To determine the set of configurations for o(x). we introduce some preliminary concepts.
Let truth_int(Cy(x).7) be a function determining whether [7;(X ). 7j+1(x)) Is a truth interval for the
configuration Cy(x) = (7(x).{7o(x). 71(X ). ... T(x]].¢). i.e. whether ©:(x)is true on this interval
for the values of x satisfving 7(x). This function is TRUL if 7 is even for ¢ = TRUE or 1 is odd
for § = FALSE: otherwise, it is FALSE.

!

Let o from (6) have m configura-

tions C:;,[x.y) = (ve(x.y) Aol X y) TEA(X Yo .. Tinp (X 9) )} 6g)s & = 1,....m. Then define
a “point cover” function for a formula ¢'. pni_cover,.(x.1). 1o be true if there exists y and a con-
figuration Cg,(x, y) such that one of its truth intervals (74, (x. y). T;4+1(X. y)) covers the point t, i.e.

Thi(X,y) £ 1< Ty43(x y). To proceed further with the proof. we need the following lemma:

Lemma 10 If a(x) € $4, 4, then pnt_cover(x.a(x})| can be expressed as a formula from

Proof: The proof is based on the observation that pmi_covers(x.1) is equivalent to

(3y) V V (k0% ) A Thil X g) 1< Thiga(X.y))

r=1 IruHi_.nlf{l‘."f'_,{)(,y],ij
Then the result immediately follows {from Lemma 2. i

Let int_covery(X.a. ) be an ~interval cover™ funciion for a formula o' that is true if and only
if pni_covery(x.1) is true for all values of ¢ from the interval [a.3). i.e. a <1 < 4. As for the

point-cover function. we need the following lemma in order 10 proceed further with the proof:

Lemma 11 If ofx) end 3(x) are in $ 4, 4, then int_cover (x.a(x). 3(x)) can be expressed as a

formula from Q4, . 4, -
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Proof: Let ¢’ have m configurations C,(x.y) = (X, y) {TkolXs )y TE1(Xo U)o v oy Thn, (X, 7)) 6k).
The proof is based on the observation that inf_coverg(x.a(x), 8(x)) is true if and only if one of
the conditions holds: 1) there exists some y. some configuration for that y. and some truth interval
for that configuration that covers the entire interval [a(x),8(x)); or 2) there exists some y, some
configuration for that y, and some transition function 7(x,y) for that configuration such that
a(x) < 7(x,y) < 3(x). and that any transition function 7(x,z) appearing between a(x) and
f(x) must be covered by a point-cover function. i.e. pni_coveryg(x.7(x.z)) must be true. This

observation can be formalized by stating that inf_coverg(x. a(x), 5(x)) is equivalent to

(ay) Vrl:], v;ruf!‘_{ﬂﬂff'{xry)_,’}(Tkr‘{x- ?J} S -’_I'{X) A ﬂ){} < Tﬁ'f+]{x!y)}
v
Vit: ViZi By)la(x) < 7rilx,y) < B(x)) A Afsy Ay (V2)((a(x) € 7il(x,2) < B(x)) =

pui_coverg(X. 740X, 2)))
It follows from Lemmas 10 and 2 that this formula belongs to Q4, 4, . B

Let Cyn(x) = (7"(x). {rg(x). 77 (x).....7/(x)}.6") be a configuration for ¢” and let j be such
that [T}'(x),'r;-;](x)] is a truth interval for this configuration (i.e. truth_int(Cgn(x),7) holds). If
the interval [7g(x), 71'(x)) is a truth interval then we let j range from 2 1o the left endpoint of the
last truth interval (i.e. if [7)/_;(x).7//(x)) is a truth interval then j will go until n — 1;if [7(x). )
is a truth interval then j will go until »). If [#/(x).7)(x)) is a truth interval then we let j range

from 1 to the left endpoint of the last truth interval.

Let
Ei1(x) = pni_coverg(x. r_;’{x)} A =pnl_cover i X. T‘:’__I[X)) (7)
£ia(x) = —pntcoverg(x.7/(x)) (8)
£a(x) = int_core r,.-,rlx.r_:L][x].j:'(x}] (9)
Each configuration Ceu(x) = (5"(x). {7{(x). 7(x)..... 7/ (x)}. 8") for 0" defines several con-

figurations for ¢ as follows. For each truth interval [77(x). 7/ ,(x)) for this configuration select

some {j{J{X)., where ¢; = 1. 2. or 3. Consider the formula

"
(%) = 3"(x)A A Eji; (%) (10)
I"H”}_nl?{f‘_:u[X}.j]
We claim that it is a configuration formula for o. i.e.. for all values of x satisfyving (10), ¢ has the
same configuration of its temporal struciure. To see this. we examine the meanings of functions

E1(x), Eo(x). E53(x ) now.
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Function &;;(x) defines the situation when some truth interval for some configuration for
some y in @'(x,y) intersects the left endpoint of the truth interval [77(x), 77, ,(x)), and no truth
interval of no configuration for no y in ¢'(x.y) intersects the right endpoint of the truth interval
,-J‘f’_?{x )s 7}"_,(}{)). In this case. a configuration for ¢(x) based on Cgn(x) has the structure as shown
in Fig. 4 (it has a transition function 7,(x) between T;L] [x)and T}’tx) shown with the dotted line).

Function &j2(x) defines the situation when no truth interval for no configuration for no y in

¢'(x, y) intersects the left endpoint of the truth interval [7//(x). 7/, ;(x)). In this case, a configuration

for ¢(x) based on Cyn(x) has the structure as shown in Fig. 3 (it has r}'(x ) as its transition function).

Function §;3(x) defines the sitnation when all the points between two truth intervals
71 o(x). 7/ (%)) and [7](x),7],(x]} are “covered” by some truth interval of some configura-
tion for ¢'. In this case. a configuration for ¢(x) based on Cgwv(x) has the structure as shown in
Fig. 6 (the dotted line in this figure means that the truth interval for the configuration of ¢ based
on Cen(x) contains interval [77_(x).7/(x))): in other words. no transition function for C4(x) lies

11

between 77°;(x) and 77'(x).

As it follows from Lemmas 10 and 11. ;7(x). &;2(x). and &;3(x) belong to 24, . 4,-

After all the preliminary concepts were introduced. we are ready to define the finite set of

configurations CdJ[x) = (yx). Tix). &) Tor ofx).

Each configuration Cen(x) = (5"(x). {75(x). 77/ (x).....7/(x)}.8") for ¢", and each choice of

i; € {1.2.3} for 7 taken over all truth intervals of Cov determine the configuration formula (10).

Each choice of predicates §;; (x) taken over i; = 1 or 2 or 3 for all values of j. such that
truth_int(Cyn(x), 7) holds, gives rise 10 one instance of formmla (10). This means that there are no

more than ¥, 3["1/2 different confieurations for o for each configuration Cyn(x) for ¢”.10

The configuration formula 5/(x) defines the configuration C}(x) which has the set of transition
functions I';(x). To finish the proof of the lemma. we have to show that these transition functions

are “computable,” i.e., they belong 10 ¢4,

...... n°

The proof of this proceeds as follows. Take
a configuration Cen(x) = (3"(x) A{70(x). 77 (x).....7/(x)}.8") for ¢" and initially add all the
transition functions T}'[x] to I'i(x). Then this set of transition functions I';(x) will be modified
according to the following rules. For each j. such that [r_f’{x}.r__:;]{x]} is a truth interval for that

configuration. consider the following cases depending on the value of ¢; in §;; in formula (10):

1,3 = L Drop 7/(x) from T,(x) and add & new 1iransition function 7;(x) 1o

. b A .
1%We canuot say that Zm 3M1/2 j¢ (he exact estimate becanse we cannot choose all three formulas & for the first
and the last truth intervals in certain cases. But we can safelv sav that the estimate is an upper bound on the number
of configurations generated by Cn(x).
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ST R LS T AL

Figure 4: Configuration for o(x) if Condition &;1(x) Holds.

G0 e §0=T 510

Figure 5: Configuration for o(x) if Condition £;2(x) Holds.

an

‘52 (x) '5_?()() T.J-.(XJ T fX)

Figure 6: Configuration for o(x) if Condition &;3(x) Holds.
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it (see Fig. 4) that is defined as follows. If ¢’ has configurations C::;r{x,y} =

(‘,‘j‘\.(x,y],{rﬂﬁtx,y}.ri_]{x:y}.....Ti‘,‘k(x.y}}.(‘-j{; then 75(x) = mingi{Ajki(x)]}. where
Aii(x) = ming{71(x,y) | intcovery(X, Ti(x,9), 7, (%))}

As it follows from the definition of 7;(x). it must be somewhere between points 7;_,(x) and

7'(x) in Fig. 4.

Note that 7j(x) € P4, .4, because ini_coverg(x.7(x,y),7/(x)) € U4, .4, and because

of the definition of ‘J)AJ"_”A,,.

2. G =2, TH {x} remains in I'y(x). This corresponds 1o the fact that there are no additional

transition points added to Fig. 5.

3. imy = 8. Both 7.(x) and 7

mj
that the configuration in Fig. 6 “absorbs™ poims 7/, (x) and T ).

;-1{3(} are removed from I'j(x). This corresponds to the fact

Finally, é is determined for C;(x} based on whether or not [7g(x), 71(x)) is the truth interval

in that configuration.

It follows from (10) and from the fact that £;; (x) € @24, 4, that v(x) € Q4, _4,. Further-
more, it is easy to see that 3(x)’s form a mutually exclusive. collectively exhaustive set of formulas.
Finally, it follows {from the construction of transition functions that all of them belong to ® 4, _ 4..-

This completes the proof of the lemma.

Proof of Lemma 8

In the proof, we utilize some of the techniques developed in [AV91]. To begin with. we extend
program P with rules that compute the 0-aryv predicate F FPp. FPp becomes true two steps after
the time the fixpoint of P is reached. The new program P” is obtained by adding some new
rules to P as follows. For each IDB predicate 4;(x;) in P. 7 = 1.....n. we introduce three
auxiliary predicates AX(x;). AY(x;). and prev_unless_last;(x;) in P”. Predicates A and AY are
shifted backwards relative to A4; by one and two time units respectively. Thev are defined with the

following rules in P":
Ai(xi) — Ai(x;)

A¥(xi) — Allx;)
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Predicate prev.unless_last; is equal 10 predicate A” at all the times until the last stage before
the fixpoint of P" is reached (i.e. all the predicates AY stop changing)’’. When this moment is
detected by program P". F Pp is set to be true. Formally, predicates prev_unless_last; and F Pp are
obtained as follows. Replace each occurrence of A; in every rule of P with A and replace each rule
of the form A;(x;) — ai(x;) in P with n rules prev_unless_last;(x;) — a;(x;) A A;(x;) A —nA;-(x_?')
for 7 =1,...,n and add these rules to P"”. Note that predicate prev_unless_last; is not updated to
a; by these rules only at the time when 4;(x;) = .4:,-{)(3-} forall j = 1.....n (i.e. one step after the

fixpoint of P is reached). In addition. add the following n rules to P":

FPp — AY(xi) A ~prev_unless_last;(x;)
ford = ivwu

It is easy to see that there is some / such that predicate prev_unless_last; is equal to AY at
all the stages before the fixpoint of P” is reached and differs from 4% at the fixpoint of P” and all

the subsequent stages. Therefore. F'Pp hecomes true at the fixpoint time of P” which occurs two

stages after the fixpoint of P.

After we presented a program computing the fixpoint of P. we are ready to prove the lemma
itself. The proof proceeds by induction on the number of operators in . Without Joss of generality,
we consider operators A, =1, and 3. At each stage. following [AV91]. we will prove by induction that

there exists a Datalog™ program P,. a predicate (... and a 0-ary predicate done, such that

1. Q. as a Datalog query on F,. is equivalent 10 ¢p.

2. doneg becomes true within a finite number of stages after the fixpoint of program Py is

reached (more precisely. after 2 stages).

3. The program P, does not change values of predicates in o.

If there are no operators in @ then there are 1wo cases 1o consider. First. @ = A, where A is
a predicate. This case is trivial. Second. o is equal to one of the ordering predicates as defined in
Section 4. The result in this case follows from the Stage Comparison Theorem [Mos74, GS86] and
from the fact that Datalog™ has the power of inflationary fixpoint queries [AV91]. However, this

can be proven in a different way as follows.

1. If ¢(x) is Soca(x) then Py consists of P and the following rules:

B(x) — A(x)A =T

'We would like to credit the idea of predicate prec_uniless_lusi, 1o [AVa1]
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T — =T
Qulx) — FPp ANA(X)A~B(x)
doneg — FPp

where the O-ary predicate T is initially false.

. I @(x) is Sa,<a,(x) then Py consists of P and the following rules:
Qo(x) — Ai(xi) A =Aj(x;)
doney — FPp

where F Pp is the fixpoint predicate obtained as specified before.

. M &(x)is Sa,=4,(x) then P, consists of P and the following rules:
Aixi) — Ailxq)
Ai(x5) — Aj(x;)
Qo(x) — Ailx;) A =AUX;) A Aj(x;) A =AY x;)
doney — FPp
Note that A} and A’ are trailing predicates: they are obtained from A; and A; respectively
by shifting these predicates one time unit backwards.
. If ¢(x)is S4,<oc(x) then P, ro-nsist.s of P and the rule
Qo(x) — FPp A Ai(x)
doney, — FPp

We consider operators now.

And: If ¢(x) = &'(x) A &"(x) then P, consists of P.s. P.» and the following rules
Qu(x) — donegy Adonegn N Qa(X) A Qan(X)

donegy, — doneg N donegn

Existential Quantifier: If o(x) = (3y)o/(x. y) then P, consists of P,y and the rules:
Qa(x) — doneg N Qe (X.y)

doneg — done g

Negation: If é(x) = ~¢'(x) then P, consists of P, and the following rules:

dom(x) — dom(x )X
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Qulx) — donegy Ndom(x) A Q. (x) ;
doneg — doneg

where |x| in the rule above means the arity of vector x and dom(a)*! is the Cartesian product
of dom(z) taken [x| times. Predicate dom(a) defines the set of all the constants appearing in
EDB predicates and in the rules. It is obtained with the rules dom(z;;) — Ai(zi....,%in;)s
j =1,2,...,n,, ranging over all predicates A; of P and also with the facts dom(¢;), where ¢; are

the constants appearing in the rules of P.

Note that the rules computing negation are safe (because we added predicate dom(x) to one
of the rules). However. notice that Q. is equivalent 10 ¢ only because of domain independence of

0.

Also note that throughout all the inductive stages. the program P consists of the original

program P and additional rules added in order to compute o. Therefore. P is a subprogram of P,.
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