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Abstract 
 

This paper addresses focused information acquisition for predictive data mining.  As 
businesses strive to cater to the preferences of individual consumers, they often employ 
predictive models to customize marketing efforts.  Building accurate models requires 
information about consumer preferences that often is costly to acquire. Prior research has 
introduced many “active learning” policies for identifying information that is particularly 
useful for model induction, the goal being to reduce the acquisition cost necessary to induce 
a model with a given accuracy.  However, predictive models often are used as part of a 
decision-making process, and costly improvements in model accuracy do not always result in 
better decisions. This paper develops a new approach for active information acquisition that 
targets decision-making specifically.  The method we introduce departs from the traditional 
error-reducing paradigm and places emphasis on acquisitions that are more likely to affect 
decision-making.  Empirical evaluations with direct marketing data demonstrate that for a 
fixed information acquisition cost the method significantly improves the targeting decisions. 
The method is designed to be generic—not based on a single model or induction 
algorithm—and we show that it can be applied effectively to various predictive modeling 
techniques. 
Key words: active learning, information acquisition, decision-making, class probability 

estimation, cost-sensitive learning. 
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1. Introduction 

Because of advances in computing power, network reach, availability of data, and the maturity of induction 

algorithms, businesses increasingly take advantage of automated predictive modeling, or predictive “data 

mining,” to influence repetitive decisions. Consider an example:   Telecommunications companies face severe 

customer retention problems, as customers switch back and forth between carriers (the problem of "churn").  

For each customer, at each point in time, the company faces a decision between doing nothing and 

intervening in an attempt to retain the customer.  Increasingly, decision-making is based on predictive models 

built from data on the effectiveness of offers and of inaction.  For this example, ideally the predictive model 

would estimate the probability of imminent loss of the customer; the probability estimate would then be 

combined with utility information to maximize expected profit.1 

Acquiring additional customer feedback can improve modeling, but this information comes at a cost.  

Firms collect information about customers directly via solicitations, e.g., surveys of the customers themselves, 

or direct acquisition from a third party.  For example, Acxiom provides detailed consumer demographic and 

lifestyle data to a variety of firms, including Fortune 500 firms, in support of their marketing efforts; other 

direct marketing firms such as Abacus Direct maintain and sell specialized consumer purchase information 

(New York Times, 1999).  Firms collect information indirectly, via interactions initiated by the firm for the 

purpose of collecting relevant data, and also via normal business interactions (e.g., Amazon’s acquisition of 

customer preferences via purchases and product ratings).  All these acquisitions involve costs to the firm. 

For this paper, we consider the acquisition of a particular kind of information.  Following the 

terminology used by Hastie, et al., (2001) we refer to the data used to induce models as training data.  

Importantly for this paper, in the usual (“supervised learning”) scenario training data must be labeled, meaning 

that the value of the target variable is known (e.g., whether or not a particular customer would respond 

positively to the current offer).  However, acquiring labels may be costly.  For example, obtaining preference 

                                                 
1
 For this paper we ignore issues pertinent to this example like calculations of lifetime value, but see (Rosset 
et al. 2003) for a treatment from the data-mining perspective. 
 
2
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information for individual customers involves solicitation costs, incentives required for revealing their 

preferences, negative reactions to solicitations, etc.  Firms also incur opportunity costs when information is 

acquired over time through normal business interactions.  For example, making a particular offer to a random 

sample of web site visitors, for the purpose of acquiring training labels, may preclude making another offer 

already known to be profitable. 

Because of the inefficiencies imposed by these label-acquisition costs, researchers have studied the 

selective acquisition of labels for inductive model building (e.g., optimal experimental design (Kiefer, 1959; 

Fedorov, 1972) and active learning (Cohn et al., 1994)).  The motivation is that focused selection of cases for 

label acquisition should result in better models for a given acquisition budget, as compared to the standard 

approach where labels are acquired for cases sampled uniformly at random, and therefore should reduce the 

cost of inducing a model with a particular level of performance.  Research to date offers various label-

acquisition strategies for inducing statistically accurate predictive models (e.g., Fedorov, 1972; Cohn et al., 

1994; Lewis and Gale, 1994; Roy and McCallum, 2001).   

However, business applications employ predictive models to help make particular business decisions.  

Of course, a more accurate model may lead to better decisions, but concentrating on the decisions themselves 

has the potential to produce a more economical allocation of the information acquisition budget.  Prior work 

has not addressed how labels should be acquired to facilitate decision-making directly. 

We consider the decision of whether or not to initiate a business action. A characteristic of such 

decisions is that they require an estimation of the expected utility for each action, hence (in the presence of 

uncertainty) an estimation of the probabilities of different outcomes. Consider for example a model for 

predicting whether a mobile service customer will terminate her contract, where the model supports the 

decision of whether or not to offer the customer incentives to renew her contract. Prior work provides label 

acquisition strategies to improve (for a given budget) the estimation of the probability of renewal.  However, 

such a strategy may not be best for improving intervention decisions. As we show later, the ability to identify 

potentially wasteful investments can result in considerable economies.   
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The contribution of this paper is the development and demonstration of a new method for selecting 

cases for label acquisition that (1) targets decision-making directly (it is decision-centric), and (2) can be applied 

to various predictive modeling techniques (it is generic).  The goal is to allow the induction of better models for 

decision-making, given a fixed label-acquisition budget.  We demonstrate the method using data from a 

direct-marketing campaign, with the objective of acquiring customer feedback that will increase profits from 

future customer solicitations. The decision-centric approach results in significantly higher decision-making 

accuracy and profit (for a given number of acquisitions) compared to the usual strategy: sampling cases for 

label acquisition uniformly at random. Moreover, the decision-making accuracy and profit obtained with the 

new method are significantly higher than those obtained by acquiring labels to reduce model error.  Notably, 

even though the decision-centric method does result in superior decision-making, the average statistical 

accuracy of the model induced is lower than that obtain with the error-reducing method.  Each method is 

better at the task for which it was designed.  To demonstrate the generic nature of the method, we apply the 

method to three different model induction algorithms and show that the decision-centric method consistently 

results in superior performance compared to the error-reduction method.  

The rest of the paper is organized as follows. Section 2 discusses the current paradigm for selective 

label acquisition for induction (active learning).  In Section 3 we analyze the impact of traditional active learning 

on decision-making efficacy and lay the theoretical foundation for the new decision-centric approach. The 

new method is presented in Section 4.  Then, in Section 5 we demonstrate the proposed approach.  We 

estimate the costs and benefits of direct mailing decisions and analyze the performance of the proposed and 

existing label acquisition methods.  We present some limitations to the work in Section 6, and we discuss 

managerial implications and conclude in Section 7.   

2.  Active Learning: Terminology, Framework and Prior Work 

We first introduce the notation and the terminology we employ.  A firm wants to induce a 

probabilistic classification model to estimate the probability of alternative outcomes. A categorical 

classification model is a mapping of an input vector Xx ∈  to a label Yy∈  from a set of discrete labels or 
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classes Y . The model is constructed through induction where a training set of labeled “examples”— ),( yx  

pairs—are generalized into a concise model YXM →: . Differently from a categorical classification model, a 

probabilistic classification model also assigns a probability distribution over Y  for a given input vector x .  A 

maximum a posteriori decision rule would then map x  to the label y with the highest estimated probability.  

Examples of probabilistic classifiers are the Naïve Bayes classifier (Mitchell, 1997), suitably designed tree-

based models (Breiman et al., 1984; Provost & Domingos, 2003) and logistic regression.  For brevity, we refer 

to the estimation of the probability that an input vector x  belongs to a class y , )|(ˆ xyp , as class probability 

estimation (CPE). 

2.1 Active Learning  

A signature of a modeling technique’s predictive performance for a particular domain of application 

is captured by its learning curve, depicting the model’s predictive2 accuracy2 as a function of the number of 

training data used for its induction. A prototypical learning curve is shown in Figure 1 where the model 

improves with the number of training examples available for induction, steeply first, but with decreasing 

marginal improvement (cf., Cortes, et al., 1994).   For this paper we assume that the cost of acquiring data is 

uniform, so the learning curve also shows the cost of learning a model with any given accuracy. Consider for 

example a company modeling consumer preferences to predict the probability of response to various offers. 

The customer preference model can be improved as more feedback on various offers is acquired, resulting in 

more effective product recommendations and a potential increase in profit.  The cost of acquiring customer 

feedback corresponds to the graph’s x-axis, and hence the learning curve characterizes the model’s 

performance as a function of the information acquisition cost.  

Consider a typical setting where there are many potential training examples for which labels can be 

acquired at a cost; for example, customers to whom we can send an offer to determine whether they will 

                                                 
2 Model accuracy here refers to a model’s predictive performance on out-of-sample data. This measure is 
sometimes referred to as generalization performance. 
 

my footnote 
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respond.  Let us refer to examples whose labels are not (yet) acquired as unlabeled examples, and to examples 

whose labels already have been acquired as labeled examples.  The goal of active learning is acquire the labels 

of unlabeled examples in order to produce a better model.  Specifically, for a given number of acquisitions, 

we would like the model’s generalization performance to be better than if we had used the alternative strategy 

of acquiring labels for a representative sample of examples (via uniform random sampling). 

 

 

a. A learning curve describes a model performance as 
a function of the number of training examples or 
information-acquisition cost 

 

b. Active learning economizes on  
information-acquisition cost for a particular 
model accuracy 

 

Figure 1: The learning curve and the effect of active learning 

 

Let us examine the learning curve that results from traditional active learning. The thin learning curve 

in Figure 1b corresponds to acquiring the labels of examples that were sampled randomly and then using 

these labeled examples for model induction. The thick-lined curve in Figure 1b is an idealized learning curve 

resulting from active learning, where fewer labeled training examples are needed to induce a model with any 

given accuracy.  Active learning attempts to label examples that are particularly informative for reducing the 

model error, so ideally it results in a steeper learning curve. Similarly, for a given acquisition budget (point on 

the x-axis), the acquisitions directed by active learning produce a model with lower prediction error.   
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  Active learning methods operate iteratively.  At each phase they (i) estimate the expected 

contribution of potential unlabeled examples if their labels were to be3 acquired,3 (ii) label some examples, 

and (iii) add these examples to the training set.  Figure 2 describes an algorithm framework outlining the 

prevailing active learning paradigm.  Specifically, an induction method first is applied to an initial set L of 

labeled examples (usually selected at random or provided by an expert).  Subsequently, sets of 1≥M  examples 

are selected by the active learning method in phases from the set of unlabeled examples UL, until a 

predefined condition is met (e.g., the labeling budget is exhausted).  To select the best examples for labeling 

in the next phase, each candidate unlabeled example ULxi ∈  is assigned an effectiveness score 
iES  based on 

an objective function, reflecting its estimated contribution to subsequent induction. Examples then are 

selected based on their effectiveness scores and their labels are acquired before being added to the training set 

L.  (And the process iterates.)  

 

 

 

 

 

 

 

 

 

Figure 2: A Generic Active Learning Algorithm 

 

                                                 
3 An often-tacit assumption of active learning methods is that acquiring labels for certain training examples 
will affect similar examples when the model is used. We will revisit this below. 
5
 dummy footnote 

Input:  an initial labeled set L, an unlabeled set UL, a model induction algorithm I, a 

stopping criterion, and an integer M specifying the number of actively 

selected examples in each phase. 

1 While stopping criterion not met    

 /* perform next phase: */ 

2 Apply inducer I to L to induce model E   

3           For each example { ULxx ii ∈| } compute 
iES , the effectiveness score  

4 Select a subset S of size M from UL based on 
iES  

5 Remove S from UL, label examples in S, and add S to L 

Output: Model E induced with I from the final labeled set L 
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The framework in Figure 2 highlights the challenge of an active learning method: to estimate the relative 

contribution of possible training examples (the effectiveness score) prior to acquiring their labels.  Most 

existing methods compute effectiveness scores based on some notion of the uncertainty of the currently held  

model.  For example, uncertainty sampling [Lewis and Gale, 1994] is a generic active learning method designed 

for inducing binary classifiers.  Uncertainty sampling defines the most informative examples (whose labels 

should be acquired) as those examples for which the current classification model assigns a CPE that is closest 

to 0.5.  The rationale is that the classification model is most uncertain regarding the class membership of 

these examples, and so the estimation of the classification boundary can be improved most by acquiring their 

labels for training. 

2.2 Prior Work  

 The role of information acquisition in decision-support has been studied by many in the management 

literature. For example, Allen and Gale (1999) examine the role of increasing information costs on the 

emergence of financial intermediary institutions, demonstrating that the rising cost of information necessary 

to successfully participate in sophisticated financial markets was the key factor in the formation of 

intermediaries. Makadok and Barney (2001) examine the creation of informational advantages by firms 

through the acquisition of information about their competition. They focus on the acquisition of information 

for supporting strategy-formulation decisions.  This paper concentrates on information acquisition to 

improve operational decisions that must be made repeatedly, so even modest marginal improvements can 

have a large cumulative effect on profit.   

 Many organizations employ predictive models effectively, often as key tools for extracting customer, 

competitor and market intelligence (Wall Street Journal, 1997; Resnik and Varian, 1997; New York Times 

2003a; New York Times, 2003b). Research on predictive models for business intelligence has focused 

primarily on modeling techniques (e.g., West et al., 1997; Moe and Fader, 2004).  However, such intelligence 

relies on information that requires significant time and/or money to obtain. Therefore, it is important to 

understand what are the fundamental properties of information that will be particularly effective for inducing 
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accurate predictive models, so as to direct the acquisition of such information.  Mookerjee and Mannino 

(1997) consider the cost of retrieving examples for inductive learning.  They argue for the important role of 

information cost for learning and aim to reduce the cost of attribute specification required to retrieve cases 

relevant for classification. They demonstrate that the incorporation of such considerations can reduce 

information acquisition costs.  

 Another related stream of research builds on the (classic) multi-armed bandit problem originally proposed 

by Robbins (1952).  Given k  slot machines with different rates of return, a gambler has to decide which to 

play in a sequence of trials.  There are various formulations of the goal, but generally the gambler wants to 

maximize the overall reward. An important difference between the multi-armed bandit settings and that of 

active learning is that for the gambler it is sufficient to estimate the success probability of each machine, 

whereas an active learner must induce a predictive model over the dependent-variable domain space. 

 The challenge of data acquisition specifically for modeling has been studied extensively in the statistical 

community.  In particular, the problem of optimal experimental design (Kiefer, 1959; Fedorov, 1972) or OED 

examines the choice of observations for inducing parametric statistical models when observations are costly 

to acquire.  The objective is to devise a distribution over the independent variables reflecting the contribution 

of label acquisition for these examples.  Although there are substantial similarities between work calling itself 

active learning and work on optimum experimental design (and not many cross-references), there is an 

important difference between the two. OED studies parametric statistical modeling, whereas active learning is 

concerned primarily with non-parametric machine-learning modeling or with generic methods that apply (in 

principle) to a variety of modeling methods. This is an important distinction because methods for OED 

depend upon closed-form formulations of the objective function that cannot be derived for non-parametric 

models. 

The fundamental notion of active learning has a considerable history in the literature.  Simon and Lea 

(1974) describe conceptually how induction involves simultaneous search of two spaces: the hypothesis space 

and the example space.  The results of searching the hypothesis space can affect how the example space will 

be sampled. In the context of acquiring examples for classification problems, Winston (1975) suggests that 
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the best examples to select for learning are "near misses," instances that miss being class members for only a 

few reasons. This notion underlies most active learning methods, which address classification models (e.g., 

Seung et al., 1992; Lewis and Gale, 1994; Roy and McCallum, 2001) and are designed to improve 

classification accuracy (rather than the accuracy of the probability estimations, to which we will return 

presently).  

As mentioned previously, most existing active-learning methods address categorical classification 

problems and compute effectiveness scores based on some notion of the uncertainty of the currently held 

model.  To our knowledge, this idea was introduced in the active-learning literature by the Query By 

Committee (QBC) algorithm (Seung et al., 1992). In the QBC algorithm each potential example is sampled at 

random, generating a “stream” of training examples, and an example is considered informative and its label is 

acquired if classification models sampled from the current version5 space4 (Mitchell, 1997) disagree regarding 

its class membership.  The QBC algorithm employs disagreement among different classification models as a 

binary effectiveness score—capturing uncertainty in current predictions of each unlabeled example’s class 

membership. Subsequently, authors proposed a variety of alternative effectiveness scores for this uncertainty 

(e.g., Lewis and Gale, 1994; Roy and McCallum, 2001).  

A different approach to active learning for categorical classification problems attempts to estimate 

directly the expected improvement in accuracy if an example’s label were acquired.  Roy and McCallum 

(2001) present an active-learning approach for acquiring labeled documents and subsequently using them for 

inducing a Naïve Bayes document classifier. Their method estimates the expected improvement in class 

entropy obtained from acquiring the label of each potential learning example; it acquires the example that 

brings about the greatest estimated expected reduction in entropy. 

Decision-making situations often require more than categorical classification. In particular, for 

evaluating different courses of action under uncertainty it is necessary to estimate the probability distribution 

over possible outcomes, which enables the decision-making procedure to incorporate the costs and benefits 

                                                 
4
 The version space refers to the set of all hypotheses or models that predict the correct class of all the 
examples in the training set. 



 SAAR-TSECHANSKY AND PROVOST                 
Active -Learning for Decision-Making 

 

11 

 
 

associated with different actions. In targeted marketing, for example, the estimated probability that a 

customer will respond to an offer is combined with the corresponding costs and revenues to estimate the 

expected profits from alternative offers.   More generally, accurate estimations of response probabilities 

enable a decision maker to rank alternatives correctly, to identify the actions with the highest expected 

benefits, and to maximize utility over multiple courses of action.  To our knowledge there is only one study of 

generic active learning methods for inducing accurate class probability estimation (CPE) models (Saar-

Tsechansky and Provost 2004), in which the effectiveness score is based on uncertainty in the CPEs rather 

than in the classifications (we return to this below).   However, as we discuss in more detail next, improving 

the CPEs generally may not be as effective as focusing on the particular decision-making task. 

3. Active Learning for Decision-Making 

The objective of all prior active learning methods has been to lower the cost of learning accurate 

models, be they accurate models for categorical classification or accurate models for class probability 

estimation. Therefore, these methods employ strategies that identify and acquire labels for training examples 

that are estimated to produce the largest reductions in the model’s prediction error.  From a management 

perspective, it is important to ask whether these strategies are best when the learned models will be used in a 

particular decision-making context.  In particular, an error-reducing strategy may waste resources on 

acquisitions that improve model accuracy, but produce little or no improvement in decision-making.  More 

accurate CPEs do not necessarily imply better decision-making. 

How should active learning strategies be designed to avoid such wasteful investments?  We next 

analyze the relationship between costly label acquisitions and decision-making efficacy, deriving the 

fundamentals for new active learning approaches designed specifically for decision support.   

3.1 The Impact of Label Acquisition on Decision Making Quality 

As described above, we consider the decision of whether or not to initiate a business action, such as 

mailing a direct marketing solicitation, or offering a costly incentive for contract renewal.  We would like to 



 SAAR-TSECHANSKY AND PROVOST                 
Active -Learning for Decision-Making 

 

12 

 
 

estimate whether the expected utility from action would exceed that of inaction. Let ix  be an example (e.g., 

the description of a customer) and let 
if  denote the (unknown) probability that the action with respect to ix  

will be successful (e.g., customer ix  will respond to the marketing campaign, or will renew her contract).  

Given that action is taken, let the utility of success and the utility of failure with respect to instance ix  be 

S

iU and F

iU  respectively.  Let the corresponding utility of inaction be 
iΨ . Finally let C denote the cost of 

action. To maximize utility, action should be initiated if 
i

F

ii

S

ii CUfUf Ψ≥−⋅−+⋅ )1( , or equivalently, if the 

probability of a successful outcome exceeds the threshold Th

if  given by  

F

i

S

i

F

iiTh

i
UU

UC
f

−

−+Ψ
=  (1) 

For a decision maker to act optimally it is necessary to estimate the probability of success. Because 

training information is costly, we would like to reduce the cost of inducing an estimation model that will 

render decisions of a given quality.  One approach to reducing the cost of learning accurate CPEs is via 

traditional active learning methods, which are designed to improve the model’s average performance over the 

instance space.   

However, improvement of class probability estimations may not always be justified.  Consider the 

case in which the actual probability of success exceeds the threshold Th

if (suggesting action is better than 

inaction).  For the induced model to allow a decision maker to act optimally it is sufficient that the estimated 

probability of success 
if̂  exceed the threshold as well, even if it is highly inaccurate.  Improvement of the 

probability estimation when the current estimation already specifies the correct decision would not affect 

decision-making, and therefore the cost of the improvement would be wasted.  In fact, as we will illustrate, if 

the true probability is just above the threshold and the estimate has a non-negligible variance, improving the 

probability may adversely affect decision-making (cf., Friedman 1997). 

Since a model is induced from a sample, the model’s probability estimation if̂  can be treated as a 

random variable.  Let 
iΓ  be the best “action” and let 

iΓ̂  be the estimated best action derived using the model’s 
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probability estimation.  Similarly to Friedman’s analysis of incorrect classification decisions (Friedman, 1997), 

the probability of making a “wrong decision”–-i.e., a decision that is inconsistent with the decision derived 

using the true probability of success–-is given by: 

( ) ( )∫∫ ∞−

∞

≥+<=Γ≠Γ
Th
i

Th
i

f
Th

i
f

Th

i fdfpffIfdfpffIP ˆ)ˆ(ˆ)ˆ()ˆ(       (2) 

where the indicator function )(LI  is 1 if L  is true and 0 otherwise.  For example, if the actual probability were 

smaller than the threshold Th

if , the expected utility of action would not exceed that of inaction; a sub-optimal 

decision would result if the estimated probability were larger than the threshold.  

In order to reduce the cost of inducing a probability estimation model that will allow for satisfactory 

decision-making, it is important to understand the circumstances under which costly improvements in CPE 

accuracy should be avoided. If we approximate )ˆ( fp  with a normal distribution, the probability of making an 

inconsistent decision is given by   

( )












 −
−Φ=Γ≠Γ

f

ffE
ffsignP

Th
Th

ˆvar

ˆ
)ˆ(

  (3) 

where Φ  denotes the right-hand-side tail of the standard normal distribution, E denotes an expectation and 

var denotes the variance of a random variable.  Assume for illustration that a learner is used to induce a model 

from a training sample for estimating the probability that customers would respond to a certain offer.  For a 

given customer ix  the model produces (on average over different samples) a CPE such that the expected 

profit from an offer solicitation to ix  is higher than the expected profit of not making the offer, i.e., 

Th

ii ff >ˆ . Also assume that the true probability of response suggests the same ( Th

ii ff > ).  So we expect the 

model to lead to the correct decision: make the offer.  Under such circumstances it may not be cost-effective 

to acquire additional labels (customer feedback) to improve the estimation; improving the estimation may 

increase the chance of decision-making error!  From (3) we see that indeed the larger the average CPE 

produced by the learner and hence the more biased the estimates are, the more likely it is that the model 

would produce the correct decision.  This is because the larger bias reduces the chance that—due to 
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estimation variance—the estimated expected profit from action would (mistakenly) fail to exceed that of 

inaction. 

There is an incentive, however, to remove such CPE bias when the estimated probability and the true 

probability of response lead to different decisions.5   For example, assume that the true expected benefits 

from inaction exceed those of action, but that on average the learner induces a model that suggests otherwise.  

In this scenario improving the CPEs reduces the likelihood of decision-making error. Existing active learning 

methods employ a greedy strategy, acquiring examples for model improvement whenever such improvement 

is deemed possible. The above analysis suggests that for cost-effective acquisition of examples to support 

decision-making, an active learner is well advised to take a decision-centric strategy, acquiring labels for 

training examples when an improvement in the estimation is likely to lead to better decisions, and avoiding 

acquisitions otherwise even if they might produce a more-accurate model.  Unfortunately, the true probability 

and thus the right decision are unknown, and therefore it is impossible to determine whether or not an 

improvement is called for.   

In summary, active label acquisition targeting improved accuracy generally may not be best for cost-

effective decision-making. In fact, somewhat counter-intuitively, in certain cases improving CPEs can be 

detrimental to decision-making.  Ideally, we would like to improve CPEs only when the decision is wrong; 

however because if  is unknown we cannot determine whether or not the model’s prediction is correct.  In 

the following section we develop an approach for cost-effective acquisition of examples that offers an 

alternative. 

4.  Goal-Oriented Active Learning 

Instead of estimating directly which decisions are erroneous, we propose an alternative method based 

on a related property that avoids the need to know if .  We propose acquiring labels for examples where a 

                                                 
5
 There is a incentive whenever the estimated probability if̂  and the true probability if  are on different sides of the 

threshold
Th

if . 
6
 dummy footnote 
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relatively small change in probability estimation can affect decision-making, and avoiding acquiring labels 

otherwise.  Specifically, we will prefer acquisitions when if̂  is closer to Th

if .  For example, consider two 

scenarios concerning a given decision.  In scenario A the estimated class probability is considerably higher 

than the threshold probability. In scenario B the estimated probability of response is only marginally greater 

than the threshold probability. In scenario A the evidence in the training data is strongly in favor of action. As 

a result a more substantial change in the estimated probabilities is necessary to affect the decision in Scenario 

A as compared to Scenario B, requiring more training examples to sway the estimation in favor of inaction 

(all else being equal).  The approach we propose here acquires labeled examples pertaining to decisions that 

are likely to be less costly to affect; i.e., decisions for which a relatively small change in the estimation can 

change the preference order of choice.  Of course, although the design is suggested by the theoretical 

development above, this is a heuristic method. 

The new method we propose operates within the active learning framework presented in Figure 2. At 

each phase, 1≥M  examples are selected from the set of unlabeled examples UL ; their labels are acquired and 

the examples are added to the set of labeled training examples L . The effectiveness score is calculated as 

follows. Each example ULxi ∈  is assigned a score that reflects the relative effect the example is expected to 

have on decision-making if its label were acquired and the example added to the training set.  In particular, 

the score is inversely proportional to the minimum absolute change in the probability estimation that would 

result in a decision different from the decision implied by the current estimation, i.e., the score of example 

ix is inversely proportional to Th

ii ff −ˆ .  

For selection, rather than selecting the examples with the highest scores (“direct selection,” as is 

common in active learning), a sampling distribution is created.  Specifically, the effectiveness scores are 

considered to be weights on the examples, and examples are drawn from a distribution where the probability 

of an example to be selected for labeling is proportional to its weight. Earlier work (Iyengar et al., 2000; Saar-

Tsechansky and Provost 2004) has demonstrated that sampling from a distribution of effectiveness scores is 
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preferable to direct selection.  It reduces the chance of acquiring labels of outliers or other atypical examples 

(Saar-Tsechansky and Provost 2004).   

 

Figure 3: The Goal Oriented Active Learning (GOAL) Algorithm 

Input: Set of unlabeled examples UL , initial set of labeled examples L , Inducer 

(learner) I , stopping criteria. 

   While (stopping criterion)  

1  Apply inducer I  to L , resulting in estimator E  

2 Apply estimator E  to UL  

3 For all examples { ULxx ii ∈| } compute ( )Th

iii ffxD −+⋅= ˆ1)( βλ  , 

where ( )∑ =
−+=

)(

1

ˆ1
ULsize

i

Th

ii ffβλ , such that D   is a distribution 

3 Sample from the probability distribution D , a subset S  of M  examples  

              from UL without replacement  

5 Remove S  from UL , label examples in S , and add them to L  

6 Select the top M instances from UL , remove them from UL , label them  

          and add them to L  

End While 

Output: Estimator E  induced from L  

 

Formally, the sampling-distribution weight )( ixD assigned to example ULxi ∈  is given by  

( )Th

ii

i

ff
xD

−+⋅
=

ˆ

1
)(

βλ

,  where β  is some small real number to avoid division by zero (in the empirical 

evaluation that follows 001.0=β ) , 
F

i

S

i

F

iiTh

i
UU

UC
f

−

−+Ψ
=  as above,  and λ  is a normalizing factor given 

by ( )∑ =
−+=

)(

1

ˆ1
ULsize

i

Th

ii ffβλ , to make D  a distribution. Figure 3 presents pseudocode of the method, 

which we call Goal-Oriented Active Learning (GOAL). 
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5. A Direct Marketing Campaign Case Study 

We evaluate GOAL using data from a direct-marketing campaign. We use these data for evaluation 

because they comprise real consumer interactions along with information-acquisition costs.  The data pertain 

to a charity’s periodic solicitations to potential donors and are publicly available through the University of 

California at Irvine repository [Blake et al., 1998].  The challenge of direct marketing stems from the non-

negligible cost of solicitation; hence the organization seeks to maximize campaigns’ profits by better targeting 

potential donors.  For these data, each solicitation costs 68 cents (printing, mailing costs, etc.) and response 

amounts range from $1 to $200, with an average of $15. The average response rate is approximately 5%. 

Because of the low response rate and the cost of solicitation, informed decisions that minimize wasteful 

solicitations are critical to the success of the campaigns. Importantly for this paper, the estimated probabilities 

come from an induced predictive model that in turn requires costly acquisitions of customer responses. For a 

cost-effective utilization of the charity’s donor base, it is important to reduce the number of solicitations 

necessary to allow for effective targeting, or alternatively, to increase the effectiveness of targeting for a given 

solicitation budget.   

5.1 Acquisition Strategies for the Direct Marketing Problem  

 Let us first describe the context in which active acquisition of consumer responses takes place. Given 

an acquisition budget, an acquisition strategy solicits potential donors and acquires their responses (i.e., 

whether or not a given consumer responded to the solicitation, and if so, in what amount).  These become 

the labeled training data.  Once the labels are acquired, a targeting model is induced from the training data 

and is subsequently employed to target potential donors for a new campaign.  In the new campaign, a 

successful solicitation is one that results in a contribution that exceeds the solicitation cost.   So, the objective 

is to reduce the acquisition cost necessary to achieve a particular level of profit, or alternatively to increase the 

profit for a particular acquisition investment. 

We will compare three label-acquisition strategies: 
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(1) Acquisition of responses from a representative set of donors, using random sampling from a uniform 

distribution.  Uniform random sampling is the most widely applied practice for the acquisition of labels based 

on a set of unlabeled training examples. In spite of its simplicity of implementation, random sampling is 

remarkably effective because it attempts (implicitly) to obtain a representative sample of the example space.  

We will refer to this label-acquisition strategy as RANDOM. 

(2) An active-learning method that focuses on error reduction: BOOTSTRAP-LV.  Because probability 

estimates are used to evaluate the expected profitability of alternative solicitations, an acquisition strategy that 

improves these estimations is also likely to improve targeting decisions.  To our knowledge BOOTSTRAP-LV 

is the only generic method designed specifically to reduce class probability estimation error.  BOOTSTRAP-LV 

follows the traditional paradigm of using uncertainty in estimations to calculate effectiveness scores. 

Specifically, BOOTSTRAP-LV estimates the variance in learned models’ response probabilities, for each 

potential example, and assigns a higher score to the acquisition of responses from examples with higher 

variance. BOOTSTRAP-LV was shown to result in lower probability estimation error for a given acquisition 

cost compared both to random acquisition of responses, and to active learning designed for improving 

categorical classification accuracy (Saar-Tsechansky and Provost 2004).  

(3) GOAL.  Let the estimated probability that a potential donor ix  would respond to a mailing be if̂ , the 

estimated contribution amount (described below) be S

iÛ and the mailing cost be C . The profit from inaction 

is zero; hence a solicitation is initiated if 0ˆ ≥−⋅ CUf S

ii
 and the threshold probability is 

S

i

Th

i

U

C
f

ˆ
= .  

Therefore, the weight assigned to acquiring donor i ’s response in GOAL is given by  

( )












−+=−+
S

i

i

Th

ii
U

C
fff

ˆ
ˆ1ˆ1 βλβλ . 
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5.2 Experimental Setting 

In order to evaluate the three acquisition strategies, we compare the decision-making efficacy and profits 

generated from solicitation decisions derived from the models induced with each.  We now describe the 

induction methods examined, the data partitioning, and the method for calculating generated profits. 

For estimating the probability of response, we use three induction6 methods.6 Our first experiments focus 

on Probability Estimation Trees (PETs)—unpruned C4.5 classification trees (Quinlan, 1993) for which the 

Laplace correction [Cestnik 1990] is applied at the leaves. Not pruning and using the Laplace correction has 

been shown to improve the CPEs (Provost and Domingos 2003; Perlich et al. 2003).  Subsequently, in order 

to demonstrate the generic nature of the methods, we also compare the three acquisition strategies using 

logistic regression and Naïve Bayes (Mitchell 1997).  For this application, revenues from successful 

solicitations are not known in advance and therefore also must be estimated from the data. We use a linear 

regression model based on a set of predictors that was identified in earlier studies.7 

On a separate (holdout) set of potential donors, we compare the profits generated by each method for an 

increasing number of acquired, labeled training examples. More specifically, at each phase the responses of 

M additional donors are acquired by each method and added to its respective set of training examples. Each 

point on each curve shown hereafter is an average over 10 independent experiments.  For each experiment, 

                                                 
6
 The predictors are: household income range, date of first donation, date of most recent donation, number of donations 
per solicitation, number of donations given in the last 18 months, amount of last donation, and whether the donor 
responded to three consecutive promotions. 
7
 The predictors for the regression model are: the amount of the most recent gift, the number of donations per 
solicitation, average donation amount in response to the last 22 promotions, and the estimated probability of donation as 

estimated by the CPE model. Following Zadrozny and Elkan (2001) the CPE estimation is incorporated as a predictor in 
the linear regression model to remove a sample selection bias. Because large gifts are rare there exists a selection bias 
towards one group of frequent donors who donate small amounts resulting in the regression model underestimating gifts 
by donors who contribute large amounts infrequently. To alleviate such a bias, Heckman (1979) recommends 
incorporating the probability of belonging to either group (i.e., the probability of making a donation) as a predictor in 
the regression model. 
8
 dummy note 
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the data are randomly partitioned into: an initial set of labeled training examples selected at random (used to 

build the first model) L ; an unlabeled pool of donors UL  from which the three strategies acquire additional 

responses, which then are added to L  (cumulatively as the curves progress); and an independent out-of-

sample test set T  of potential donors whose responses and donations are known, for evaluating the three 

methods. To reduce variance, the same data partitions are used by all methods. 

The profit for each method is calculated via the following simulated process (recall, responses are known to 

the experimenters for the entire test set). For each potential donor in the test set, either a solicitation is mailed 

or no action is taken.  The solicitation is mailed if the expected revenue exceeds the solicitation cost. The cost 

of mailing is subtracted from the total profit whenever a solicitation is made; if a donor responds to a 

solicitation the actual donated amount is added to the overall profit. This profit calculation is depicted in 

Figure 4. 

 

if̂

CUf
S

i >⋅ ˆˆ

 

Figure 4:  Decision-making profitability calculation from charity solicitations 

5.3 Results 

In order to evaluate the effectiveness of the GOAL acquisition policy we first measure the accuracy of 

mailing decisions enabled by each acquisition strategy. Specifically, we measure decision-making efficacy as 

the proportion of targeting decisions made correctly by each model. Ultimately, the capability to avoid non-

profitable mailings as well as to identify profitable ones is critical for a campaign’s success. Figure 5 shows the 

proportion of mailing decisions made correctly when GOAL, BOOTSTRAP-LV and RANDOM are used to 
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acquire donor responses for model induction. Mailing decision accuracy is shown for an increasing cost of 

label (response) acquisitions. Each method was given (the same) 2000 initial training examples.  At each phase 

10 responses were acquired by each method and in total 5000 responses were acquired actively by each.   

Note that initially all methods have access to the same, small set of responses.  Therefore, the same 

probability estimation model is induced by all methods resulting in the same performance.  As additional 

donors’ responses are acquired by each method, the sets of responses available for training begin to differ in 

composition, resulting in different learned models. As Figure 5 shows, as more responses are acquired and 

the composition of the training sets diverges, the relative advantage of GOAL becomes more apparent.  

GOAL improves (on average) more decisions per acquisition than either of the other methods.  For a given 

cost, a model trained with donor responses acquired by GOAL obtains a higher proportion of correct 

targeting decisions when compared with BOOTSTRAP-LV’s CPE-error-reduction policy or with the 

acquisition of responses uniformly at random. Similarly, RANDOM acquisitions are clearly inferior to those 

obtained with BOOTSTRAP-LV.  GOAL’s superiority with respect to BOOTSTRAP-LV is statistically significant 

(p=0.05) once 200 responses are acquired by each method.  
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   Figure 5:  Mailing accuracy rate as a function of   
                   response acquisition cost  
 

Number of  
response 
acquisitions 

Percentage  
Improvement 

200 7.84 
300 8.63 
400 9.57 

500 7.74 
1000 6.92 
1500 4.63 

2000 3.40 
2500 2.45 
3000 2.32 

 

       
       Table 1: Percent improvement in mailing   
      effectiveness obtained using GOAL with   
      respect to BOOTSTRAP-LV (p=0.05). 
 

The difficulty of improving model accuracy sufficiently to improve targeting decisions is well demonstrated 

by the number of acquisitions required in order to obtain a given improvement in mailing decision 
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performance. For example, BOOTSTRAP-LV must acquire more than 2000 responses in order to increase the 

mailing-decision accuracy from 15.1% to 16.4%; GOAL must acquire only about 300 responses to exhibit the 

same improvement in performance.  On average over all acquisition phases, GOAL increases the mailing-

decision accuracy rate by 3.66%.  The largest improvements are exhibited in the early acquisitions phases, 

where GOAL results in more than 9% improvement compared to BOOTSTRAP-LV.  Table 1 shows the 

improvements in the proportion of correct mailing decisions obtained with GOAL, over BOOTSTRAP-LV, 

for an increasing number of response acquisitions. The reported improvements are significant according to a 

paired t-test (p=0.05). 
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            a. Proportion of  profitable donors targeted              b. Proportion of non-profitable donors  
                                                                                                  targeted 
            Figure 6: Proportion of profitable donors targeted with GOAL and BOOTSTRAP-LV. 

One element of campaign profitability is the model’s effectiveness at targeting profitable donors, and 

similarly avoiding targeting non-profitable ones. Figure 6a reports, for an increasing number of response 

acquisitions, the proportion of the set of profitable donors targeted with GOAL and BOOTSTRAP-LV.  Figure 

6b reports the proportion of non-profitable donors targeted by each. Clearly, the training responses acquired 

with GOAL produce a model that identifies more of the profitable donors and that avoids targeting more of 

the non-profitable donors than do the training responses acquired with the error-reducing approach.  

GOAL’s performance is already statistically significantly superior (p=0.05) before 200 responses are acquired.   
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Taken together, these results strongly support our contention that for this problem, GOAL’s decision-

centric response acquisitions are more informative and effective (on average) compared to acquiring training 

responses to improve CPE accuracy generally (using BOOTSTRAP-LV). 

Of course it is possible that the improved decision accuracy afforded by GOAL simply is a result of 

improved class probability estimation. GOAL is designed to improve decisions directly, while BOOTSTRAP-

LV’s acquisition strategy is designed to improve the model’s CPEs.  However, perhaps BOOTSTRAP-LV is not 

effective at its intended purpose. Figure 7a compares the error of the probability estimates produced by 

GOAL with those generated by BOOTSTRAP-LV (as always, on out-of-sample test sets).  Probability 

estimation accuracy is measured with BMAE  (Best-estimate Mean Absolute Error), computed as 

N

xpxp
BMAE

N

i iiBest∑ =
−

= 1
)()( , where )( ixp  is the probability estimated by the model under evaluation (and that 

was induced from the selected subset of the available examples); N  is the number of test examples for which 

the models are evaluated; Bestp  is a surrogate to the best estimated probability and is estimated by a “best” 

model induced using the entire set of available examples ULL ∪  (and using a more complicated modeling 

approach, a Bagged-PET which generally produces superior CPEs as compared to a PET (Provost and 

Domingos, 2003; Perlich et al. 2003)). 
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      b. Profits from direct mailing. 

Figure 7: Comparison of mailing profitability and CPE accuracy using a PET model. 
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In contrast to the pattern shown in Figure 5, on average the class probability estimations obtained with 

GOAL for a given acquisition cost are considerably worse than those obtained with BOOTSTRAP-LV.  

BOOTSTRAP-LV’s improved average error is statistically significant (p=0.05) after both strategies have 

acquired 600 examples. Bootstrap-LV acquires responses that improve the accuracy of response probability 

estimation, regardless of the subsequent impact on decision-making.  As the discussion in Section 3 suggests, 

some improvements in CPE accuracy may not impact decision-making. Because these improvements come at 

a cost, they result in wasteful solicitations that are not rewarded with improved mailing decisions. GOAL is 

designed to avoid such acquisitions, and it is able to exhibit improved decision making for a given cost; 

however the average probability estimations it produces are inferior.  

Figure 7b explores whether the improved decision accuracy also results in superior profitability. The 

graph shows the profits generated from direct marketing mailings for increasing cost of response acquisitions. 

From 200 response acquisitions onward and until 2500 responses are acquired, GOAL results in statistically 

significantly higher profits than BOOTSTRAP-LV, according to a paired t-test (p=0.05)—again, GOAL 

produces models yielding better targeting decisions.  

 In summary, Figures 6 and 7a show that GOAL and BOOTSTRAP-LV each excels at the task for which it 

was designed: BOOTSTRAP-LV to improve the average CPEs and GOAL to improve decision-making. In 

particular, while BOOTSTRAP-LV obtains considerably better average probability estimations for a given cost, 

these improvements often do not result in more accurate targeting. GOAL, on the other hand, avoids many 

costly CPE improvements that are not likely to alter decisions, and thereby reduces the cost of obtaining a 

given level of decision-making efficacy.  

We designed GOAL to be generic: it does not depend on the form of the model or on the induction 

algorithm.  Hence, it can be applied with any model for estimating class probabilities.  Whether it will be 

effective for various models must be demonstrated empirically.  Figure 8a compares the accuracy of targeting 

decisions using logistic regression models induced with GOAL and with BOOTSTRAP-LV.  Again, GOAL is 
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able to acquire more-informative responses for inducing donor response models.  GOAL’s superior 

performance is statistically significant (p=0.05) once 200 donor responses are acquired.  

Figure 8b shows the direct-mailing decision accuracy for GOAL and BOOTSTRAP-LV when the base model is 

a Naïve Bayes classifier. For this model as well, GOAL results in better decision-making for a given 

investment in response acquisition. For the Naïve Bayes model, GOAL’s superiority is statistically significant 

(p=0.05) once more than 750 donor responses have been acquired by each policy.  

 

 14.9

 14.905

 14.91

 14.915

 14.92

 14.925

 14.93

 14.935

 14.94

 14.945

 14.95

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

P
ro

p
o

rt
io

n
 o

f 
a

c
c

u
ra

te
 m

a
il

in
g

 d
e

c
is

io
n

s

Response acquisition cost

GOAL
Bootstrap-LV

               a.  Mailing accuracy rate with logistic      
               regression  

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

P
ro

p
o

rt
io

n
 o

f 
a

c
c

u
ra

te
 m

a
il

in
g

 d
e

c
is

io
n

s

Response acquisition cost

GOAL
Bootstrap-LV

             b. Mailing accuracy rate with a Naïve Bayes     
             model  
           

Figure 8:  Mailing decision accuracy rate using GOAL and BOOTSTRAP-LV 
 

 

Figure 9 compares the profitability resulting from GOAL’s acquisitions to the profitability obtained with 

BOOTSTRAP-LV. For the logistic regression model, GOAL’s improvement is significant (p=0.05) once 200 

acquisitions are made by each method. Once 4000 responses are acquired the two acquisition policies exhibit 

comparable performance again. GOAL results in statistically superior profitability with the Naïve Bayes 

model once more than 2600 responses have been acquired.  
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          a. Logistic regression model. 
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        b.  Naïve Bayes model 
 

Figure 9: Direct marketing profitability with GOAL and BOOTSTRAP-LV 

6.  Limitations 

Above we mentioned that although GOAL’s technique is informed by the theoretical analysis, it is 

essentially a heuristic (as are all existing active learning methods, except arguably OED, which has its own 

drawbacks).  Thus, there is room for alternative methods that may perform even better.  For example, we 

have ignored that the population to which the method will be applied (e.g., the potential customer base) may 

be available when the model is built.  It may be that the similarities between “training” customers and to-be-

targeted customers could be taken into account to improve the potential decision impact of response 

acquisitions.  We rely on the weighted sampling to take these similarities into account implicitly.   

We have not taken into account any information about the expected distribution of CPEs, beyond 

the point value for each case.  As with Bootstrap-LV, it may be possible to improve GOAL by looking more 

carefully at the distribution.  For example, a case with a high-variance probability estimate might be preferred 

over a low-variance estimate with the same point value or mean. Also, in this study we focused the active 

acquisitions to benefit the CPE model.  However, we also induce a regression model for donation amounts.  

It may be that a method could actively solicit to optimize the two models simultaneously.  In addition, we 

assumed that the cost of acquiring labels is uniform across examples (e.g., customers).  For applications with 

non-uniform acquisition costs, the method would benefit from an extension that integrated the acquisition 
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costs with the selection criteria.  Ideally, the method would maximize the expected value of the information 

acquired. 

Finally, the employment of active interactions with consumers also gives rise to a new challenge of 

balancing between the benefits of offering consumers product recommendations intended to increase sales at 

present versus acquisition of information that will benefit future actions. The tradeoff between activities 

initiated to support learning and actions intended to exploit what is already known has been explored in the 

robotics literature where robots balance between initiating actions for accomplishing a given task learning 

actions that attempt to improve the robot’s ability to predict the results of its future actions. A similar 

framework may prove useful for businesses as well, as they proactively initiate actions from which they can 

both benefit immediately and use to improve future actions (Pednault et al, 2002). 

7. Conclusion and Managerial Implications 

Because the information required for effective modeling often is costly to obtain, it is beneficial to 

devise mechanisms to direct the acquisition of data for cost-effective improvements to decision-making.  In 

this paper we examined the induction of class probability estimation models used for comparing alternative 

courses of action in the presence of uncertainty. For reducing information costs, traditional active learning 

can be applied and it performs significantly better than the standard approach of acquiring information from 

a representative sample using uniform random sampling. However, label acquisition costs can be reduced 

even more if an acquisition strategy is designed to improve decision-making specifically.  

The GOAL acquisition method is derived from theoretical observations regarding the conditions 

under which class probability estimation error is more likely to undermine decision-making. When applied to 

data from direct-marketing campaigns, GOAL identifies donors whose responses significantly improve 

models for donor targeting, as measured by decision accuracy and campaign profitability. GOAL’s decision-

centric strategy is superior to the alternatives.  Examining the relationship between error reduction and 

decision-making efficacy reveals that the economies exhibited by GOAL indeed are derived from acquiring 

labels that will affect solicitation decisions, sometimes at the expense of CPE error reduction. An additional 
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advantage of GOAL is that it has a simple, straightforward formulation, and that it does not require 

considerable computation (unlike alternatives like Bootstrap-LV). 

This paper introduces the notion that decision-centric, active acquisition of modeling information 

can lead to more profitable model building and use. We have motivated the use of such techniques with 

examples of modeling consumer preferences and loyalty, which recently have been high-profile modeling 

applications (e.g., on-line recommendation mechanisms, churn prediction for banks and telecommunications 

companies, and other customer relationship management applications).  These are applications for which the 

acquisition of labels for training data carries clear costs.  There are many other uses of predictive modeling in 

business (e.g., West et al, 1997; Moe and Fader, 2004), most of which have associated data acquisition costs.  

A further implication of this work is that decision-centric data acquisition strategies should be considered 

elsewhere as8 well.8   

The notion of decision-centric active information acquisition also suggests that businesses should 

consider modifying their strategies for acquiring information through normal business transactions. A firm, 

such as Amazon.com, that models consumer preferences for customized marketing of products can 

accelerate learning about consumers by proactively offering recommendations—not merely to induce 

immediate sales, but for the purpose of improving recommendations in the future. The decision-centric 

acquisition approach presented here suggests that such active acquisition of information may well result in 

better decisions in the future. For firms such as Amazon.com, such capacity potentially could be employed to 

accelerate induction of consumer preferences and to offer more accurate and effective recommendations, 

earlier.   

 

 

 

                                                 
8
 From the research perspective there is a striking lack of publicly available data sets that include all the 
cost/benefit information required to evaluate methods such as this.  This should be less of a limitation from a 
managerial point of view, where sources of both data and cost/benefit information should be available more 
readily. 
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