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Abstract

Feature construction through aggregation plays an essential role in modeling re-
lational domains with one-to-many relationships between tables. One-to-many rela-
tionships lead to bags (multisets) of related entities, from which predictive informa-
tion must be captured. This paper focuses on aggregation from categorical attributes
that can take many values (e.g., object identifiers). We present a novel aggregation
method as part of a relational learning system ACORA, that combines the use of
vector distance and meta-data about the class-conditional distributions of attribute
values. We provide a theoretical foundation for this approach deriving a “relational
fixed-effect” model within a Bayesian framework, and discuss the implications of
identifier aggregation on the expressive power of the induced model. One advan-
tage of using identifier attributes is the circumvention of limitations caused either by
missing/unobserved object properties or by independence assumptions. Finally, we
show empirically that the novel aggregators can generalize in the presence of identi-
fier (and other high-dimensional) attributes, and also explore the limitations of the
applicability of the methods.

1 Introduction

When building statistical models from relational data, modelers face several challenges.
This paper focuses on one: incorporating one-to-many relationships between a target entity
and related entities. In order for standard statistical modeling techniques to be applicable,
bags (multisets) of related entities must be aggregated, where aggregation is the process of
converting a bag of entities into a single value.

This paper addresses classification and the estimation of class-membership probabili-
ties, and unless otherwise specified we will assume binary classification. We assume that
data are represented as a multi-table relational database, although the techniques apply
as well to other relational representations. The simplest domain that exhibits the one-
to-many relationships at issue consists of two tables: a target table, which contains one
row for each entity to be classified, and an auxiliary table that contains multiple rows of
additional information about each target entity. Figure 1 illustrates the case of a customer
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Customer

CID CLASS

C1 0
C2 1
C3 1
C4 0

Transaction

CID TYPE ISBN Price

C1 Fiction 523 9.49
C2 Non-Ficiton 231 12.99
C2 Non-Fiction 523 9.49
C2 Fiction 856 4.99
C3 Non-Fiction 231 12.99
C4 Fiction 673 7.99
C4 Fiction 475 10.49
C4 Ficiton 856 4.99
C4 Non-Fiction 937 8.99

Figure 1: Example of a relational classification task consisting of a target table Customer(CID,
CLASS) and a one-to-many relationship to the table Transaction(TID, TYPE, ISBN, Price).

table and a transaction table. This simple case is ubiquitous in business applications: for
customer classification for churn management, direct marketing, fraud detection etc., it is
important to consider transaction information (such as types, amounts, times, locations).

For modeling with data such as these, practitioners traditionally have manually con-
structed presumably relevant features before applying a conventional (“propositional”)
modeling technique such as logistic regression. One group of automatic relational model-
ing approaches follows a similar process, explicitly constructing features from secondary
tables in order to allow the application of standard statistical modeling techniques. The
potential advantages of such a transformation, or “propositionalization,” approach have
been discussed previously [20].

Aggregation of bags of values plays an important role in the transformation process, but
only two types of automated aggregation are regularly used: (1) simple aggregates, such
as the arithmetic average or the most frequent value, and (2) domain-specific aggregates,
such as recency and frequency of prior purchases (used regularly for direct marketing).
These simple aggregates may be suitable for bags of numeric attributes or low-cardinality
categoricals. However, applying them to high-dimensional categorical attributes results
either in massive loss of information or an extremely large and sparse feature space—
neither of which facilitates subsequent modeling.

We introduce and analyze novel aggregation methods1 that are more complex than
the simple aggregates, are general enough to construct features for a variety of modeling
domains, and are tailored to statistical relational learning [15]. The main idea of the
feature construction techniques is first to estimate and store (class-conditional) data about
the distributions of the bags of attribute values (distributional meta-data). Second, when
confronted with a particular target case we consider various vector distances to compress
the information from the case’s bag(s) relative to the distributional meta-data.

The main contributions of this work are:

1. It provides an initial theoretical and rhetorical analysis of principles for developing
new aggregation operators.

2. It develops a novel method for relational feature construction, based on this analysis,
including novel aggregation operators. To our knowledge, this is the first relational

1This paper is an extension of the second half of [39].
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aggregation approach that can be applied generally to categorical attributes with
high cardinality.

3. It draws an analogy to the statistical distinction between random- and fixed-effect
modeling, provides a theoretical justification for using class-conditional aggregation,
and argues that it has the potential to overcome some of the shortcomings of tradi-
tional aggregates.

4. It provides an analysis of the aggregation of object identifiers, a common class of
categorical attributes with high cardinality, which in a relational setting can provide
important discriminative information. A unique opportunity presented by the intro-
duction of object identifiers is that modeling may be able to learn from unobserved
object properties.

Section 2 presents a general analysis of potential aggregation objectives for modeling,
and derives the principles for developing aggregates. Section 3 presents our new aggrega-
tion operators and gives an overview of the relational learning system ACORA. Next we
provide in Section 4 a brief analysis of the new aggregates and discuss the implications of
applying such aggregations to object identifiers. Section 5 provides empirical support for
our claims of the applicability of the novel aggregates to domains with high-dimensional
categorical attributes and of the advantages of learning from object identifiers.

2 Setup and Principles of Aggregation

A relational probability estimation (or classification) task is defined by a relational database
RDB containing two or more tables Ti, including a particular target table Tt. Every
table Ti contains si rows of instances tfi , (1 ≤ f ≤ si). Each instance f is represented

by a set of n attribute values tfi = (tfi1, . . . , t
f
in). The type, D(Tim), of attribute Tim is

either R in the case of numeric attributes, or the set of values that a categorical attribute
Tim can assume; in cases where this is not known a priori, we define D(Tim) =

⋃k

f=1(t
f
im),

the set of values that are observed across all instances f in column m of table Ti. The
cardinality of a categorical attribute C(Tim) is equal to the number of distinct values
that the attribute can take: C(Tim) = |D(Tim)|.

One particular attribute Ttc in the target table Tt is the target, a class label for which
a model has to be learned given all the information in RDB. We will consider binary
classification (D(Ttc) = {0, 1}). Assuming a cost function C(c, ĉ) where c is a vector
of binary class labels and ĉ a vector of probabilities of class membership, we define the
relational probability estimation task as finding a mapping M∗ : (T f

t , RDB) → [0, 1] from
instances in Tt (along with all information in RDB), subject to minimizing the cost in
expectation over any possible set of target cases, T ∗

t :

M∗ = argmin
M

ET∗

t
[C(T ∗

tc, M(T ∗
t , RDB))]. (1)

The main distinction between relational and propositional model estimation is the ad-
ditional information in tables of RDB other than Tt. This additional information can
be associated with instances in the target table via keys. The conventional definition
of a key requires a categorical attribute Tmj to be unique across all rows in table Tm:
C(Tmj) = sm. A link to information in another table Tn is established if that key Tmj

also appears as Tnl in another table Tn, where it would be called a foreign key. This
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definition of a foreign key requires an equality relational ER between the types of pairs
of attributes ER(D(Tmj), D(Tnl)). We will assume that for the categorical attributes in
RDB this equality relation is provided.

More fundamentally, keys are used to express semantic links between the real entities
that are modeled in the RDB. In order to capture these links, in addition to entities’
attributes we also must record an identifier that stands for the true identity of each
entity. Although database keys often are true identifiers (e.g., social security numbers),
all identifiers are not necessarily keys in a particular RDB. This can be caused either by
a lack of normalization of the database or by certain information not being stored in the
database. For example consider domains where no information is provided for an entity
beyond a “name”: shortnames of people in chatrooms, names of people transcribed from
captured telephone conversations, email addresses of contributors in news groups. In such
cases RDB may have a table to capture the relations between entities, but not a table for
the properties of the entity. This would violate the formal definition of key, since there is
no table where such an identifier is unique. An example of an identifier that is not a key
is the ISBN attribute in the transaction table in Figure 1.

Without semantic information about the particular domain it is impossible to say
whether a particular attribute reflects the identity of some real entity. A heuristic definition
of identifiers can be based on the cardinality of its type (or an identical type under ER):

Definition 1: Tmj is an identifier if D(Tmj) 6= R and
(∃ Tgh|C(Tgh) ≥ IMIN and ER(D(Tgh), D(Tmj))).

Informally, a identifier is a categorical attribute where the cardinality of its type or some
equivalent type is larger than some constant IMIN . Note that for many domains the
distinction between keys and identifiers will be irrelevant because both definitions are true
for the same set of attributes. If IMIN is set to the size of the smallest table, the keys
will be a subset of the identifiers. The use of identifiers to link objects in a database (still
assuming an equality relation between pairs of attributes) will therefore provide at least as
much information or more than the use of keys. The choice of IMIN is bounded from above
by st, the size of the target table. There is no clear lower limit, but very small choices
(e.g., below 50) for IMIN are likely to have a detrimental effect on model estimation, in
terms of run time and potentially also in terms of accuracy, because too many irrelevant
features will be constructed.

A relationship between entities is defined by a quadruple of the form (Tt, Ttm, Tn, Tnq)
consisting of the two tables and two identifiers of equivalent type. The bag R of objects
related to tft under this relationship is defined as RTn

(tft ) = {tyn|t
f
tm = tynq} and the bag

of related values of attribute Tnz is defined as RTnz
(tft ) = {tynz|t

f
tm = tynq}.

Beyond defining related objects, identifiers are also important for aggregation. Aggre-
gation operators are needed to incorporate information from one-to-many relationships
as in our example in Figure 1, joining on CID. The challenge in this context is the ag-
gregation of the ISBN attribute, which we assume has cardinality larger than IMIN . An
aggregation operator A provides a mapping from a bag of values RTnz

(tft ) to either R,

(A : RTnz
(tft ) → R), or to the original type of the attribute (A : RTnz

(tft ) → D(Tnz)).
Simple aggregation operators for bags of categorical attributes are the COUNT , value
counts for all possible values v ∈ D(Tnz), and the MODE. COUNT = |RTnz

(tft )| is the
size of the bag. COUNTv for a particular value v is the number of times value v appeared
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in the bag RTnz
(tft ),

COUNTv(RTnz
(tft )) =

∑

e∈RTnz |e=v

1. (2)

The MODE is the value v that appears most often in RTnz
(tft ):

MODE(RTnz
(tft )) = argmax

v

COUNTv(RTnz
(tft )). (3)

In the example, MODE(RTY PE(C2, 1)) = ’Non-Fiction’ for the bag of TYPE attributes
related to customer C2. None of these simple aggregates is appropriate for high-cardinality
attributes. For example, since most customers buy a book only once, for bags of ISBNs
there will be no well-defined MODE. The number of counts (all equal to either zero or
one) would equal the cardinality of the identifier’s domain, and could exceed the number
of training examples by orders of magnitude—leading to overfitting.

More generally and independently of our definition of identifiers, any categorical at-
tribute with high cardinality poses a problem for aggregation. This has been recognized
implicitly in prior work (see Section 6), but rarely addressed explicitly. Some relational
learning systems [24] only consider attributes with cardinality of less than n, typically
below 50; Woznica et al. [48] define standard attributes excluding keys, and many ILP
systems require the explicit identification of categorical values to be considered for equality
tests, leaving the selection to the user.

2.1 Design Principles for Aggregation Operators

Before we derive formally in Section 3.1 a new aggregation approach for categorical at-
tributes with high cardinality, let us explore the objectives and potential guidelines for the
development of aggregation operators.2 The objective of aggregation in relational model-
ing is to provide features that improve the generalization performance of the model (the
ideal feature would discriminate perfectly between the cases of the two classes). However,
feature construction through aggregation typically occurs in an early stage of modeling,
or one removed from the estimation of generalization performance (e.g., while following a
chain of relations). In addition, aggregation almost always involves the loss of informa-
tion. Therefore an immediate concern is to limit the loss of predictive information, or the
general loss of information if predictive information cannot yet be identified. For instance,
one measure of the amount of information loss is the number of aggregate values relative to
the number of unique bags. For example for the variable TYPE in our example, there are
54 non-empty bags with size less than 10 containing values from {Fiction,Non-Fiction}.
The MODE has 2 possible aggregate values and COUNT has 9. One could argue that
the general information loss is larger in the case of MODE. In order to limit the loss and
to preserve the ability to discriminate classes later in the process, it desirable to preserve
the ability to discriminate instances :

Principle 1: Aggregations should capture information that discriminates instances.

Although instance discriminability is desirable, it is not sufficient for predictive mod-
eling. It is simple to devise aggregators that involve no apparent information loss. For the

2Related issues of quantifying the goodness of transformation operators have been raised in the context
of “good kernels” for structured data (Gaertner et al. [13]).
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prior example, consider the enumeration of all possible 54 bags or a prime-coding ’Non-
Fiction’=2, ’Fiction’=3, where the aggregate value corresponding to a bag is the product
of the primes. A coding approach can be used to express any one-to-many relationship in
a simple feature-vector representation. An arbitrary coding would not be a good choice
for predictive modeling, because it almost surely would obscure the natural similarity be-
tween bags: a bag with 5 ’Fiction’ and 4 ’Non-Fiction’ will be just as similar to a bag of
9 ’Fiction’ books as to a bag of 5 ’Fiction’ and 5 ’Non-Fiction’ books. In order for aggre-
gation to produce useful features it must be aligned with the implicitly induced notion of
similarity that the modeling procedure will (try to) take advantage of. In particular, cap-
turing predictive information requires not just any similarity, but similarity with respect
to the learning task given the typically Euclidean modeling space. For example, an ideal
predictive numeric feature would have values with small absolute differences for target
cases of the same class and values with large absolute differences for objects in different
classes. This implies, that the aggregates should not be independent of the modeling task;
if the class labels were to change, the constructed features should change as well.

Principle 2: Aggregates should induce a similarity with respect to the learning task, that
facilitates discrimination by grouping together target cases of the same class.

Thus, we face a tradeoff between instance discriminability and similarity preservation.
Coding maintains instance discriminability perfectly, but obscures similarity (without luck
or some additional mechanism). COUNT and MODE on the other hand lose much in-
stance discriminability, but will assign identical values to bags that are in some sense
similar—either to bags of identical size, or to bags that contain mostly the same element.
Again, because aggregation often is distant in the induction process from the assessment
of the final objective, it may be difficult to select one appropriate similarity measure. Fur-
thermore, since most similarity-preserving operators involve information loss, it might be
advantageous to use multiple operators that, when combined, capture more information.

Principle 3: Various aggregations should be considered, reflecting different notions of
similarity.

For our example, consider the following alternative aggregation. Rather than capturing
all information into a single aggregate, construct 2 attributes, one count for each value
’Fiction’ and ’Non-Fiction’. The two counts together maintain the full information. Un-
fortunately, constructing counts for all possible values is possible only if the number of
values is small compared to the number of training examples.3

The design principles suggest particular strategies and tactics for aggregation:

• Directly use target (class) values to derive aggregates that already reflect similarity
with respect to the modeling task.

• Use multiple aggregates to capture different notions of similarity.

• Use numeric aggregates, since they can better trade off instance discriminability and
similarity.

We present in the next section a novel aggregation approach based on these principles,
that is particularly appropriate for high-dimensional categorical variables.

3Model induction methods suitable for high dimensional input spaces may confer an advantage for
such cases, as they often do for text. However, we will see later, for relational problems even producing
single-number aggregations can lead to a large number of features.
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3 Aggregation for Relational Learning

Exploration
using Joins

Relational
Data

Objects
Sets of Potential

Features
Feature
Vector

Feature
Selection

Prediction
 

Feature
Construction

- Numeric Aggregates
- Counts
- Reference distances
- Discriminative categoricals
 

Model
Estimation

- Linear regression
- Decision Tree

- etc.

X1, ... ,Xn X1, ... ,Xi

Model Target

C

Figure 2: System architecture of ACORA with four transformation steps: exploration, feature
construction, feature selection, model estimation, and prediction. The first two (exploration and
feature construction) transform the originally relational task (multiple tables with one-to-many
relationships) into a corresponding propositional task (feature-vector representation).

In order to perform a comprehensive analysis of aggregation-based attribute construc-
tion for relational data, it is necessary to instantiate the ideas described above in a system
that can be applied to non-trivial relational domains. ACORA (Automated Construction
of Relational Attributes) is a propositionalization-based system that converts a relational
domain into a feature-vector representation using aggregation to construct attributes au-
tomatically. ACORA consists of four nearly independent modules, as shown in Figure 2:

• exploration: constructing bags of related entities using joins and breadth-first search,

• aggregation: transforming bags of objects into single-valued features,

• feature selection, and

• model estimation.

Figure 3 outlines the ACORA algorithm more formally in pseudocode. Since the focus
of this work is on aggregation we will concentrate in Section 3.1 on distribution-based
aggregation assuming bags of values. The computation of such bags of related objects is
explained in more detail in Section 3.2; it requires the construction of a domain graph where
the nodes represent the tables the edges capture links between tables through identifiers.
Following the aggregation, a feature selection procedure identifies valuable features for
the modeling task, and in the final step ACORA estimates a classification model and
makes predictions. Feature selection, model estimation, and prediction use conventional
approaches including logistic regression, the decision tree learner C4.5 [43], and naive
Bayes (using the WEKA package [46]), and are not discussed further in this paper.

3.1 Aggregation using Distributional Meta-Data

The result of the join (on CID) of the two tables in our example database (step 7 in the
pseudocode) is presented in Table 1. Consider the bag R(C2, 1) of related transactions for
customer C2:

〈(C2,Non-Fiction,231,12.99),(C2,Non-Fiction,523,9.49), (C2,Fiction,856,4.99)〉.
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ACORA Algorithm

Input: The domain specification (tables, attributes, types, and an equality relation over
types), and a database RDB including a target table Tt with labeled training objects tt
and unlabeled test cases.

1. Read specification and build domain graph G (Section 3.2)

2. Initialize breadth-first list L with target table: L = {Tt}

3. Initialize feature table F =non-identifier attributes(Tt)

4. Loop

5. Tc = First(L)

6. Foreach table Tg in RDB linked to Tc in G through some identifiers Tck, Tgj

7. J = Join Tc and Tg under the condition Tck=Tgj

8. Foreach attribute Tga, a 6= j (Section 3.1)

9. Foreach target observation th
t

10. Foreach applicable aggregation operator As

11. Construct As(RTga
(tft ))

12. End Foreach

13. Append aggregates A∗ as new columns to feature table F

14. End Foreach

15. Append to list L the join result (J)

16. End Foreach

17. if (stopping criterion) GOTO Select Features

18. End Foreach

19. End Loop

20. Select Features SF from F

21. Build propositional model from SF

Figure 3: Pseudocode of the ACORA algorithm

The objective of an aggregation operator A is to convert such a bag of related en-
tities into a single value. In step 8 of the pseudocode, this bag of feature vectors is
split by attribute into three bags RTY PE(C2, 1) = 〈Non-Fiction,Non-Fiction,Fiction〉,
RISBN (C2, 1) = 〈231,523,856〉, and RPrice(C2, 1) = 〈12.99,9.49,4.99〉. Aggregating each
bag of attributes separately brings into play an assumption of class-conditional indepen-
dence between attributes of related entities (discussed in Section 4.1 and [39]). ACORA
may apply one or more aggregation operators to each bag. Simple operators that are ap-
plicable to bags of numeric attributes RTji

, such as Price, include the SUM =
∑

c ∈ RTji

or the MEAN = SUM/|RTji
|. RISBN (C2, 1) = 〈231,523,856〉. ISBN is an example of a

bag of values of an attribute with high cardinality, where the MODE is not meaningful
because it does not contain a “most common” element. The high cardinality also prevents
the construction of counts for each value, because counts would result in a very sparse
feature vector with a length equal to the cardinality of the attributes (often much larger
than the number of training examples), which would be unsuitable for model induction.
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CID CLASS TYPE ISBN Price

C1 0 Fiction 523 9.49

C2 1 Non-Fiction 231 12.99
C2 1 Non-Fiction 523 9.49
C2 1 Fiction 856 4.99

C3 1 Non-Fiction 231 12.99

C4 0 Fiction 673 7.99
C4 0 Fiction 475 10.49
C4 0 Fiction 856 4.99
C4 0 Non-Fiction 937 8.99

Table 1: Result of the join of the Customer and Transaction tables on CID for the example
classification task in Figure 1. For each target case (C1 to C4) the one-to-many relationship
can result in multiple entries (e.g., three for C2 and four for C4) highlighting the necessity of
aggregation.

3.1.1 Distances to Reference Vectors and Distributions

The motivation for the new aggregation operators presented in the sequel is twofold:
1) to deal with bags of categorical high-cardinality attributes for which no satisfactory
aggregation operators are available, and 2) to develop aggregation operators that satisfy
the principles outlined in Section 2.1 in order ultimately to improve predictive performance.
Note that even if applicable, the simple aggregates do not satisfy all the principles.

The main idea is to collapse the cardinality of the attribute by applying a vector
distance to a vector representation both of the bag of related values and of a reference bag
that is constructed across multiple related bags. In particular, the reference bags can be
conditioned on the class label as follows. Let us define Bf

Tij
as the vector representation

of a bag of categorical values RTji
(tft ). Specifically, given an ordering, O : D(Tji) → N,

and a particular value v of attribute Tji, the value of Bf
Tij

at position O(v) is equal to the
number of occurrences cv of value v in the bag.

Bf
Tij

[O(v)] = cv (4)

For example BC2
TY PE = [2, 1] for RTY PE(C2, 1) = 〈Non-Fiction,Non-Fiction,Fiction〉, un-

der the order O(Non-Fiction)=1, O(Fiction)=2. We will use the term case vector to mean
this vector representation of the bag of values related to a particular case.

Based on the case vectors in the training data, the algorithm constructs two class-
conditional reference vectors B0 and B1 and an unconditional reference vector B∗, where
s1 is the number of positive target cases and s0 is the number of negative target cases:

B0
Tij

[O(v)] =
1

s0

∑

f |tf
tc=0

Bf
Tij

[O(v)] (5)

B1
Tij

[O(v)] =
1

s1

∑

f |tf
tc=1

Bf
Tij

[O(v)] (6)

B∗
Tij

[O(v)] =
1

s1 + s0

∑

f

Bf
Tij

[O(v)] (7)
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TYPE Non-Fiction Fiction

BC1 0 1

BC2 2 1

BC3 1 0

BC4 1 3

ISBN 231 475 523 673 856 937

BC1 0 0 1 0 0 0

BC2 1 0 1 0 1 0

BC3 1 0 0 0 0 0

BC4 0 1 0 1 1 1

Table 2: Vector representation of the bags of the TYPE and ISBN attributes for each target case
(C1 to C4) after the exploration in Table 1. As before, the B’s denote the counts of how often a
value appeared.

TYPE Non-Fiction Fiction

B1 1.5 0.5

B0 0.5 2.0

B∗ 2.0 2.5

D1 0.75 0.25

D0 0.20 0.80

D∗ 0.44 0.55

ISBN 231 475 523 673 856 937

B1 1 0 0.5 0 0.5 0

B0 0 0.5 0.5 0.5 0.5 0.5

B∗ 0.5 0.25 0.5 0.25 0.5 0.25

D1 0.5 0 0.25 0 0.25 0

D0 0 0.2 0.2 0.2 0.2 0.2

D∗ 0.22 0.11 0.22 0.11 0.22 0.11

Table 3: Estimates of the reference distributions for the TYPE and ISBN attributes for the
bag of related objects in Table 1: class-conditional positive D1, class-conditional negative D0,
and unconditional distribution D∗. The corresponding reference bags (B1, B0, and B∗) capture
the same information, but with a different normalization: division by the number of target cases
rather than by the number of related entities.

B1
Tij

[O(V )] is the average number of occurrences of value v related to a positive target

case (ttc = 1) and B0
Tij

[O(v)] the average number of occurrences of a values v related to a

negative target case (ttc = 0). B∗
Tij

[O(v)] is the average number of occurrences of values

related to any target case. We also consider the following normalized versions D0, D1

and D∗ that approximate the class-conditional and unconditional distributions from which
the data would have been drawn, where rf is the number of values related to tft (the size

of bag RTij
(tft )) :

D0
Tij

[O(v)] =
1∑

f |tf
tc=0 rf

∑

f |tf
tc=0

Bf
Tij

[O(v)] (8)

D1
Tij

[O(v)] =
1∑

f |tf
tc=1 rf

∑

f |tf
tc=1

Bf
Tij

[O(v)] (9)

D∗
Tij

[O(v)] =
1∑
f rf

∑

f

Bf
Tij

[O(v)] (10)

For the example, the case vectors for TYPE and ISBN are shown in Table 2 and the
reference vectors and distributions in Table 3. We now extend the pseudocode of step 8:

Input: All bags RTga
(tft ) for attribute a 6= j of all target cases tf

t .

8.1 Foreach target case tft estimate Bf
Tga

8.2 Estimate B0
Tga

, B1
Tga

, B∗
Tga

, D0
Tga

, D1
Tga

, D∗
Tga

The aggregation in step 11 now can take advantage of the reference vectors by applying
different vector distances between a case vector and a reference vector. An aggregation was
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CID CLASS Cosine(BCID
TY PE , B1

TY PE) Cosine(BCID
ISBN , B1

ISBN)
C1 0 0.316 0.408
C2 1 0.989 0.942
C3 1 0.948 0.816
C4 0 0.601 0.204

Table 4: Feature table F after appending the two new cosine distance features from bags of the
TYPE and ISBN variable to the class-conditional positive reference bag. The new features show
a strong correlation with the class label.

defined as a mapping from a bag of values to a single value. We now define vector-distance
aggregates of a bag of categorical attributes Tji as:

A(RTji
(tft )) = V D(Bf

Tji
, RV ) (11)

where V D can be any vector distance metric and RV ∈ {B0
Tji

, B1
Tji

, B∗
Tji

D0
Tji

, D1
Tji

, D∗
Tji

}.
ACORA offers a number of distances measures for these aggregations: likelihood, Eu-
clidean, cosine, edit, and Mahalanobis, since capturing different notions of distance is one
of the principles from Section 2.1. In the case of cosine distance the normalization (B0 vs.
D0) is irrelevant, since cosine normalizes by the vector length.

Consider (Table 4) the result of step 12 of the algorithm on our example, where two
new attributes are appended to the original feature vector in the target table, using cosine
distance to B1 for the bags of the TYPE and the ISBN attributes. Both features appear
highly predictive, but of course the predictive power has to be evaluated in terms of the
out-of-sample performance for test cases that were not used to construct B0 and B1.

Observe the properties of these operators in light of the principles derived in Section
2.1: 1) they are task-specific if RV is one of the class-conditional reference vectors, 2) they
compress the information from categorical attributes of high dimensionality into single
numeric values, and 3) they can capture different notions of similarity if multiple vector
distance measures are used. If the class labels change, the features also will, since the
estimates of the distributions will differ. If there were indeed two different class-conditional
distributions, the case vectors of positive examples would be expected to have smaller
distances to the positive than to the negative class-conditional distribution. The new
feature (distance to the positive class-conditional distribution) will thereby reflect a strong
similarity with respect to the task. This can be observed in Table 4. Only if the two class
distributions are indeed identical should the difference in the distances be close to zero.
The loss of discriminative information is lower compared to conventional aggregation.

A limitation of the features constructed by ACORA is they are not easily comprehen-
sible. The only conclusion that could be drawn about the use by a model of such a vector
distance feature is that the distribution of a particular attribute is different for target cases
of one class versus the other. In order to understand more fully, it would be necessary to
analyze or visualize the actual differences between D0 and D1.

The computational complexity of the aggregation considering only one join is O(n ∗
p ∗ log p), where n is the length of the table after the join and p is the number of possible
categorical values. The class-conditional distribution can already be estimated during the
join execution. One additional pass over the resulting table is required to estimate the
distances. The p ∗ log p factor reflects the use of hash tables to store intermediate results.
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n can be approximated as a product of the size of the target table and the average size s of
the bag of related objects: n ∼ st ∗s. The quality of this estimate depends on the variance
and the skew of the distribution of the bag sizes. The overall complexity of ACORA is
O(J ∗ n ∗ p ∗ log p) if J joins are considered.

3.1.2 Categorical Counts

An alternative solution to address the cardinality and the resulting length of the vector
representation B is to curtail the vector by selecting a smaller subset of values for which
the counts are recorded. This poses the question of a suitable criterion for selection. A
simple selection criterion is the overall frequency of a value across all bags. ACORA
constructions in addition to the vector-distance features, the top n values v for which
B∗(O(v)) was largest.

However, the principles in Section 2.1 suggest choosing the most discriminative values
for the target prediction task. Specifically, ACORA uses the class-conditional reference
vectors B0 and B1 (or the distributions D0 and D1) to select those that show the largest
absolute values for B1 − B0. For example, the most discriminative TYPE value in the
example is Fiction with a difference of 1.5 in Table 3.

3.1.3 Numeric Aggregates

ACORA provides straightforward aggregates for numeric attributes: MIN, MAX, SUM,
MEAN, and V ARIANCE. It also discretizes numeric attributes (equal-frequency bin-
ning) and estimates class-conditional distributions and distances, similar to the procedure
for categorical attributes described in Section 3.1.1. This aggregation makes no prior
assumptions about the distributions (e.g., normality) and can capture arbitrary numeric
densities. We do not assess this capability in this paper.

3.2 Computation of Bags of Related Objects

As introduced briefly in Section 3, one component of relational learning is the identification
of entities that are related to the observations in the target table. This requires knowledge
about the available background tables, the types of their attributes, and which attributes
can be used to join. ACORA first distinguishes a set of identifiers using the proposed
heuristic that requires an identifier to be categorical and to have cardinality larger than
some constant, typically set to 100. Using this set of identifier attributes, ACORA con-
verts a domain explicitly into a graph representation and finds related information using
breadth-first search for graph traversal. As an example to illustrate this process we use the
CORA domain [30], a bibliographic database of machine learning papers (see Section 7).
CORA comprises three tables: Paper, Author and Citation, as shown in Figure 4. We do
not use the text of the papers, only the citation and authorship information.

The first step is the conversion of the domain into a graph. The tables are the vertices
and an edge between two tables Tj and Tm represents the occurrence of a pair of identifier
attributes Tji and Tml that are compatible, i.e., they belong to the equality relation
ER(Tji, Tml). The only condition imposed on an edge is that Tj and Tm cannot both be
equal to the target table Tt. This allows for multiple edges between two tables. With the
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Figure 4: Graph representation of the CORA document classification domain, with target table
Paper(P ID and Class), two background tables Author(P ID,A ID) and Citation(P ID,P ID).
Each identifier also produces a self-loop, except on the target table.
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Figure 5: Dynamic exploration tree corresponding to a breadth-first search over the CORA graph
in Figure 4. The exploration starts from the target table Paper. The numbers denote the order
in which the nodes are visited; attribute names on links show the identifier that was used for
the join, and the attribute names to the right of each node denote attributes that have to be
aggergated.

exception of the target table, we also allow edges that link a table to itself.4 Figure 4 shows
the CORA graph including the target table, Paper, and two additional tables, Author and
Citation, showing attributes in the nodes and the linking identifiers on the edges. P ID
and A ID stand for PaperId and AuthorId respectively, and are identifiers; attributes with
the same name have the same type.

ACORA’s search explores this domain graph starting from the target table using
breadth-first search as formalized in the pseudocode in Figure 3. Figure 5 shows the
“unrolled” search tree, the numbers corresponding to the order of breadth-first search.
The path from the root to each node of the tree corresponds to a sequence of joins, and so
the nodes in layer of depth n represent all possible joins over n relations. The results of
the sequence of joins are the bags of related entities from the final nodes for each object
in the target table.

4Self-links currently are not included for target tables because they cannot provide any new information
for the propositional learning task.
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The only constraint on a path is that for any table, the incoming identifier attribute (a
particular column, not the type) must be different from the outgoing identifier attribute.
The intuition for this heuristic can be seen in the CORA domain: joining the Paper table
on P ID with Author produces for each paper the set of its authors. A second join on P ID
to the citation table would produce for each paper-author pair a bag of all cited papers.
Now each citation appears n times where n is the number of authors of the paper. We
have only duplicated the information about the citations by a factor of n. Intermediate
tables on a path that reuses the same key only result in a replication of information that
would be available on a shorter path that skips that table.

Given cycles in the graph, it is necessary to impose a stopping criterion. ACORA
uses either depth (three in the case of Figure 5) or the number of joins. As the length
of a path increases, the distance to the target object increases and the relevance of those
related entities decreases. Alternative stopping criteria include the number of constructed
features, run time, minimum gain in model performance, etc.

Finally we have to decide whether ACORA should be permitted to join back to the
target table (see nodes 6, 9 and 14 in Figure 5) and if yes, under what conditions. This
question is related to the definition of what constitutes background knowledge for a par-
ticular problem. More specifically, is the collection of training data itself part of the back-
ground knowledge that will be available for prediction? This view is often appropriate for
networked domains ([29],[9],[5]).

4 Formal Analysis and Implications

We suggested distance-based aggregates to address a particular problem: the aggregation
of categorical variables of high cardinality. The empirical results in Section 5 provide
support that distribution-based aggregates can indeed condense information from such at-
tributes and improve generalization performance significantly over alternative aggregates,
such as counts for the n most common values. We now show that the distance-based ag-
gregation operators can be derived as components of a “relational fixed-effect model” with
a Bayesian theoretical foundation. This derivation also allows us to identify assumptions
that impact the performance and to derive (see Section 4.3) implications for the use of
aggregation with identifiers.

4.1 Distributional Meta-Data for Aggregation

Aggregation summarizes a set or a distribution of values. As we have described, ACORA
creates reference summaries, and saves them as “meta-data” about the unconditional or
class-conditional distributions, against which to compare summaries of the values related
to particular cases. Specifically, the normalized reference vectors D1 and D0 are the
class-conditional likelihoods that define the distribution from which the values in the
corresponding bag would have been sampled, under the assumption of independent draws.

Although its use is not as widespread as in statistical hypothesis testing, distribu-
tional meta-data like D1 and D0 are not foreign to machine learning. Naive Bayes stores
class-conditional likelihoods for each attribute. In fraud detection, distributions of nor-
mal activity have been stored, to produce variables indicating deviations from the norm
[10]. Aggregates like the mean and the standard deviation of related numeric values also
summarize the underlying distribution; under the assumption of normality those two ag-
gregates fully describe the distribution. Even the MODE of a categorical variable is a
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crude summary of the underlying distribution (i.e., the expected value). In the case of
categorical attributes, the distribution can be described by the likelihoods—the counts for
each value normalized by the bag size. So all these aggregators attempt to characterize for
each bag the distribution from which its values were drawn. Ultimately the classification
model using such features tries to find differences in the distributions.

In principle, each object has an associated distribution from which the values are drawn.
The methodology of estimating the likelihoods for categorical attributes is clear; however,
estimating these distributions from a bag of categorical values of a high-cardinality at-
tribute is problematic. The number of parameters (likelihoods) for each distribution is
equal to the attribute’s cardinality minus one. Unless the bag of related entities is sig-
nificantly larger than the cardinality, the estimated likelihoods will not be reliable: the
number of parameters often will exceed the size of the bag.5 We make the simplifying
assumption that all objects related to any positive target case were drawn from the same

distribution. We therefore only estimate two distributions, rather than one for each target
case. A similar distinction has been made in traditional statistical estimation.

4.2 A Relational Fixed-Effect Model

Statistical estimation contrasts random-effect models from fixed-effect models [8]. In a
random-effect model, model parameters are not assumed to be constant but instead to be
drawn from different distributions for different observations. Estimating one distribution
for each bag corresponds to a random effect model. Our aggregates on the other hand
implement a relational fixed-effect model. We assume one fixed distribution for each of
the two classes. Under this assumption the number of parameters decreases by a factor of
n/2 where n is the number of training examples. More specifically, the main assumption
for a relational fixed-effect model is that all bags of objects related to positive target cases
are sampled from one distribution D1 and all objects related to negative target cases are
drawn from another distribution D0. Thus it may become possible to compute reliable
estimates of reference distributions D1 and D0 even in the case of categorical attributes
of high cardinality, by combining all bags related to positive/negative cases to estimate
D1/D0.

Even with only two distributions it still is necessary to construct features for the bag(s)
of values related to each case. ACORA computes these with various vector distances.
Notably, the likelihood of observing a particular bag of values assuming a class-conditional
distribution from which they were independently sampled can be seen as a particular
vector distance (where i ranges over the set of possible values for the bagged attribute):

LH(B, Dc) =
1∏

i D0[i]B[i] +
∏

i D1[i]B[i]

∏

i

Dc[i]
B[i] (12)

For the particular choice of likelihood as the distance function, the relational fixed-effect
model can be given a theoretical foundation within a general relational Bayesian framework
very similar to that of Flach and Lachiche ([11],[26]). In a relational context, a target
object tt is not only described by its attributes, but it also has an identifier (CID in
our example) that maps into bags of related objects from different background tables.
Starting with Bayes’ rule one can express the probability of class c for a target object

5The same problem of too few observations can arise for numeric attributes, if the normality assumption
is rejected and one tries to estimate arbitrary distributions (e.g., through Gaussian mixture models).
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tt with a feature vector6 and a set of bags of related objects from different relationships
(tt1, . . . , ttk, RTu

(tt), . . . , RTv
(tt)) as

P (c|tt) = P (c|tt1, . . . , ttk, RTu
(tt), . . . , RTv

(tt)) (13)

= P (tt1, . . . , ttk, RTu
(tt), . . . , RTv

(tt)|c) ∗ P (c)/P (tt). (14)

Making the assumption of class-conditional independence of the attributes and of the bags
of related objects allows rewriting the above expression as

P (c|tt) =
∏

i

P (tti|c) ∗
∏

j

P (RTj
(tt)|c) ∗ P (c)/P (tt). (15)

Assuming that the elements tj in the a bag RTj
(tt) are drawn independently, we can

rewrite
P (RTj

(tt)|c) =
∏

t
f
j
∈RTj

(tt)

P (tfj |c). (16)

Assuming again class-conditional independence of the attributes tj∗ of related entities, we
can finally estimate the class-conditional probability of a bag object from the training data
as

P (RTj
(tt)|c) =

∏

t
f
j ∈RTj

(tt)

∏

m

P (tfjm|c). (17)

Switching the order of the product this term can be rewritten as a product over all at-
tributes over all samples:

P (RTj
(tt)|c) =

∏

m

∏

t
f
jm

∈RTjm
(tt)

P (tfjm|c). (18)

This non-normalized (not accounting for P (c) and P (tt)) probability P (RTjm(tt)|c) cor-
responds directly to our distance-based aggregate that uses the likelihood distance from
equation 12 between the case vector B and Dc since Dc[O(v)] of value v is an unbiased
estimate of the class conditional probability P (v|c):

Dc[O(tfjm)]=̂P (tfjm|c) ⇒
∏

i

Dc[i]
B[i]=̂

∏

t
f
jm

∈RTjm
(tt)

P (tfjm|c) (19)

This derivation provides one theoretical justification for our more general framework of
using (multiple) vector distances in combination with class-conditional distribution esti-
mates. It also highlights the three inherent assumptions of the approach: 1) class con-
ditional independence between attributes (and identifiers) of the target cases, 2) class-
conditional independence between related entities, and 3) class conditional independence
between the attributes of related objects. Strong violations are likely to decrease the
predictive performance. It is straightforward to extend the expressiveness of ACORA
to weaken the first assumption, by (for example) combining pairs of feature values prior
to aggregation. The second assumption, of random draws, is more fundamental to ag-
gregation in general and less easily addressed. Relaxing this assumption comes typically
at a price: modeling becomes increasingly prone to overfitting because the search space
expands rapidly. This calls for strong constraints on the search space, as are typically
provided for ILP systems in the declarative language bias. We discussed this tradeoff
previously [39] in the context of noisy domains.

6Excluding the class label and the identifier.
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4.3 Learning from Identifier Attributes

We show in our empirical results in Section 5 the importance of including aggregates of
identifiers. The following discussion is a somewhat formal analysis of the special properties
of identifiers and why aggregates of identifiers and in particular additive distances like
cosine can achieve such performance improvements.

We defined identifiers as categorical attributes with a high cardinality. In our example
problem we have two such attributes: CID, the identifier of customers, and ISBN, the iden-
tifier of books. Considering the task of classifying customers based on the target table Tt

clearly calls for the removal of the unique CID attribute prior to model induction, because
it cannot generalize. However, the identifiers of related objects may be highly predictive
out-of-sample (e.g., anybody who has met with Bin Laden is very likely to be in involved
in terrorist activity), because they are shared across multiple target cases that are related
to the same objects (e.g., customers who bought the same book). The corresponding in-
crease in the effective number of appearances of the related-object identifier attribute Tkj ,
such as ISBN, allows the estimation of class-conditional probabilities P (tkj |c).

Beyond the immediate relevance of particular identities (e.g., Bin Laden), identifier
attributes have a special property: they represent implicitly all characteristics of an object.
Indeed, the identity of a related object (such as Bin Laden) can be more important than
any set of available attributes describing that object. This has important implications
for modeling: using identifier attributes can overcome the limitations of class-conditional
independence in Equation 16 and even permits learning from unobserved characteristics.

An object identifier tkj like ISBN stands for all characteristics of the object. If ob-
served, these characteristics would appear in another table Tm as attributes (tm1, .., tmn).
Technically, there exists a functional mapping7 F that maps the identifier to a set of values:
F (tkj) → (tm1, .., tmn). We can express the joint class-conditional probability (without
the independence assumption) of a particular object feature-vector without the identifier
attribute as the sum of the class-conditional probabilities of all objects f with the same
feature vector:

P (tm1, .., tmn|c) =
∑

f :F (tf

kj
)=(tm1,..,tmn)

P (tfkj |c) (20)

If F is an isomorphism (i.e., no two objects have the same feature vector) the sum
disappears and P (tm1, .., tmn|c) = P (tkj |c). Estimating P (tkj |c) therefore provides infor-
mation about the joint probability of all its attributes (tm1, .., tmn).

A similar argument can be made for an unobserved attribute tmu (e.g., membership
in a terrorist organization). In particular it may be the case that no attribute of the
object tkj was observed and no table Tm was recorded, as is the case for ISBN in our
example. There is nevertheless the dependency F ′(tkj) → tmu, for some function F ′, and
the relevant class-conditional probability is equal to the sum over all identifiers with the
same (unobserved) value:

P (tmu|c) =
∑

f :F ′(tf

kj
)=tmu

P (tfkj |c). (21)

Given that tmu is not observable, it is impossible to decide which elements belong into
the sum. If however tmu is a perfect predictor—i.e. every value of tmu appears only for

7This function F does not need to be known; it is sufficient that it exists.
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objects related to target cases of one class c—the class-conditional probability P (tf
kj |c)

will be non-zero for only one class c. In that case the constricted sum in Equation 21 is
equal to the total sum over the class-conditional probabilities of all identifier values:

∑

f :F ′(tf

kj
)=tmu

P (tfkj |c) =
∑

f

P (tfkj |c). (22)

Note that the total sum over the class-conditional probabilities of all related identifier
values now equals the cosine distance between Dc and a special case vector Ball that
correspond to a bag containing all identifiers with value tmu prior to normalization8 is by
vector length, since Dc[O(tfkj)] is an estmiate of P (tfkj |c) and B[O(tfkj )] is typically 1 or

0 for identifier attributes such as ISBN. The cosine distance for a particular bag Btt is
a biased estimate of P (tmu|c) since the bag will typically only consist of a subset of all
identifiers with value tmu

9.

cosine(Dc
tkj

, B) =
1

||B||

∑

i

Dc
tkj

[i] ∗ Btkj
[i] (23)

So far we have assumed a perfect predictor attribute Tmu. The overlap between the two
class conditional distributions D0 and D1 of the identifier is a measure of the predictive
power of Tmu and also how strongly the total sum in the cosine distance deviates from
the correct restricted sum in Equation 21. The relationship between the class-conditional
probability of an unobserved attribute and the cosine distance on the identifier may be
the reason why the cosine distance performs better than likelihood in the experiments in
Section 5.

Although this view is promising, issues remain. It often remains hard to estimate
P (tkj |c) due to the lack of sufficient data (it is also much harder to estimate the joint
rather than a set of independent distributions). We often do not want to estimate the
entire joint distribution because the true concept is an unknown class-conditional de-
pendence between only a few attributes. Finally the degree of overlap between the two
class-conditional distributions D0 and D1 determines how effectively we can learn from
unobserved attributes.

Nevertheless, the ability to account for identifiers through aggregation can extend the
expressive power significantly as shown empirically in Section 5. Identifiers have other
interesting properties. They may often be the cause of relational auto-correlation ([17]).
Because a customer bought the first part of the trilogy, he now wants to read how the story
continues. Given such a concept, we expect to see auto-correlation between customers that
are linked through books.

In addition to the identifier proxying for all object characteristics of immediately related
entities (e.g., the authors of a book), it also contains the implicit information about all
other objects linked to it (e.g., all the other books written by the same author). An
identifier therefore introduces a “natural” Markov barrier that reduces or eliminates the
need to extend the search for related entities further than to the direct neighbors. We
present some evidence of this phenomenon in Section 5.3.3.

8The effect of normalization can be neglected, since the length of Dc is 1 and the length of B is the
same for both the class-conditional positive and class-conditional negative cosine distances.

9We underestimate P (tmu|c) as a function of the size of the bag. The smaller the bag, the more
elements of the sum are 0 and the larger the bias.
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Domain Table: Size Attribute Type Description Size

XOR T: 10000 C(tid)=10000, C(c)=2 Train: 8000
O: 55000 C(oid)=10000, C(tid)=10000 Test: 2000

AND T: 10000 C(tid)=10000, C(c)=2 Train: 8000
O: 55000 C(oid)=10000, C(tid)=10000 Test: 2000

Fraud T: 100000 C(tid)=100000 Train: 50000
R: 1551000 C(tid)=100000, C(tid)=100000 Test: 50000

KDD T: 59600 C(tid)=59600, C(c)=2 Train: 8000
TR: 146800 C(oid)=490, C(tid)=59600 Test: 2000

IPO T: 2790 C(tid)=2790, C(e)=6, C(sic)=415, C(c)=2 Train: 2000
D(d,s,p,r)=R Test: 800

H: 3650 C(tid)=2790, C(bid)=490
U: 2700 C(tid)=2790, C(bid)=490

COOC T: 1860 C(tid)=1860 C(c)=2 Train: 1000
R: 50600 C(tid)=1860 C(tid)=1860 Test: 800

CORA T: 4200 C(tid)=4200, C(c)=2 Train: 3000
A: 9300 C(tid)=4200, C(aid)=4000 Test: 1000
R: 91000 C(tid)=4200, C(tid)=35000

EBook T: 19000 C(tid)=19000, C(c,b,m,k)=2, D(a,y,e)=R Train: 8000
TR: 54500 C(oid)=22800, C(tid)=19000, D(p)=R, C(c)=5 Test: 2000

Table 5: Summary of the properties of the eight domains, including the tables, their sizes, their
attributes, types, and the training and test sizes used in the main experiments. C(y) is the
cardinality of a categorical attributes and D(y)=R identifies numeric attributes.

5 Empirical Results

We introduced distribution-based aggregates in order to construct features for relational
domains where exploration of the relational structure will yield bags of values from cate-
gorical attributes of high cardinality. After introducing the experimental setup, Section 5.3
presents the empirical evidence in support of our main claims regarding the generalization
performance of the new aggregates. Then we present a sensitivity analysis of the factors
influencing the results (Section 5.4).

5.1 Domains

Our experiments are based on eight relational domains that are described in more detail
in the Appendix. They are typical transaction or networked-entity domains with predom-
inantly categorical attributes of high cardinality. The first two domains (XOR and AND)
are artificial, and were designed to illustrate simple cases where the concepts are based
on (combinations of) unobserved attributes. Variations of these domains are also used for
the sensitivity analysis later. Fraud is also a synthetic domain, designed to represent a
real-world problem (telecommunications fraud detection), where target-object identifiers
(particular telephone numbers) have been used in practice for classification [10][6]. The
remaining domains include data from real-world domains that satisfy the criteria of having
interconnected entities. An overview of the number of tables, the number of objects, and
the attribute types is given in Table 5. The equality relation of the types is implied by
identical attribute names.
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Method Description

COUNTS ACORA constructs count features for all possible categorical values if the num-
ber of values is less than 50. In particular this excludes all key attributes.

MCC Counts for the 10 most common categorical values (values with largest entries
in unconditional reference bag B∗). MCC can be applied to all categorical
attributes including identifiers.

MDC Counts for the 10 most discriminative categorical values (Section 3.1.2) defined
as the values with the largest absolute difference in the vector B1

−B0. MDC
can be applied to all categorical attributes including identifiers.

Cosine Cosine(D1, Btt), Cosine(D0, Btt)
Mahalanobis Mahalanobis(B1, Btt), Mahalanobis(B0, Btt )
Euclidean Euclidean(B1, Btt), Euclidean(B0, Btt)
Likelihood Likelihood(D1, Btt), Likelihood(D0, Btt)

UCVD All unconditional distances:
Cosine(D∗, Btt ), Mahalanobis(D∗, Btt), Euclidean(D∗, Btt),
Likelihood(D∗, Btt)

CCVD All class-conditional distances:
Cosine(D1, Btt), Cosine(D0, Btt), Euclidean(D1, Btt ), Euclidean(D0, Btt ),
Mahalanobis(D1 , Btt), Mahalanobis(D0 , Btt), Likelihood(D1, Btt),
Likelihood(D0, Btt)

DCCVD All differences of class-conditional distances:
Cosine(D1, Btt) – Cosine(D0, Btt),
Mahalanobis(D1 , Btt) – Mahalanobis(D0 , Btt ),
Euclidean(D1, Btt ) – Euclidean(D0, Btt),
Likelihood(D1, Btt)– Likelihood(D0, Btt)

Table 6: Summary of aggregation operators used in the experiments, grouped by type: counts
for particular categorical values, different vector distances, combinations of vector distances to
conditional or unconditional reference distributions where tt denotes a target case.

5.2 Methodology

Our main objective is to demonstrate that distribution-based vector distances for aggre-
gation generalize when simple aggregates like MODE or COUNTS for all values are
inapplicable or inadequate. In order to provide a solid baseline we extend these simple
aggregates slightly for use in the presence of attributes with high cardinality: ACORA
constructs COUNTS for the 10 most common values (an extended MODE) and counts
for all values if the number of distinct values is at most 50 as suggested by Krogel and
Wrobel [25]. ACORA generally includes an attribute representing the bag size as well as
all original attributes from the target table.

Feature construction: Table 6 summarizes the different aggregation methods. ACORA
uses 50% of the training set for the estimation of class-conditional reference vectors and
the other 50% for model estimation. The model estimation cannot be done on the same
data set that was used for construction, since the use of the target during construction
would lead to overestimation of the predictive performance. We also include distances
from bags to the unconditional distribution (estimates calculated on the full training set).
Unless otherwise noted, for the experiments the stopping criterion for the exploration is
depth = 1, meaning for these domains that each background table is used once. The cutoff
for identifier attributes IMIN was set to 400.

Model estimation: We use WEKA’s logistic regression [46] to estimate probabilities
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of class membership from all features. Using decision trees (including the differences of
distances as suggested in Section 5.3.1) did not change the relative performance between
different aggregation methods significantly, but generally performed worse than logistic
regression. We did not use feature selection for the presented results; feature selection did
not change the relative performance, since for these domains the number of constructed
features remains relatively small.

Evaluation: The generalization performance is evaluated in terms of the area under the
ROC curve (AUC) [3]. All results represent out-of-sample generalization performance on
test sets averaged over 10 runs. The objects in the target table are for each run split ran-
domly into a training set and a test set (cf., Table 5). We show error bars of ± one standard
deviation in the figures and include the standard deviation in the tables in parentheses.

5.3 Main Results

We now analyze the relative generalization performance of different aggregation operators.
Our main claim that class-conditional, distribution-based aggregates add generalization
power to classification modeling with high-dimensional categorical variables was motivated
by four arguments that are considered in the sequel:

• Target-dependent aggregates such as vector distances to class-conditional reference
vectors exhibit task-specific similarity;

• The task-specific similarity improves generalization performance;

• Aggregating based on vector distances condenses discriminative information from
identifier attributes;

• The use of multiple aggregate operators for the same bag improves generalization
performance.

5.3.1 Task-Specific Similarity

We argued in Section 2.1 that task-specific aggregates have the potential to identify dis-
criminative information because they exhibit task-specific similarity (making positive in-
stances of related bags similar to each other). Figure 6 shows for the XOR problem the
two-dimensional instance space defined by using as attributes two class-conditional aggre-
gations of identifiers of related entities: the cosine distance to the positive distribution
and the cosine distance to the negative distribution. Although the positive target objects
each had a different bag of identifiers, using the constructed attributes the positive ob-
jects are similar to each other (left-upper half) and the negative are similar to each other
(right-lower half).

Importantly, it also is clear from the figure that although positive target cases have
on average a larger cosine distance to the positive class-conditional distribution (they
are mostly on the left side of the plot) than negative cases, only the combination of
both features becomes very discriminative between the two classes. In fact, there is an
approximate linear decision boundary (the diagonal), which implies that logistic regression
would be a good choice for model induction. For a decision tree, with axis-parallel splits,
the difference between the two distances is a better feature. Figure 6 shows on the right
the distribution of the differences for cases of both classes with an optimal splitting point
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Figure 6: In the left plot, the two-dimensional feature space (XOR domain) of the
class-conditional cosine distances for the identifiers of related entities shows high instance-
discriminability (different target cases are assigned unique points in this space) and task-specific
similarity, where negative cases are grouped on the lower right of the identity line and positive
target cases on the upper right. This similarity leads to a high class-discriminability using the
identity line as decision boundary. In the right plot, after a transformation of the feature space
that takes the difference between class-conditional cosine distances, the distribution of the new
feature shows a good class separation. This transformation is of particular value for model in-
duction using decision trees, which make axis-parallel splits, and for feature selection in order to
ensure that the joint predictive information of both distances is preserved.

around zero. This explains the better performance we will see later of a decision tree using
DCCVD in Figure 9 over the individual positive and negative distances CCVD.

Figure 7 on the other hand shows the feature space of unconditional cosine and Eu-
clidean distances. These task-independent features do not provide discriminative informa-
tion. Positive and negative cases are mixed, and in particular are not more similar to each
other than to cases of the opposite class.

5.3.2 Comparative Generalization Performance

We now show that the use of aggregations based on distributional meta-data adds gener-
alization power over traditional aggregations (and our extensions to the traditional meth-
ods). Table 7 presents the generalization performance (AUC) of the different aggregation
strategies across all domains. First, consider the second and third columns. These cor-
respond to the (extended) traditional aggregations: value-count features (COUNTS) and
most-common-value features (MCC). Because of the high dimensionality of the categorical
attributes, COUNTS features simply are inapplicable in most of the domains. (Entries
with a * denote cases where a COUNTS aggregation was not applicable because all cat-
egorical attributes had too many distinct values and no features were constructed.) For
IPO, the AUC nevertheless is greater than 0.5 because in this domain the target table
had attributes for propositional modeling. Ebook is the only domain where COUNTS
aggregates are applicable and add generalizability.

The fourth through sixth columns correspond to the construction of different sorts of
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Figure 7: The two-dimensional feature space of the unconditional cosine and Euclidean distances
still shows high instance-discriminability, but lacks task-specific similarity. Positive cases are as
similar to negative cases as they are to other positive cases. As a result these features have no
discriminative power.

Domain COUNTS MCC UCVD CCVD MDC MDC&CCVD

XOR 0.5* 0.51 (0.004) 0.62 (0.02) 0.92 (0.008) 0.51 (0.004) 0.92 (0.008)
AND 0.5* 0.52 (0.012) 0.65 (0.02) 0.92 (0.006) 0.52 (0.007) 0.92 (0.05)
Kohavi 0.5* 0.71 (0.022) 0.72 (0.024) 0.85 (0.025) 0.84 (0.044) 0.85 (0.025)
IPO 0.70* (0.023) 0.77 (0.02) 0.75 (0.021) 0.79 (0.03) 0.79 (0.003) 0.82 (0.01)
CORA 0.5* 0.74 (0.018) 0.67 (0.008) 0.97 (0.003) 0.76 (0.008) 0.97 (0.006)
COOC 0.5* 0.63 (0.016) 0.57 (0.017) 0.78 (0.02) 0.63 (0.02) 0.80 (0.04)
EBook 0.716 (0.024) 0.79 (0.011) 0.88 (0.015) 0.95 (0.024) 0.94 (0.018) 0.96 (0.013)
Fraud 0.5* 0.49 (0.005) 0.74 (0.020) 0.87 (0.028) 0.51 (0.006) 0.87 (0.021)

Table 7: Comparison of generalization performance (AUC) for different aggregation strategies
(see Table 6 for a description). Entries with * denote cases where the COUNTS aggregation
was not applicable because all categorical attributes had too many distinct values. The standard
deviation across 10 experiments is included in parenthesis.

distribution-based aggregations (respectively, unconditional, class-conditional, and most-
discriminative counts). For all domains the aggregation of high-dimensional categorical
attributes using class-conditional distributions (CCVD) leads to models with relatively
high generalization performance (AUC scores between 0.78 and 0.97). In all but one case
(the tie with MDC on IPO) the features based on class-conditional distributions perform
better—often significantly better—than those based on unconditional distributions and
those based on most-discriminative counts. Finally, combining MDC and CCVD (re-
ported in the seventh column) improved the performance over CCVD only slightly on
three domains (COOC, EBook and IPO).

Recall the two main components of the design of the CCVD aggregations: their task-
specific (class-conditional) nature and their incorporation of information from many values
(using distribution distances). The consistently superior performance of class-conditional
distribution distances over unconditional distribution distances highlights the importance
of task-specific aggregation, which also is seen clearly in the often-improved performance of
counts of most-discriminative values (MDC) over counts of most common values (MCC).
The consistently superior performance of CCVD over MDC highlights the importance of
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considering the entire distributions, more fully satisfying the design principles.
For the artificial domains and the synthetic fraud domain, neither type of most-common

count (MCC nor MDC) provides any predictive power. This will be explained in Sec-
tion 5.4.2. For the COOC domain, on the other hand, the most common tickers related to
technology firms and the most discriminative tickers related to technology firms happen
to be the same: GE, MSFT, CSCO, IBM, AOL, INTC, ORCL, AMD, LU, SUNW.

5.3.3 Learning from Identifier Attributes

In our collection of domains, identifiers are the main source of information. The only
domain with related entities with additional information besides the identifier is EBook.
Table 7 not only shows the superiority of feature construction based on class-conditional
distributions, but also that it is commonly possible to build highly predictive relational
models from identifiers. To our knowledge, this has not been shown before in any com-
prehensive study. It is important because identifiers often are used only to identify rela-
tionships between entities but not directly as features when building predictive models.

We argue in Section 4.3 that identifiers can allow learning from concepts that violate
class-conditional independence and from unobserved properties. Our results provide some
support for this claim. In the synthetic domains AND and XOR the true concept was
a function of two “unobserved” attributes x, y. Therefore that AUC = 0.92 for CCVD
for both AND and XOR strongly supports the claim that aggregating identifiers allows
learning from unobserved attributes. Even if the the values are provided, these domains
violate the model’s assumption of class-conditional independence. Consider in addition
to the performances in Table 7 the performance of COUNTS if the two attributes x and
y were included: 0.5 for XOR and 0.97 for AND. For XOR the independent information
about the bags of x’s and y’s is not at all informative about the class. For AND on
the other hand, observing a large number of 1’s for x and also a large number of 1’s
for y increases the probability that the majority of related entities have both x = 1 and
y = 1 (the true concept). The XOR domain provides an example where the aggregation
of identifier attributes mitigates the effect of violations of class-conditional independence.

For further evidence we examine the Fraud domain. The underlying concept is that
fraudulent accounts call numbers that were previously called by (now known) fraudulent
accounts. A model should perform well if it identifies accounts that have two-hop-away
fraudulent neighbors. Therefore, ACORA should construct a feature at search depth two,
aggregating the class labels of those entities. However, so far we have restricted the search
to depth 1. The results in Table 7 therefore indicate that it is possible to classify fraud
already from the direct neighbors—similar to the “dialed-digit” monitor reported as a
state-of-the-art fraud detection method [10]. Exploring the two-hop-away neighbors and
their class labels increases the ranking performance only minimally—to 0.89 compared to
0.87. This suggests that identifiers proxy not only for the (perhaps latent) properties of
the object, but also for the other objects to which it is related. We now investigate this
further.

Even if the identifiers capture properties of further related entities, it may still be of
advantage to explore beyond depth 1 explicitly. The search may 1) find attributes that
drive the underlying concept directly (e.g., the fraud label of two-hop-away accounts) and
2) improve the quality of the estimated class-conditional distributions. For (2), if paths
comprise sequences of one-to-many relationships, as in the fraud case, the average bag
size (average number of phone calls) increases with every new join. In the fraud domain,

24



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  2  4  6  8  10  12

A
U
C

Number of Joins

CORA

Training Size 3000
Training Size  400

 0.75

 0.76

 0.77

 0.78

 0.79

 0.8

 0.81

 0.82

 0.83

 1  2  3  4  5  6  7  8  9

A
U
C

Number of Joins

IPO

Training Size 2000
Training Size  500

Figure 8: Ranking performance (AUC) on the CORA (left) and IPO (right) domains as a
function of the number of joins for two different training sizes (400 and 3000). Beyond depth=1
(see Figure 5) no new discriminative information is found for CORA, because the depth-one
identifier attributes capture information about all objects related further away. For IPO, the
maximum performance is reached on the big dataset after 4 joins (corresponding to depth=2).
The smaller training size shows performance gains for further joins mostly due to improvements
of the quality of the estimates of the class-conditional distributions, because larger search depth
increases the bag size and thereby the effective number of observations.

the branching factor of 20 implies an average of 400 two-hop-away connections for each
target case. The estimation of the 100000 parameters of the distributions will be better
from a total of 400*25000 (25000 is half of training size) “effective” data points than
from 20*25000. On the other hand, the discriminative power (difference between the two
class-conditional distributions) will decrease with the number of joins; eventually all target
objects (positive and negative) are related to all entities.

Figures 8 show the ranking performance of class-conditional cosine distances as a func-
tion of the number of joins for two different training sizes on the CORA and IPO domains.
The quality of the estimates of the distributions should be lower for small training sizes
and might therefore profit more from a deeper exploration. Indeed, for the IPO domain
with the smaller training size, deeper exploration helps. This suggests that the estimates
of the distributions improve with a larger effective number of cases (in particular, since the
average number of related entities in the joins of the first level was only 2; see Table 11).
However, for all other cases we see the performance flatten out after 2 to 4 joins (depth=1
or 2), supporting the claim that the identifiers capture information not only of the entity
itself, but also of related entities and in particular of their class labels.

5.3.4 Use of Multiple Aggregates

In Section 2.1 we advocated the use of multiple aggregates to capture different notions of
similarity. Figure 6 in Section 5.3.1 already shows the importance of using cosine distances
both to the positive and to the negative distribution. They capture orthogonal information
that in combination is more discriminative than the two individual distances.

Table 8 compares the individual performances of difference distance measures as well as
their combined performance. Importantly, combining all distances in CCVD improves only
marginally over cosine on the IPO, Fraud, and CORA domains, and even hurts slightly for
COOC. Cosine performs almost consistently best with the exception of the Fraud domain
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Domain Cosine Mahalanobis Euclidean Likelihood CCVD

XOR 0.91 (0.011) 0.87 (0.014) 0.92 (0.012) 0.75 (0.02) 0.92 (0.008)
AND 0.92 (0.018) 0.68 (0.02) 0.91 (0.026) 0.63 (0.02) 0.92 (0.006)
KDD 0.85 (0.026) 0.65 (0.03) 0.77 (0.029) 0.59 (0.05) 0.85 (0.025)
CORA 0.96 (0.004) 0.89 (0.008) 0.91 (0.015) 0.52 (0.03) 0.97 (0.006)
IPO 0.77 (0.01) 0.74 (0.027) 0.77 (0.012) 0.74 (0.025) 0.79 (0.03)
COOC 0.80 (0.013) 0.61 (0.013) 0.70 (0.021) 0.53 (0.025) 0.78 (0.018)
EBook 0.95 (0.026) 0.94 (0.018) 0.92 (0.016) 0.67 (0.032) 0.96 (0.025)
Fraud 0.84 (0.019) 0.87 (0.021) 0.88 (0.018) 0.62 (0.026) 0.87 (0.010)

Table 8: Comparison of generalization performance (AUC) for different vector distance measures
(see Table 6 for further description). The standard deviation across 10 expriments is included in
parenthesis.

where Mahalanobis and Euclidean are slightly better. The Euclidean distance is often
competitive, with the exceptions of KDD and COOC. The Mahalanobis distance has good
results for Fraud and EBook, but is otherwise dominated by cosine and Euclidean.

Likelihood performs acceptably on the IPO domain (it improves over the propositional
performance of 0.7 using only the attributes in the root table), but fails on the other
domains. This might be caused by the inherently additive nature of Equations 20 and 21,
or by the fact that even for the relational fixed-effect model many identifiers appear in
only one bag of related (training) entities and the class-conditional estimate is therefore
0 and requires some correction (e.g., Laplace). Large numbers of corrected entries that
randomly appeared for one class or the other obscure the true signal. Another semantic
property of likelihood is that it considers only occurrences of values as evidence, but not
the fact that a value did not occur (which are used as evidence for the other distance
measures). Likelihood also tends to produce probabilities that are biased strongly towards
0 or 1 as the size of the bag increases, due to the violation of the independence assumption.
This does not affect the classification accurracy but may harm the ranking performance
as measured by AUC.

Finally, Figure 9 shows learning curves for a decision tree on the IPO domain for
different distribution distance aggregates with a larger exploration depth (2) than the
experiments in Table 7. The curves show that taking the difference (DCCVD) between
the positive and negative distances performs better than using them separately (CCVD).
The reason is the linear decision boundary in the feature space as shown in Section 5.3.1.

In summary, there is no single best distance measure, but cosine performs well most
consistently. Using multiple vector-distance measures at best improves the performance
only marginally over the best distance, but is a very consistent top-performer (even more
so than cosine). Note that adding distance measures multiplies the number of constructed
features, which may hurt generalization performance especially in domains with many
attributes. Including counts for most discriminative values (MDC in Table 7) improves
over using only vector distances in some domains (IPO, COOC, and EBook), but only
minimally. The use of both positive and negative cosine distances (as done for all distances
in the Table 8) almost always improves the ranking results (not shown here) as argued
previously in Section 5.3.1.

Reflecting on our design principles, the experimental evidence supports the conclusion
that the good ranking performance across the eight domains is due mostly to the combina-
tion of target-specificity and instance discriminability, while maintaining a low dimension-
ality. MDC also reduces dimensionality (although not as strongly) and is target-specific,
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Figure 9: Ranking ability (AUC) as a function of training size of different reference distributions
(counts, unconditional, conditional, conditional difference) on the IPO domain using a decision
tree for model induction (standard deviation across 10 experiments is included). The advantage
of taking differences DCCVD over CCVD for decision trees (see Section 5.3.1) is caused by the
restriction to axis-parallel splits.

but instance discriminability is lower than for cosine distance. The other principle of using
multiple aggregates with different similarities seems to be helpful, but less important.

5.4 Sensitivity Analysis

There are several properties of domains that have the potential to affect the ability of
distribution-based aggregations to capture discriminative information. In particular, noise
in class labels, the number and connectivity distribution of related objects, and the amount
of data available. We now present several brief studies illustrating limitations on the
applicability of the methods (as well as areas of superior performance).

5.4.1 Noise

By class noise we mean that the target classes are not known with perfect accuracy.
Class noise will disrupt the accurate estimation of the class-conditional distributions, and
therefore may be suspected to lead to degraded performance. For example, consider the
use of identifiers to stand in for unobserved attributes (as argued above). In the presence
of class noise, using the identifiers may perform considerably worse than if the attributes
had been known—because the dimensionality of the unobserved attributes is much smaller
and therefore there are fewer parameters to estimate from the noisy data.

We can illustrate this with the AND domain. Recall that from the discussion of the
identifier attributes above, aggregation based on COUNTS considering x and y values of
related entities performed very well (AUC = 0.97). Aggregation using only the identifiers
of related attributes (using CCVD) did not perform quite as well (AUC = 0.92), but nev-
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Figure 10: Performance degradation for the AND domain as a function of the amount of 0/1
class noise. In the left plot both training and test sets were corrupted; the right plot shows
results using a noisy training set and clean test set, as a measure of the ability to recover the true
concept.

ertheless performed remarkably given that x and y were hidden. Now, consider how these
results change as increasing class noise is present. The left plot in Figure 10 compares the
sensitivity of CCVD and COUNTS to class-noise as a function of the noise level (p percent
of both training and test class labels are reassigned randomly from a uniform distribu-
tion). Both aggregation methods appear to be equally noise sensitive: the performance
degradations track closely.

However, such a performance reduction has two components. First, the ability of the
learner to recognize the underlying concept diminishes. Second, with increasing noise, the
class labels in the test set are increasingly unpredictable. These effects can be separated by
running the same experiment, except testing on uncorrupted (noise-free) data. The right
plot of Figure 10 shows that COUNTS (provided x and y) indeed are able to learn the
original concept with only minor degradation, despite up to 40% class noise. CCVD on the
other hand shows a significant drop in performance (although somewhat less than before
on the noisy test data). For COUNTS, even if 40% of the labels are potentially distorted,
the other 60% still provide sufficient information to recognize the concept that larger
counts of x and y are associated with positive class labels. The COUNTS aggregation can
combine information about x and y from all bags and therefore is not very sensitive to the
random variations.

On the other hand, for CCVD every bag contains information about a different set
of identifiers. Each identifier appears only a few times, so the estimates of the class-
conditional distributions are subject to significant variance errors. When using the identi-
fiers as the predictors, noise in the class labels acts like noise in the predictors themselves;
however, the x’s and y’s remain clean. In contrast, if attribute noise (misrecorded values of
x and y) is present, we would expect the aggregates of identifier attributes to fare better.
Indeed, Figure 11 shows that attribute noise affects only the COUNTS aggregates since
CCVD does not use the noisy observations of x and y.

We have no firm basis to say which type of noise is more likely under what circum-
stances, but in cases where reliable attribute values are hard to get (e.g., because they are
distorted, as with illegal activities) distribution-based aggregates can be a better choice.
For example, for commercial fraud, it is often much less costly to obscure attributes than
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Figure 11: Performance sensitivity on the AND domain to attribute recording noise for related
entities. Since CCVD does not use the values of x and y (unobserved properties) it shows no
performance decrease.

to change identities frequently. Learning from identifiers does not require that the identity
be true (e.g., that Peter Worthington is really Peter Worthington), but only that multiple
actions can be related to the same person.

5.4.2 Relationship Patterns

Domain 1st 2nd 3rd 4th 5th Min Appearance

XOR 1 0.0082 0.0076 0.0076 0.0075 0.0075 35

XOR 2 0.1712 0.0754 0.0567 0.0567 0.0500 17

XOR 3 0.5533 0.1387 0.0942 0.0757 0.0705 8

XOR 4 0.9909 0.1859 0.01258 0.0945 0.0773 5

Table 9: Measures of the skewedness (differences in the likelihood of a entity to be related to
some target case) of the relationship patterns: counts of the 5 most common values normalized by
the number of target cases and the non-normalized count of the least common value. A uniform
distribution (XOR 1) has low counts for the most common and a high count for the least common.
As the skew increases (largest for XOR 4) the most common appearances increase and the least
common decrease.

Another potential point of sensitivity of the distribution-based aggregation methods
is the pattern of relationships among entities. For example, for AND and XOR, uniform
distributions were used to assign related entities to target entities (each potentially related
entity is equally likely to be chosen). In real-world domains (as we see in ours), it is often
the case that the linkages are skewed—both that the degrees of nodes vary widely, and
also that there is preferential attachment to particular entities (e.g., hubs on the Web).

To investigate sensitivity to skew, we simulate new versions of the XOR task with
different skews of the relation distributions. Technically, skew (the third moment of a
distribution) is only well defined for numeric distributions as a measure of symmetry. There
is no symmetry for categorical distributions due to the lack of order. Thus, when we speak
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Domain COUNTS MCC UCVD CCVD MDC MDC&CCVD

XOR 1 0.50 (0.018) 0.51 (0.02) 0.62 (0.02) 0.92 (0.008) 0.51 (0.004) 0.92 (0.008)
XOR 4 0.51 (0.02) 0.49 (0.04) 0.71 (0.012) 0.78 (0.007) 0.75 (0.011) 0.86 (0.007)

Table 10: Ranking performance (AUC) on the XOR domain for uniform distribution (XOR 1)
and highly skewed distribution (XOR 4), including standard deviations across 10 experiments.

of a skewed relation distribution we mean that the probability of an entity to be related
to some particular target case can differ significantly across entities. Unfortunately this
cannot be quantified easily as in the numeric case of a third moment. Table 9 quantifies
the skew of four different relation distributions in terms of the numbers of occurrences
of the 5 most commonly related entities, normalized by the number of target objects
(10000). The last column shows how often the least common value appeared. As the
skew increases, the values for the 5 most common entities increase and the value of the
least common appearance decreases. XOR1 represents the uniform distribution; XOR
4 is extremely skewed (99% of the target cases are linked to the most-common object).
Table 10 compares the performances of the various aggregations on XOR1 and XOR4.
For the strongly skewed data, earlier comparative conclusions remain the same with the
exception of worse performance of the class-conditional distributions (CCVD), much better
performance of the most discriminative values (MDC), and a strong relative improvement
of combining the two. The performance of the combination is driven by the predictive
information captured in MDC.

The reason for the improvement of MDC is the large overlap of a few related entities.
There are a few discriminative values (identifiers of particular objects with or without
the XOR) that due to the skew appear in many training and generalization bags. For a
uniform distribution, the class-conditional information for a particular value only provides
information for a very small set of test cases that are also related to this value. The
reduced performance of CCVD is a combination of two effects, the training size and the
skew. Figure 12 shows the effects of the distribution of the related objects as a function of
the skew (see Table 9) and the training size (XOR 1 is uniform and higher distributions
have a stronger skew; see also the code in the Appendix were d is the skew parameter).

Observe the interesting pattern: for stronger skew, we see of better comparative per-
formance for small training sizes, but (relatively) worse performance for large training
sizes. The learning curves range from a steep gain for the no-skew uniform distribution
to an almost flat learning curve for highly skewed relation distributions. The reason for
this pattern is the difference in the amount of useful information available to the attribute
construction process. With strong skew, even small training sets are sufficient to capture
the information of the common related entities. This information is also very predictive
for the test cases since they also are dominantly related to these same entities. However,
as the training size increases little new information becomes available about the less-often
related entities (because the skew works both ways). With enough training data, a uni-
form distribution provides in total more information because the marginal information
for each additional training case is larger (cf., the Min Appearance column in Table 9).
The relatively low performance (compared with the uniform case) for XOR4 of CCVD in
Table 10 is a result of the large training size in combination with a high skew.
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Figure 12: Interaction effect of skew of relationship distribution and training size on ranking
performance for the XOR domain. A stronger skew provides more useful information early, but
the marginal value of additional training examples is lower.

5.4.3 Domain Characterization

The results in Table 7 use a large portion of the domain for training. The training size
is of particular concern for aggregation based on distributional meta-data because of the
large number of parameters to be estimated for the class-conditional distributions, and
also because only part of the training data can be used for model induction and the rest
must be reserved for estimating these parameters. The number of parameters is equal to
the number of distinct values, for our domains: 10000 for XOR and AND, 490 for KDD,
490 for IPO, 35000 for CORA, and 1860 for COOC. We now will examine generalization
performance with very small training sets (250 examples).

Besides the amount of training data, there are various other characteristics of learning
tasks that are important for assessing the applicability of different learning techniques,

Domain 1st Min Appearance Prior 1 Bag Size AUC

Fraud 0.0005 1:666 0.01 20 0.48
XOR 1 0.0082 35 0.4 5 0.60
AND 0.0080 35 0.1 5 0.65
KDD 0.0609 1:14 0.06 3 0.74
IPO 0.1352 1:192 0.55 2 0.74
Cooc 0.183 1:616 0.27 26 0.78
Ebook 0.16 1:5854 0.06 28 0.84
CORA 0.0775 1:21460 0.32 20 0.90

Table 11: Performance (AUC) using cosine distance with small training sets (250 examples) as
an interaction effect of skew (1st and Min Appearance, and where the latter equals 1 the number
of values that appeared only once), unconditional prior of class 1, and average bag size.

31



such as inherent discriminability, the number of features, the skew of the marginal class
distribution (the class “prior”), and others [4],[40]. Relational domains have additional
characteristics; particularly important in our case are two: the skew in the relationship
distribution and the average size of bags of related values. We already have shown that
a strong skew can improve performance with small training sets. The size of the bags
determines the number of effective observations for the estimation of P (tid|c). Also directly
important is the marginal class distribution, which determines the relative quality of the
estimated positive and negative class-conditional distributions. For example, if only 1
percent of the target cases are positive, very few observations are available for P (tid|1)
and many for P (tid|0); such class skew can be problematic if the minority class is much
better defined (“customers who ...”) than the majority class (“everyone else”), as is often
the case.

Table 11 presents these three factors for all eight domains, and the ranking performance
(AUC) with small training sets (250 training cases) using class-conditional cosine distances.
The first two columns measure the skew: as the skew increases, the number of occurrences
of the most commonly appearing value increases and the number of occurrences of the
least common value decreases. For domains where the least common value appeared only
once, we also include the number of distinct values that appear only once (after the colon).
The table rows are ordered by increasing generalization performance.

We infer that the excellent performance on the CORA domain is a result of a relatively
high prior (0.32), large bags (average of 20) and strong relation skew. Of the total of 35000
possible values, 21460 appear in only one bag—the estimate of P (tid|c) for these values
therefore is irrelevant, and the effective number of parameters to be estimated is much
lower than 35000. In particular the number of distinct values that appear in at least
10 bags is only 1169. The Ebook domain although having a much lower prior has good
small-training-size performance due to a strong skew and large bags (in addition to a high
inherent discriminability, as shown by the impressive results on the large training set in
Table 7). AND and XOR suffer mostly from the uniform distribution of related objects
as shown in Section 5.4.2 in addition to a small bag size. The lowest small-training-size
performance is in the Fraud domain: the model does not provide any ranking ability at
all. The reason is the combination of a very low prior of only 1 percent and a uniform
distribution (by construction).

The upshot of these sensitivity analyses is a clarification of the conditions under which
the attributes constructed based on vector distances to class-conditional distributions will
be more or less effective. The class skew, the relationship skew, and the amount of training
data affect whether there will be enough (effective) training cases to estimate the class-
conditional distributions accurately. Additionally, the relationship skew determines how
important it will be to estimate the class-conditional distributions well (in the presence of
techniques like MDC, which get more effective with stronger relation skew).

5.5 Comparison to Other Relational Learners

We do not report a comprehensive study comparing ACORA to a wide variety of sta-
tistical relational modeling approaches (e.g., [21] [36] [16] [42]). This paper focuses on
novel aggregation methods; ACORA is a vehicle for applying and studying these methods.
We conjecture that these new aggregators ought to improve other relational learners as
well. Indeed, except for the methods (such as PRMs) that include collective inferencing,
ACORA is capable of approximating the other methods through appropriate choices of ag-
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Size NO FOIL TILDE Lime Progol CCVD

250 0.649 0.645 0.646 0.568 0.594 0.713
500 0.650 0.664 0.628 0.563 0.558 0.78

1000 0.662 0.658 0.630 0.530 0.530 0.79
2000 0.681 0.671 0.650 0.512 0.541 0.79

Table 12: Accuracy comparison with logic-based relational classifiers (FOIL, Tilde, Lime, Pro-
gol), target features (TF), and using no relational information (NO) as a function of training
size.

gregators and model induction methods. They all follow a transformation approach that
constructs features from the relational representation and then induces a propositional
model from the new features. There are, of course, exceptions. For example, REGGLAGS
[24] would be outside of ACORA’s expressive power since it combines Boolean condi-
tions and aggregation and can form more complex aggregations (cf., Perlich and Provost’s
hierarchy of aggregation complexity [39]).

More importantly, the domains used in this paper (with the exception of IPO and
EBooks) simply are not suitable for any of the above systems. To our knowledge, none
has the ability to aggregate high-dimensional categorical attributes automatcally, and
without those attributes only propositional data and known class labels remain.

It is possible to compare classification accuracy with logic-based systems such as FOIL,
but the problem remains: such systems require the identification of constants that may be
used for equality tests in the model. Without the identifier attributes, they also have no
information except for the few attributes in EBook and IPO. To illustrate, we compare (on
the IPO domain) ACORA to four logic-based relational learners (FOIL [44], TILDE [2],
Lime [31], and Progol [34]). Since ILP systems typically (with the exception of TILDE)
only predict the class, not the probability of class membership, we compare in Table 12
the accuracy as a function of training size. We also include as a reference point the classi-
fication performance of a propositional logistic model without any background knowledge
(NO). ACORA uses a stopping criteria of depth = 3 and logistic regression for model
induction.

We selected four ILP methods: FOIL [44] uses a top-down, separate-and-conquer strat-
egy adding literals to the originally empty clause until a minimum accuracy is achieved.
TILDE [2] learns a relational decision tree using FOL clauses in the nodes to split the data.
Lime [31] is a top-down ILP system that uses Bayesian criteria to select literals. Progol
[34] learns a set of clauses following a bottom-up approach that generalizes the training
examples. We did not provide any additional (intentional) background knowledge beyond
the facts in the database. We supplied declarative language bias for TILDE, Lime, and
Progol (as required). For these results, the banks were not allowed as model constants.

The results in Table 12 demonstrate that the logic-based systems simply are not ap-
plicable to this domain. The class-conditional distribution features (CCVD) improve sub-
stantially over using no relational information at all (NO), so there indeed is important
relational information to consider. The ILP systems FOIL and TILDE never perform
significantly better than using no relational information, and Progol and Lime often do
substantially worse.

Given that we excluded banks from the permissible constraints for equality tests, there
was no attribute in the related objects that any of the ILP methods could have used.
Allowing all constants including identifiers to be used for equality tests is similar to con-
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Domain COUNTS Tilde CCVD MCC

XOR 0.5 * 0.5 (0) 0.92 (0.008) 0.51 (0.004)

AND 0.5 * 0.5 (0) 0.92 (0.006) 0.52 (0.012)

Kohavi 0.5* 0.5 (0) 0.85 (0.025) 0.71 (0.022)

IPO 0.70* (0.023) 0.76 (0.28) 0.79 (0.03) 0.77 (0.02)

CORA 0.5* 0.5 (0) 0.97 (0.003) 0.74 (0.018)

COOC 0.5* 0.5 (0) 0.78 (0.02) 0.63 (0.016)

EBook 0.716 (0.024) 0.83 (0) 0.95 (0.024) 0.79 (0.011)

Fraud 0.5* 0.5 (0) 0.87 (0.028) 0.49 (0.005)

Table 13: Comparison of generalization performance (AUC) for different aggregation strategies
(see Table 6 for a description). Entries with * denote cases where the COUNTS aggregation
was not applicable because all categorical attributes had too many distinct values. The standard
deviation across 10 experiments is included in parenthesis.

structing count aggregates for all values. However, given the extreme increase in run times
we were only able to run this experiment using TILDE. Since TILDE is able to predict
probabilities using the class frequencies at the leaves, we can compare (in Table 13) its
AUC to our earlier results.10 Based on these results we must conclude that except for
the EBook and the IPO domain, TILDE could not generalize a classification model from
the provided identifier attributes. We conjecture that TILDE can only take advantage
of a strong and concentrated signal. Both domains IPO and EBook also show relatively
good performance of MCC. This suggests that there are a few identifier values that are
both predictive and relatively frequent. If the discriminative power of a particular value
or its frequency was too low, TILDE did not use it. This highlights again that the ability
to condense information across multiple identifier values is necessary to learn predictive
models.

Figure 13 shows that using identifier attributes would likely have improved other pub-
lished relational learning results as well. For the Cora domain, the figure shows classi-
fication accuracies as a function of training size. ACORA estimates 7 separate binary
classification models using class-conditional distributions for each of the 7 classes and pre-
dicts the final class with the highest probability score across the 7 model predictions. The
figure compares ACORA to prior published results using Probabilistic Relational Models
(PRM, [21]) based on both text and relational information (as reported by [45]), and a
Simple Relational Classifier (SRC, [29]) that assumes strong autocorrelation in the class
labels (specifically, assuming that documents from a particular field will dominantly cite
previously published papers in the same field), and uses relaxation labeling to estimate
unknown classes. Again ACORA using identifier attributes (the particular papers) and
target features dominates the comparison, even for very small training sets. The main
advantage that ACORA has over the PRM is the ability to extract information from the
identifier attributes of authors and papers. The PRM uses the identifiers to construct its
skeleton, but does not include them explicitly (does not estimate their distributions) in
the model.

10On the IPO domain TILDE improved also in terms of accuracy over the performance without banks
in Table 12 from 0.65 to 0.753.
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Figure 13: Comparison of classification accuracy of ACORA using class-conditional distributions
against a Probabilistic Relational Model (PRM) and a Simple Relational Classifier (SRC) on the
CORA domain as a function of training size.

6 Prior and Related Work

There has been no focused work within relational learning on the role of identifiers as
information carriers. There are three main reasons: 1) a historical reluctance within
propositional learning to use them because they cannot generalize; 2) the huge parameter
space implied by using identifiers as conventional categorical values, which typically is not
supported by sufficient data (potentially leading to overfitting and excessive run time), and
3) the commonly assumed objective of making predictions in a “different world” where
none of the training objects exist, but only objects with similar attributes.

In contrast to a large body of work on model estimation and the estimation of func-
tional dependencies that map well-defined input spaces onto output spaces, aggregation
operators are much less well investigated. Model estimation tasks are usually framed as
search over a structured (either in terms of parameters or increasing complexity) space
of many possible solutions. Although aggregation has been identified as a fundamental
problem for relational learning from real-world data [14], machine learning research has
considered only a limited set of aggregation operators. Furthermore, statistical relational
model estimation typically treats aggregation as a preprocessing step that is independent
of the model estimation process. In Inductive Logic Programming ([35]) and logic-based
propositionalization, aggregation of one-to-many relationships is achieved through exis-
tential quantification and is part of the active search through the model space.

Propositionalization ([20], [24], [25]) has long recognized the essential role of aggre-
gation in relational modeling. This work focuses specifically on the effect of aggregation
choices and parameters, yielding promising empirical results on noisy real-world domains:
the numeric aggregates in [20] outperform three ILP systems (FOIL [44], Tilde [2], and Pro-
gol [34]) on a noisy financial task (PKDD-CUP 2000). Krogel and Wrobel ([24], [25]) show
similar results on the financial task and a customer-classification problem (ECML 1998
discovery challenge) in comparison to Progol and Dinus [27], a logic-based proposition-
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alization approach. Similar work by Krogel et al. [23] presents an empirical comparison
of Boolean and numeric aggregation in propositionalization approaches across multiple
domains, including synthetic and domains with low noise; however their results are incon-
clusive. Perlich and Provost [39] find that logic-based relational learning and logic-based
propositionalization perform poorly on a noisy domain compared to numeric aggregation.
They also discuss theoretically the implications of various assumptions and aggregation
choices on the expressive power of resulting classification models and show empirically
that the choice of aggregation operator can have a much stronger impact on the resultant
model’s generalization performance than the choice of the model induction method.

Distance-based relational approaches [19] use simple aggregates such as MIN to ag-
gregate distances between two bags of values. A first step estimates the distances between
all possible pairs of objects (one element from each bag) and a second step aggregates all
distances through MIN . The recent convergence of relational learning and kernel meth-
ods has produced a variety of kernels for structured data, see for instance [12]. Structured
kernels estimate distances between complex objects and are typically tailored towards a
particular domain. This distance estimation also involves aggregation and often uses sums.

Statistical relational learning approaches [37] [15] include network models as well as
upgrades of propositional models (e.g., Probabilistic Relational Models [21], Relational
Bayesian Classifier [36], Relational Probability Trees [16]). They typically draw from a
set of simple numeric aggregation operators (MIN, MAX, SUM, MEAN for numerical
attributes and MODE and COUNTS for categorical attributes with few possible values)
or aggregate by creating Boolean features (e.g., Structural Logistic Regression [42], Naive
Bayes with ILP [41]). Krogel and Wrobel [24] and Knobbe et al. [20] were to our knowledge
the first to suggest the combination of such numerical aggregates and FOL clauses to
propositionalize relational problems automatically.

Besides special purpose methods (e.g., recency and frequency for direct marketing) only
a few new aggregation-based feature construction methods have been proposed. Craven
and Slattery [7] use Naive Bayes in combination with FOIL to construct features for
hypertext classification. Perlich and Provost [39] use vector distances and class-conditional
distributions for noisy relational domains with high-dimensional categorical attributes.
(This paper describes an extension of that work.) Flach and Lachiche ([11],[26]) develop a
general Bayesian framework that is closely related to our analysis in Section 4.2 but apply
it only to normal attributes with limited cardinality.

Theoretical work outside of relational modeling investigates the extension of relational
algebra [38] through aggregation; however it does not suggest new operators. Libkin
and Wong [28] analyze the expressive power of relational languages with bag aggregates,
based on a count operator and Boolean comparison (sufficient to express the common
aggregates like MODE and MAX). This might prove to be an interesting starting point
for theoretical work on the expressiveness of relational models.

Traditional work on constructive induction (CI) [32] stressed the importance of the
relationship between induction and representation and the intertwined search for a good
representation. CI focused initially on the capability of “formulating new descriptors” from
a given set of original attributes using general or domain-specific constructive operators
like AND, OR, MINUS, DIV IDE, etc. Wnek and Michalski [47] extended the definition
of CI to include any change in the representation space while still focusing on propositional
reformulations. Under the new definition, propositionalization and aggregation can be seen
as CI for relational domains as pointed out by [18, 33] and [22] for logic-based approaches.
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7 Conclusion

We have presented novel aggregation techniques for relational classification, which esti-
mate class-conditional distributions to construct discriminative features from relational
background tables. The main technique uses vector distances for dimensionality reduction
and is capable of aggregating high-dimensional categorical attributes that traditionally
have posed a significant challenge in relational modeling. It is implemented in a general
relational learning prototype ACORA that is applicable to a large class of relational do-
mains with important information in identifier attributes, for which the traditional MODE
aggregator is inadequate.

The main theoretical contributions of this work are the analysis of desirable proper-
ties of aggregation operators for predictive modeling, the derivation of a new aggrega-
tion approach based on distributional meta-data for a “relational fixed-effect” model, and
the exploration of opportunities, such as learning from unobserved object characteristics,
arising from the aggregation of object identifiers. The commonly made assumption of
class-conditional independence of attributes significantly limits the expressive power of
relational models and we show that the aggregation of identifiers can overcome such lim-
itations. The ability to account for high-dimensional attributes encourages the explicit
exploration of attribute dependencies through the combination of values from multiple
attributes—which we have not explored here, but is an important topic for future work.

We also conduct a comprehensive empirical study of aggregation for identifier at-
tributes. The results demonstrate that the new approach indeed allows generalization
from identifier information, where prior aggregation approaches fail. This is due primarily
to the ability of the new aggregation operators to reduce dimensionality while construct-
ing discriminative features that exhibit task-specific similarity, grouping cases of the same
class together. Our results also support claims that learning from identifiers allows the
capture of concepts based on unobserved attributes and concepts that violate the assump-
tions of class-conditional independence, and can reduce the need for deep exploration of
the network of related objects (even if the “true” concept is based on deeper relationships).
By using real and synthetic data sets with different characteristics, we illustrate the in-
teractions of training size, marginal class distribution, average number of related objects,
and the degree of skew in the distribution of related objects. For example, for small data
sets higher skew, larger bags, and more balanced class priors increase the generalization
performance of the class-conditional distribution-based aggregates.

We also introduce an aggregation method using counts of most-discriminative values
(also based on the distributional meta-data), which generally outperforms counts of most
common values, and in particular profits from a high skew of related objects. Discrimina-
tive counts are typically not as predictive as the distances between the class-conditional
distributions, but provide additional predictive power in domains with high skew.

The distribution-based approach to aggregation is not limited to categorical values. Via
discretization it can also be applied to numeric attributes with arbitrary distributions.
Define the density function of a numeric attribute as the derivative of the cumulative
density function F (X) (the probability of observing an x ≤ X). As usual, the derivative
is the limit of h going to infinity of (F (X + h) − F (x))/h. Let h be the bin size for
discretization. As the number of training cases increases the proportion of elements falling
into bins below X will converge to F (X). Letting the bin size h go to 0 reaches in the
limit the density function of an arbitrary numeric distribution.

The view of feature construction as computing and storing distributional meta-data
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allows the application of the same idea to regression tasks or even unsupervised problems.
For instance, it is possible to find clusters of all (related) objects and define a cluster (rather
than a class-conditional distribution) as the reference point for feature construction.

Finally, this work highlights the sensitivity of generalization performance of relational
learning to the choice of aggregators. We hope that this work provides some motivation
for further exploration and development of aggregation methods for relational modeling
tasks.
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Appendix A: Domain Description

Below are brief descriptions of the domains used for the empirical evaluations. The table
gives summary statistics on the number of numeric, categorical (with fewer than 100
possible values), and identifier attributes (categoricals with more than 100 distinct values).
The target table appears in bold.

XOR and AND

Each domain comprises two tables: target objects o and related entities e. Related entities
have three fields: an identifier and two unobserved Boolean fields x and y that are
randomly assigned (uniformly). Each target object is related to k entities; k is drawn
from a uniform distribution between 1 and upper bound u. The expected value of k is
therefore (u+1)/2 and is 5 in our main comparison. The likelihood that an entity is related
to a target object is a function of its identifier number. For the main comparison this is
also uniform. Followup experiments (in Section 5.4) will vary both k and the distributions
of related entities.

For XOR the class of a target object is 1 if and only if the XOR between x and y
is true for the majority of related entities. XOR represents an example of a task where
the aggregation of x and y independently (i.e., assuming class-conditional independence)
cannot provide any information. However, the identifiers have the potential to proxy for
the entities’ XOR values. For AND the class of a target object is 1 if and only if the
majority of related entities satisfy x = 1 AND y = 1. This concept also violates the
independence assumption. However, aggregations of bags of x’s or y’s using counts can
still be predictive.

To demonstrate the ability of learning from unobserved attributes we do not include
in the main results the values of x and y but provide only the identifier.

Code for the generation of related entities with identifier ”oid” and the attributes x,y
for the calculation of the class label:

$num=$ARGV[0];

open OUT, "&gt;objects.rel"

$i=1;

while($i&lt;=$num)

{

$x=rand();

if ($x&lt;0.5)\{$x=0}else\{$x=1};

$y=rand();

if ($y&lt;0.5)\{$y=0}else\{$y=1};

print OUT "oid$i\n";

#print OUT "oid$i,$x,$y\n";

$i++;

}

close OUT;
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Code for the generation of the target object and the relationships: The parameter $rel
is the average number of related entities whereas $d regulates the skew of the likelihood
that an entity is chosen.

$stem=$ARGV[0];

$rel=$ARGV[1];

$d=$ARGV[2];

$count=10000;

open IN, "objects.rel";

@o=();

while($in=&lt;IN&gt;)

{

chop $in;

push @o, $in;

}

$i=0;

open TAR,"&gt;$stem"."_tar.rel" or die;

open REL,"&gt;$stem"."_rel.rel";

while($i&lt;=$count)

{

$tar=0;

$c=int rand()*2*$rel+1;

$cc=$c;

while($c&gt;=1)

{

$v=int rand()**$d*$#o;

($b,$x,$y,$z)=split /,/, $o[$v];

$tar+=$z;

print REL "tar$i,$b\n";

$c+=-1;

}

$res=0;

if ($tar/$cc&gt;0.5)\{$res=1}

print TAR "tar$i,$res\n";

$i++;

}

Synthetic Telephone Fraud

This synthetic domain isolates a typical property of a telephone network with fraudulent
use of accounts. The only objects are accounts, of which a small fraction (1 %) are
fraudulent. These fraudulent accounts have the property of making a (larger than usual)
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proportion of their calls to a set F of particular (non-fraudulent) accounts. This is the basis
of one type of highly effective fraud-detection strategy [10][6]; there are many variants,
but generally speaking accounts are flagged as suspicious if they call numbers in F .

The code generates a set of 1000 fraudulent accounts and 99000 normal accounts.
Normal users call other accounts randomly with a uniform distribution over all accounts.
Fraudulent users make 50% of their calls to a particular set of numbers (1000 numbers that
are not fraudulent accounts) with uniform probability of being called, and 50% randomly
to all accounts.

# number of accounts: 100000

# fraud accounts are 99001 to 10000

# fraud numbers are 1:1000

open TAR,"&gt;fraud.rel";

open REL,"&gt;calls.rel";

$i=1;

while($i&lt;=100000)

{

$tar=0;

$c=int rand()*30+1; #average number of calls =15

if ($i&gt;99000) #1:1000 is fraud account

{

print TAR "n$i,1\n";

}

else{print TAR "n$i,0\n";}

while($c&gt;=1) #generate calls

{

if ($i&gt;99000) #fraud account

{

if (rand()&lt;0.5){$num=rand()*1000} #fraud number

else{$num=rand()*10000} #not fraud

}

else # normal account

{

if (rand()&lt;0.25){$num=10000+rand()*99000;}

else{$num=rand()*100000}

}

$num=int $num;

print REL "n$i,n$num\n";

$c=$c-1;

}

$i=$i+1;

}

close TAR;

close REL;
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Customer Behavior (KDD)

Blue Martini [49] published, together with the data for the KDDCUP 2000, three addi-
tional customer data sets to evaluate the performance of association rule algorithms. We
use the BMS-WebView-1 set of 59600 transactions with 497 distinct items. The classifi-
cation task is the identification of transactions that contained the most commonly bought
item (12895), given all other items in the transaction.

Direct Marketing (EBooks)

Ebooks comprises data from a five-year-old Korean startup that sells E-Books. The
database contains many tables; we focus on the customer table (attributes include, for
example, country, gender, mailing preferences, and household information) and the trans-
action table (price, category, and identifier). The classification task is the identification
of customers that bought the most commonly bought book (0107030800), given all other
previously bought items.

Industry Classification (COOC)

This domain is based on a corpus of 22,170 business news stories from the 4-month period
of 4/1/1999 to 8/4/1999, including press releases, earnings reports, stock market news, and
general business news [1]. For each news story there is a set of ticker symbols of mentioned
firms, which form a co-occurrence relation between pairs of firms. The classification task
is to identify Technology firms, labeled according to Yahoo’s industry classification (table
T), given their story co-occurrences with other firms (table C).

Initial Public Offerings (IPO)

Initial Public Offerings of firms are typically headed by one bank (or occasionally multiple
banks). The primary bank is supported by a number of additional banks as underwriters.
The job of the primary bank is to put shares on the market, to set a price, and to
guarantee with its experience and reputation that the stock of the issuing firm is indeed
valued correctly. The IPO domain contains three tables, one for the firm going public, one
for the primary bank, and one for underwriting banks. Firms have a number of numerical
and categorical attributes but for banks only the name is available. The classification task
is to predict whether the offer was (would be) made on the NASDAQ exchange.

Document Classification (CORA)

The CORA database [30] contains 4200 publications in the field of Machine Learning that
are categorized into 7 classes: Rule Learning, Reinforcement Learning, Theory, Neural
Networks, Probabilistic Methods, Genetic Algorithms, and Case-Based Reasoning. We
use only the authorship and citation information (without the text) as shown previously
in Figure 4. We focus for the main results only on the most prevalent class: Neural
Networks. The full classification performance using the maximum probability score across
all 7 classes can be found later in Figure 13.
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