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Abstract

In this paper we study techniques for generating and evaluat-
ing confidence bands on ROC curves. ROC curve evaluation is
rapidly becoming a commonly used evaluation metric in machine
learning, although evaluating ROC curves has thus far been lim-
ited to studying the area under the curve (AUC) or generation of
one-dimensional confidence intervals by freezing one variable—
the false-positive rate, or threshold on the classification scoring
function. Researchers in the medical field have long been us-
ing ROC curves and have many well-studied methods for ana-
lyzing such curves, including generating confidence intervals as
well as simultaneous confidence bands. In this paper we intro-
duce these techniques to the machine learning community and
show their empirical fitness on the Covertype data set—a stan-
dard machine learning benchmark from the UCI repository. We
show how some of these methods work remarkably well, others
are too loose, and that existing machine learning methods for gen-
eration of 1-dimensional confidence intervals do not translate well
to generation of simultanous bands—their bands are too tight.

1. Motivation

Receiver-Operator Characteristic (ROC) analysis is an
evaluation technique used in signal detection theory, which
in recent years has seen an increasing use for diagnos-
tic, machine-learning, and information-retrieval systems
(Swets, 1988; Provost & Fawcett, 1997; Ng & Kantor,
2000; Provost & Fawcett, 2001; Macskassy et al., 2001).
ROC graphs plot false-positive (FP) rates on the x-axis and
true-positive (TP) rates on the y-axis. ROC curves are gen-
erated in a similar fashion to precision/recall curves, by
varying a threshold across the output range of a scoring
model, and observing the corresponding classification per-
formances. Although ROC curves are isomorphic to preci-
sion/recall curves, they have the added benefits that they are
insensitive to changes in marginal class distribution. Of-
ten the comparison of two or more ROC curves consists
of either looking at the Area Under the Curve (AUC) or
focusing on a particular part of the curves and identifying
which curve dominates the other in order to select the best-
performing algorithm.

Much less attention has been given to robust statistical
comparisons of ROC curves. This paper addresses the cre-
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ation and evaluation of confidence bands on ROC curves.
We ask whether, assuming test examples are drawn from
the same, fixed distribution, one should expect that the
model’s ROC curves will fall completely within the bands
with probability 1 − δ. Prior work in machine learning has
considered sweeping across thresholds on the classification
scoring function, creating confidence intervals around the
TP/FP points for various thresholds (Fawcett, 2003), or
sweeping across the FP rates and creating vertical confi-
dence intervals around averaged TP levels (Provost et al.,
1998). Much more work has been done in the medical
field, but so far has not penetrated into the machine learn-
ing community. Prior work in this field includes generating
confidence intervals around TP/FP points based on the ex-
act binomial distribution (Hilgers, 1991), and generation
of confidence intervals based on the binormal distribution 1

(Metz et al., 1998b). Confidence bands could be created
by connecting any of these confidence intervals (as we will
show). More relevant work to that of creating confidence
bands is the creation of simultaneous joint confidence
regions based on the Kolmogorov-Smirnov test statistic
(Campbell, 1994), simultanenous confidence bands based
upon the Working-Hotelling hyperbolic confidence bands
around simple regression lines (Ma & Hall, 1993), and use
of the bootstrap to generate empiricial fixed-width confi-
dence bands (Campbell, 1994). None of these prior stud-
ies on simultaneous confidence bounds, however, has asked
whether the created bands actually hold empirically.

In this paper we examine these methods for creating such
confidence bands for a given learned model. As we will
show, the bands created by many of these techniques are
too tight. To these ends, we describe a framework for eval-
uating the fit of ROC confidence bands. Specifically, we
examine 1 − δ confidence bands on a model’s ROC curve.

The main contributions of this paper are the introduction of
relevant techniques from the medical field to the machine
learning community and an empirical study of these tech-
niques as well as the techniques already used by machine
learning researchers.

The rest of the paper is organized as follows. The next sec-
tion discusses related work on creating confidence intervals
for ROC curves, followed by a section describing the meth-
ods we use in this paper for generating ROC confidence

1Binormal distributions, or bivariate normal distributions, are
joint distributions over x and y, two independent variables which
are normally distributed.



bands. We then describe our evaluation methodology and a
case study showing that two of these methods—fixed-width
bands and simultaneous joint confidence regions—perform
close to expectation in most cases, whereas the rest do not.

2. Overview of Existing Relevant Techniques

Within the machine learning field, prior work on creating
confidence intervals for ROC curves has for the most part
been in the context of creating one-dimensional confidence
intervals.

Pooling is a technique in which the i-th points from all the
ROC curves in the sample are averaged (Bradley, 1997).
This makes a strong assumption that the i-th points from
all these curves are actually estimating the same point in
ROC space, which is at best a doubtful assumption.

Vertical averaging looks at successive FP rates and av-
erages the TPs of multiple ROC curves at that FP rate
(Provost et al., 1998). By freezing the FP rate, it is possible
to generate a (parametric) confidence interval for the TP
rate based on the mean and variance; multiple curves are
generated using cross-validation or other sampling tech-
niques. A potential weakness of this method is the practical
lack of independent control over a model’s false-positive
rates (Fawcett, 2003).

Threshold averaging seeks to overcome the potential weak-
ness of the vertical averaging by freezing the thresholds of
the scoring model rather than the FP rate (Fawcett, 2003). It
chooses a uniformly distributed subset of thresholds among
the sorted set of all thresholds seen across the set of ROC
curves in the sample. For each of these thresholds, it iden-
tifies the set of ROC points that would be generated using
that threshold on each of the ROC curves. From these ROC
points, the mean and standard deviations are generated for
the FP and TP rates, giving the mean ROC point as well as
vertical and horizontal confidence intervals.

Medical researchers also have examined the use of ROC
curves and have introduced many techniques for cre-
ating confidence boundaries. The problem domains
and tasks in medical research are generally different
from that of machine learning in that they often con-
sider only small data sets, where one instance is the
test result from a patient. Further, it is often as-
sumed that these data are ordinal in nature—e.g., that
it is ’ratings’ data with a small scale such as ’definitely
diseased’,’probably diseased’,’possibly diseased’,’ ’possi-
bly non-diseased’,’probably non-diseased’,’definitely non-
diseased’ (Beck & Shultz, 1986; Swets, 1988; Zweig &
Campbell, 1993).

One technique, similar to that of threshold averages, creates
a confidence boundary around each of the N ROC points
associated with N discrete events in an underlying model
(Tilbury et al., 2000). It does this by considering each axis
as independent and considering an N -dimensional vector
along each axis, where the i-th element in the vectors rep-

resent the i-th point on the ROC curve. Discretizing the
values and assuming a binomial distribution, it then gener-
ates a probability distribution of the likelihood that the j-th
value lies in each discretized cell. It maps this probability
density back into ROC space thereby generating confidence
boundaries for each point in the ROC curve. These models
are very complex and are not tractable for even small N
larger than about 10, and would currently be intractable for
large sets of ROC points as is typically found in machine
learning studies.

Other work has created a joint confidence region (or “lo-
cal confidence rectangle”) for a given fixed threshold t
under the assumption of a binomial distribution (Hilgers,
1991). This region is constructed by generating separate
(1 − δ) confidence intervals for TP and FP rates indepen-
dently at the given threshold. The resulting region should
then contain the (FP,TP) point at threshold t with confi-
dence (1 − δ)2. This is equivalent to the threshold averag-
ing method described above, using the binomial distribu-
tion rather than the normal distribution.

Simultaneous joint confidence regions uses the distribution
theory of Kolmogorov (Conover, 1980) to generate sepa-
rate confidence intervals for TP and FP rates (Campbell,
1994). This is done by finding the Kolmogorov (1 − δ)
confidence band for TP (tp±d) and FP (fp±e). By an in-
dependence assumption, the rectangle with width 2e and
height 2d, centered at a given point, should contain points
at the given threshold with confidence (1 − δ)2. Unlike
Hilgers’s approach above, all rectangles using this method
will be of the same size. We describe our use of this method
in Section 3.6.

Creating a confidence region in ROC space restricts both
FP and TP rates to the region (0, 1). This restriction
can cause difficulties when using intervals based on nor-
mal distributions. One solution is to transform the points
to logit space2, generate the confidence intervals in that
space, and then convert them back into ROC space (Zou
et al., 1997). An alternative transformation also used is
that of converting to and from probit space 3 as done in the
ROCKIT/LABROC4 algorithms (Metz et al., 1998b; Metz
et al., 1998a). Both of these bodies of work assume an un-
derlying binormal distribution and focus on creating either
one-dimensional confidence intervals, or joint confidence
regions. We use our own implementation of ROCKIT to
generate confidence bounds under the binormal distribu-
tion, as described in Section 3.8.

One method for generating simultaneous confidence bands
on ROC curves (Ma & Hall, 1993) makes use of Working-
Hotelling hyperbolic confidence bands for simple regres-
sion lines (Working & Hotelling, 1929). Under the bi-
normal model, an ROC curve can be parameterized as
TP = Φ(a − bΦ−1(FP)), where Φ(z) is the standard-

2logit(p) = log( p
(1−p)

); logit−1(p′) = 1
1+exp(−p′) .

3probit(p) = Φ(p); probit−1(p′) = Φ−1(p′), where Φ(z) is
the cumulative normal distribution function.



normal cumulative distribution function (Dorfman & Alf,
1969). Using this parametrization, the Working-Hotelling
bands can then be applied to ROC curves to generate si-
multaneous confidence bands. We describe our use of this
method in Section 3.8.

The fixed-width simultaneous confidence bands method
is a non-parametric method, which generates simultane-
ous confidence bands by displacing the entire ROC curve
“northwest” and “southeast” along lines with slope b =
−√

(m/n), where m is the number of true positives and
n is the number of true negatives (Campbell, 1994). This
slope is an approximation of the ratio of the standard devi-
ations for TP and FP—a property which tries to take into
account the curvature of the ROC plot rather than using a
displacement along one of the two axes as is done by the
majority of methods described above. They use the boot-
strap to identify the distance the curve should be displaced,
thereby generating a fixed-width band across the complete
curve. We describe how we use this method in Section 3.7.

3. Generating Confidence Bands

In this section we describe our methodology for generating
confidence bands for a classification model or modeling
algorithm. We adapt two existing methods from machine
learning: vertical averaging (VA) and threshold averaging
(TA) for generating confidence intervals, and three meth-
ods from the medical field: simultaneous joint confidence
regions (SJR), Working-Hotelling based bands (WHB), and
fixed-width confidence bands (FWB).

Three of the methods (VA, TA and FWB) work based on
the assumption that we can generate (or are given) a set of
ROC curves. These can be generated by running a learning
algorithm on multiple training sets, testing on multiple test-
ing sets, or resampling the same data. These ROC curves
will be used to generate confidence bands about an average
curve.

While all these methods generate different types of confi-
dence bounds—VA and WHB generate 1-dimensional in-
tervals, while TA and SJR generate intervals on TP and FP
axes both, and lastly FWB generates a complete curve—we
have identified a general methodolgy that can be applied to
each of them to generate confidence bands. This general
methodology, which we use throughout this paper, consists
of the following steps:

1. Create a distribution of ROC Curves, if the method
needs it (VA, TA and FWB).

2. Generate points for the confidence bands.

(a) Choose an underlying distribution, if applicable
(VA and TA, see below).

(b) Sweep across the ROC curves to calculate, on a
point by point basis, where the respective con-
fidence boundaries are. We use one of the five
methods mentioned above in this step.

3. Create confidence bands by considering all upper
(lower) interval points found in step 2(b) to make up
the upper (lower) confidence band.

3.1. Creating the Distribution of ROC Curves

There exist various ways of generating a distribution of in-
stances from which to generate a confidence interval. The
most common methods, including cross-validation (Ko-
havi, 1995), repeatedly split a data set into training and test
sets. Each such split gives rise to a learned model, which
can be evaluated against the test set—thereby generating
one ROC curve per split. The bootstrap (Efron & Tibshi-
rani, 1993) is a standard statistical technique that creates
multiple samples by randomly drawing instances, with re-
placement, from a host sample (the host sample is a sur-
rogate for the true population). Each such set of samples
can then be used to generate an ROC curve. We can re-
peatedly drawN samples to generate a distrubtion of ROC
curves. To our knowledge there is only one previous body
of work which has applied the bootstrap to generate multi-
ple ROC curves to use for fitting confidence bands (Camp-
bell, 1994). See Section 5.3 for details on how we use boot-
strapping in our study.

3.2. Distribution Assumption

ROC methodologies have historically assumed a binormal
distribution (Zweig & Campbell, 1993; Zou et al., 1997).
However, it may be that other distributions are more ap-
propriate or work equally well. For example, for a given
x-value (FP rate) the y-value (TP rate) is a proportion. So a
binomial distribution may be appropriate (Beck & Shultz,
1986; Hilgers, 1991). We consider four distributions for
creating confidence intervals: binormal, normal, binomial
and empirical. Let us assume that we are given a sample
distribution D of points along some dimension and a confi-
dence threshold of δ.

We generate confidence intervals and bands under the as-
sumption of a binormal distribution when using Working-
Hotelling confidence bands. See Section 3.8.

We generate confidence intervals under the assumption of a
normal distribution by calculating the mean µ and standard
deviation σ of D. We then look up the statistical constant,
z, for a two-sided bound of δ confidence on a distribution
size of |D| giving us a confidence interval of µ± z · σ.

For the binomial distribution, we calculate the variance as
V = µ · (1 − µ), thus giving confidence interval µ ± z ·√
V/|D|.

For an empirical distribution, we create empirical bounds
as follows: we sort the values of D and choose vl and vu,
such that vl is smaller than 1 − δ

2 of all values and vu is
larger than 1 − δ

2 of all values. Thus 1 − δ of all values lie
between vl and vu.
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Figure 1. Transforming vertical averaging into confidence bands.

3.3. Sweep Methodology

So what are the dimensions along which the confidence
intervals will be created? These are defined by how one
“sweeps” across the ROC space to generate these intervals.
A sweep samples the observed ROC point (or average ROC
point for a set of curves) and the confidence boundary about
it. These boundary points are then used to generate the up-
per/lower confidence bands. We describe how the sweep
methodology is used in the following sections.

For the TA and VA sweeps, we use one of three distribution
assumptions (normal, binomial, empirical). Some methods
(VA, TA, and FWB) require a sampling of points. In this
case, the sweep uses a distribution of ROC curves which
is used by the respective methods. For the other methods
(WHB and SJR), the the sweep uses just one ROC curve.

All of our sweep methods require two parameters:

1. The confidence δ, which we set to 0.05 for a 95% con-
fidence bound throughout this paper. We did prelim-
inary tests with other δ’s (0.10 and 0.01) with similar
results as those presented below.

2. The number and distribution of points to sample along
the sweep, which we set to a uniformly distributed 100
points along the sweep orientation axis. This number
can be changed depending on how fine-grained curve
is needed.4

3.4. Vertical Averaging (VA)

Sweeping the ROC curve using the vertical averaging (VA)
method works as follows: sweep a vertical line from FP = 0
to FP = 1, sampling the distribution of TPs from the collec-
tion of ROC curves at regular points along the sweep. For
each such sampling at a fixed FP, TP confidence intervals
can be created using any of the distribution assumptions
mentioned above.

We generate confidence bands by considering all the upper
(lower) interval points as the points making up the upper

4While this is a free variable that will have some effect on
the overall fit of the bands, we do not investigate its effect in this
paper.
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Figure 2. Transforming threshold averaging into confidence
bands.

(lower) band. Figure 1 illustrates this methodology. For
each FP (0.0 through 0.99—1.0 always has a TP of 1.00),
we generate a distribution of possible TPs across all the
sampled ROC curves and generate the bands based on this
distribution.

3.5. Threshold Averaging (TA)

The sweep for the threshold averaging (TA) method works
a little differently than the VA method. It sweeps along the
thresholds on the model scores from −∞ to +∞, sampling
the distribution of ROC points generated with each thresh-
old. It then generates the mean (FP,TP) point for each sam-
pled threshold and finds the confidence intervals of the FPs
and TPs, using any of the distribution assumptions men-
tioned above.

This method is less straightforward to adapt to our frame-
work as there are various ways to deal with two confidence
intervals. In this paper we chose the simplest approach:
discount the confidence interval for FP and only use the
confidence interval for TP. Because of this, the bands we
generate turn out to be somewhat conservative and con-
tainment probably is underestimated. Figure 2 illustrates
the transformation as well as the drawback. In the fig-
ure, we clearly see that some FP intervals reach outside
the confidence bands (opposite to the vertical intervals, the
horizontal intervals will tend to be larger for higher FP
rates). While there are alternatvie methods for generating
the bands, such as considering the bounding box, or the
diamond made up by the interval boundaries, we do not
consider them for this study.

3.6. Simultaneous Joint Confidence Regions (SJR)

The simultaneous joint confidence region (SJR) works dif-
ferently than either of VA and TA. It uses the Kolmogorov-
Smirnov (KS) (Conover, 1980) one-sample test statistic to
identify a global confidence interval for TP and FP inde-
pendently (Campbell, 1994). The KS statistic is used to
test whether two sampled sets come from the same under-
lying normal distribution by considering the maximal ver-
tical distance in their respective estimated cumulative den-



δ
Set Size 0.20 0.15 0.10 0.05 0.01
> 35 1.07√

n
1.14√

n
1.22√

n
1.36√

n
1.63√

n

Table 1. Kolmogorov-Smirnov (KS) critical values for rejecting
H0 for set sizes > 35.
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Figure 3. Transforming SJR into confidence bands.

sity functions. For our purpose, that means the maximal
vertical (horizontal) distance allowed from the given ROC
curve to another ROC curve without rejecting H0—i.e.,
the confidence interval along FP (TP). Using the KS one-
sample test allows us to identify these two distances, using
the number of instances in each sample—i.e., the number
of true positives, m, and the number of true negatives, n.
For sufficiently large set sizes (> 35), these distances are
defined as follows.

We look up d and e, the critical distances along TP and FP
respectively, at confidence level (1− δ). These identify the
simultaneous joint confidence region for a given observed
point (fp, tp) to be (fp±d, tp±e) at confidence level (1−
δ)2. Note that while the confidence level is theoretically
(1− δ)2, we empirically test it as though it is at the (1− δ)
level. Surprisingly, we show that it generally achieves this
tighter bound—i.e., (1 − δ)2 would be too loose.

The way we generate the confidence bands using these re-
gions is by sweeping along FP in a similar fashion as what
was done with VA. At regular intervals, we freeze FP and
identify the respective TP. We use the upper left (lower
right) corners of the confidence region to define the up-
per (lower) confidence band, cropped to stay within ROC
space. Figure 3 illustrates this transformation.

3.7. Fixed-Width Bands (FWB)

The fixed-width bands (FWB) method works by identifying
a slope, b < 0, along which to displace the original ROC
curve to generate the confidence bands (Campbell, 1994).
In other words, the upper (lower) confidence band would
consist of all the points of the original observed ROC curve
displaced “northwest” (“southeast”) of their original loca-
tion. This creates a confidence band with a fixed width
across the entire curve. The question is what slope to use
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Figure 4. Displacing curve to generate FWB confidence bands.

and what distance to displace the curve. While the ideal
slope would be the ratio of the standard deviations associ-
ated, respectively, with TP and FP, we here adopt the same
approximation as that used in the original work and use
the slope b = −√

(m/n). The way we generate the con-
fidence bands using this method is similar to that of SJR.
We sweep along the FP axis, freezing FP at regular inter-
vals and identify the TP value at that FP. We add the upper
(lower) boundary points by moving a distance d in each di-
rection along the line with slope b = −√

(m/n). Figure 4
illustrates this transformation.

As with our study, the original work used the bootstrap to
identify the distance to displace the curve to generate the
confidence bands. However, the original study was lim-
ited to sampling within the population that generated the
original ROC plot to generate its distribution of ROC plots,
whereas we sample from a larger distribution as discussed
in Section 5.3. Using this distribution of ROC curves, we
identify the distance needed to have (1−δ) of all the curves
be completely contained within the confidence bands. This
is notably different from the approaches taken by TA and
VA which generated intervals on a per-point basis.

3.8. Working-Hotelling Bands (WHB)

We adapt a method for using Working-Hotelling hyperbolic
bands (Working & Hotelling, 1929) to generate simulta-
neous confidence bands on an ROC curve (Ma & Hall,
1993). The confidence bands are fitted to a regression line,
y = a− b · x, and are of the form:

l(x,±k) = a− b · x± k · σ(x), (1)

where k ≥ 0 is a constant which we define below, and
σ(x) =

√
σ2

a − 2ρσaσb · x+ σ2
b · x2, as defined by the co-

variance matrix Σ:

Σ =
(

σ2
a ρσaσb

ρσaσb σ2
b

)
(2)

We use maximum-likelihood estimation (MLE) to gener-
ate a regression line to fit the ROC curve. We use our
own implementation of the ROCKIT algorithm (Metz et al.,



1998a) to do so.5 The ROCKIT algorithm works by first
grouping continuous data into ’bins’ or ’runs’ of instances
either with the same model score and/or same label. Then
it uses an ordinal (’rating method’) algorithm (Dorfman &
Alf, 1969) to create a smooth binormal ROC curve. The co-
variance matrix is also calculated as part of the algorithm.

There are various constants, k, available at confidence level
(1 − δ), depending upon the type of band being generated.
For the purpose of our study, we use two types of bands:
two-sided pointwise confidence bands (WHB-p) and si-
multaneous unrestricted confidence bands (WHB-s). The
pointwise confidence bands are analogous to the vertical
averaging confidence intervals under the binormal distri-
bution. As such, WHB-p will generate tighter bands than
WHB-s, as we will show later. For WHB-p, the constant
kδ , for confidence level (1− δ) is 2Φ(x)−1.6 For WHB-s,
kδ is determined by the chi-square distribution with 2 de-
grees of freedom: kδ =

√−2ln(δ).

4. Evaluation

The key question we ask in this paper is how good are these
bands? As with confidence intervals on a single variable,
we would like to be able to say that given a δ, the bands
generated can be expected to fully contain the curve from
a given model with a probability of 1 − δ (assuming that
new test instances come from the same distribution). As
we will show, for only one of the methods proposed above
does this hold.

5. Case Study

5.1. Data

We now present a case study using the Covertype data set
from the UCI repository (Blake & Merz, 1998). We chose
this data set because its large size enables in-depth test-
ing across a wide range of model-generation and ROC-
generation set sizes. The Covertype data set consists of
581, 012 instances having 54 features, 10 being numerical
and the rest being ordinal or binary. While it has seven
classes, there is a large variation in class membership sizes.
To study the ROC curves, we chose examples of the two
classes with the most instances, giving us a data set of
495, 141 instances (57.2% base error rate).

5.2. Learning Method

We use a modified C4.5R8 (Quinlan, 1993) that generates
probabilities of class membership (Provost & Domingos,
2002). If a leaf matches p positive examples and n negative
examples, we apply a simple Laplace correction (Niblett,

5This is part of our ROC analysis toolkit, which we plan on
releasing to the public later this year. This toolkit is written in
Java.

6This, it turns out, is equivalent to kδ = zδ/2, where zδ/2 is
the statistical constant for a two-sided bound of δ confidence.

1987) giving us a probability estimate of p+1
p+n+2 , as we

have 2 classes. Further, we do no pruning of the tree, as
standard pruning does not consider differences in scores
that do not affect 0/1 loss (but may deflate the ROC curve)
(Provost & Domingos, 2002).

5.3. Bootstrap-based Evaluation

To generate and evaluate confidence bands, we use the fol-
lowing method based on a bootstrapped empirical sampling
distribution.

1. Randomly split the complete data set into a model-
generation (MG) set of 256,000 instances and a ROC-
generation (RG) set of 125,000 instances, keeping
these two sets disjoint.

2. Fix the model-generation size,m, and sample with re-
placement from MG a model-generation set, M , of
size m.

3. Learn a classifier based onM .

4. Sample with replacement from RG to generate mul-
tiple “fitting” sets Fi, and multiple verification sets,
Vi:

(a) Fix the ROC-generation set size, r.

(b) Repeatedly sample “fitting” sets, Fi, of size r.
For eachFi, generate an ROC curve, roc(Fi), for
the model. The result is a set of ROC curves,
rocF = {roc(Fi)}.

(c) Generate confidence bands, C, based on rocF .

(d) Repeatedly sample “verification” sets, Vj , of size
r. For each such sample, generate a verification
ROC curve, roc(Vj). The result is a set of ROC
curves, rocV = {roc(Vj)}.

(e) Calculate the percentage of ROC curves in rocV

that fall completely within the generated confi-
dence bands, C.

(f) Repeat 10 times to account for variability in the
generated confidence bands.

This methodology has four parameters: the model-
generation size, the ROC-generation size, the number of
sampling runs used to generate rocF in step 4(b) to gen-
erate the confidence curves, and the number of sampling
runs used to generate rocV . We fix this latter number of
sampling runs to 1000. We examine the sensitivity to each
of the remaining parameters in the next section. Note that
for this paper, we do not consider variance in curves due
to the model-generation set—only confidence bands on the
ROC curve of a particular (learned) classifier. However, a
similar methodology would apply to the generation of con-
fidence bands for a learning algorithm.
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Figure 5. ROC Bands using various ROC-generation sizes.

5.4. Trends in Confidence Bands

In this section we examine the experimental parameters
identified above. Unless stated otherwise, we will use the
FWB method for the figures presented as this method is the
best performer among the methods used in this study.

5.4.1. MODEL-GENERATION SET SIZE

This parameter is the least interesting for this particular
case study. As the model-generation set size increases, the
ROC curves become higher as would be expected. How-
ever, while this has some effect on the width of the con-
fidence bands, it is more a matter of considering different
learned models than of how to generate good bands for a
given model. As such, we do not consider this to be an
important dimension for further discussion here and fix the
size to 1000 instances.

5.4.2. ROC-GENERATION SET SIZE

The ROC-generation set size should have an obvious effect
on the bands generated. We varied the ROC-generation set
size between 625, 1250, 6250, 12500 and 25000 instances
(0.5%, 1%, 5%, 10% and 20%, respectively, of RG). As
the set size increases, as expected the approximate confi-
dence intervals generated by any of our methods become
narrower and therefore so do our confidence bands. With
too few samples, the estimate of the confidence interval
tends to be inaccurate and biased to be too wide. Figure 5
illustrates this effect clearly.

5.4.3. NUMBER OF FITTING CURVES

The number of samplings runs used to create the empirical
distribution (step 4(b) in Section 5.3) is the last free param-
eter that we consider. In order to generate the ROC bands
using VA, TA and FWB, we need to have a sample of ROC
curves from which to generate these bands. The question
to answer is how many such fitting ROC curves—the num-
ber of sampling runs—are needed to generate reasonable
bands. While the effect of this variable is not as intuitive as
the ROC-generation or model-generation set sizes, it still
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Figure 6. ROC Bands using varying number of sampling runs, us-
ing a ROC-generation size of 1000.

distribution assumption
Method empirical normal binomial binormal

FWB 95.84(0.39) — — —
SJR — 97.43(3.08) — —

WHB-p — — — 9.24(6.60)
WHB-s — — — 91.82(9.88)

VA 30.50(1.92) 33.09(1.70) 43.35(1.48) —
TA 0.24(0.15) 0.22(0.12) 41.84(1.72) —

Table 2. How many verification ROC curves fall within the bands
of each method using a given distribution for generating bands?
Each cell shows the percentage and standard deviation of curves
completely contained within the created confidence bands.

does have an effect as can be seen in Figure 6. While the
upper band is fairly stable we see that the lower band tight-
ens with more sampling runs.

5.5. How Good Are The Bands?

Having considered our experimental parameters, let us now
ask our main question: do the 1 − δ confidence bands ac-
tually contain 1 − δ of the empirical distribution? For an
initial answer, we first fix the number of fitting curves to
1000 and the ROC-generation size to 12,500.

As per our bootstrap-based methodology, we randomly
sampled 1000 ROC-generation sets of size 12,500 with re-
placement from RG and counted the percentage of curves
in rocV fell completely within the confidence band. We
did this for each of our methods using each of the applica-
ble distribution assumptions. Table 2 shows the coverage
achieved by each of the methods tested.

As we can see in the table, only two of the bands (FWB
and SJR) achieve the 95% bound that we would expect,
although WHB-s gets close with a containment of 92%.
Not surprisingly, neither of TA or VA get anywhere near
the bound.7 It was suggested to us that the failure of these

7Recall that the bands generated by the TA method are overly
conservative and that better bands may be found with a better con-
necting method.



verification set size
Method 625 1250 6250 12500 25000

FWB 47.3(21.0) 82.3(28.8) 95.2( 0.6) 95.8(0.4) 96.1(0.7)
SJR 40.2(29.3) 93.0( 1.2) 97.4( 3.8) 97.4(3.1) 97.1(4.5)

WHB-p 38.2(23.0) 88.6( 3.0) 65.8(25.1) 9.2(6.6) 0.0(0.0)
WHB-s 57.1( 2.4) 83.3(29.3) 89.9(31.6) 91.8(9.9) 35.0(21.3)

Table 3. Containments of FWB, SJR, WHB-p and WHB-s with
1000 verification curves with varying ROC-generation set sizes.
Each cell shows the percentage and standard deviation of verifi-
cation curves completely contained within the created confidence
bands.

bounds are to be expected for TA, VA and WHB-p due to
the multiple comparisons problem and that we should in
fact be doing a Bonferroni correction (Bonferroni, 1936;
Miller, 1981), which in a nutshell states that the probablity
of a Type I error is 1 − (1 − δ)k, where k is the number of
comparisons. The problem with this correction is that it is
overly conservative 1− (1− δ)100 = 0.994 for δ = 0.05—
i.e.,, the probability of falsely rejecting H0 is 99.4%! In
fact, we’d need to set δ = 0.0005 in order to generate a
95% confidence bound with 100 points on the ROC curve.
While there are less conservative alternatives to the Bon-
ferroni correction (Legendre & Legendre, 1998), they are
still too conservative for the number of comparisons done
in our study (the different points on ROC curves are very
far from being independent).

Based on Table 2, it seems that VA, TA and WHB-p
are not good methods for generating confidence bands,
while any of the remaining three methods are plausi-
ble. In order to verify these findings, we tested all the
methods in a wider range of ROC-generation set sizes
(625, 1250, 6250, 12500, 25000) and number of sampling
runs (10, 100, 500, 1000, 5000) to verify that these findings
would hold. For the most part they do, though there were
some notable surprises. Except for TA and VA under the
binomial distribution, all methods had their performance
be relatively consistent for a given ROC-generation set size
regardless of the number of sampling runs. Under the bino-
mial distribution, the fewer the sampling runs, the wider the
bands and thus the more containment. When given only 10
runs (and 100 as well for TA), the methods had 100% con-
tainment for ROC-generation size ≥ 6250. However, this
quickly went to 0% containment as the number of sampling
runs increased or the ROC-generation size decreased. TA
otherwise generally had containment of less than 10% and
VA had containments from 10% to 40%. The remaining
four methods showed interesting containment curves, how-
ever, as shown in Table 3.

Some immediate patterns emerge. All methods performed
equally “badly” when given smaller ROC-generation sets
(and this got worse if we made the ROC-generation sets
even smaller). Second, we see that both FWB and SJR
are very consistent. Interestingly, looking at different num-
ber of sampling runs further strengthens the case for FWB,
while SJR has a higher variance in coverages, although that

are all above 89% for ROC-generation sizes ≥ 1250. In-
terestingly, we see that WHB-s actually starts to perform
worse as we increase the ROC-generation size, suggesting
it might have a performance curve similar to that of WHB-p
but with a wider peak.

6. Discussion

In this paper we evaluated various methods for generat-
ing confidence bands for ROC curves. We adapted two
methods from the machine learning literature and intro-
duced three methods from the medical field. We described
our general framework, based on the bootstrap, for gen-
erating confidence boundaries for ROC curves and empiri-
cally evaluating whether they hold at their given confidence
level.

Not surprisingly, methods that generate confidence inter-
vals (1-dimensional boundaries) did not translate well to
confidence bands and generated bands that were too tight.
These included vertical averaging, threshold averaging and
pointwise Working-Hotelling bands. Surprisingly, the si-
multaneous Working-Hotelling bands, while at first seem-
ingly robust, did not hold up as we varied the parameters
for generating the confidence bands.

Two of the methods used in medical literature for genera-
tion of simultanous confidence boundaries did turn out to
be relatively robust to changes in the number of samples
used for generating the confidence boundaries and the num-
ber of instances making up each sample. The simultaneous
joint confidence region method, while having higher over-
all variance, is easy to use and does not require any samples
in order to generate the confidence bands. The fixed-width
confidence bands, while requiring the bootstrap to empir-
ically determine the proper width, turned out to be very
stable and consistently achieve the desired containment of
ROC curves used for the verification.

Surprisingly, all of the methods were robust and did not
change performance markedly when we varied the number
of sampling curves used to generate the confidence bands.
More surprising, none of the methods were able to generate
confidence bands with the desired coverage as we lowered
the number of instances drawn in each sampling run. When
we lowered this size to 625, the coverage fell to below 50%
even for the best performing methods.
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