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Abstract 
Model building is one of the most important objectives of 
data mining and data analysis. As many data mining 
applications, such as personalization, bioinformatics and 
some large enterprise-wide business applications, become 
increasingly complex and require a very large number of 
models, it is becoming progressively more difficult for data 
analysts to built and to manage a large number of models 
in these applications on their own. Therefore, development 
of software tools helping data analysts in these tasks is 
becoming a pressing issue. This paper presents a model 
management system supporting various types of data 
mining models. It describes how to build and populate 
large heterogeneous modelbases. It also presents a query 
language for querying these modelbases and examines 
performance results for some of the queries. 

1. Introduction 
In the past, statistical and data mining applications 

required only a few models built by a data analyst. As real-
world applications become more and more complex and 
require a larger and larger number of models, it is getting 
very hard for a data analyst to manually manage them. 
Even in applications that need only a single good model, 
the data analyst typically has to try to build a large number 
of models based on available data, insight, and domain 
knowledge to produce the final model. This process is 
labor intensive and very time consuming. Managing such 
large collections of models becomes a pressing issue. 

For example, customer segmentation is one of the key 
concepts of marketing [10]. Marketers traditionally divided 
their customer bases into a small number of segments, such 
as pool-and-patio (suburban well-to-do customers who 
would usually own a house with a pool) and empty-nesters 
(middle-aged customers whose children left the house for 
college), and manually built statistical models describing 
behavior of each segment. Subsequently, they studied a 
more refined partitioning of customer bases into smaller 
and smaller segments, called micro-segments (or niche-
segments) [10], such as the pool-and-patio customers living 
in a certain zip code. In applications with large customer 
bases, such as major credit card applications, there can be 
thousands of such micro-segments. If purchasing behavior 
of each segment is represented with several models 
describing different aspects of the customer behavior, then 
the total number of models for such applications can be 
measured in tens or even hundreds of thousands of models.  

Similar situations occur in bio-informatics applications, 
such as microarray applications, where dimensionality of 
data is very large, often measured in tens of thousands of 
variables. To have a good understanding of the problem, 
one may need to build a large number of different models 
on the microarray data using different subsets of variables. 
Due to the combinatorial explosion, this can result in 
hundreds of thousands or more models in some cases [18].  

Another example requiring management of a large 
collection of data mining models occurs when a data 
analyst generates a large number of tries before finding the 
right model as there are many types of models and so many 
ways to built models. Clearly, there is a need to help the 
data analyst manage this process and all the different 
models so that he/she can easily study the models, ask 
questions about them and test them with a minimal effort.  

All these examples highlight the necessity to develop a 
model management system. Such a system would provide 
the following benefits:  
• Expand cognitive limitations of data analysts and allow 

them to build and manage a much larger number of 
models and manage the model building process.  

• Make data mining models a commonly shared resource 
in an enterprise similar to the way that DBMSes make 
data a commonly shared resource. This would allow 
naïve end-users with relatively little knowledge of data 
mining to access models of interest in the modelbase 
through powerful querying tools and run the accessed 
models on their data without worrying about the inner 
workings of these models. Thus, data mining 
technologies would become more accessible to larger 
audiences (similar to the way relational databases 
opened database technologies to the “masses”).  

In this paper, we propose a system that manages very large 
heterogeneous modelbases (VLMBs) consisting of large 
collections of different types of data mining models. We 
describe how to build and populate the modelbases and 
also present a query language (ModQL) that is a dialect of 
SQL extended with object-relational features for querying 
these modelbases. Our aim is to manage (to store and to 
query) models using existing object-relational database 
systems as much as possible. Although ModQL queries can 
be defined in standard object-relational terms, we show in 
the paper that the performance of some of the queries is too 
slow for “real-world” problems. Therefore, we describe 
how to improve their performance using certain indexing 
techniques. This still leaves a few “exotic” ModQL queries 
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for which these indexing techniques are not applicable and 
whose performance cannot be improved using the tools of 
standard object-relational databases. We conclude with the 
discussion if it is necessary to modify existing object-
relational DBMSes to process such queries efficiently. 

2. Related Work 
Model management has been studied in the Information 

Systems (IS) community in the context of decision support 
systems (DSS) since the mid-70’s when the term “model 
management” was coined in [15][22]. It was argued that, as 
in databases, it is important to insulate users from physical 
details of storing and processing models [4]. This led to the 
approach of treating models as black boxes having only 
names, inputs and outputs, and to the development of query 
languages and algebras for manipulating the models that 
had such operators as model solution, model composition 
and sensitivity analysis [3]. Work was also done on model 
lifecycle [5]. Some query languages were proposed [17] 
that were highly specialized and dealt exclusively with 
querying modelbases. However, the IS research focused 
mainly on Operations Research/Management Science 
(OR/MS) types of models, e.g mathematical programming, 
distribution, and transportation models [5]. A survey of 
these activities can be found in [11]. There was little work 
done on managing and querying data mining models.  

In the data mining community, the problem of 
managing large numbers of discovered rules was studied 
by several researchers within the context of data mining 
query languages. One of the early query languages is the 
one based on templates [8]. In this technique, the user uses 
a template to specify what items should be in or not in a 
rule, and what level of support and/or confidence are 
required. The system then finds the matching rules.  

In [6], Han et al presents a data mining query language, 
called DMQL. DMQL allows the user to specify from what 
table to mine what types of rules. [13] proposes a SQL-like 
operator for data mining (MINE RULE). Both these 
approaches are not designed for querying the mined rules, 
but enabling the user to specify what data mining task to 
perform and what its required data is.  

[20] reports a more powerful query language, called 
MSQL. MSQL can be used for both rule generation and 
rule querying. With regard to rule querying, MSQL is 
similar to templates but allows more complex conditions.  

The rule query language, Rule-QL [19], advances the 
technology further by allowing querying multiple 
rulebases. It has rigorous theoretical foundations of a rule-
based calculus based on the full set of first-order logic 
expressions. It was shown that different types of rules that 
can be found by previous techniques and query languages 
can all be found by issuing appropriate Rule-QL queries.  

Grouping and filtering rules were also studied in such 
applications as personalization and bioinformatics [1][18]. 
However, their querying capabilities were more limited.  

The idea of managing large collections of data mining 
models, beyond querying large numbers of association 
rules, has been expressed recently in the data mining 
community. For example, Usama Fayyad stated it as one of 
the top 10 important data mining problems in his invited 
talk at the IEEE ICDM Conference in November 2003.  

Bernstein studied the model management problem in 
the database context [2]. Although it uses the same name, 
the concepts are quite different. In his work, models mainly 
refer to schemas and meta-data of relational database 
systems. Note that the reason that we use the term “model 
management” is because it is a standard term in data 
analysis and business communities.  

3. Defining and Building Modelbases 
In this section, we define a modelbase – a large 

collection of related models that are stored together in the 
same model repository and are manipulated and retrieved 
using data manipulation and query languages.  

3.1 Defining Modelbases 
Heterogeneous models can be organized in modelbases 

by either grouping them based on the application or on the 
model type. In the former approach, models belonging to 
the same application are stored in the same table. In the 
latter approach, models of the same type are stored in the 
same table, for example, all the decision trees are stored in 
a separate table, all the logistic regressions in another table, 
etc. Although each method has its advantages, in this 
paper, we adopt the latter approach and assume that models 
are grouped together based on the same type.  

The approach presented in this paper is applicable to a 
broad range of data mining models, including decision 
trees, regression models, SVMs, rules, and other models. 
Although modelbases of different types differ from each 
other, they all have several common characteristics. In 
particular, they are stored in object-relational model tables 
having schemas with attributes of the following types: 
• ModelID: the key attribute uniquely identifying a model 

in the model table. It admits only the equality operator, 
e.g., ModelId1 = ModelId2. 

• TrainDataID: a pointer to the data file used for building 
the model, such as a decision tree. This data file can be 
a real physical or a virtual file. In the latter case, we 
define a database view on the real file as described 
below. TrainDataID attribute admits the equality 
operator, e.g., MB2.TrainDataID = MB1.TrainDataID, 
and also a set of methods for retrieving the properties of 
the dataset defined by TrainDataID. For example, 
TrainDataID.RecNo() is a method returning the number 
of records in the dataset, and TrainDataID.Attributes() 
is the method returning the list of attributes of the 
dataset pointed to by the TrainDataID field.  

• TestDataID: the same as a TrainDataID, but pointing to 
a data file used in testing a model for accuracy. This 



field is optional because some models (a) do not require 
test data (e.g., association rules), or (b) use cross-
validation testing on the TrainDataID field.  

• Model Attribute: the attribute that actually stores a 
model as an “object.” For example, a decision tree is 
stored as a DecisionTree object. Each model table has 
only one model object attribute, and it has its own set of 
methods defined for it. For example, if the model 
attribute type is “DecisionTree”, then some of the 
methods for this type include NumberOfNodes(), 
specifying the number of nodes in the decision tree, and 
Accuracy() specifying the accuracy of the decision tree.  

Since each model table is of a particular type, this 
means that each table has its own set of methods 
associated with this model type.  

• Model Property Attributes: a set of attributes defining 
various properties of the model. These attributes are 
derived from the Model Attribute by computing certain 
properties and storing the results as relational attributes. 
For example, in case of decision trees, we can compute 
certain statistics of the models, such as the number of 
nodes in the tree, and store it as a model property 
attribute. The model property attributes are optional and 
vary from one type of a model table to another.  
A model table can be implemented as a relational table 

with two caveats. First, as stated before, the TrainDataID 
(or TestDataID) field needs to be a pointer to a data file 
that can be either physical or virtual. The virtual file can be 
implemented as a database view [14] by formulating SQL 
queries. All these SQL views can be indexed and accessed 
via the TrainDataID field. One possible implementation of 
this data access is described in Section 3.3.  

The second caveat is that the model attribute needs to 
be implemented as a CLOB (Character Large OBject), 
BLOB (Binary Large OBject), or large text field object 
[14], together with the methods defined on it (such as the 
number of nodes in the decision tree). 

When defining the schema for a model table, it is 
necessary to define the model property attributes for the 
table and the methods for the model attribute. Of course, 
different model types can result in different schemas. 
However, even for the same model type, there can be more 
than one schema as the following examples demonstrate.  
Example 1 (Decision tree model). Assume the underlying 
data has k attributes. Then the decision tree table may have 
the following schema that we call DTSchemaPlus: 
ModelID Integer 
TrainDataID Integer 
Model CLOB  /*decision tree object  
Attr_1 Boolean   /* TRUE if Attr_1 variable appears 

as a node of the tree 
……                    ……  …… 
Attr_k Boolean    /* same as with Attr_1 
Class Character  /* name of the class attribute 
TestDataID Integer 

TestAccuracy  Float      /* model accuracy on test data  
Accuracy Float    /* cross-validation accuracy 
TreeSize  Integer     /* Size of the decision tree 
NoLeaves  Integer     /* Number of leaves in the tree 

where the presence of each attribute in the tree is specified 
with the Boolean field Attr_i. This representation is useful 
if the decision trees are all generated from a master data 
set, and each tree may be produced with a subset of the 
data. In general, model property attributes Attr_i can 
represent any property of the model, and not necessarily 
the attributes of the dataset used for building the model.  

At the other extreme, we can define the decision tree 
modelbase schema with only four attributes that we call 
DTSchemaBasic: 

DT(ModelID, TrainDataID, TestDataID, Model)  
All the other attributes in the previous example can be 

extracted from the attribute Model using methods, e.g., 
Nodes()                          /* returns set of nodes in the tree 
NumberOfNodes()         /* returns number of nodes in the tree 
Class()                        /* names of attributes used as classes. 
Accuracy(TestDataID)  /* model accuracy on test data 

Note that the last three methods correspond to the 
model property attributes TreeSize, Class and 
TestAccuracy in the alternative schema definition above. 

The tradeoff between these two alternative schema 
definitions of decision trees is that the latter requires less 
storage but more computation to extract all the necessary 
information from the attribute Model when needed.  

As this example demonstrates, each model type can 
have several alternative schemas for the model tables, and 
it is necessary to decide which model property attributes to 
use in the schema definition according to applications.  
Example 2 (Logistic Regression Model). A schema of the 
logistic regression model table built using the database with 
k attributes is defined as 
ModelID Integer 
TrainDataID Integer 
Attr_1 Boolean   /* TRUE if Attr_1 variable appears 

in the regression 
Beta_1 Float /* Beta coefficient 1 
Attr_2  Boolean   /* same as with Attr_1 
Beta_2 Float /* Beta coefficient 2 
……                     …… …… 
Attr_k Boolean    /* same as with Attr_1 
Beta_k Float /* Beta coefficient k 
DependVar Character   /* name of dependent variable 
TestDataID Integer 
TestAccuracy  Float          /* accuracy on the test data 
Accuracy Float      /* cross-validation accuracy.  

Note that in this example, we have removed the Model 
object from the schema and defined the logistic regression 
model in purely relational terms. This also implies that we 
do not have to define methods for logistic regressions. In 
general, system designers need to decide if it is necessary 
to keep Model in the schema and when it can be replaced 
with a set of model property attributes, as in this example. 



The schema for association rules can be designed 
similarly. Each association rule is represented just like a 
logistic regression model. However, we may need only one 
data set (DataID) from which to generate the rules. 

Several types of models, each model type having its 
own model table, collectively form a modelbase.  

3.2 Building Modelbases 
   Once the modelbase schemas are designed, the 
modelbase needs to be populated with models. Insertion of 
individual models by the end-users of the modelbase works 
only for small problems and is not scalable to very large 
modelbases. A more scalable approach would be a semi-
automated method. The user can iteratively and 
interactively formulate requests of the form:  
  For dataset X build the models of type Y and of the form Z 
where  
• dataset X is defined either by the TrainDataID identifier 

or by a SQL query selecting the dataset. 
• model of type Y: the type of model corresponding to the 

model table to be filled, e.g., decision tree or regression.  
• form Z: this is an expression specifying a template 

defining the type of model to be built and stored. For 
example, we can build all the decision trees having 
“Purchase_Decision” as a class attribute and having 
Income as the root node. In general, the form can be 
expressed as constraints in the WHERE clause of the 
ModQL language presented in Section 4. 

There are two approaches to handle the Z-form constraints:  
1. Filtering: models are first generated, and then those that 

do not satisfy the constraints are filtered or deleted.  
2. Constrained model generation: constraints are pushed 

into the model generation process so that only those 
models that satisfy the constraints are generated.  

Which approaches to use depends on the available 
algorithms. For example, in association rule mining, 
constrained rule mining techniques may be used to generate 
the required rules for certain types of constraints.  

Each model generation request generates multiple 
models. The user can grow the modelbase in a controlled 
manner by iteratively issuing new requests, examining their 
results, inserting only the useful ones into the modelbase 
and formulating new requests based on the previously 
generated results. To make this whole approach user-
friendly for a non-technical end-user, these requests can be 
generated via a front-end GUI, as is often done in databases 
when the end-user specifies database commands using a 
GUI-based front-end rather than directly in SQL. 

3.3 Case Study 
To show how to build large modelbases, we applied the 

method in Section 3.2 and built a modelbase consisting of 
decision tree, logistic regression and association rule tables. 

Our study is based on a on-line customer purchases 
database that includes such information as demographic 
characteristics of the customers and such purchasing 
characteristics as the day of the week, category of the 
website, product category, the purchasing price, etc. We 
segmented the customers based on some demographic 
characteristics and split the entire set of customer 
purchasing transactions into separate (virtual) datasets 
SEGMENTi. For each dataset SEGMENTi, we generated 
several database views using SQL statements:  

SELECT <Fields > FROM SEGMENTi  

where <Fields> are combinations of various purchasing 
variables and the remaining demographic variables that 
were not used in generating SEGMENTi files.  

Altogether, we generated 220,264 virtual datasets 
defined by these SQL queries. We stored these 220,264 
SQL queries in a separate database having each query 
explicitly identified with the unique TrainDataID field 
forming the key for that record.  

These individual datasets (defined by SQL queries) 
were subsequently used for building data mining models by 
iteratively feeding them into WEKA system [21]. As a 
result, we generated 220,264 Decision Tree models, 
220,264 Logistic Regression models and 21,800,733 
association rules that we stored in three separate tables. 

For the Decision Tree model table, we used the 
DTSchemaPlus schema described in Example 1. For the 
Logistic Regression model table, we used the schema from 
Example 2. As noted earlier, we did not describe the 
structure of the association rules because of the space 
limitation and because their representation is somewhat 
similar to the representation of logistic regressions. 

Finally, we note that all the modelbases were generated 
using SQL queries and Perl scripts rather than a special-
purpose tool for this task. This was sufficient for our proof-
of-concept purposes. However, it is necessary to develop a 
model-building interactive tool for the industrial-strength 
applications in the future to improve model building tasks. 

 
4. Modelbase Query Language ModQL 

As was mentioned in Section 2, previous approaches to 
querying model- or rule-bases were based on specially 
designed query languages. In contrast to this, we chose to 
deploy standard object-relational query language SQL99 
[16] for querying modelbases. In particular, we selected a 
certain dialect of SQL99 suitable for querying modelbases, 
as will be described in the rest of this section. 

As explained in Section 3, each model is defined with a 
particular schema that includes ModelID, the model itself 
stored as a CLOB object, a set of methods retrieving model 
properties from the CLOB, the training (and optionally 
testing) data set, and a set of model property attributes. For 
example, two decision tree schemas are presented in 
Example 1 and a logistic regression schema in Example 2. 



ModQL is essentially SQL99 specified on the model 
schemas of the types described above. It explicitly deals 
with CLOB/BLOB objects, methods defined on these 
objects, and training and testing datasets. In addition, 
ModQL supports macros, i.e., non-SQL expressions that 
can be mapped into standard SQL expressions. 

We next present some examples of ModQL queries. We 
assume in these examples that all the logistic regressions 
are stored in the LR model table, all the decision trees in 
the DT model table, and all the association rules in the AR 
model table. We also assume that the DT and the LR tables 
have the schema structure as described in Section 3.1.  
Query 1: Find decision trees having Income variable 

among the nodes of the tree. 
If DTSchemaBasic schema from Example 1 is used, then 
this query is expressed as 
   SELECT  ModelID 
   FROM DT 
   WHERE “Income” IN Model.Nodes() 

where Model.Nodes() is a method returning the list of 
nodes of the decision tree.  
If DTSchemaPlus schema is used instead, then this query is 
expressed as a standard SQL statement: 
   SELECT  ModelID 
   FROM DT 
   WHERE DT.Income = 1 

Query 2: Find decision trees having less than 10 nodes. 
   SELECT  ModelID 
   FROM DT 
   WHERE DT.NumberOfNodes() < 10 

The next query demonstrates how selection criteria are 
applicable to logistic regressions. 
Query 3: Find logistic regressions having at least one 

beta-coefficient greater than 1. 
   SELECT  ModelID 
   FROM LT 
   WHERE MAX(LT.Beta()) > 1 

In this query, method Beta() returns the list of beta-
coefficients of a logistic regression and function MAX 
selects the largest element from the list. 

The next query demonstrates how the best-performing 
models are selected from a model table. 
Query 4: Find the best decision tree model in terms of its 

accuracy rates. 
   SELECT  ModelID 
   FROM DT 
   WHERE NOT EXITSTS (SELECT R’.* 
 FROM DT 
 WHERE R’.Accuracy() > R.Accuracy()) 

where x.Accuracy() specifies the accuracy of a decision 
tree based on cross-validation. 

The next example shows how queries are asked about 

models and the data from which they are built. This ability 
to ask questions about both modelbases and databases is an 
important and distinguishing property of ModQL.  

Query 5: Find the decision tree models that have been 
learned from datasets with more than 10,000 records 
and having “Purchase_Decision” as the class attribute.  

   SELECT  ModelID 
   FROM DT 
   WHERE DT.TrainDataID.NoRecords() > 10,000 
 AND DT.Class() = “Purchase_Decision” 

The next query demonstrates a self-join operation between 
two model tables of the same type and the use of macros. 
Query 6: Find minimal association rules, i.e., association 

rules whose LHS and RHS do not contain the LHS and 
RHS of any other rule respectively. 
SELECT  R.* 
FROM AR R 
WHERE  NOT EXISTS (SELECT R’.* 
                   FROM   AR R’ 
                   WHERE R.ModelID ≠ R’.ModelID AND  
                      LHS(R’) CONTAINED_EQ_IN LHS(R) AND 

                          RHS(R’) CONTAINED_EQ_IN RHS(R)) 

    This query contains the expression “LHS(R’) 
CONTAINED_EQ_IN LHS(R)” that is not a part of SQL 
(CONTAINED_EQ_IN means “subset”). However, if the 
schema of AR model table contains all the items 
(attributes) of the underlying dataset, then this expression is 
really a macro that can be formulated in standard SQL as  

R’.Item _1 = L ⇒ R.Item _1 = L AND R’.Item _2 = L ⇒ 
R.Item _2 = L AND … AND R’.Item _k=L ⇒ R.Item_k=L 

where Item_1, Item_2, …, and Item_k are all the items 
(attributes) of the underlying database, and “L” stands for 
the fact that they appear on the left-hand sides of the 
association rules R and R’ respectively. In other words, this 
expression says that, for any Item_i, if Item_i appears on 
the LHS of rule R’, then it should also appear in the LHS 
of rule R. Also, expression “RHS(R’) 
CONTAINED_EQ_IN RHS(R)” can be specified in SQL 
in a very similar manner as the LHS expression above.  

The next example demonstrates joins between two 
different model tables based on a complex joining criteria.  
Query 7: Find decision tree models having the same class 

attribute and the same set of nodes as the dependent and 
independent variables in some logistic regression model, 
that are also generated from the same data as the 
logistic regression model and that outperform the 
logistic regression model in terms of accuracy. 
SELECT  DT.ModelID 
FROM LR, DT 
WHERE LR.TrainDataID = DT.TrainDataID AND 

LR.IndepVar() EQUAL DT.Nodes() AND 
LR.DepVar() EQUAL DT.Class() AND 
DT.Accuracy() > LR.Accuracy()  

In this query, we assumed that the list of independent 



variables in logistic regressions and the nodes in decision 
trees are retrieved using methods IndepVar() and Nodes() 
respectively. Therefore, the join operator EQUAL equates 
two sets of variables. However, if we define the schemas of 
DT and LR tables so that the nodes in DT and independent 
variables in LR appear among the model property 
attributes, then we can express “LR.IndepVar() EQUAL 
DT.Nodes()” as a macro in SQL using methods similar to 
those used in Query 6. x.Accuracy() gives the accuracy of 
the model x based on cross-validation. 

Next, we provide an example of a join between two 
model tables having a complex join criterion. 
Query 8: Find all pairs of decision tree and logistic 

regression models that have at least one variable in 
common among the independent variables of the logistic 
regression and the nodes of the decision tree.  
SELECT  DT.ModelID, LR.ModelID 
FROM     LR, DT 
WHERE  LR.Model.IndepVar()∩DT.Model.Nodes() ≠ Ø 

This query is specified using the basic schema 
(DTSchemaBasic) that requires access to the actual 
decision tree and logistic regression models. Moreover, DT 
and LR tables are joined using a complex joining criteria 
involving two sets of variables. This query is evaluated 
using the nested join method [14] by considering all the 
|LR| × |DT| combinations of the logistic regression and 
decision tree models from LR and DT tables, retrieving all 
the nodes from the decision tree model, all the independent 
variables from the logistic regression model and checking 
if their intersection is not empty. Clearly, this is a very slow 
and inefficient evaluation method, as shown in Section 5. 

Alternatively, this query can be implemented as a SQL 
macro assuming the DTSchemaPlus and the LR schema 
from Example 2. In this case, the WHERE clause of the 
above query is a SQL macro that can be expanded in 
standard SQL as  

SELECT  DT.ModelID, LR.ModelID 
FROM LR, DT 
WHERE     (LR.Attr_1 = 1 and DT.Attr_1 = 1) OR 
 (LR.Attr_2 = 1 and DT.Attr_2 = 1) OR 
             ………….. 
 (LR.Attr_k = 1 and DT.Attr_k = 1) 

This SQL-based version of the query is evaluated using 
standard and reasonably efficient SQL methods.  

In summary, all these examples show the power of 
ModQL by demonstrating various useful and non-trivial 
queries about data mining models that can be expressed in 
the language. Moreover, all these queries can be expressed 
in a dialect of SQL99. Therefore there is no need to 
develop new software systems to support these queries. 
The well-established database technologies can be used 
instead. This is in contrast to the previous proposals for the 
development of new languages specifically designed for 
querying model- and rule-bases described in Section 2.  

To see how well ModQL works in practice, we 
conducted empirical studies described in the next section. 

5. Experiments 
Since ModQL queries involve models and often need 

access to the model “object” itself (CLOB, BLOB, etc.), 
some of these queries can be very slow. Therefore, special 
care should be taken when formulating such queries. In this 
section, we evaluate performance of some of the queries to 
gain a better understanding of the query evaluation issues.  

As discussed before, ModQL queries are divided into 
the following categories: 
1. Those that can be expressed and evaluated in pure 

relational SQL. For example, the second version of 
ModQL Query 1 (evaluated on the DTSchemaPlus 
schema) belongs to this category. 

2. Those that can be expressed in SQL with macros. For 
example, ModQL Query 6 belongs to this category. 

3. Those that cannot be evaluated in pure SQL because 
they require direct access to the model object using its 
methods.  For example, the first version of Query 8 
belongs to this category. 
Moreover, queries of Type 3 are divided into two sub-

categories: those that require joins of two or more model 
tables and those that don’t, e.g., the first version of Query 
1. To test performance of different types of queries, we  
1. executed both versions of Query 1: the one that requires 

access to the DT object using the Nodes() method and 
the “pure SQL” version.  

2. executed both versions of Query 8: the one requiring 
access to model objects and the one that can be 
expressed in SQL with macros.  

3. executed Query 6, expressed in SQL with macros.  
These queries were executed on the three model tables 

DT, LT and AR described in Section 3.3, having 220,264, 
220,264 and 21,800,733 models respectively. These model 
tables were stored in a Microsoft’s SQL Server located on 
the Pentium 4 server with 3GHz CPU and 1GB of RAM. 
The models were generated as character strings by WEKA 
and stored as CLOB objects. The methods accessing these 
objects were implemented in Perl. Finally, SQL macros 
used in some of the queries were decoded manually. 

Figures 1, 2 and Table 1 report performance results for 
Queries 1 and 8 respectively. Figure 1 shows direct SQL 
evaluation is very fast: the whole model table of 220,264 
models was processed in less than 1 second. In contrast, the 
object access version of Query 1 is much slower. This is 
the case because each decision tree object in the DT table 
needs to be accessed and searched for the presence of the 
Income variable. This problem can be solved by creating 
special indices for modelbases (see Section 6). 

The performance results for Query 8 are even more 
dramatic. For both versions of Query 8 (implemented as a 
SQL macro and requiring access to the objects of the 
model), it was necessary to do the join on the DT and LR 



tables. However, SQL join performed reasonably well, as 
column 3 in Table 1 shows. In contrast, the object-access 
version of Query 4 was extremely slow, as Table 1 and 
Figure 2 demonstrate. In fact, it was so slow that we could 
evaluate the query on the join of DT and LT tables 
containing only up to 4,000 models (from 220,264 models). 

 
Figure 1: Performance comparison of two versions of Query 
1: pure SQL vs. trees access with Model.Nodes() method. 

Number of 
models 

 Object access 
(seconds) 

SQL 
(seconds) 

Number of 
Matches 

1K x 1K 1104 5 813778 
2K x 2K 4614 19 3312150 
3K x 3K 10458 44 7501820 

4K x 4K 18158 113 13413543 

Table 1: Performance results for 2 versions of Query 4. 

This example demonstrates that ModQL suffers from 
the query from hell phenomenon, when some of the queries 
are so slow that they would run “forever.” Another 
example of such query is Query 6 that was launched on the 
whole table of association rules containing 21,800,733 
rules. This query was implemented as a SQL macro. It was 
executed on the aforementioned SQL Server for more than 
72 hours and would not finish (we had to terminate it).  

6. Discussions 
From the results reported in Sections 3 - 5, we can 
conclude that object-relational databases can provide a 
basic platform for model management and that no special-
purpose languages are required for querying modelbases. 
However, as we also showed, effectiveness of object-
relational databases varies significantly across different 
model schemas, queries and other conditions. In particular, 
we can make the following conclusions from our work: 
1. Generating and storing large numbers of different types 

of models is a manageable task, as demonstrated in 
Section 3. This capability cannot be directly supported 
within existing DBMSes, and the development of a new 
interactive model-building tool is required for 
industrial-strength applications.  
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Figure 2: Performance results for 2 versions of Query 4 
(graphical representation of results from Table 1). 

2. While ModQL performs well for some of the queries, it 
has performance problems for others, especially when 
they are evaluated in a brute force manner. These 
performance problems are often attributed to the queries 
that cannot be expressed in pure SQL and require 
macros and methods.  

3. There is a need to develop efficient query processing 
strategies to avoid the “query-from-hell” problems. We 
describe possible solutions to this problem below. 
One way of dealing with the queries-from-hell problem 

is to use indexes on methods. For example, one can build 
an index on the method DT.NumberOfNodes() returning 
the number of nodes in a decision tree. This index can be 
implemented as a B+-tree. Then Query 2 can be evaluated 
by accessing this B+-tree index rather than sequentially 
scanning model table DT and accessing each method 
DT.NumberOfNodes(). 
     In fact, some DBMS vendors already provide such 
capabilities. For example, Oracle 11i supports indextype, 
extensible indexing methods for user-defined operators 
(such as NumberOfNodes() in the example above) 
(www.lc.leidenuniv.nl/awcourse/oracle). Therefore, the 
indexing methods described above can be implemented in 
Oracle, which can significantly improve the performance of 
Query 2 and others from Section 4. 

Although such indexing methods can solve some of the 
query-from-hell problems, it does not solve all of them 
because such indexes can be created only on the methods 
returning “indexable” results, such as NumberOfNodes(). 
In contrast, methods returning “complex objects,” such as 
subtrees or lists, cannot be easily indexed using the 
aforementioned indextype methods. For example, it is 
unclear how to create an index for the first version of 
Query 8 where the join condition involves sets of decision 
tree nodes and sets of logistic regression variables. Unlike 
the NumberOfNodes() method, these complex object types 
cannot be easily indexed. Therefore, indexing methods 
cannot solve all of the query-from-hell problems. 

To deal with this problem, it is necessary to provide 
extensions to the DBMS internals in order to support such 
indexes. However, it is not clear if making changes to the 
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DBMS internals are warranted to support a few “exotic” 
queries having methods returning complex objects. An 
alternative solution would be for the query preprocessor to 
identify such queries, flag them as “queries-from-hell” and 
warn the end-user about it. Finally, if such a query is really 
important for the application, then the method can be 
materialized and stored as a model property attribute, thus 
avoiding the query-from-hell problem. 

Given the indexing methods described above, the user 
has three choices when designing a model table: 
1. Use only the methods associated with the model without 

using any model property attributes. 
2. Materialize some of the methods by defining and 

computing model property attributes. 
3. Use indexes, instead of the model property attributes, 

for some of the methods. 
Each of these choices has its strength and weaknesses. 

In particular, model property attributes provide for fast 
execution of modelbase queries, as shown in Section 4. 
However, they require extra space, and maintenance. In 
contrast to this, methods do not require any extra storage 
and maintenance, but can slow query processing very 
significantly, as was shown in Section 5. 

Therefore, indexes on methods provide a good 
compromise between these two solutions, as discussed 
above, but also not requiring much more extra storage and 
causing fewer maintenance problems.  

We can conclude that most querying capabilities of 
ModQL can be directly supported by DBMS vendors. The 
remaining functionalities are too specialized for the DBMS 
vendors to modify their query processors to speed up such 
queries. We thus recommend that DBMS vendors develop 
only interactive model management tools discussed in 
Section 3 in order to provide for the creation and 
maintenance of large collections of data mining models. 

7. Conclusions 
As data analysis and data mining is increasingly widely 

used in practice, there is a need to generate, store and query 
very large collections of data mining models. This paper 
describes an approach to generating and querying large 
modelbases with the query language ModQL. ModQL is an 
object-relational dialect of SQL99 with certain features 
added to it to incorporate model management capabilities. 

We demonstrated that modelbase querying can be done 
within the object-relational framework and, therefore, it 
can rely on proven database technologies and does not 
require any special-purpose query languages and systems 
for modelbases, as was advocated before.  

 We also tested some of the queries expressed in 
ModQL on a large modelbase. While some simple queries 
can be processed very quickly in ModQL, others run very 
slowly because they require access to the internals of the 
models. We then explained how this problem can be solved 

by creating indexes on methods, as for example, Oracle 11i 
does it with its indextype extensible indexing approach. 
However, the methods returning complex objects cannot be 
easily indexed and require further studies. 
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