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Abstract
Performance at topk predictions, where instances are ranked by a (learned) scoring model, has

been used as an evaluation metric in machine learning for various reasons such as where the entire
corpus is unknown (e.g., the web) or where the results are to be used by a person with limited time or
resources (e.g.,ranking financial news stories where the investor only has time to look at relatively
few stories per day). This evaluation metric is primarily used to report whether the performance
of a given method is significantly better than other (baseline) methods. It has not, however, been
used to show whether the result issignificantwhen compared to the simplest of baselines — the
random model. If no models outperform the random model at a given confidence interval, then the
results may not be worth reporting. This paper introduces a technique to perform an analysis of the
expected performance of the topk predictions from the random model givenk and ap-value on an
evaluation datasetD. The technique is based on the realization that the distribution of the number
of positives seen in the topk predictions follows ahypergeometric distribution, which has well-
defined statistical density functions. As this distribution is discrete, we show that using parametric
estimations based on a binomial distribution are almost always in complete agreement with the
discrete distribution and that, if they differ, an interpolation of the discrete bounds gets very close
to the parametric estimations. The technique is demonstrated on results from three prior published
works, in which it clearly shows that even though performance is greatly increased (sometimes over
100%) with respect to the expected performance of the random model (at p = 0.5), these results,
although qualitatively impressive, are not always as significant (p = 0.1) as might be suggested
by the impressive qualitative improvements. The techniqueis used to show, givenk, both how
many positive instances are needed to achieve a specific significance threshold is as well as how
significant a given topk performance is. The technique when used in a more global setting is able
to identify the crossover points, with respect tok, when a method becomes significant for a given
p. Lastly, the technique is used to generate a complete confidence curve, which shows a general
trend over allk and visually shows where a method is significantly better than the random model
over all values ofk.

1. Introduction

Consider a web search engine or a personalized news portal. In the former case, searching the web
often results in thousands or millions page hits. In the latter case, the site would give you the news
stories that fit your profile best. In both cases, what are generally looked at, and hence of interest,
are the highest ranked instances. How would one evaluate or measure the value of the information
presented by the search engine or portal? A common measure isprecision at topk predictions,
where the most commonly used values ofk are5, 10, 20, 30, 100 (Dumais & Nielsen, 1992; Mitra,
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Singhal, & Buckley, 1998; Cohen, Schapire, & Singer, 1999; Singhal, Abney, Bacchiani, Collins,
Hindle, & Pereira, 1999; Basu, Hirsh, Cohen, & Nevill-Manning, 2001).

More generally, for this paper, we assume a binary classification task, where the problem ad-
dressed is that of evaluating a (learned) scoring model:

f : X →R, (1)

wheref(·) returns a score forx which can then be used to rank instances. Higher scores indicate
thatx should be ranked higher than anx with a lower score because it is more likely to be of the
positive class. The task is to evaluatef(·) based on its performance given its topk predictions—
e.g., thek highest scoring instancesxi in a given data setD. Often, the topk comparison metric
has been used to compare two learned models to see which is thebetter performer, where “better”
is defined as having more true positives in the topk predictions—the topic of this paper. This
metric is generally converted into precision or accuracy attopk (P@k), which is what is generally
reported. However, the basic question that is rarely asked is whether the performance is better than
what would be expected from therandom model—a model which returns a random ordering ofD
assuming all orderings are equally likely. It might well be that a given model is significantly better
than another, but if neither performs better than what couldbe expected from the random model,
then the relative performance of the models are not that interesting.

The main contribution of this paper is the introduction of anefficient technique for generating
a confidence bound based onk in O(k2) time. An extra boon as that it generates all the bounds
for 1, . . . , k in the process. Given ap-value and an evaluation data setD where the labels are
known, the confidence bound will define how many positives areneeded in the topk predictions
in order to outperform a random ranking with a confidence of(1−p). The technique needs only
two data characteristic parameters, sample size (N ) and the number of positives (N+), to generate
a confidence bound for a givenp.1 In the case ofD, these parameters would be:

N = |D| (2)

N+ = |D+|, (3)

where
D+ = {xi|xi ∈ D, label(xi) = +}. (4)

Knowing N+ (andN−) makes it possible to know exactly how many positives and negatives are
left after seeing the topk predictions (and observing how many of those were positives.) This fact
is a key in how the algorithm is derived and allows the bounds to be tailored to the characteristics
of the given data set as opposed to the more general case of infinite data.

One straightforward way to calculate this bound is by considering all possible orderings, or
rankings, ofD and picking the number of positives in topk needed such that(1−p) of all possible
rankings have at most that number of positives in their topk ranking. For example, to get the
random bound atk = 5 with p = 0.05, you would need to compute the number of positives needed
in the top5 predictions in order to have at least as many positives as would be seen in95% of all
rankings. Although it is trivial to examine all rankings ofD whenD is small, it quickly becomes
intractable to do examine theN ! possible rankings asD grows. The technique used here overcomes

1. We will later show how the requirement of knowingD can be loosened to work in the infinite case as long as the
class distribution is known.
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this obstacle by first showing how the bounds can be calculated for all k in O(N3) time, and then
gives an efficient algorithm which calculates the positivesneeded at topk, for k = 1, . . . , N in
O(N+ ·N−) time andO(N) space.

The rest of this paper is outlined as follows: Section 2 describes the technique for generating
the topk confidence bounds, Section 3 demonstrates the use of this technique on published prior
results, and is followed by final remarks.

2. Top k Confidence Bounds for the Random Model

This section first describes the theory behind generating a confidence bound for the expected per-
formance of the random model at topk predictions, then describes anO(N+ ·N−) implementation
to generate the confidence bound for allk = 1, . . . , N .

2.1 Generating the Topk Confidence Bound

Let R denote the set of all rankings ofD and letqik ∈ qk be the number of positives seen in the top
k instances ofRi ∈ R. Givenp andk, we can computen(k, p), the value which is theith largest
in qk, wherei = p‖qk‖. That is the value which represents the number of positives needed in the
topk predictions in order to dominate(1−p) of all the rankingsRi ∈ R. However, computing this
number would require sortingqk, which containsN ! values and is therefore not tractable for large
data sets.

If we knew the distribution of values forqk then we could use the distribution directly to com-
puten(k, p) by using the cumulative density function (cdf). Specifically, n(k, p) would be the value
of i at which the cdf equals(1−p). We observe thatqk is ahypergeometric distribution(Weisstein,
2002) with parametersN for population size,N+ for success population size andk for the sample
size. The distribution has the following statistical properties:

P (qk = i) =

(

N+

i

)(

N−

k−i

)

(

N
k

) (5)

cdf(i, k) =



















0 for i < max(0, k + N+ −N),
⌊i⌋
∑

j=max(0,k+N+−N)

P (qk = j) for 0 ≤ i < min(k,N+),

1 for i ≥ min(k, N+)

(6)

where cdf(i, k) is the cumulative density function representingP (qk ≤ i|qk). Using these, calcu-
latingn(k, p) is straightforward:

n(k, p) = argmin
i

[cdf(i, k) > 1− p] (7)

Note that the hypergeometric distribution is a discrete distribution. Therefore,P (qk = i) is
defined only over discrete values ofi andn(k, p) will necessarily be an integer. This creates a
possible problem when evaluating a given model. Often reported results are based on averaged runs
and are therefore not discrete but continuous. Further,n(k, p) can be the same for a range ofp—for
example whenk = 1, thenn(k, p) = 1 for anyp-value less thanN

−

N
. A large range makes it harder

to generate fine-grained confidence bounds. In such cases, one would have to either (1) truncate the
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Figure 1: Example cdf curves forN = 200, N+ = 40 at k = 20. The horizontal line represents
p = 0.5.

averaged result,n, (as seen in Equation 6) when computingn(k, p) equivalently report the smallest
p′-value,p′ > p, such thatn(k, p′) is defined, (2) interpolate between the two discrete values that
straddlen, or (3) use parametric estimations ofn(k, p) andp.

Fortunately, it is possible to estimatep (andn) by taking advantage of the fact that the hypergeo-
metric distribution is very similar to the binomial distribution. In fact, the two distributions converge
asN → ∞. Therefore, it is possible to estimaten(k, p) for any continuousp as well asp for any
given continuousn using the following parametric estimation of the binomial cdf:

cdfbin(i, k) = Iz(i + 1,N − i) ≡
B(z; i + 1,N − i)

B(i + 1, N − i)
, (8)

wherez = N+

N
andB(z; a, b) is the incomplete beta function:

B(z; a, b) =

z
∫

0

u(a−1)(1− u)(b−1)du (9)

andB(a, b) is the complete beta function (B(a, b) = B(1; a, b), which for our domain always equals
1 and can therefore be ignored.) EstimatingB(p; a, b) is obviously much more computationally
intensive than using the discrete distribution. Not only isit more efficient to use the discrete values
but, as we shall see, using interpolation gets very close to the parametric estimations and ought
therefore to be used for efficiency reasons. Figure 1 shows the three cdfs under consideration and
where they cross thep-value line at(1 − p) = 0.5.2 The figure clearly shows the problem when

2. We use gnuplot’sibeta function to compute the parametric cdf and the parametric bounds in the examples below.
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x is real, where the discrete cdf would always round up (it crosses the line atx = 4). Second,
we see that the interpolated and parametric curves both follow each other very closely although the
parametric curve is not always in agreement even at the discrete points. AsN increases, however,
these do converge and the parametric cdf ends up being virtually the same as the discrete cdf at the
discrete points. In the figure, the interpolated cdf intersects the givenp-value line atx = 3.43 where
the parametric curve crosses atx = 3.40. We also see that the interpolated curve does not always
fall above or below the parametric curve due to the parametric curve being off at the discrete points.
Therefore, for small data sets, we cannot generally say whether the interpolated bound will be larger
or smaller than the parametric bound.

Computing the discrete version ofn(k, p) for a givenk is relatively inexpensive as computing
(

N
k

)

can be done inO(k) time. Therefore, calculating
(

N+

i

)

·
(

N−

k−i

)

for i = 0, . . . , k takes, for each
k:

k
∑

i=0

O(i) + O(k − i) = O(k2) (10)

However, as we would need this for allk, we need to computen(k, p) for k = 1, . . . ,N :

N
∑

k=1

O(k2) = O(N3) (11)

This can be optimized to run inO(N+ ·N−) as the next section will show.

2.2 An Efficient Implementation to Calculaten(k, p) for all k

The efficient implementation works by calculatingn(k, p), onek at a time, fork = 1, . . . , N . Let
xk

i be the set of rankings which havei positives in their topk predictions. The implementation

is based on the following observation: the ratio of rankingsin xk
i which also belong tox(k+1)

(i+1) is

exactly
(

N+−i
N−k

)

, the ratio of positives that are left in the remainingN − k instances. The same

holds for the negative instances. The key additional observation is thatx(k+1)
(i+1) contains not only

the rankings inxk
i which have a positive in theirk + 1st prediction, but also the rankings inxk

(i+1)

which donot have a positive in theirk + 1st prediction. Both would result in rankings which have
i + 1 positives in theirk + 1 top-ranked instances.

For pragmatic reasons, the implementation uses the fractions,rk
i =

|xk

i
|

N ! = P (xk = i), rather
than manipulate the large values of|xk

i |. The above observations hold forrk
i as well, and are

expressed more formally by the following:

P
(

+|rk
i

)

=
N+ − i

N − k
(12)

P
(

−|rk
i

)

=
N− − (k − i)

N − k
(13)

r0
0 = 1 (14)

rk
i =



















P
(

+|r
(k−1)
(i−1)

)

· r
(k−1)
(i−1) + P

(

−|r
(k−1)
(i)

)

· r
(k−1)
(i) 0<i<k

P
(

−|r
(k−1)
(i)

)

· r
(k−1)
(i) i=0

P
(

+|r
(k−1)
(i−1)

)

· r
(k−1)
(i−1) i=k

, (15)
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input: N+, N, p

begin:
1 N− ← (N−N+)
2 Np ← []
3 t[0][0]← 1
4 for k = 1, . . . , N
5 np ← 0
6 minn ← max(0, k−N−)
7 maxn ← min(N+, k)
8 for n = minn, . . . , maxn

9 parentl =

{ (

N+−n
N−k

)

· t[k−1][n−1] n > 0

0 else

10 parentr =

{ (

N−−(k−n)
N−k

)

· t[k−1][n]) p < k

0 else
11 t[k][n]← parentl + parentr
12 np ← np + t[k][n]
13 if(np > p) and (Np[k] = ) then
14 Np[k] = n

15 endif
16 endfor
17 endfor

end
output: Np

Table 1: Pseudo code to generateNp = {n(k, p)|k = 1, . . . ,N}.

where P
(

+|rk
i

)

(P
(

−|rk
i

)

) is the probability of having thek +1st prediction be positive (negative).

The two boundary cases,rk
k andrk

0 clearly depend only onr(k−1)
(k−1) andr

(k−1)
0 , respectively. It is now

possible to reformulate Equation 6 by replacingP (xk = j) with rk
j :

cdf(i, k) =



















0 for i < max(0, k + N+ −N),
⌊i⌋
∑

j=max(0,k+N+−N)

rk
j for 0 ≤ i < min(k,N+),

1 for i ≥ min(k, N+)

(16)

Table 1 shows anO(N+ · N−) algorithm based on these observations. Note that since the
computation ofr[k][·] only requires the values ofr[k− 1][·], we only need to keepr[k][·] and
r[k−1][·] in memory at any given time thereby keeping space usage toO(N).
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Finally, note that the algorithm can easily be extended to handle the infinite data case by redefin-
ing P

(

+|rk
i

)

and P
(

−|rk
i

)

:

P∞

(

+|rk
i

)

= P(+) (17)

P∞

(

−|rk
i

)

= (1−P(+)) . (18)

In this case the algorithm would only need to know the class marginals and then be told the maxi-
mumk to generate its bounds for. As observed earlier, this will generate the binomial distribution.

3. Demonstration

This section demonstrates the use of top-k confidence bounds to evaluate whether a model is per-
forming better than what would be expected from the random model.

3.1 Data and Prior Results

The demonstration uses results from 3 prior studies that reported enough information (data set size,
number of positives and an evaluation using topk as a measure) to make it possible to assess
significance. While there is much research in information retrieval and text retrieval, such as at
the Text REtrieval Conference (TREC)3, where this technique could be useful, oftenP (+) is not
known or the class skew is so large (< 100 out of 1 million) that seeing even one positive in the top
10 is significant atp = 0.001.

The first data set comes from the “Stock Movement” problem in our prior work (Macskassy,
Hirsh, Provost, Sankaranarayanan, & Dhar, 2001). The data consists of31, 406 news stories col-
lected from newswires between January 5, 1999 and September14, 1999. The data contains6222
positive stories, where a positive story was identified as

A news story is positive (interesting) if the stock price of acompany mentioned in the
story moves significantly in the hour following the story,

where a “significant movement” of a stock was defined as more than one standard deviation from
the normal one-hour movement of that stock. This test set included16, 769 stories,3123 of which
were labeled as positive (interesting) [P (+) = 0.186]. The evaluation measure used in this work
was the number of positives at top5, 10, 20, 100 and their relative improvements over the expected
performance (where the number of positives are expected to be k · P (+).) This is equivalent to
calculating the significance bound atp = 0.5. Results were reported for three commonly used text
classification systems: Rocchio (Joachims, 1997; Schapire, Singer, & Singhal, 1998; Sebastiani,
2002), Naive Bayes (Domingos & Pazzani, 1996; Joachims, 1997; Mitchell, 1997) and Maximum
Entropy (McCallum & Nigam, 1998; Nigam, Lafferty, & McCallum, 1999).4 The performance
reported in the paper ranged from0 to 4 positives in the top5 (versus1 positive expected),3 to 5
positives in the top10 (versus2 expected),6 to 9 in top 20 (verses4 expected), and32 to 45 in the
top100 predictions (versus an expected19 positives). The improvements are clearly impressive, but
are they significant?

3. http://trec.nist.gov
4. Using the RAINBOW text-classification system version20020213 (McCallum, 1996).
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The second set of results are based on the task of assigning submitted papers to reviewers (Du-
mais & Nielsen, 1992). The technique used was Latent Semantic Indexing (LSI) (Deerwester, Du-
mais, Landauer, Furnas, & Harshman, 1990), using various reduced dimension sizes. The relevant
evaluation measure reported was precision at top10 (P@10). We consider the data set consisting
of 117 papers submitted to the ACM Hypertext 1991 conference. The data contains full feedback
on relevance from15 reviewers, where the ratings ranged from not relevant (to the reviewer’s ex-
pertise) to very relevant. The mean number of relevant papers was47 (giving P@10 = 0.40).5

The reported result on this data wasP@10 = 0.57. This is equivalent to having5.7 positives in
the top10 predictions. The second result reported in this paper was across10 benchmark data sets,
which had a total number of8629 documents. The performance reported wasP@10 = 0.59, or 5.9
positives in the top10 predictions, again with an expectedP@10 = 0.40.

The third set of results is also based on assigning technicalpapers to reviewers (Basu et al.,
2001). This data set consists of256 papers submitted to AAAI-1998, again with feedback on
relevance from the reviewers. The technique used was an RDBMS system called WHIRL (Cohen,
1998), which has the added functionality of being able to do joins based on text similarity rather
than exact matching. The methodology used here was to generate a body of text that profiles a
reviewer and to match it against a body of text representing apaper to see if there is a good fit. On
average, reviewers found18 papers to be relevant (P (+) = 0.07). The relevant evaluation measure
used wasP@10 andP@30. Various profiling representations were used such as whether to use a
reviewer’s home page, published papers or both. To predict whether to assign a paper to a reviewer,
this profile was either matched to the paper’s abstract, title, keyword or any possible combination
thereof. The values ofP@10 ranged from0.210 to 308 and the values ofP@30 ranged from0.169
to 0.217.

3.2 Comparison to Random Confidence Bounds for Specifick

While the performances for the stock movement problem are clearly well above the expected per-
formance using the random model atp = 0.5, are theysignificantlyabove what could be expected
from the random model? Using the “stock-movement” test set as the data set from which to generate
the random confidence bounds results inD consisting ofN = 16, 769 instances withN+ = 3123
of those being positive.

Freezingk andp to particular values, it is now possible to ask whether the reported results
are indeed significant. Specifically, the study reported values fork ∈ {5, 10, 20, 100}. We will
considerp ∈ {0.100, 0.001}. To evaluate the significance of the reported results, two things need
be considered:

1. Givenp andk, how many positives would be expected? To answer this, we freezep andk,
and solve forj in Equation 7.

2. How significant would it be to seej positives in topk predictions? This is answered by
freezingi andk, and computingp = 1−cdf(k, i) using the cdf function given in Equation 16.

The algorithm shown in Table 1 can easily be modified either (a) to return the number of ex-
pected positives, givenk andp, or (b) to return thep-value for a givenk andn+, the number of
observed positives in those topk. Table 2 showsn+, the number of positive instances in each of the

5. One global threshold on the reviewer relevance rating wasused to define ’relevant.’
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Prior n(xk, p) Rocchio Maximum Entropy Naive Bayes
k p=0.100 p=0.001 n+ p n+ p n+ p

5 0.93 2/ 1.72/ 1.58 4/ 3.84/ 3.57 2 0.048/ 0.048 0 0.643/ 0.643 4 2.2e−4/2.2e−4

10 1.86 3/ 2.99/ 2.98 6/ 5.88/ 5.73 5 0.004/ 0.004 3 0.098/ 0.098 4 0.025/ 0.025
20 3.72 6/ 5.59/ 5.50 10/ 9.40/ 9.25 8 0.006/ 0.006 9 0.001/ 0.001 6 0.063/ 0.063

100 18.62 24/23.18/23.17 31/30.91/30.92 32 4.1e−4/4.3e−4 45 3.3e−10/3.8e−10 39 5.1e−7/5.5e−7

Table 2: Evaluation of performance on the “stock-movement”data for k = {5, 10, 20, 100}.
Shown are the topk bounds. The first column shows the expected performance at
p = 0.5 (the prior). The next two groupings show the expected performance (dis-
crete/interpolated/parametric) atp = 0.100 andp = 0.001. The next three groupings
show the reported number of positives for eachk for each method (n+) along with the
computedp-value (discrete/parametric).

top k brackets, fork ∈ {5, 10, 20, 100}. Three possible bounds were generated for eachp-value,
either the discrete bound (finding the smallest integer whose cdf is larger than(1−p)), interpolation
between the discrete bounds straddling(1−p), and finally the parametric bound. Two things are
apparent from the numbers in the table. The first is that although the methods generally were able
to outperform the random model atp = 0.5, often by a large margin, the improvements were not as
significant as they qualitatively look untilk becomes large. The second noteworthy observation is
that the computedp-values for the discrete and parametric bounds are almost always equal as seen
in the last three groupings. This is due to having discrete values forn+, where the parametric and
discrete cdfs generally should be the closest as observed inFigure 1. For large data sets as this,
the binomial estimation ofn(k, p) will be slightly lower than that of the discrete bound, but larger
than the interpolated bound. This is due to the curvature of the cdf at the p-values we generally are
interested in. Figure 2 highlights the bounds generated by the parametric and interpolated methods
for p = 0.1 andp = 0.01, as well as the curves used to generate these bounds. As we canclearly
see, the interpolated curve only touches the parametric curve at the discrete points and is other-
wise below it.6 Therefore, it will cross thep-value line for any givenp later (with respect ton+)
than the parametric curve. This fact should lead one to conclude that using parametric bounds will
yield better bounds when the values whosep-values are to be estimated are real. However, since
the interpolated bounds are very close to the parametric bounds and generally are slightly more
conservative, then you should consider using them as they are computed more efficiently than the
parametric bounds. Further, the parametric bounds are not precise for smaller data sets as we shall
see below.

Looking at the numbers from the discrete distribution, we see that only Naive Bayes is sig-
nificantly better than the random model atk = 5. However, it then becomes less significant at
k = 10, 20 until starting to improve again. Rocchio, on the other hand,is better atk = 10 with
p = 0.025, but it has a slower rate of improvement askv increases than that of Maximum Entropy,
which is the best atk = 20 with p = 0.006. All of them do perform significantly better (p < 0.001)
than the random model atk = 100.

6. This is always the case for larger data sets, although it does not happen for smaller data stes as shown in Figure 1 and
as we will see below.
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Figure 2: Figure showing why parametric bounds will generally be smaller than interpolated
bounds.

Size Prior n(x10, p) Reported Computed
(p=0.5) p=0.100 p=0.001 P@10 p-value

Submitted Abstracts 117 4.0 6/5.09/5.50 8/7.88/8.22 5.7 0.166/0.088/0.079
All Datasets 8269 4.0 6/5.59/5.50 9/8.42/8.22 5.9 0.166/0.066/0.062

Table 3: Result for review assignments on Hypertext’91 and benchmark datasets (Dumais &
Nielsen, 1992). The table shows the topk bounds, based on prior, expected performance
with p = 0.100 andp = 0.001 (discrete/interpolated/parametric), andP@10 results as re-
ported in the prior study with their computedp-values (discrete/interpolated/parametric).
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Evaluation Size Prior n(xk, p) Reported Computed
Measure (p=0.5) p=0.100 p=0.001 num+ p-value

Worst (h+A) P@10 256 0.70 2/1.40/1.28 4/3.69/3.54 2.10 0.026/0.023/0.024
Worst (h+A) P@30 256 2.10 4/3.45/3.45 7/6.56/6.89 5.07 0.011/0.010/0.015
Best (h+KT) P@10 256 0.70 2/1.40/1.28 4/3.69/3.54 3.08 0.003/0.003/0.003

Best (h+K) P@30 256 2.10 4/3.45/3.45 7/6.56/6.89 6.51 0.002/0.001/0.002

Table 4: Results for paper assignment prediction for AAAI-1998 submissions (Basu et al., 2001).
It shows the number of positives in topk, based on prior, expected performance (dis-
crete/interpolated/parametric) withp = 0.100 andp = 0.001, and results as reported in
the prior study along with the computedp-values (discrete/interpolation/parametric).

We next analyze the reported performance of the LSI technique on the Hypertext’91 data and
on the 10 benchmark data sets. Table 3 shows the results of theanalysis. Although the reported
results show an increase of the relevant documents in the top10 predictions from4 to 5.9 (which
is truncated to5 for the discrete case as is called for in Equation 6), this improvement is not as
significant as one might have expected withp = 0.081 andp = 0.059 for the two interpolated
bounds. The table shows clearly that it is possible to get very close to the parametric bound by
using interpolation, whereas using the discrete bounds areoff by a large margin. This argues that if
one were to use the discrete bounds, then interpolation makes more sense than truncating the values.
We again see that the parametric bound, when computingn(xk, p) for a given value ofp, contains
is on the order of0.5 fewer positives in the topk than using the discrete bound.

The last reported results we analyze is that of predicting reviewer assignment fitness to256 of
the papers submitted to AAAI-1998 (Basu et al., 2001). Table4 shows the significance of the best
and worst results reported, where the worst reported results for bothP@10 andP@30 used the
homepage as a profile for a reviewer and matched it against theabstract of the paper. For the best
results, both again used the homepage as the profile of the reviewer which was then matched against
either the keywords and title of the paper (P@10) or only the keywords (P@30). The table shows
that even the worst results forP@10 were fairly significant withp = 0.023, where the worst results
for P@30 were even more significant atp = 0.010. The best results were highly significant for both
values ofk, again with a higher significance ask increased. Again, we see very close agreement
between the bounds found using the parametric functions andthe interpolated method. Interestingly,
we see that for the twoP@30 results, thep values were slightly lower for the discrete distribution
over that of the parametric method. Performing the interpolation made this difference even larger.
We plotted the two cdf curves as before to investigate this behavior. Figure 3 highlights the relevant
part of theP@30 curves. Two noteworthy things happen. First, we see that theintegration falls
apart in two places for small values ofn+. Second, we see that the interpolated curve actually is
partly above the parametric curve, as opposed to what we saw in the first case study. This accounts
for why we see the difference inp-values. This pattern is consistent for smaller data sets.

To summarize, we found in all three studies that the reportedresults were significant at least at
p < 0.1. In doing so, we found that using interpolation to estimate thep-values is generally a very
good approximation to the parametric values and should therefore be used due to its computational
efficiency. For generating the bounds, this was not always the case where the interpolated bounds
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Figure 3: When the parametric function fails.

were shown to be slightly larger than the parametric bounds,whereas the discrete bounds were the
most restrictive of them all. We further found that the parametric bounds were questionable for
smaller data set sizes and should generally not be used unless you have large data sets and need
the extra precision. Qualitatively, the difference between the discrete and parametric bounds were
generally< 0.5, with the interpolated bounds generally being in between.

3.3 Finding Crossover Points

In this section we take advantage of the fact that we have access to the complete set of scores for the
evaluation data set. We use these to perform a more global analysis over the complete set of scores.
Specifically, we can investigate for which values ofk the methods started to become significant for
any givenp. The topk bounds can be depicted in any kind of evaluation curve which is generated
by varying the threshold of the model (e.g., precision-recall curves, DET curves, lift-curves, etc.)
ROC graphs plot false-positive (FP) rates (1−specificity) on thex-axis and true-positive (TP) rates
(recall) on they-axis. ROC curves are generated in a fashion similar to precision/recall curves, by
varying a threshold across the output range of a scoring model, and observing the corresponding
classification performances.7 For this study, we use the ROC curves.

Figure 4 shows the ROC curves for the three learning methods as reported in the original study.
The diagonal line, untitled, is the expected performance based on the random model at thep = 0.5
confidence level. The figure shows that all methods are clearly performing better than the random
model.

As all methods showed decreasing values forp ask increased, we wanted to investigate their
performances in terms of how they compare against the confidence bound atp = 0.001 for larger
values ofk. Figure 5 shows the ROC curves from the original study, focusing on the target area

7. For a good introduction on the use of ROC curves in Machine Learning, see (Fawcett, 2003).
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wherek < 100. It depicts, fork = {5, 10, 20, 100}, where the curves intersect the topk predictions.
The figure shows4 isolines, one for each value ofk, where the isoline shows where all points for
a givenk would lie in ROC space.8 The figure clearly shows that the methods quickly outpace the
bound atp = 0.001 and are all quickly above that curve by a large margin.

We therefore generated the most significant bound we could pragmatically compute on our
computers (p = 10−17) without using slow arbitrary precision math libraries. The question we now
investigate is whether any of the methods will ever become significant at such an extreme level.

8. Detailed explanations of these, and other, ROC isometrics for machine learning metrics can be found elsewhere
(Provost & Fawcett, 2001; Flach, 2003).
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Figure 6: ROC curves for financial ’Stock Movement’ problem showing where methods cross over
to outperformn(k, p) for p = 0.001 andp = 10−17.

One question that can be answered by the technique used here is at whichk does the perfor-
mance of a method become significant. Letmk be the number of positives methodm has in its top
k predictions. Givenp and a modelm, find k such thatmk ≤ n(k, p):

cdf(mk, k) < (1− p) ≤ cdf(mk + 1, k) (19)

It may be that the method crossesn(k, p) more than once or followsn(k, p) very closely, as is the
case with Rocchio aroundk = 100 (see Figure 5). In such a case, it might make sense to strengthen
the crossover criteria and specify that the method must perform as well asn(k, p) over two or more
contiguousk’s. In this demonstration, we specify that the method must match n(k, p) for at least
2 contiguousk’s. Figure 6 highlights, givenp = 0.001 and[= 10−17, where the methods started
outperforming each of the twon(k, p) confidence bounds. Not shown in the graph is Rocchio’s
crossover ofn(k, p) atp = 10−17. This happens atk = 486 with mk = 170.

Finally, we can look at the bounds for allk and plot them in the same space as the evaluation
curve—ROC space in this case. Performing such a visual comparison can give a more global and
qualitative understanding of the performance of a system aswell as quickly show where the systems
perform significantly better than what would otherwise be expected. Figure 7 plots the same curves
as before and adds the two random confidence bands, each generated by joining the bounds across
all k = 1, . . . , N into one curve. While it was clear from the previous analysisthat the models were
not significant fork < 20, this figure clearly shows that all three learned models werewell above
the random confidence bounds for mostk’s, even at the extreme level ofp = 10−17.
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Figure 7: ROC curves for financial ’Stock Movement’ problem with random confidence bands

4. Final Remarks

This paper introduced a new technique to efficiently generate confidence bounds for evaluation at
top k predictions. It generates the bounds for a givenk and p-value by finding the number of
positives needed to dominate(1−p) of all possible rankings for a given evaluation data set,D.

The technique was demonstrated on three bodies of prior work, in which it was clearly shown
that although the performances were generally greatly improved over the random model atp = 0.5,
these improvements were not always as significant as might beimplied by the increase in raw
performance. Three important insights came out of this study: (1) it is hard to beat the random
model at small values ofk unless there is a large class skew, (2) interpolation of thep-values from
the discrete bounds generally results in the samep-values as the more computationally intensive
method of using parametric estimations, and (3) the parametric bounds fall apart for small data set
sizes although they have slightly higher precision for larger data set sizes. Therefore, use of the
interpolated bounds should be used unless higher precisionis needed, in which case the parametric
bounds should be used.

With regard to outperforming the random model at small values ofk, we saw the obvious—that
the more even the distribution, the more likely it is to see positives in the topk predictions. This
has the effect seen in the analysis of the Hypertext’01 results where seeing6 positives in the top
10 was only significant atp = 0.100. Such a situation makes it extremely difficult to outperform
the random model at any significance level even though the qualitative improvements might seem
impressive. This extreme density of positives lessens as the class skew becomes larger as is seen in
the AAAI-1998 dataset where even seeing2 positives in the top10 is significant atp = 0.026.

Next, the technique was used to identify crossover points—the point where a method starts be-
coming significant for a givenp. This was shown on the one data set where the full set of prediction
scores were available. With this technique, it was possibleto show that all three methods under
consideration were able to outperform the random model atp = 0.001 relatively quickly and even
for p = 10−17 ask increased. This was shown even more strikingly when plotting the complete set
of confidence bounds across all values ofk.
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The use of techniques such as the one described in this paper is important to verify that systems
perform better than what would be expected from the random model. The demonstration clearly
showed that even though the performances at first glance looked impressive, the differences were
not necessarily as significant as the qualitative performance indicated.

Finally, the source code to compute the discrete bounds is available on the author’s web-site. It
is open source and requires Java 1.5.
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