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Peano on Symbolization,
Design Principles for Notations,

and the Dot Notation

Dirk Schlimm
McGill University (Canada)

Résumé : Peano a été l’une des forces motrices dans le développement du
formalisme mathématique actuel. Dans cet article, nous étudions son approche
particulière de la conception notationnelle et présentons quelques caractéris-
tiques originales de ses notations. Pour motiver l’approche de Peano, nous
présentons d’abord sa vision de la logique comme méthode d’analyse et son
désir d’un symbolisme rigoureux et concis pour représenter les idées mathé-
matiques. Sur la base à la fois de sa pratique et de ses réflexions explicites
sur les notations, nous discutons des principes qui ont guidé Peano dans
l’introduction de nouveaux symboles, le choix des caractères et la mise en
forme des formules. Enfin, nous examinons de plus près, d’un point de vue
systématique et historique, l’une des innovations les plus marquantes de Peano,
à savoir l’usage de points pour regrouper des sous-formules.

Abstract: Peano was one of the driving forces behind the development of
the current mathematical formalism. In this paper, we study his particular
approach to notational design and present some original features of his
notations. To explain the motivations underlying Peano’s approach, we first
present his view of logic as a method of analysis and his desire for a rigorous
and concise symbolism to represent mathematical ideas. On the basis of both
his practice and his explicit reflections on notations, we discuss the principles
that guided Peano’s introduction of new symbols, the choice of characters, and
the layout of formulas. Finally, we take a closer look, from a systematic and
historical perspective, at one of Peano’s most striking innovations, his use of
dots for the grouping of subformulas.

Philosophia Scientiæ, 25(1), 2021, 95–126.
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1 Introduction

One of the concerns of philosophers of mathematics is to clarify the principles
and methods that drive the development of mathematics. In this paper, we
shall take a closer look at Giuseppe Peano’s (1858-1932) general views about
logic as a method of analysis of mathematical ideas and his more practical
concerns regarding the presentation of the results of such analyses.1 As we
shall see, these notions are subtly intertwined and motivated by his general
aims of striving for rigor and conciseness.

Like other mathematicians and logicians in the 19th century, Peano
attributed the lack of satisfying solutions to many questions in the foundations
of mathematics to the ambiguities of ordinary language [Peano 1889a, III].
In the use of symbolic languages to represent and analyze mathematical
ideas and their logical relations, Peano envisaged a way of avoiding such
ambiguities. However, Peano also realized that certain restrictions had to
be imposed on these symbolisms. For example: to avoid ambiguities, each
symbol should have a unique and precise meaning; to avoid errors, the symbols
themselves, although arbitrary in principle, should be such that the cognitive
effort necessary for their use is reduced to a minimum. Accordingly, Peano
considered the development of an appropriate symbolic language, which he
called “symbolic writing” (scrittura simbolica) or “ideography” [Peano 1896-
1897, 202], to be a crucial task for the advancement of mathematics. As a
consequence, in addition to formulating his famous axiomatization of arith-
metic, Peano also originated many innovations in mathematical symbolism,
including the dot notation in logic.

The early development of Peano’s logical notation can be easily retraced
by considering his publications from 1887 to 1889.2 Before 1888, Peano’s
publications (e.g., [Genocchi 1884] and [Peano 1887]) do not contain any
specific notations for logic. In the latter, Grassmann is mentioned in the
Preface, but no logicians are. Logical notation appears for the first time
in Peano’s Calcolo Geometrico secondo l’Ausdehnungslehre di H. Grassmann
[Peano 1888], whose preface is dated February 1, 1888, and which begins with a
short chapter on “The operations of deductive logic”, based on Schröder’s Der
Operationskreis des Logikkalkuls [Schröder 1877]. However, Peano replaces all
of Schröder’s symbols “in order to forestall any possible confusion between
the symbols of logic and those of mathematics” [Peano 1888, X] (quoted
from [Peano 2000, xiv]). A year later, Peano published his famous work
on arithmetic, Arithmetices Principia nova methodo exposita [Peano 1889a],

1. For background on Peano’s life and works, see [Kennedy 2002]; for discussions of
his philosophy and works, see [Kennedy 1963] and [Skof 2011]. In the following text,
all translations are by the author (DS) unless a reference to a published translation
is given.

2. For a more detailed discussion, including the background of Peano’s develop-
ment, see [Bottazzini 1985].
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in Latin, which begins with a chapter on logical notations in which he also
introduces the difference between set membership (symbolized by “ε”) and
inclusion (replacing the symbol “<” that he used earlier with “ C”). Again,
Peano also replaces some of the logical symbols, but, more importantly, he
introduces the dot notation for the grouping of subexpressions. From then on,
this notation was employed in most of Peano’s publications, beginning with
I Principii di Geometria logicamente esposti [Peano 1889b] published later in
the same year, as well as articles dedicated explicitly to mathematical logic,
such as [Peano 1891b] and [Peano 1891a], and the various editions of the
Formulario [Peano 1895a, 1897, 1901, 1903, 1905].

How these historical developments are intertwined with Peano’s general
views about methodology in mathematics is the main topic of this paper. In
the following, we begin by discussing Peano’s general views on symbolization
and his view of logic as a method of analysis (Section 2). In Section 3, we
relate these views to Peano’s considerations for the design of notations. In
particular, we present in detail the principles that guide the introduction
of new symbols, the choice of characters, and the layout of mathematical
formulas. In the third part of the paper (Section 4), Peano’s use of dots for
the grouping of subformulas is explained and discussed in the context of its
historical development. This particular notation is one of the most striking of
Peano’s innovations and has been widely popularized by its use in Whitehead
and Russell’s Principia Mathematica [Whitehead & Russell 1910-1913], but it
has hardly received any attention in the literature.3

2 Logic as method of analysis

2.1 Peano and Frege on logic
Let us begin by comparing and contrasting Peano’s general attitude toward
logic with Frege’s, given that the latter has been studied extensively and is
thus widely known. Both share the desire to secure rigorous reasoning in
mathematics with the use of a symbolic language with clearly defined, unique
meanings [Peano 1890a, 186]. However, their conceptions of rigor differ with
regard to the level of explicitness of the analysis of logical reasoning. Frege,
on the one hand, wanted to avoid any appeal to intuition in mathematical
inferences and thus emphasized his use of formal rules of inference. On the
other hand, possibly due to the fact that his main influences in logic came
from the algebraic tradition of Boole and Schröder, Peano’s paradigm of
deduction was that of reasoning with algebraic equations [Peano 1889a, III]
and [Peano 1889b, 28–29]. His lack of explicit inference rules was criticized
by van Heijenoort as “a grave defect” [van Heijenoort 1967, 84]. In practice,

3. For example, a discussion of the dot notation is conspicuously missing in
[Kennedy 2002].



98 Dirk Schlimm

however, Peano’s derivations can be construed formally as being based on
instances of axioms, the substitution of equalities, and modus ponens [von
Plato 2017, 55–56]. In short, Peano’s system is not a “formal system” in the
modern sense, i.e., with a recursively defined language and explicit rules of
inference, but, according to von Plato, it could be fairly straightforwardly
constructed as one.4

Another aspect in which Frege and Peano differ is their attitude toward
an investigation into the fundamental principles of logic. While Frege put
his theory on a firm axiomatic foundation, Peano did not, although he
had done so for arithmetic and geometry, and remarked that “it would
be an interesting study” [Peano 1889b, 29]. Unlike Boole and Schröder,
both Frege and Peano intended their logical formalisms to be applied to
mathematics and not be used in isolation, merely for the efficient solution of
logical problems. Peano writes:

I understand how important theoretical studies of logic are; but,
given the immensity of such studies, I prefer directing my forces
toward application. [Letter from Peano to Couturat, 1 June 1899]
(reprinted in [Roero 2011, 87])

Nevertheless, with regard to the aim of applying logic to mathematics,
Frege and Peano differed: for Frege, it was a theoretical exercise aimed at
clarifying concepts and securing the foundations of mathematics; for Peano,
it was a practical matter of actually doing mathematics in a new way.
Because of this emphasis on practical use, Peano concentrated his efforts on
developing a convenient formalism for the analysis and concise representation
of mathematical ideas.

2.2 The Formulario project and concise notations
Soon after completing his axiomatizations and symbolic presentations of
arithmetic [Peano 1889a] and geometry [Peano 1889b], Peano envisaged an
impressive collaborative project, aimed at publishing a collection of important
mathematical results expressed in a symbolic language. The first edition of
the Formulaire de mathématiques, or Formulario Mathematico, as it was later
called, appeared in 1895; an Introduction, in which Peano presented his logical
notation, had already been published one year earlier [Peano 1894]. Four
different editions of the Formulario were subsequently published in 1897, 1901,
1903, and 1905, each of which was the result of substantial revisions of the one
preceding it. Peano also showed great historical awareness by often listing a
theorem together with a reference to where it first occurred. The idea for this
project is put forward in print for the first time in 1891 as the concluding note
of a paper on the concept of number. Before ending the paper by inviting

4. Deviating from the modern usage, we shall thus refer to Peano’s symbolic
language as a formalization.
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suggestions for theorems to be included in the collection, Peano motivates the
project as follows:

It would also be very useful to collect all the known propositions
referring to certain parts of mathematics, and to publish these
collections. Limiting ourselves to arithmetic, I do not believe there
would be any difficulty in expressing them in logical symbols.
Then, besides acquiring precision, they would also be concise,
so much so, probably, that the propositions referring to certain
subjects in mathematics could be contained in a number of pages
not greater than that required for the bibliography. [Peano 1891c];
[Peano 1957-1959, III, 109] (quoted from [Kennedy 2002, 63])

Given the sheer volume of the project, a concise form of representation was
indispensable. Thus, while Peano writes that “the fundamental utility of the
logical symbols is rigor and precision” [Peano 1908, X], he also emphasizes the
importance of symbolization for reducing the length of presentations, because
in some cases they would be impossible otherwise:

It turns out that symbolic writing is about ten times shorter
than in ordinary language. A publication of the ample present
Formulario in ordinary language would be almost impossible in
practice, as would be the publication of logarithmic tables in
ordinary language or using Roman numerals. [Peano 1908, IX]5

We note that, for Peano, one of the main practical requirements for the design
of a notation is the reduction of the length of individual formulas, rather
than the number of different signs that are employed. These two desiderata
are frequently in tension with each other, as the comparison between binary
and decimal place-value notations illustrates: the former uses only two signs
instead of ten but results in longer expressions.6 Given the aim of reducing
the length of expressions, Peano’s interest in reducing the use of parentheses
should not come as a big surprise. We shall return to this in Section 4, when
discussing the development of Peano’s dot notation.

2.3 Formalization as method of analysis

It is clear from the announcement of the Formulario quoted above that the
use of a symbolism was an integral part of the project from the beginning,
since it allows for both precision and conciseness. Moreover, the process of
formalization itself is a method of conceptual analysis that begins with the

5. In fact, Roman numerals for natural numbers (without subtractive notation)
are on average 2.6 times longer than Indo-Arabic numerals [Schlimm & Neth 2008,
2101].

6. E.g., “10010011” vs. “147”.



100 Dirk Schlimm

following two steps:7 (1) The identification of the fundamental mathematical
ideas, and (2) the representation of these ideas by primitive signs of the
symbolism. The first step requires a precise and unambiguous identification
of the underlying ideas:

The reduction of a new theory into symbols requires a profound
analysis of the ideas that occur in this branch. Imprecise ideas
cannot be represented by symbols. [Peano 1895a, iv] (quoted from
[Kennedy 2002, 67])

As a consequence, the more thoroughly ideas have been analyzed and expressed
in ordinary language (Step 1), the easier it is to translate them into a
symbolism (Step 2). Peano writes:

The transformation into symbols of propositions and proofs
expressed in the ordinary form [...] is a very easy thing when
treating propositions of the more accurate authors, who have
already analyzed their ideas. It is enough to substitute, in the
works of these authors, for the words of ordinary language, their
equivalent symbols. Other authors present greater difficulty. For
them one must completely analyze their ideas and then translate
into symbols. Not rarely it is the case that a pompously stated
proposition is only a logical identity or a preceding proposition,
or a form without substance. [Peano 1891c]; [Peano 1957-1959,
III, 109] (quoted from [Kennedy 2002, 63])

However, it is not only the use of ambiguous or pompous language that
obscures the ideas to be uncovered by logical analysis, but also the ideas’
fundamental character and the fact that they do not necessarily correspond
to basic expressions in ordinary language. As Peano explains in a textbook of
arithmetic and algebra written for use in secondary schools, the logical symbols
“⊃”, “ε”, and “ E”, which stand for derivation, membership, and existence,

represent simple ideas and it is precisely their simplicity that
prevented them for a long time to be isolated and stripped
from the complexity with which they present themselves both in
ordinary language and the language of science. [Peano 1902, III]

The surface structure of language can mislead even skilled logicians, such as
Schröder. His use of a single sign to denote the ideas represented by “⊃” and
“ε” is criticized by Peano as a major flaw that prevents Schröder’s symbolism
from being a proper ideography [Peano 1898a, 97–98].

7. The view of logic as analysis was also clearly formulated by Peirce, who wrote:
“In logic, our great object is to analyze all the operations of reason and reduce them
to their ultimate elements; and to make a calculus of reasoning is a subsidiary object”
[Peirce 1880, 21]. This work is referred to in [Peano 1889a, IV]. However, in contrast
to Peano, Peirce was also interested in theoretical investigations of logic itself.
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That Peano indeed considered formalization as a method of analysis can
also be seen from the subtitle of Peano’s work on the axiomatization of natural
numbers, which reads “nova methodo exposita” (“presented by a new method”,
[van Heijenoort 1967, 83]), and in [Peano 1896-1897, 202], where he speaks of
the “analytic instrument”8 that has been applied by himself and others.

2.4 Formalization as a method for checking
an analysis

The utility of a symbolic language is not exhausted once mathematical ideas
are expressed in it; the formalization itself can be used to check the adequacy of
the analysis. Thus, a third step is added to the method of analysis: (3) Further
study of the symbolic expressions to determine consequences and possible
simplifications. For this, Peano suggests the following:

After having written a formula in symbols, it is useful to apply
several logical transformations to it. It can thus be seen if it
is possible to reduce it to a simpler form, and one can easily
recognize if the formula has not been well written. This is because
the notations of logic are not just a shorthand way of writing
mathematical propositions; they are a powerful instrument for
analyzing propositions and theories. [Peano 1895a, vi] (adapted
from [Kennedy 2002, 68])

With regard to the analysis of theories, i.e., sets of propositions and not
just individual ones, a formalization can also be used to impose a logical order
on the propositions (i.e., present some as axioms and others as theorems) and
to check the definitions. Peano writes:

It is always difficult to order the propositions of a theory. One
can order them according to the signs employed for writing them.
This rule yields, in general, good results. [Peano 1895a, vi]9

Once a theory is symbolized, i.e., the primitive ideas are determined and
expressed by primitive symbols, the propositions ordered, and symbols for
complex ideas introduced by definitions, one can easily verify that all symbols
used in the definiens have been properly introduced. This can be done “in
a mechanical way”, because only the symbols need to be considered and no
recourse to the original ideas is necessary. Peano explains:

The ideography makes evident, in a mechanical way, that defini-
tions are correct and that demonstrations are rigorous.

8. Kennedy translates “strumento analitico” as “analytic method” [Kennedy 1973,
190].

9. See [Peano 1897, 28] for an application of this suggestion; see [Cantù 2014] for
a discussion of Peano’s views on the order of the primitive ideas of a science.
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For example, it is a fundamental rule of definitions, that the
defined symbol must be expressed by previous symbols. Thus, if
we consider for example the definition of prime number on p. 58,
we see that it is expressed by the symbols −, 1, +, ×, Ni, which
were introduced on pages 10, 29, 29, 32, 37, and that several of
among these symbols are defined by previous symbols, and so
on, until we reach a decomposition into primitive ideas that are
determined by primitive propositions. [Peano 1908, X]

2.5 Depth, uniqueness, and arbitrariness of analysis

2.5.1 Depth and uniqueness of analysis

So far, we have learned that formalization yields a “profound” and “complete”
analysis of mathematical ideas, but how do we know when this process is
complete? In the following passage from a letter to Felix Klein, Peano explains
the aim of mathematical logic and mentions an additional goal with regard to
the outcome of logical analysis:

It is the aim of mathematical logic to analyze the ideas and forms
of reasoning that occur especially in the mathematical sciences.
The analysis of the ideas allows to find the fundamental ideas,
with which all other ideas are expressed, and the relations between
various ideas, i.e., the logical identities, that are those forms of
reasoning. This analysis also leads us to indicate the simplest
ideas with conventional symbols, which, when appropriately
combined, represent composite ideas. This yields a symbolism or
symbolic writing that represents all propositions with the smallest
number of signs. [Letter from Peano to Felix Klein, 19 September
1894] (reprinted in [Peano 1990, 124])

Thus, a successful analysis yields a minimal set of fundamental, simple ideas
that are represented by symbols, such that through the combinations of these
symbols all complex ideas can also be expressed.10 A small number of symbols
is therefore a hallmark of a formalism, because it indicates the depth of the
analysis. Indeed, at the beginning of many of his publications, Peano proudly
emphasizes the small number of primitive symbols being used and, in his
discussion of Frege’s work, he takes the diminution of the number of primitive
symbols as indicative of a more thorough and deeper analysis. In his review
of the first volume of Frege’s Grundgesetze [Peano 1895b], Peano compares
his own with Frege’s formalism, acknowledging that many of their ideas are
analogous. However, among other criticisms, Peano points out the lack of a

10. See also [Peano 1894, 173] for a similar formulation; in [Peano 1890b], he
sets out to “find the minimum of signs and conventions necessary to express the
25 propositions of the Fifth Book of Euclid”.
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symbol for set membership in Frege’s Begriffsschrift as a defect and, since
Peano’s notation is allegedly built on fewer primitives than Frege’s, Peano
regards his own analysis as “more penetrating” [Dudman 1971, 30].11

With regard to the outcome of different symbolic analyses, Peano makes
the following general remark:

Now if, independently of each other, there arise two systems both
capable of representing and analysing the propositions of a theory,
one will have to be able to present an absolute formal difference
between them; but there will have to exist at bottom a substantial
analogy; and if the two systems are equally developed, the relation
between them will have to be that of identity. For mathematical
logic does not consist of a set of arbitrary conventions, variable
according to the author’s fancy. It consists rather of the analysis
of ideas and propositions into those that are primitive and those
that are derivative. And this analysis is unique. [Peano 1895b,
123] (quoted from [Dudman 1971, 28])

This claim about the uniqueness of logical analysis, which is repeated again
at the end of Peano’s review, fits together with the earlier claim about the
minimality of the set of simple ideas. In what sense, however, different analyses
could result in unique, “substantially analogous” systems is left unclear. Based
on the minimality and uniqueness claims, the passages quoted above could be
interpreted as expressing some kind of realist view, according to which the
structure of the symbolism mirrors the (true) logical structure of the ideas.

2.5.2 Arbitrariness of analysis

The realist interpretation of the representations of mathematical ideas and
propositions offered at the end of the previous paragraph is called into question
by the intertranslatability of various logical connectives, which Peano discusses
in the same text [Peano 1895b]. As he is well aware, in propositional logic
either implication or disjunction can be taken as primitive (together with
negation) and the other as defined. Moreover, in other places, Peano is
quite explicit about the difficulties involved in determining which ideas and
propositions should be taken as fundamental: he notes that the distinction
between primitive and derived ideas is “somewhat arbitrary” or “a little bit
arbitrary” on numerous occasions12 and that “each author can begin with
the group that they find most satisfying” [Peano 1898a, 100]. To choose

11. Frege vehemently disagreed: “I do not regard the mere counting of primitive
symbols as sufficient to substantiate a judgment about the profundity of analysis
toward fundamentals” [Dudman 1971, 35]. See also Peano’s review of Schröder’s
formalism, in which he points out that the latter is based on 15 primitive ideas,
whereas his own system is built on 8 [Peano 1898a].
12. See, e.g., [Peano 1889b, 25], [Peano 1891a, 25], [Peano 1894, 50–51], and [Peano

1897, 27].
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between alternative sets of primitives, Peano frequently invokes a notion of
“simplicity”.13 However, this notion is left unspecified, and he notes that
“there is arbitrariness in the assessment of simplicity” [Peano 1894, 51].

On the first page of the Preface to the first edition of the Formulario, Peano
states the independence of mathematics from particular representations even
more forcefully:

The notations are a bit arbitrary, but the propositions are absolute
truths, independent of the notations used. [Peano 1895a, III]

On the basis of these considerations, Peano’s attitude has been frequently
characterized as “strictly instrumental” with regard to the role of logic [Segre
1994, 286] and “instrumentalist” with regard to notations [Bellucci, Moktefi
et al. 2018, 3].

2.5.3 Possible resolution of the tension between uniqueness
and arbitrariness

The tension between Peano’s claims about the uniqueness of an analysis,
which leads to a minimal set of primitives, and his conviction about a certain
insurmountable arbitrariness regarding the choice of primitives can be resolved
by taking a careful look at what Peano says in the following passage, in
the context of whether “point” and “segment”, or “point” and “ray”, should
be chosen as primitives in geometry (as we have seen above, an analogous
situation arises in logic):

It is clear that not all entities can be defined, but it is important
in every science to reduce the number of the undefined entities
to a minimum. [...] The reduction of the undefined entities to a
minimal number can be somewhat arbitrary; so, if by means of a
and b we can define c, and by means of a and c we can define b,
our choice between a, b and a, c as an irreducible system remains
arbitrary. [Peano 1889b, 25] ([Peano 1957-1959, II, 78])

Here, both minimality and arbitrariness are considered: the number of
primitives should be minimal, but among the possible minimal sets, it is
arbitrary which one is chosen. Moreover, if one of these sets is taken as
primitive and the other entities are defined in terms of this set, and if
the axioms are chosen appropriately, the same theorems will follow. The
theories, then, understood as sets of theorems, are indeed identical and the
analysis unique, as Peano claimed in his review of Frege’s Grundgesetze
(see the second quote in Section 2.5.1).14 This interpretation is also

13. See, e.g., [Peano 1891a, 25], [Peano 1894, 50–51], and [Peano 1897, 27].
14. This interpretation is also consistent with Peano’s remark on the identity of

domains on the basis of them satisfying the same propositions [Kennedy 1973, 225].
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compatible with all examples that Peano mentions in his discussions of
arbitrary choices of primitives.15

A prominent case in which the minimality of the set of primitives is
frequently given up is propositional logic itself. As Peirce noticed in the 1880s
and Sheffer rediscovered some 30 years later [Sheffer 1913], a single binary
connective (either Peirce’s arrow or the Sheffer stroke) can be used to define
all other propositional connectives. Accordingly, we would expect Peano to
consider this analysis of propositional logic to be deeper and more profound
than his own.16 Although it is known that Sheffer visited Peano in 1911 and
that they corresponded in 1921, I am not aware of any reactions by Peano to
Sheffer’s discovery.17

We have established so far that, given different minimal sets of primitives,
Peano saw no theoretical reasons to prefer one over the others.18 However, for
any actual presentation, such a choice has to be made, and for this, practical
reasons come into play, even ones that push toward giving up the minimality
of the set of primitives.

2.5.4 Practical considerations against minimality

The demand for a notation to be concise was discussed in Section 2.2 in
connection with Peano’s Formulario project. This suggests adopting a set of
primitives that is not minimal, as they allow for shorter expressions without
having to define derived symbols. Other reasons given by Peano for dropping
the requirement of minimality of the set of primitives in logic are related to
the readability of formulas and their connection to expressions in ordinary
language. For example, after noting that a c

b is equivalent to a − b = V, so
that the sign “ c” could be omitted from the list of primitives, Peano notes:

We shall keep it, however, for greater variety and for analogy
with the common form of expressing the thought. [Peano 1891b,
6], [Peano 1957-1959, II, 98] (quoted from [Kennedy 1973, 160])

In sum, it appears that Peano’s criteria for deciding which ideas are to
be taken as primitive are guided more by considerations of practicality and
convenience of use than by some kind of epistemological or metaphysical
considerations.

15. See the references in Footnote 12.
16. Such was indeed the reaction of Russell; see the Introduction to the second

edition of Principia Mathematica [Whitehead & Russell 1925].
17. I thank Juliet Floyd for this information. The extant correspondence between

Peano and Sheffer, which is held at the Harvard University Archives, does not mention
Sheffer’s innovation.
18. This is in contrast to Frege, who invoked a notion of simplicity of content to

choose the conditional as a primitive connective in his system; see [Bellucci, Moktefi
et al. 2018, 6–7] and [Schlimm 2018, 71–73].
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3 Design principles for characters
and layout

After having discussed Peano’s general outlook on logic and formalization,
we now take a closer look at his approach to mathematical notations. We
have seen above that, for Peano, a symbolism that represents the result of
an analysis should represent the basic concepts of a domain of inquiry by
individual symbols and more complex concepts by symbols that are defined
from them. We have also seen that there are some difficulties in identifying
the primitive concepts, but that is not our primary concern here. Rather, it
is the question of how to represent them, once we have settled on them.

In general, we can consider a notation to consist of a set of characters (also
referred to as signs or symbols)19, structural rules that determine well-formed
expressions, and an interpretation that assigns meanings to (at least some of)
the characters and expressions. Although the choice of characters is arbitrary
from a theoretical point of view, Peano did formulate some design principles
explicitly, while others can be extrapolated from his practice.

As we shall see, the general aims of rigor and conciseness that motivated
Peano’s use of a symbolic language in the first place also underlie his choice
of characters (Section 3.1). In addition, Peano tried to design his notations
in such a way that they reduce the cognitive effort necessary for their use,
e.g., by linking their shapes to their meanings and by using a layout that
facilitates their readability (Section 3.2). Presumably, this would reduce errors
and mistakes when using the notation. Finally, Peano also considered factors
that influence the horizontal and vertical arrangement of the notation on the
printed page (Section 3.3).

3.1 Conciseness and reduction of ambiguity

3.1.1 Uniqueness of meanings and new symbols
to avoid ambiguities

In [Peano 1888], where he presents the logical calculus of Schröder, Peano
replaces each of the five basic symbols employed by Schröder with his own:

It seemed useful to substitute the symbols ∩, ∪, −, #,  for
the logical symbols ×, +, Ai, 0, 1 used by Schröder, in order
to forestall any possible confusion between the symbols of logic
and those of mathematics (a thing otherwise advised by Schröder
himself). [Peano 1888, X] (quoted from [Peano 2000, xiv])

19. To be clear, we mean here character types or symbol types, not tokens, but this
distinction plays no particular role in our discussion.
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Because Peano intends to use his logical symbolism in conjunction with the
usual mathematical notations, he must introduce new characters, which are
not already used in other mathematical domains, to avoid ambiguities. The
use of standard arithmetical symbols in logic does not pose a problem for
Schröder, since he presents logic as a self-standing theory that is not used in
conjunction with other theories, such as ordinary arithmetic.

Peano took the symbols “∩” and “∪” possibly from Grassmann [1844, 5],
who uses them for his more abstract theory of magnitudes; the circle and filled
circle do not have any obvious previous uses, but the symbol for negation (or
set complement) looks very similar to the minus sign. This seems to have
bothered Peano as he later recommends the following:

In the manuscript, it is best to give the sign for ‘not’ the form ∼,
so as not to confuse it with − (minus). [Peano 1895a, VI] (quoted
from [Kennedy 2002, 68])

This comment comes from the beginning of the first edition of the Formulario,
where Peano included a list of remarks and rules to facilitate future collabo-
rations. The above considerations about the introduction of new symbols are
encapsulated for the general case in the third item on the list:

Every time a new theory is translated into symbols, new signs will
be introduced to indicate the new ideas, or the new combinations
of preceding ideas, that are met in this theory. [Peano 1895a,
III–IV] (quoted from [Kennedy 2002, 67])20

Behind this principle lies the more fundamental principle that each symbol
that stands for an idea should have only a single fixed meaning. An example
for application of this design principle is Peano’s preference for writing the
decimal point:

I prefer the English notation 1 · 23 and · 45 to 1, 23 and 0, 45
for writing decimal fractions, because the comma has too many
meanings. [Peano 1916] (translated from [Peano 1957-1959, I,
448])

An explicit formulation of the principle that each symbol must be assigned
a unique meaning is given in the following passage, where Peano extends
it also to those symbols that are used for grouping subexpressions, such as
parentheses:

If one wants mathematical formulas to say everything without the
need of verbal additions, one cannot give two values to the same
sign. The assignment of another function to parentheses, other
than the grouping of more signs, is like trying to make a decimal
arithmetic in which the numbers 6 and 9 are represented by the
same sign. [Peano 1912, 377]

20. See also [Peano 1895b] for a similar formulation [Dudman 1971, 28].
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Despite his convictions, Peano himself did not always adhere to this
principle. For example, he interpreted the symbol “ c” as both deduction
and material conditional, for which he was criticized by Frege [1896, 372–374]
(quoted from [Frege 1969, 8–9]).

3.1.2 Simplifications of frequently used expressions

Peano not only uses symbols to represent the primitive ideas of a discipline,
but also allows for the introduction of new symbols within a theory through
definitions. However, he suggests to restrict such additions to the following
situations:

A new notation will be introduced by means of a definition when
it brings a notable simplification. A new notation will not be
formed when the same ideas can already be simply represented
by the preceding notations. [...]
A new notation will be introduced only if the simplification that it
brings will be used in the propositions following. Definitions alone
do not make a theory. [Peano 1895a, IV] (quoted from [Kennedy
2002, 68])

An early example for the application of this principle is Peano’s introduction
of a symbol to express “every A is B” in [Peano 1888, 3]. After noting that
this can be expressed with the primitive symbols of his theory as AB = #, he
continues:

Even though the preceding proposition for indicating that propo-
sition is already quite simple, for greater convenience we will
nevertheless also indicate it by the expression A < B or B > A
[...]. [Peano 1888, 3] (quoted from [Peano 2000, 2])

This symbol is indeed used very frequently in the further development and it
considerably shortens the expression introducing only one symbol in addition
to the variables, instead of three (“ ”, “=”, “#”). The notion of simplicity
appealed to in this principle thus refers to reducing the length of expressions.21

Another example for the application of this principle is Peano’s intro-
duction of expressions containing an existential quantifier “ E

a”, which he
motivates as follows:

The proposition a∼ = V, where a is a class, thus signifies “some
a exist”. Since this relation occurs rather often, some workers in
this field hold it useful to indicate it by a single notation, instead
of the group ∼ = V. [Peano 1896-1897] (quoted from [Kennedy
1973, 203])

21. That expressions can be expressed with fewer symbols is one of Peano’s two
meanings of “simplicity”, according to [Bellucci, Moktefi et al. 2018, 3]; the other
concerns the number of primitive logical symbols used in a theory.
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Again, a single symbol replaces three, and Peano explicitly mentions the
frequent use of this expression. We can thus summarize Peano’s principle as:
symbols that stand for derived ideas or relations should shorten expressions
and be used frequently. The particular shape of the new symbol, “ E”, was
chosen on the basis of semantical considerations, to which we turn next.

3.2 Semantical considerations

3.2.1 Iconicity and mnemonics

Even when taking only a cursory glance at Peano’s works, one cannot miss
his use of mnemonics when introducing new characters, although he does not
discuss it as an explicit principle. To illustrate this practice, let us look at
one of the most famous symbols introduced by Peano, the “horseshoe”. The
symbol for “proves” (or deduces) and “contains” was changed several times in
Peano’s writings. With an implicit analogy to the less-than relation in algebra,
it was first introduced as a < b in [Peano 1888, 3] for the calculus of classes.
In later writings, Peano formulated this analogy explicitly:

Segner in 1740 and Lambert in 1765 used a < b and a > b,
respectively; because the relation corresponds to the sign < or >,
or better to 5 or 5, of algebra, depending on whether with the
class one considers the number of individuals that constitute it,
or the number of ideas that determine it. [Peano 1900, 10]

Thus, Peano deliberately chose a symbol that bears some connection to the
represented relation. This connection, whereby the intended interpretation
is suggested by the particular shape of the symbol, is often called “iconic”,
following terminology introduced by [Peirce 1885, 181].22

Possibly because the less-than symbol is also used in algebra, thus
violating the principle that new symbols should be introduced for new ideas
(Section 3.1.1), Peano quickly replaced it with an inverted capital letter “C” a
year later, writing a C

b [Peano 1889a, viii] and interpreting it as a relation both
between classes and propositions.23 It is described as “the reversed initial letter
of the word contains [contiene]” in [Peano 1889b, 6],24 whereas the symbol

22. Peano himself called such notations “figurative”: referring to a
−
b, a

p−
b,

a
−p
b, a

p−p
b, to indicate whether the endpoints of an interval a and b are excluded

or included, he notes that “this figurative notation is very convenient and fairly
widespread” [Peano 1916-1917, 455]. That the use of iconic mathematical symbols
has indeed cognitive advantages has recently been shown in [Wege, Batchelor et al.
2020].
23. In the original publication the symbol C does not appear aligned on the baseline

as the text, but somewhat lower, as in: a Cb.
24. Similarly, with the French word “contient” in [Peano 1890a, 183]; [Peano 1900,

316] refers to Gergonne for using “C” as the initial of “contains”; Quine [1987, 5]
refers to [Gergonne 1816-1817].
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“C” is described as the first letter of the word “consequence [consequenza]”
in [Peano 1891b, 100, footnote 5]. In [Peano 1894], the symbol remains an
inversed capital “C”, but in a smaller font, such that it appears as a c

b.
Finally, the “⊃” symbol appears in Peano’s writings in 1898, e.g., [Peano
1898a], and is described as “a deformation of C, the reversed first letter of the
word “contains” [contient]” in [Peano 1900, 10]. Thus, Peano used the first
letter of a word that expresses the meaning of the relation as the sign that
represents it. The reversal was probably done to avoid confusing the symbol
with the name of a variable.

Other examples of Peano’s use of mnemonics to guide the choice of symbols
are: “P” for propositions, “Th” for theorems, “M” for maximum, and “D” for
divides [Peano 1889a, VI]. In some cases Peano chose the first letter of a word
in a different language than Italian or French, such as “V” for verum (the
Latin word for true),25 or “ε” and “ι”, which are the first letters of the Greek
words for “is” (ἐστί) and “equal” (ἴσος) [Peano 1894, 7 and 38].

3.2.2 Inverted symbols for inverse relations and operations

Another principle for the choice of characters that Peano frequently employs,
and that was already hinted at above, is the introduction of an inverted
symbol to express the contrary or inverse of the meaning of the original
symbol. This practice is referred to by Quine [1987, 18] as “Peano’s strategy of
notational inversion”.

For example, after introducing the symbol “V” for verum, Peano replaced
his earlier symbol for absurdity, “#”, with “ V” [Peano 1889a, VIII]. What is
unusual in this case is that the “V” itself is not used in the further development
of the theory, thus violating the principle identified above, according to which
only symbols that are actually used should be introduced (Section 3.1.2). The
desire for providing a set of symmetric symbols is likely to have motivated him
to do so. This becomes clear in a later publication, where, after listing the
symbols ε, c, c

, =, ∪, ∩, −, v, v

, which allow for the expression of all logical
relations, he remarks:

The signs c and v are mentioned here for the sake of symmetry,
but they have no practical utility. [Peano 1894, 7]

In [Peano 1891b, 159], Peano explicitly refuses the use of “V”, explaining:

We shall not introduce the sign V, which corresponds by duality
to V, because we do not need it.

In other works again, the inverted “V” is introduced without even mentioning
the upright letter at all; e.g., in [Peano 1889b, 6], where Peano simply explains
that “ V” is the first letter of the word vero (“true” in Italian), and in

25. In works written in Italian or French, it is motivated by the words vero and
vrai.
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[Peano 1894, 7], where it is introduced as the first letter of the French word
for “true”, vrai.

Although Peano does not give reasons for his frequent choice of inverted
symbols, their use arguably reduces the cognitive effort of learning the meaning
of new symbols. For example, given the meanings of “M” and “D” as maximum
and divisibility, the meanings of “ M” and “ D” as minimum and multiple can
easily be inferred [Peano 1889a, VI].26

Another reason for simply inverting symbols lies in the fact that the
printing types are readily available. For example, while Peano uses square
brackets as “symbols for inversion”, e.g., to write [xε] for class abstraction
in [Peano 1889a, XIV], he changes this to xε in [Peano 1894, 20] without
giving any reasons, possibly to shorten the expression. But in the German
translation of [Peano 1896-1897], which appeared as an appendix in [Genocchi
1899], we find the added footnote: “Instead of xεpx one can also write x εpx for
easier printing” [Peano 1990, 18].27 Here, the inversion of symbols is explicitly
motivated by typographical considerations, a topic we turn to next.

3.3 Horizontal and vertical arrangement

3.3.1 Symbol size and spacing for easier readability

In addition to the choice of characters themselves, Peano’s concerns extended
also to their arrangement on the page, e.g., their spacing. For the second
edition of the Formulario, he explicitly designed his symbolism for easier
readability:

In providing this material we tried to combine the clarity of the
formulas with the ease of composition. For example, we fixed the
length of the signs

= > ⊃ + − × / √

√

in proportion to the numbers

10 10 10 8 8 6 6 4 4
that measure them in typographical points; these dimensions
help to naturally read the formulas according to the common
conventions regarding the omission of parentheses. [Peano 1898b,
233]

What lies behind this remark is the idea that symbols that are closer together
are more readily seen as belonging together, such that the spacing around a

26. Other pairs of symbols that Peano uses are “f” and “ f” [Peano 1894, 27–29] and
“↑” and “↓” [Peano 1894, 39–40]; the symbol for exponentiation “�” is described as
“the reversed sign for radicals” [Peano 1905, 34].
27. On the use of overlining, see also [Peano 1900, 8].
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symbol can support the correct interpretation of its binding strength. Recent
work by Landy and Goldstone [2007] has empirically validated this claim with
regard to the reading and writing of algebraic equations. Notice in the above
quotation how the width of the symbols (“the length of the signs”) correlates
with their usual binding strength: the less space a symbol occupies, the
stronger it binds.28 In his later reflections on mathematical typography, Peano
elaborates on how the spacing can support the correct reading of formulas:

The spacing of the formulas does not present typographical
difficulties; it can facilitate the reading. The formulas a+b × c
and a + b×c suggest the readings (a + b) × c and a + (b × c),
where the former is contrary to and the latter in conformity with
the conventions in algebra. The spacing a + b × c has become
standard in typography. The reading will be easier if the sign ×
is smaller than +. [Peano 1915, 403]

In the last remark, Peano not only suggests to tighten the spacing but to
actually make the sign smaller to indicate a stronger binding, which accords
with the common writing of a × b as a · b or simply ab. By carefully
selecting the size of the characters and the spacing between them, Peano
wanted to ensure that the way his formulas appeared on the paper would
facilitate their readability.

3.3.2 Printing costs and typographical convenience

Due to his leading position in the Formulario project, Peano was more involved
with the practical matters of printing than most other mathematicians.
In particular, this included being concerned about the cost of publishing
mathematical works. In general, whenever a notation requires types that
are not readily available by the typesetter or yields expressions that exceed
the height of a line, its production becomes more costly. Peano frequently
alluded to the cost of printing when discussing notational design, e.g., noting
that the typographical realization of the usual notation for fractions, where
the numerator appears above a line and the denominator below it, as in
“a
b
”, costs three times of that of writing them in a single line, as “a/b”

[Peano 1912, 377].29 Accordingly, Peano notes that from the second edition
onward of the Formulario, he introduced only notations that could be printed
within a single line.

28. This idea is formulated somewhat cryptically in the introduction of the third
edition of the Formulario as: “To make them stand out better, we will give the signs
different dimensions, helping ourselves with typographic spaces” [Peano 1901, 3].
29. The production process and pricing is explained in [Peano 1915, 281]: multiple

fractions in a line are five times as expensive as a single line, and with nested fractions
the cost increase is “dizzying” (vertiginosamente).
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In an article dedicated exclusively to typographical issues, Peano offers
suggestions for writing formulas without extending the height of a line so as to
keep the publishing costs down and to increase the readability of mathematical
texts, such as: avoiding large parentheses, large integral and sum signs,
stacked symbols such as “ẋ” and “

(
m
n

)
”, and radical signs with a vinculum

[Peano 1915]. Here is an example of how such considerations affected Peano’s
notations: Peano did not use overlining in his 1889 books to write the inverse of
a function f as f , as Dedekind did in his axiomatic presentation of arithmetic
that was published a year earlier in 1888, but rather square brackets, because
of “typographical convenience” [Peano 1890a, 187].30

4 Peano’s dot notation

We now turn to one of the most striking innovations in Peano’s notation, the
use of dots to indicate the grouping of subformulas. In the 1894 introduction
to the Formulario, the dot notation is described as being “equivalent” to the
use of parentheses and vincula. To illustrate this point, Peano presents the
following three representations,

ab . cd : e . fg ∴ hk . l,
{

[(ab)(cd)][e(fg)]
}

[(hk)l], ab cd efg hkl,

and justifies his choice of using the dots for the grouping of propositions by
a brief remark that parentheses render formulas “very complicated” [Peano
1894, 11]. At other occasions, Peano notes that “a convenient system of
dots” achieves the same as parentheses, but “with greater simplicity” [Peano
1891b, 155], and that “parentheses would be absolutely bulky and cumbersome
[absolument encombrantes]” [Peano 1897, 22]31. As we shall see presently,
the notions of simplicity and convenience that Peano attributes to the dot
notation are closely related to considerations about notations discussed earlier:
conciseness (Section 2.2) and vertical arrangement (Section 3.3.2). Compared
to those with parentheses, expressions that are grouped using dots are shorter,
while at the same time requiring no extra vertical space, as vincula do.

Before addressing the development of the dot notation in Peano’s writings
in Section 4.2, let me first briefly explain how it works and use syntax trees to
illustrate its relation to the usual linear notation.32

30. See also the example discussed at the end of the section 3.2.2.
31. This is repeated in [Peano 1900, 1901].
32. Syntax trees can be seen as a canonical notation for propositional logic and were

also employed in [Schlimm 2018] to shed light on Frege’s Begriffsschrift notation.
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4.1 Syntax trees and the dot notation
The main idea behind the dot notation is that, instead of aggregating elements
that belong together by enclosing them within a pair of parentheses, groups of
dots are used to separate two parts of an expression by marking the position
at which the formula is divided. To understand the way in which a formula
is partitioned by the dot notation, it is illustrative to consider the grouping
of a string of symbols. The following are two examples discussed by Peano
when introducing the dot notation for the first time [Peano 1889a, 104]. The
groupings that are effected by parentheses in the expressions

(ab)(cd) and (((ab)(cd))((ef)(gh)))k

are represented in the dot notation by

ab . cd and ab . cd : ef . gh ∴ k

Notice that in the first example, all four parentheses are replaced by a single
dot, while the 14 symbols for parentheses in the second example are replaced
by four groups of dots, for a total of seven dots. This economy of symbols is the
main reason explicitly stated by Peano for using dots instead of parentheses.33

In order to deepen our intuitive understanding of the dot notation, it is
instructive to look at the following syntax trees, which display the structure
of the above groupings in a perspicuous fashion:

.

cdab

∴

k:

.

ghef

.

cdab

This representation illustrates how the number of dots in Peano’s notation
corresponds to the level in the syntax tree; more precisely, the number of dots
of a node indicates (or is determined by) the length of the longest path from
it to a leaf.

To employ the dot notation in logical formulas, we place a group of dots
adjacent to a connective (to the left, right, or both) to separate a subformula
from the rest of the expression. Consider, for example, the formula

(p ∪ q)⊃ ((p ∪ (q ⊃ r)) ∩ (p ∪ r)) (1)

33. These comparisons in terms of the number of symbols used raise the question
of whether to count either the individual dots or each group of dots (e.g., . , : , ∴ ,
: : ) as symbols. We shall consider the latter as symbols because groups of dots are
never broken up and always used as a single unit.
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The use of syntax trees allows us to obtain the corresponding formula in the
dot notation very easily. We first draw the syntax tree for the formula and
label its edges as follows: if the longest path from the following node to a leaf
has length n, mark the edge with a group of n dots. For the formula shown
above, this yields:

⊃

∩

∪

rp

.

∪

⊃

rq

.

p

:

∴

∪

qp

.

(2)

We can also think of arriving at these labels by starting from the leaves and
labeling each edge with an increasing number of dots, while moving upward
toward the root, starting with zero. If the edges below a node are labeled with
different numbers of dots, say n and m, then the edge immediately above this
node is max(n,m)+1. In other words, the label of an edge above a connective
is one more than the greatest label of the edges that are immediately below
it. For example, since the edges that extend downward from the “∩” symbol
are labeled with groups of 1 and 2 dots, the edge above it must be labeled
with 3 dots. If a syntax tree is annotated in this way, the labels contain
information about the nesting of the subformulas: we immediately notice that
the connective that has the greatest label on one of its downward edges is the
main connective; the same also holds for each subtree.

Finally, to represent a formula in the linear dot notation, we parse its
syntax tree in the usual (infix) way and write the groups of dots before a
connective, if they appear on the left downward edge of the corresponding
connective, and after it, if they appear on the right downward edge. In our
example, this yields:

p ∪ q .⊃ ∴ p ∪ . q ⊃ r : ∩ . p ∪ r (3)

When comparing this formula to its representation with parentheses (1),
we see that a group of dots to the right of a connective corresponds to one
or more opening parentheses and that a group to the left corresponds to one
or more closing parentheses. This close connection between parentheses and
the dot notation can also be illustrated by using labeled parentheses. Using a
numeric label above a parenthesis to indicate its depth of nesting, we obtain
for (1):

1
( p ∪ q

1
) ⊃

3
(

2
( p ∪

1
( q ⊃ r

1
)

2
) ∩

1
( p ∪ r

1
)

3
) (4)
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To arrive at the dot notation starting from this representation, we first have
to discard some of the parentheses that are redundant: all outer parentheses,
both at the beginning and the end of the formula, are omitted; if two or more
parentheses occur consecutively, we only keep the one with the greatest label
and discard all others. After these modifications, formula (4) becomes:

p ∪ q
1
) ⊃

3
( p ∪

1
( q ⊃ r

2
) ∩

1
( p ∪ r (5)

Now, simply replacing any labeled parenthesis with a group of as many dots
as are indicated by the label yields the dot representation (3) of the formula.
If the dot notation is introduced without reference to syntax trees, one often
speaks of the scope of a group of dots, i.e., the subformula that is determined
by that group.34 The scope extends to the left of the group if the dots are
to the left of a connective, and to the right if the dots are to the right of a
connective. By looking at the syntax tree, it is easy to see that the scope of a
group of dots is a subtree, i.e., it extends beyond all groups that consist of a
smaller number of dots.

Because we always need two parentheses to enclose a subformula, but
only one group of dots to separate a subformula, the dot notation uses
fewer symbols. In our example, Formula (1), which contains 6 connectives,
has 10 parentheses, omitting outer parentheses as is convention, but its
representation in the dot notation (3) needs only 5 groups of dots. Because of
this, the dot representation is more concise, a fact that is frequently used to
argue in its favor.

4.2 Peano’s use of the dot notation

Peano introduced the dot notation in his 1889 booklet on arithmetic, in
which he presented his famous axiomatization of the natural numbers [Peano
1889a].35 His explanation for the notation is surprisingly short; he apparently
expected his readers to have no difficulties in using it.36 Peano writes:

34. See, e.g., the introduction of dots in Principia Mathematica [Whitehead &
Russell 1910-1913, I, 9–11].
35. Shortly afterwards, Peano published a logical exposition of geometry in which

the dot notation is introduced with a very similar wording [Peano 1889b, 7].
36. In [Peano 1891b], he remarks that dots are already used in analysis, where

“one writes d.uv and du.v instead of d(uv) and (du)v” and notes some analogy to
a notation used by Leibniz, referring to [Leibniz 1855, 276] and [Leibniz 1863, 55].
In these passages, Leibniz discusses the use of vincula and parentheses to group
subexpressions, and he also uses groups of commas for this purpose, but without
much explanation; in one example he also uses a combination of a comma with a
dot. Whether Peano’s dot notation was actually inspired by Leibniz or whether he
found the passage from Leibniz only after having developed his own notation remains
unclear.
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We shall generally write signs on a single line. To show the order
in which they should be taken, we use parentheses, as in algebra,
or dots, ., :, ∴, : :, and so on.
To understand a formula divided by dots we first take together
the signs that are not separated by any dot, next those separated
by one dot, then those separated by two dots, and so on. [Peano
1889a, VII] (quoted from [van Heijenoort 1967, 86])

This explanation is followed by the two examples presented at the beginning
of Section 4.1, and by a brief remark that the dots can be omitted if different
punctuations do not change the meaning of a formula (e.g., both “ab . c” and
“a . bc” can be rendered simply as “abc’ if the operation is associative) and
if no ambiguities arise. Because groups of dots have also been used in other
mathematical contexts (e.g., for multiplication and division), Peano warns:

To avoid the danger of ambiguity we never use . or : as signs
for arithmetic operations. [Peano 1889a, VII] (adapted from [van
Heijenoort 1967, 87])37

Despite the fact that dots make formulas shorter, Peano allows for both
dots and parentheses to be used within the same formula, with the convention
that parentheses bind stronger than dots [Peano 1889a, VII] ([van Heijenoort
1967, 87]).38 In general, both dots and parentheses occur in the same formula
to syntactically mark semantical differences between logical and arithmetical
expressions, e.g., in Definition 18 [Peano 1889a, 2]:

a, b εN .

C

. a+ (b+ 1) = (a+ b) + 1.

From this example, one might be tempted to surmise that Peano uses
parentheses for the grouping of mathematical (or algebraic) expressions and
dots for their logical grouping. While this is indeed mostly the case and he
praises the use of dots for avoiding “the confusion with parentheses in algebraic
formulas” [Peano 1891b, 155], Peano’s usage is not completely consistent in
this regard, sometimes relying simply on good judgement. For example, in
[Peano 1889a, IX], he uses dots in

23. a ∪ b .= ∴− :− a .− b

but parentheses in the very similar formula

25. −(a ∩ b) = (− a)(− b)

37. See also [Peano 1894, 13]: “When introducing the dots to separate the parts of
a proposition, one must discontinue their use for indicating multiplication a . b, which
will be written ab or a× b, and division a : b, which will be written a/b.”
38. The sentence in question is missing in Kennedy’s translation [Kennedy 1973,

104].
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The two previous formulas also illustrate that, in addition to the symbol for
conjunction, “∩”, Peano also uses juxtaposition to indicate conjunction. Thus,
the dot between “− a” and “− b” in Proposition 23, above, separates these two
expressions, such that they are rendered as “(− a)(− b)” using parentheses
(cf. Proposition 25, above). Citing the conciseness of the resulting expressions
as motivation, Peano explains:39

The sign ∩ is read and. Let a and b be propositions; then a ∩ b
is the simultaneous affirmation of the propositions a and b. For
the sake of brevity, we ordinarily write ab instead of a ∩ b. [Peano
1889a, VII] (quoted from [van Heijenoort 1967, 87])

In rare cases, Peano even uses both juxtaposition and ∩ within the same
formula, as in [Peano 1894, 12]:

a

c

.b

c

c : d c

e ∪ f ∴ c: h ∩ k

c

l .

c

. m

c

n

Here, on the one hand, the conjunction of “a c

.b

c

c” and “d c

e∪f” is indicated
by the first occurrence of “:”, which separates the two juxtaposed expressions.
The conjunction of h and k, on the other hand, is expressed by “∩”.

To determine the number of dots in a group that separates two conjuncts,
it is helpful to consider again the representation of formulas in terms of syntax
trees. As an example, consider Formula (3) and its corresponding syntax
tree (2) on p. 115, above. In this case the conjunction symbol (“∩”) is explicit
and has a group of two dots on the left and a single dot on the right. To
express this formula using juxtaposition for conjunction, we simply have to
replace the symbol “∩” by the group next to it with the greatest number of
dots and omit the other group. Replacing “: ∩ .“ with “:”, this results in the
formula

p ∪ q .⊃ ∴ p ∪ . q ⊃ r : p ∪ r

Note that, while Whitehead and Russell explicitly introduced a single dot as
the symbol for conjunction in Principia Mathematica [Whitehead & Russell
1910-1913, I, 6], for Peano both dots and parentheses are exclusively marks
for grouping.40 In the third edition of the Formulario, Peano is unequivocal
about the use of parentheses for this unique purpose:

The symbols of the Formulario always have the same meaning.
Using parentheses to group the parts of a formula prevents us
from using them in another meaning. We will be able to denote
by (a) neither a power of a, as does Girard 1629 [...], nor the

39. This is also consistent with the considerations about readability and spacing
(Section 3.3.1).
40. Presumably due to Russell’s use, Peano’s notation has been misinterpreted in

the literature as using dots for conjunction; see, e.g., [Kneale & Kneale 1984, 521]
and [Lolli 2011, 57, footnote 27].
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integral part of a, nor the absolute value of a, nor a function of
a. In general, a single letter will never be enclosed in parentheses,
because it is not grouped. [Peano 1901, 3]41

Analogously, as Peano uses dots as marks for grouping, the expression “a . b”
would not be in accord with his usage, given that each symbol must have
a unique meaning and that a single letter cannot be grouped. Accordingly,
Peano omits dots on the side of a connective that has only a single variable in
its scope, as in a C

. a ∪ b [Peano 1889a, IX, Prop. 26].
Peano’s use of the dot notation is systematic but not rigid. It is evident

from his formulas that he also employs implicit conventions regarding the
binding strength of operations that are familiar from algebra, e.g., that
juxtaposition binds stronger than any binary connective and that logical
connectives bind stronger than the equality symbol. If this were not the case,
Propositions 11, 14, and 27 in [Peano 1889a, IX],

ab

C

a, aa = a, and a ∪ b = b ∪ a

would have to be written as

ab .

C

a, aa . = a, and a ∪ b . = . b ∪ a

In later publications, Peano discusses some of his binding conventions
explicitly, e.g., [Peano 1894, 12–13], but also mentions additional ones to
further reduce the number of dots needed in a group. Presumably, however,
this practice would not pose serious difficulties for a reader familiar with the
typical binding conventions used in algebra.

In general, using more dots than are necessary in a group does not alter
the structure of a formula, as long as the number of dots in groups with
more dots are also increased accordingly. Thus, superfluous dots may be
introduced in a formula and some later authors will systematically do so,
presumably to enhance readability.42 Also, larger groups of dots stand out
more and are thus easier to see at a glance, which allows readers to faster
identify the main connective in a formula, because it is flanked by the greatest
number of dots. However, Peano does not add dots in a systematic fashion,
but only occasionally, e.g., in Proposition 2 [Peano 1889a, VIII], possibly due
to considerations of symmetry:

a

C

b . b

C

c : C: a C

c. (6)

In fact, this proposition is rendered without the superfluous dot on the right
side of the main implication symbol as Proposition 6 in [Peano 1891b, 156]:

a

C

b . b

C

c : C

. a

C

c. (7)

41. See also [Peano 1897, 54], where Peano insists on writing fx instead of f(x).
42. For example, Landini adds dots such that each connective has always the same

number of dots on each side, “for easier reading” [Landini 2012, ix].
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As we have seen earlier, Peano’s symbolic language is not a formal
language in the modern sense, i.e., based on an explicit, recursively defined
grammar. Similarly, his dot notation is not defined rigorously, its usage is
not entirely uniform, and several conventions are left implicit. This practice
is consistent with common practice in algebra and with Peano’s general
attitude of being more interested in actually using the logical formalism for
the representation of mathematics than in giving a rigorous presentation of
the symbolism itself. Moreover, his general aims of attaining rigor and clarity
while striving at the same time for conciseness can also be seen at play
in this use of the dot notation.

5 Conclusion

Although some of Peano’s views were shared by other influential logicians
at the time, such as Peirce and Frege, his particular outlook and the
associated enterprise of the Formulario remain unique. Perhaps because of
the collaborative nature of the latter, Peano was more explicit than most
other mathematicians about the principles that guide the introduction of new
symbols, their shapes, and their layout. Moreover, while Frege maintained
that “the convenience of the typesetter is not the highest Good” [Frege 1896],
Peano was willing to take such practical matters into consideration. Despite
his efforts, Peano’s symbolism was not widely adopted outside of Italy in the
late 19th century. Felix Klein wrote to Pieri in 1897:

My general experience indicates that articles which are written us-
ing this symbolism, at least in Germany, find practically no read-
ers and moreover meet with immediate rejection. [Marchisotto &
Smith 2007, 365; see also 383]

Nevertheless, with time, many of Peano’s symbols did eventually enter the
mathematical canon, and, through its adoption by Whitehead and Russell
in their groundbreaking Principia Mathematica [Whitehead & Russell 1910-
1913], Peano’s dot notation also became very popular in logical works in the
first half of the 20th century, though it has by now almost completely faded
into the background.43

The above discussions have given us insight into Peano’s views on logic and
his motivations for the development of a logical symbolism as a methodological
tool for the analysis of mathematical ideas and as an indispensable practical
tool for the presentation of mathematical theories. Accordingly, two main
normative ideals underlie Peano’s symbolizations: attaining rigor and clarity,
mainly through the avoidance of ambiguities, which is primarily achieved by
ensuring the uniqueness of meanings as well a judicious choice of notation,

43. A more detailed account of the use of the dot notation in early 20th century
logic is in preparation by the author.
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and conciseness. In addition, practical considerations, such as reducing the
effort to learn and memorize the meanings of the notation, enhancing the
clarity of the presentation and the ease with which it can be read, and, finally,
reducing the printing costs, all guided Peano’s design of notations. All of these
considerations also support Peano’s most conspicuous notational innovation,
the dot notation for grouping subexpressions.
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