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Luleå Tekniska Universitet

eric.lavergne@gmx.fr

rajkumar.saini@ltu.se

gyorgy.kovacs@ltu.se

killian.murphy@telecom-sudparis.eu

Abstract

English. This report was written to de-

scribe the systems that were submitted by

the team “TheNorth” for the HaSpeeDe

2 shared task organised within EVALITA

2020. To address the main task which

is hate speech detection, we fine-tuned

BERT-based models. We evaluated both

multilingual and Italian language models

trained with the data provided and addi-

tional data. We also studied the contri-

butions of multitask learning considering

both hate speech detection and stereotype

detection tasks.

1 Introduction

Organised as part of the 7th EVALITA evalua-

tion campaign (Basile et al., 2020), the HaSpeeDe

2 shared task focuses on the detection of online

hate speech (Sanguinetti et al., 2020) in Italian-

Hate speech occurs frequently on social media. It

is defined as “any communication that disparages

a person or a group on the basis of some char-

acteristics such as race, colour, ethnicity, gender,

sexual orientation, nationality, religion, or other

characteristics” (Nockleby, 2000). Regulating all

user messages is very time-consuming for a hu-

man, and this is one of the reasons why automatic

methods are important.

Beside the main task of binary hate speech clas-

sification - aimed at deciding whether a message

contains hate speech or not - the HaSpeeDe 2

shared task has two more sub-tasks. One being

stereotype detection, and the other the identifica-

tion of nominal utterances. All tasks being eval-

uated both on in-domain (tweets) data, and out-

of-domain (newspaper headlines) data. Here, we

Copyright c© 2020 for this paper by its authors. Use
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tackle both the main task, and the first sub-task

of Stereotype Detection that is potentially useful

for the main task. For this sub-task the organis-

ers use the following definition of Stereotype: “a

standardized mental picture that is held in com-

mon by members of a group and that represents

an oversimplified opinion, prejudiced attitude, or

uncritical judgment” (Merriam-Webster, 2020).

Here, we have two binary classification tasks. A

simple way to perform text classification is based

on bag-of-words representation counting the num-

ber of occurrences of each word within text. It is

often combined with term frequency-inverse doc-

ument frequency (Sparck Jones, 1988) (TF-IDF)

representation. TF-IDF allows the frequencies to

be normalized according to how often the words

appear in all documents. With the rise of neu-

ral networks, word vectors have provided useful

features for text classification tasks. Recurrent

Neural Networks as the Bidirectional Long-Short

Term Memory (BiLSTM) network (Schuster and

Paliwal, 1997) have then be used to encode the

long-term dependencies between the words. These

systems were the most successful in the previous

HaSpeeDe campaign (Bosco et al., 2018).

In (Aluru et al., 2020), the authors showed

that when dealing with very low monolingual re-

sources, multilingual approaches can be interest-

ing for hate speech. In (Polignano et al., 2019b),

the AlBERTo monolingual Italian BERT-based

language model was trained that outperformed the

state-of-the-art on the HaSpeeDe 2018 evaluation

task (Polignano et al., 2019a).

We have chosen to deepen the approach of fine-

tuning a BERT based language model, comparing

multilingual and monolingual settings. We also

assessed the contribution of additional hate speech

data from different online sources. We finally sub-

mitted the results of the same model fine-tuned

with and without multitask learning between hate

speech and stereotype detection tasks.
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2 System Description

2.1 Fine-tuning process

The chosen classification approach is to fine-tune

a BERT-based language model. This kind of ap-

proach is the state-of-the-art for many text classi-

fications tasks today (Sun et al., 2019; Seganti et

al., 2019). BERT is a language model which aims

to learn the distribution of language (Devlin et al.,

2018). It is trained with the prediction of masked

tokens in a text. The next sentence prediction task

that was used simultaneously for training has been

removed for some later BERT-based models such

as RoBERTa (Liu et al., 2019). BERT is a Trans-

former. In a Transformer, the recurrence of Re-

current Neural Networks is replaced by the mech-

anism of attention (Vaswani et al., 2017).

It has been shown that it is possible to fine-tune

these models for many downstream natural lan-

guage processing tasks, including the one we are

interested in, which is text classification. This can

be achieved by removing the language modelling

head and replacing it by a head appropriate for

the target task. The designers of BERT prepared

this by adding a token at the beginning of each

text sequence, named CLS for classification. The

purpose of this token is to contain the information

useful for the classification task at the end of the

forwarding process. Then a classifier head can just

take this CLS token as input to classify the whole

text sequence. In our case we decided to add a

simple linear layer with a softmax on top of it, for

simplicity and because it is efficient enough since

the other layers are fine-tuned.

2.2 Layer-wise learning rate

An important consideration of fine-tuning de-

scribed in (Sun et al., 2019) is the choice of the

learning rate. Besides being as usual the most

important hyper-parameter in the gradient descent

learning algorithm, it could also be responsible

here for some catastrophic forgetting if it were too

high. Catastrophic forgetting refers to the fact of

erasing the information of the weights of the pre-

trained model and can happen when the gradient

updates are too high.

Moreover, the learning rate can be gradually de-

creased in the first layers of the models. It aims at

limiting the update in these first layers that have

been showed to contain the most primal informa-

tion about the language. One can think of the clas-

sical example in computer vision neural networks

where the basics shapes features are extracted by

the first layers and the task-specific combinations

are processed in the last ones. Thus we applied

layer-wise learning rate with the following geo-

metric equation: the learning rate in a layer is the

one of the following multiplied by a decay factor

γ between 0 and 1.

LRk−1 = γ × LRk

where LRk is the learning rate of the k-th layer.

Then the case when γ is one is the case of clas-

sic fine-tuning with the same learning rate every-

where, and the case when γ is zero is the case of

feature extraction with the whole language model

weights that are frozen and only the parameters of

the classification head are trainable. This hyper-

parameter γ was learned with the others during the

hyper-parameters tuning process.

2.3 Monolingual and multilingual language

models

We compared the use of several language mod-

els. Many models similar to BERT have been

trained since 2018, and a lot are available for use.

Although the models are often first and foremost

trained for English, multilingual models have been

trained on data of several languages in order to

counteract the lack of data for some languages. It

is the case of mBERT and XLM-Roberta (Con-

neau et al., 2020). Also machine learning re-

searchers trained monolingual models for their

own language, as CamemBERT for French and

AlBERTo or UmBERTo for Italian. Multilingual

models have the advantage that they are trainable

on data in different languages; it is very useful for

low-resources tasks. However, they are expected

to perform in dozens of languages while mono-

lingual models focus on just one, with the same

number of parameters. For this reason, monolin-

gual models often perform better when sufficient

data is available, as we show here.

We evaluated two multilingual models, mBERT

and XLM-RoBERTa, and three Italian monolin-

gual models, AlBERTo, UmBERTo, and PoliB-

ERT. AlBERTo was pretrained on TWITA, that

is a collection of Italian tweets (Polignano et al.,

2019b). UmBERTo was pretrained on Common-

crawl ITA exploiting OSCAR Italian large corpus

(Parisi et al., 2020). Finally, PoliBERT was fine-

tuned for sentiment analysis on Italian tweets by

its creators (Barone, 2020).
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We tried to use more data, with different set-

tings. For the multilingual models, we could use

all type of hate speech data. For the monolingual

models, we used the little data available for Ital-

ian but we tried also to use translated multilingual

data. These additions were not conclusive, so we

stuck to the HaSpeeDe 2 data for the submissions.

2.4 Random search hyper-parameters tuning

The tuning of the hyper-parameters is relevant in

order to get good results, and that is especially

the case for the learning rate and the layer-wise

decay factor γ. We tuned hyper-parameters with

random search which has been shown to be of-

ten more efficient than grid-search (Bergstra and

Bengio, 2012). The hyper-parameters to be tuned

are the batch size, the learning rate, the layer-wise

multiplier and the length of the model (maximum

number of tokens). We did ten trials for each lan-

guage model. The number of epochs is selected

with early stopping on the validation macro F1-

score with a split of 80/20. Table 1 shows the best

hyper-parameters obtained that have been used for

the systems submitted.

Hyper-parameter Value

Learning rate 2.10-4

Layer-wise γ 0.35

Batch Size 32

Max Length 100

Language Model UmBERTo

Table 1: Hyper-parameters used for our

HaSpeeDe 2 submission after the tuning process

It is very important that the learning rate and the

layer-wise multiplier γ are tuned simultaneously

because the choice of the multiplier strongly mod-

ifies the amplitude of the gradient.

2.5 Multitask Learning

We evaluated the usage of multitask learning be-

tween the two classification tasks of the competi-

tion that are hate speech detection and stereotype

detection. Multitask learning consists of learning

to perform several tasks. It can be done by learn-

ing the tasks simultaneously with common first

layers but task-specific heads (Ruder, 2017). In

our case each task has its own output linear layer.

When the tasks should be based on similar rep-

resentations, it is supposed to do a good regular-

ization with useful shared representations. It is

then a kind of transfer learning. The error analy-

sis conducted on HaSpeeDe 2018 evaluation sug-

gests a significant correlation between the usage

of stereotype and hate speech (Francesconi et al.,

2019). Moreover, they showed that the false pos-

itive rate of hate speech tweets is slightly bigger

for tweets with stereotype.

A question that arises when doing multitasking

is the way to combine the loss of the tasks in one.

The simple solution is to sum them uniformly. It

might not be the best solution when there is imbal-

ance between the tasks, for instance when the scale

of the outputs of one is much higher than the oth-

ers. A solution brought by (Kendall et al., 2017)

is to use trainable weights based on uncertainty.

(Liebel and Körner, 2018) upgrades the regulari-

sation term of this solution and (Gong et al., 2019)

shows in a benchmark that this last solution is of-

ten the best. We evaluated this solution and we

compared with the single-task setting.

2.6 Cross-validation ensembling and

submitted models

Two submissions are allowed during the

HaSpeeDe 2 test phase. We chose to submit

a fine-tuned UmBERTo trained separately for

each of the two tasks and a fined-tuned UmBERTo

with multitasking on both Stereotype and Hate

Speech detection. The hyper-parameters used to

train these models were presented in Table 1.

Since we compared the different language mod-

els with 5-fold cross-validation, we then ensem-

bled the 5 models obtained for each fold in order to

get the final model. The ensembling was done by

considering the mean of the probabilities returned

by each model.

3 Data Description

The organisers provided a train dataset of 6,839

tweets, annotated with Hate Speech and Stereo-

type labels (as described in Table 2).

Dataset HS Ster

Development Data (Tweets) 0.404 0.445

Test Data (Tweets) 0.492 0.450

Test Data (News) 0.362 0.350

Table 2: Distribution of Hate Speech and Stereo-

type labels in HaSpeeDe 2 data.

The test data of HaSpeeDe 2 consists of two

subsets: an in-domain set (1,263 tweets) and an
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out-of-domain set (500 newspaper headlines).

The hate speech labels are slightly unbalanced

towards non-hate speech. Thus we tried to use

adapted losses to prevent tendency towards non-

hate speech predictions. We used class-weighted

loss, which assigns a higher weight to the obser-

vations from the minority class in the computing

of the loss. We also tried to use a smoothed F1-

score – a differentiable loss in phase with the F1.

Neither approach improved the results in a signif-

icant way.

The pre-processing was simple. We removed

emoticons and hashtags and we replaced urls and

user names with associated tags as done in the

evaluation data. Each tweet was padded with a

size of 100. Then we used the pre-processing and

tokenization pipeline specific to each language

model as provided by the authors of the models.

4 Results

4.1 Macro F1-score

The metric used for the evaluation is the macro

F1-score. The F1-score of a class is computed by

calculating the harmonic mean between the preci-

sion and recall for this class. The macro F1-score

is the mean between the F1-scores for each class.

It is less sensitive to the imbalance between the

classes.

4.2 Baselines

We used several baselines to evaluate our results

during the development process. The first ones

are those obtained by dummy classifiers, one that

always predicts the most frequent class and the

other one that makes a random stratified predic-

tion according to the distribution of the classes in

the training data. We also computed the results of

more developed systems, that are a TF-IDF bag of

words and a BiLSTM with trainable word vectors

inputs.

The HaSpeeDe 2 organisers provided two base-

line systems after the results were submitted. The

first is a most frequent class predictor and the sec-

ond is a linear SVM with unigrams, char-grams

and TF-IDF representation.

4.3 Validation Results

We tuned the hyper-parameters for each evaluated

language model as described in Section 2.4. For

each language model, we then computed 5-fold

cross-validation results on HaSpeeDe 2 training

data. The averages of the 5 macro F1-scores are

shown in Table 3.

System HS Ster

Baselines

Most Frequent Class 0.374 0.353

TF-IDF Bag-of-words 0.703 0.677

Word vectors + BiLSTM 0.721 0.654

Multilingual language models

mBERT 0.757 0.716

XLM-RoBERTa 0.761 0.677

Italian language models

AlBERTo 0.773 0.716

PoliBERT 0.795 0.733

UmBERTo 0.799 0.733

Table 3: Macro F1-scores averaged over 5-fold

cross-validation on HaSpeeDe 2 training data.

4.4 Test Results

The scores of our two systems evaluated on the

HaSpeeDe 2 test data are summarized in Table 4.

These systems are 5 UmBERTo models trained on

each of the 5 training folds and ensembled. The

second system is the same as the first with the use

of multitask learning.

System Tweets News

Hate Speech Detection

Most Frequent Class 0.337 0.389

Classic Features + SVM 0.721 0.621

UmBERTo 0.790 0.671

UmBERTo + Multitasking 0.809 0.660

Best HaSpeeDe 2 0.809 0.774

Stereotype Detection

Most Frequent Class 0.355 0.394

Classic Features + SVM 0.715 0.669

UmBERTo 0.772 0.685

UmBERTo + Multitasking 0.768 0.647

Best HaSpeeDe 2 0.772 0.720

Table 4: Macro F1-scores on HaSpeeDe 2 test

datasets.

5 Discussion

5.1 Multilingual and monolingual models

According to Table 3, multilingual models per-

formed worse than monolingual models based on

HaSpeeDe 2 data alone, although they achieved

respectable results.
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Moreover, even when we used additional data

from other languages to train the multilingual

models, they still did not manage to outperform

the monolingual models, as we were hoping they

would.

Within the Italian models, UmBERTo and

PoliBERT performed better than AlBERTo on

these tasks. While the good performance of PoliB-

ERT can be linked to its pre-training for a tweet

classification task (sentiment analysis) potentially

useful for hate speech detection, it is more diffi-

cult to explain the competitiveness of UmBERTo,

which was trained on data not coming from Twit-

ter and less numerous than for AlBERTo. One ex-

planation could be the better quality of this data,

or a better optimisation by its creators.

5.2 Out-of-domain data and in-domain data

Our results on the HaSpeeDe 2 test dataset are

summarized in the Table 4. The results obtained

on in-domain data correspond to what we ex-

pected from our cross-validation results. Our sys-

tems achieved the best macro F1-scores on the in-

domain test set (Tweets) for both hate speech and

stereotype detection. However, the results on out-

of-domain data (News) are far from being as good.

This can be explained by the different distribution

of this data compared to the training data.

Table 5 shows the confusion matrix for our first

system evaluated on out-of-domain data. The er-

ror is mostly due to the high number of false neg-

atives. The classifier predicts too many sequences

as non-hate speech. This suggests that this clas-

sifier trained with hate speech on Twitter is strug-

gling to detect hate speech in newspaper headlines.

It can be assumed that hate speech in newspapers

is more subtle, with less coarseness and aggres-

siveness that make it easier to detect on Twitter.

Predicted False Predicted True

False 312 7

True 117 64

Table 5: Hate Speech Confusion matrix for Um-

BERTo evaluated on news test data.

5.3 Multitasking Benefits

We have chosen to submit a system with multitask

learning on both Stereotype and Hate Speech de-

tection and an other one without, in order to study

the benefits of it. Indeed, the system with multi-

tasking learning performed much better on the in-

domain data for the hate speech detection task. It

is not the case however for the out-of-domain data,

neither for the stereotype detection task.

Table 6 describes in more detail the differences

between the predictions of the two systems for

data containing stereotypes and data not contain-

ing stereotypes. We observed that the improve-

ment linked to multitask learning consists mainly

in a reduction in the number of false positives in

favour of the number of true negatives in data not

labeled as Stereotype. Assuming that hate speech

makes significant use of stereotype, one could sup-

pose that the multitask model has learned to dis-

card some data that do not have the characteristics

of stereotypes and are therefore unlikely to contain

hate speech.

Data labeled as Stereotype

Predicted False Predicted True

False +3 -3

True +7 -7

Data not labeled as Stereotype

Predicted False Predicted True

False +28 -28

True +1 -1

Table 6: Hate Speech Confusion matrix of the

multitask system minus the one of the single-task

system, for Stereotype and Non Stereotype tweets

test data.

6 Conclusion

In this work, we compared the fine-tuning of

multilingual and monolingual BERT-based lan-

guage models for hate speech detection. We

also investigated the addition of multitask learning

with the Stereotype detection task linked to hate

speech. We obtained the best macro F1-scores of

HaSpeeDe 2 on the in-domain test data. However,

the results were worse for out-of-domain test data,

and further research could be conducted to better

understand the reasons for this and address it.
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