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Abstract

English. Hate speech detection has be-

come a crucial mission in many fields.

This paper introduces the system of team

By1510. In this work, we participate in

the HaSpeeDe 2 (Hate Speech Detection)

shared task which is organized within E-

valita 2020(The Final Workshop of the 7th

evaluation campaign). In order to obtain

more abundant semantic information, we

combine the original output of BERT-Ita

and the hidden state outputs of BERT-Ita.

We take part in task A. Our model achieves

an F1 score of 77.66% (6/27) in the tweets

test set and our model achieves an F1 score

of 66.38% (14/27) in the news headlines

test set.

Italiano. L’ individuazione dell’ in-

citamento allodio diventata una mis-

sione cruciale in molti campi. Questo

articolo introduce il sistema del team

By1510. In questo lavoro, partecipiamo

al task HaSpeeDe 2 che stato organiz-

zato allinterno di Evalita 2020. Per ot-

tenere informazioni semantiche pi abbon-

danti abbiamo combinato loutput origi-

nale di BERT Ita e gli output di hidden

state di BERT Ita. Il sistema presentato

partecipa al task A. Il nostro modello ot-

tiene un punteggio F1 di 77.66% (6/27) sui

dati di test da Twitter e un punteggio F1 di

66.38% (14/27) sui dati di test contenenti

titoli di quotidiano.

Copyright c© 2020 for this paper by its authors. Use
permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

1 Introduction

With the continuous development of computer and

networks, social media users have increased year

by year, social media has entered people’s daily

life and becomes an indispensable part. More and

more people use the Internet to express their opin-

ions and ideas on social media platforms. Some

offensive, abusive, defamatory contents are easy to

spread and incite hatred, and these negative con-

tents can cause some bad effects. The simplest

way is that people mark the report and then delete

the system warning, which can not be solved ef-

ficiently. Therefore, an efficient way is urgently

needed to eliminate these negative effects. This

paper proposes a hate speech detection system,

which can better detect and mark these annoy-

ing contents. The HaSpeeDe 2 (Sanguinetti et al.,

2020) (Hate Speech Detection) shared task is orga-

nized within Evalita 2020 (Basile et al., 2020), the

7th evaluation campaign of Natural Language Pro-

cessing and Speech tools for Italian, which help

to detect whether the Italian language on Twit-

ter contains hate language, with the aim to reduce

the spread of hate speeches and online harassment.

(Waseem and Hovy, 2016)

In this paper, we take part in task A in the

HaSpeeDe 2 task. The BERT model we use is

dbmz1 trained on Italian data. In order to obtain

more abundant semantic information, we extrac-

t the state of hidden layer outputs and we provide

a reference for the detection of the hate speech in

the Italian language. The rest of the paper is orga-

nized as follows. Section 2 briefly shows the re-

lated work for the identification of hate speeches.

Section 3 elaborates on our approach. It shows the

data set officially provided and architecture of our

model. Section 4 describes the hyper-parameters

and our results. Finally, Section 5 concludes our

work.

1https://huggingface.co/dbmdz
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Figure 1: our model. L12 H0 is hidden-state of the first token of the sequence(CLS token) at the output

of the 12th hidden layer of the BERT-Ita. Similarly, L11 HO and L10 HO are the 11th and 10th hidden

layers outputs of BERT-Ita respectively. [32, 768]/[32, 3072] is the output shape (batch size, hidden size)

2 Related Work

Previously, machine learning (Davidson et al.,

2017; MacAvaney et al., 2019a), Bayesian method

(Miok et al., 2020; Fauzi and Yuniarti, 2018), sup-

port vector machine (MacAvaney et al., 2019b;

Del Vigna12 et al., 2017), neural network (Bad-

jatiya et al., 2017; Zhang et al., 2018) and oth-

er methods were proposed for the identification

of hate speech. In the Hindi-English mixed lan-

guage, (Bohra et al., 2018) et al. in parentheses

used a supervised classification system to detect

the hate speech in the text in the code-mixed lan-

guage. The classification system used Character

N-Grams, Word N-Grams, Punctuations, Negation

Words, Lexicon and other feature vectors for clas-

sification and training. The accuracy could reach

71.7% with SVM, which proved to be a very ef-

fective method for classification tasks. In Danish

language, (Sigurbergsson and Derczynski, 2019)

developed four automatic classification systems

to detect and classify hate speech in English and

Danish, and proposed a method to automatically

detect different types of the hate speech, which

achieved good results for the detection of English

and Danish hate speeches. In English language,

(Aroyehun and Gelbukh, 2018) used a linear base-

line classifier (nbsvm with n-grams) and improved

deep neural network model.

For the Italian language, (Polignano et al.,

2019) proposed an AlBERTo model based on

classifier integration, which was verified by cross

validation on Facebook and Twitter data sets, and

the effect was obvious in offensive words. (Coraz-

za et al., 2018) used recurrent neural network, n-

gram neural network and support vector machine

to classify Twitter data sets, and its recurrent mod-

el had achieved good results. (Bianchini et al.,

2018) proposed artificial neural network to anno-

tate and classify 3000 message data from Face-

book and Twitter, and achieved good results.

3 Methodology

3.1 Data Description

In this work, we take part in task A, which is a

binary classification task aimed at determining the

presence or the absence of hateful content in the

text towards a given target (among Immigrants,

Muslims or Roma people). The organizers pro-

vide the training set and test set. For the training

set, it is from Twitter. For the test set, the organiz-

ers provide in-domain data and out-of-domain da-

ta, which come from Twitter and news headlines,

respectively. It can be seen from Table 1 that the

data set is slightly imbalanced.

3.2 Our approach

As the train data is very limited we resort to a

transfer learning approach. That is, we take an

NLP model pre-trained(Peters et al., 2018; Rad-

ford et al., 2018; Devlin et al., 2019) on a large
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Hate Speech

(HS)
No HS

train data 2766 4071

test data

(tweets)
622 641

test data

(news headlines)
181 319

Table 1: Distribution of data set in the Task A.

Hyperparameters

Our Model

output hidden states=True

max sequences length=100

learning rate=1e-5

adam epsilon=1e-8

per gpu train batch size=32

gradient accumulation steps=1

epoch=8

dropout=0.1

Table 2: Hyperparameters of the model in our ex-

periments.

corpus of texts and fine-tune it for a specific task

at hand. In this work, we used BERT-base-Italian-

uncased(BERT-Ita)2 from Transformers library. It

is trained on the recent Wikipedia dump and vari-

ous texts from the OPUS corpora3 collection. The

final training corpus has a size of 13GB and 2050

million tokens. For classification tasks, the out-

put of BERT-Ita (pooler output) is obtained by its

last layer hidden state of the first token of the se-

quence (CLS token) further processed by a linear

layer and a Tanh activation function. However, the

pooler output is usually not a good summary of the

semantic information. Therefore, we extract the

hidden layer output of BERT-Ita to obtain more

abundant semantic information.

(Jawahar et al., 2019) pointed that the hidden

layer of BERT encodes a rich hierarchy of linguis-

tic information, with surface features at the bot-

tom layer, syntactic features in the middle layer

and semantic features at the top layer. Therefore,

we get abundant semantic information by extract-

ing the extra semantic features which is the last

three hidden layer outputs(L12 H0, L11 H0 and

L10 H0) of BERT-Ita. We propose the following

model which is shown in Figure 1. In the mod-

el, we get L12 H0, L11 H0, L10 H0 from the top

2https://huggingface.co/dbmdz/bert-base-italian-uncased
3http://opus.nlpl.eu/

hidden layer of BERT-Ita. We concatenate pooler

output, L12 H0, L11 H0 and L10 H0 into the

classifier.

4 Experiments and Results

4.1 Preprocessing and Experiments Setup

In the experiment, we try to preprocess the tex-

t but we did not achieve the desired results. We

find that after preprocessing the Twitter data, the

F1-score of the model decreased on the validation

set. We do not preprocess the data and we do not

use an extra data set. In this work, the training

set is split into the new training set and the val-

idation set by using the Stratified 5-Fold Cross-

validation4.The random seed is set 42 in Cross-

validation. Due to the imbalance of datasets, the

Stratified 5-Fold Cross-validation ensures that the

proportion of samples in each category in each

fold data set remains unchanged. During the train-

ing, the best weight of the model is saved in 8 e-

pochs. Table 2 shows the hyperparameters used in

our model.

4.2 Results and analysis

In the experiment, we find that with the increase

of the extra semantic features, the model can ob-

tain more abundant semantic information. Table 3

shows the performance of the model for different

semantic features after getting the labels of the test

set.5.

Task A

test set of tweets(100%)

No HS HS

No HS 489 152

HS 119 503

Task A

test set of news headlines(100%)

No HS HS

No HS 312 7

Hs 133 48

Table 4: The confusion matrix of BERT-

Ita+L12 HO in test sets.

4https://scikit-learn.org/stable/modules/generated/sklearn
.model selection.StratifiedKFold.html#sklearn.model selecti
on.StratifiedKFold

5https://github.com/msang/haspeede/tree/master/2020
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Task A

test set of tweets(100%)

Task A

test set of news headlines(100%)

Precision/Recall/Macro F1-score Precision/Recall/Macro F1-score

BERT-Ita+L12 HO 78.61/78.58/78.54 78.69/62.16/61.18

BERT-Ita+L12 HO+L11 HO 75.50/77.27/77.16 78.13/62.23/62.76

BERT-Ita+L12 HO+L11 HO+L10 HO

(Our submitted model)
77.80/77.72/77.66 72.07/65.74/66.38

Table 3: The performance of the model for these test sets.

Task A

test set of tweets(100%)

No HS HS

No HS 478 163

HS 119 503

Task A

test set of news headlines(100%)

No HS HS

No HS 289 30

Hs 107 74

Table 6: The confusion matrix of BERT-

Ita+L12 HO+L11 HOF+L10 HO in test sets.

Task A

test set of tweets(100%)

No HS HS

No HS 463 178

HS 110 512

Task A

test set of news headlines(100%)

No HS HS

No HS 310 9

Hs 128 53

Table 5: The confusion matrix of BERT-

Ita+L12 HO+L11 HO in test sets.

The confusion matrices (actual values are rep-

resented by rows) are shown in Table 4, Table 5,

Table 6. These tables show the performance of the

model on the test set as the extra semantic features

increase. In the tweets test set, we can see from

these tables that the ability of the model to detect

the hate speech is increasing as the extra seman-

tic features increase. Similarly, in the news head-

lines test set, the ability of the model to detect the

hate speech is also increasing. We think that with

the increase of these extra semantic features, the

model can learn more semantic information. In

addition, we find that our model achieve good re-

sults on the tweets test set, but the results of our

model are not good on the news headline data set.

There are many differences between the syntactic

features of tweets and news headlines. For exam-

ple, there are many irregular expressions in tweet-

s, while news expressions are very standard. Our

model is only fine-tuned on the tweets data set, so

we think this affects the performance of the model

on other types of data.

5 Conclusion

In this work, this paper introduces the system pro-

posed for HaSpeeDe 2 shared task for identifying

and classifying hate speeches on social media. We

enriched BERT-Ita with semantic information by

extracting the extra semantic features. We find

that with the increase of semantic information, the

performance of the model for identifying the hate

speech is also increasing. Finally, in the official e-

valuation, our model rank 6th (6/27) in the tweets

test set and 14th (14/27) in the news headlines test

set. In the future, we will focus on how to make

the model learns more semantic information.
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