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Abstract

English. This paper describes the sys-

tem that team YNU OXZ submitted for

EVALITA 2020. We participate in the

shared task on Automatic Misogyny Iden-

tification (AMI) and Hate Speech Detec-

tion (HaSpeeDe 2) at the 7th evaluation

campaign EVALITA 2020. For HaSpeeDe

2, we participate in Task A - Hate Speech

Detection and submitted two-run result-

s for the news headline test and tweet-

s headline test, respectively. Our submit-

ted run is based on the pre-trained multi-

language model XLM-RoBERTa, and in-

put into Convolution Neural Network and

K-max Pooling (CNN + K-max Pooling).

Then, an Ordered Neurons LSTM (ON-

LSTM) is added to the previous represen-

tation and submitted to a linear decision

function. Regarding the AMI shared task

for the automatic identification of misogy-

nous content in the Italian language. We

participate in subtask A about Misogy-

ny & Aggressive Behaviour Identifica-

tion. Our system is similar to the one de-

fined for HaSpeeDe and is based on the

pre-trained multi-language model XLM-

RoBERTa, an Ordered Neurons LSTM

(ON-LSTM), a Capsule Network, and a fi-

nal classifier.

1 Introduction and Background

People use offensive contents in their social me-

dia posts to degrade an individual or religion or

other organizations in many respects, the identifi-

cation of such social media posts is a necessity, a

Copyright c⃝ 2020 for this paper by its authors. Use
permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

substantial amount of work has been done in lan-

guages like English. However, hate speech and of-

fensive language identification in other language

scenario is still an area worth exploring. The latest

edition of EVALITA (Caselli et al., 2018) hosted

the first Hate Speech (HS) detection in Social Me-

dia (i.e. HaSpeeDe (Bosco et al., 2018)) task for

Italian, the HaSpeeDe 2 (Hate Speech Detection)

(Sanguinetti et al., 2020) shared task have been or-

ganized within Evalita 2020 1. The ultimate goal

of HaSpeeDe 2 is to take a step further in the s-

tate of the art of HS detection for Italian while al-

so exploring other side phenomena, the extent to

which they can be distinguished from HS, and fi-

nally whether and how much automatic systems

are able to draw such conclusions. For AMI (Elis-

abetta Fersini, 2020), the second shared task at the

7th evaluation campaign EVALITA 2020 (Basile

et al., 2020). Given the huge amount of user-

generated content on the Web, and in particular on

social media, the problem of detecting, in order to

possibly limit the diffusion of hate speech against

women, is rapidly becoming fundamental espe-

cially for the societal impact of the phenomenon,

it is very important to identify misogyny in social

media.

1.1 Hate Speech (HaSpeeDe 2)

In recent years, with the acceleration of infor-

mation dissemination, the identification of hate

speech and offense language has become a crucial

mission in multilingual sentiment analysis field-

s and has attracted the attention of a large num-

ber of industrial and academic researchers. From

an NLP perspective, much attention has been paid

to the topic of HS - together with all its possi-

ble facets and related phenomena, such as offen-

sive/abusive language, and its identification. This

is shown by the proliferation, especially in the

last few years, of contributions on this topic (e.g.

1http://www.evalita.it/2020/tasks
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Caselli et al. (2020), Jurgens et al. (2019), Fortuna

et al. (2019)), corpora and lexica (e.g. de Pelle

and Moreira (2017), (Sanguinetti et al., 2018),

(Bassignana et al., 2018)), dedicated workshop-

s, and shared tasks within national (GermEval
2, HASOC 3, IberLEF 4) and international (Se-

mEval 5) evaluation campaigns. Among them,

Gemeval2018 is about offensive language recog-

nition and aims to promote research on offen-

sive contents recognition in German language mi-

croblogs. The best teams system is to train three

basic classifiers (maximum entropy and two ran-

dom forest sets) using five disjoint feature set-

s and then used the maximum entropy element-

level classifier for final classification (Montani and

Schüller, 2018). In the SemEval-2019 shared tasks

HatEval and OffensEval, HatEval is a multilin-

gual detection of hate speech against immigrants

and women on Twitter. Fermi team is the best

team of Hateval. It proposes an SVM model with

the RBF kernel and uses sentence embedding in

Google general sentence encoder as a function (In-

durthi et al., 2019). OffensEval is about the iden-

tification and classification of offensive language

in social media. The NULI team is the best per-

forming team, they use BERT-base without default

parameters (Liu et al., 2019). HASOC2019 is pro-

posed to identify hate speech and offensive con-

tent in Indo-European languages. Its purpose is

to develop powerful technologies capable of pro-

cessing multilingual data and to develop a transfer

learning method that can utilize cross-lingual data.

The optimal system is a system based on ordered

neuron LSTM (ON-LSTM) and attention model

and adopts the K-folding approach for ensemble

(Wang et al., 2019).

1.2 Misogyny (AMI)

Unfortunately, nowadays more and more incidents

of harassment against women have appeared and

misogynistic comments have been found in so-

cial media, where misogynists hide behind by

anonymity security. Therefore, it is very important

to identify misogyny in social media. Pamungkas

et al. (2020) conducted extensive and in-depth re-

search on online misogyny, developed a state-of-

the-art model for detecting misogyny in social me-

dia and explored the feasibility of detecting misog-

2https://projects.fzai.h-da.de/iggsa/germeval/
3https://hasocfire.github.io/hasoc/2020
4http://hitz.eus/sepln2019/
5http://alt.qcri.org/semeval2020/

yny in a multilingual environment. Aiming at

the TRAC-2 shared tasks of Aggression Identifica-

tion and Misogynistic Aggression Identification,

Samghabadi et al. (2020) propose an end-to-end

neural model using attention on top of BERT that

incorporates a multi-task learning paradigm to ad-

dress both the sub-tasks simultaneously. Arango

et al. (2019) discussed the implications for current

research and re-conduct experiments, a closer look

at model validation to give a more accurate pic-

ture of the current state-of-the-art methods. Re-

cent investigations studied how the misogyny phe-

nomenon takes place, such as Farrell et al. (2019)

study this phenomenon by investigating the flow

of extreme language across seven online commu-

nities on Reddit. Goenaga et al. (2018) automat-

ic misogyny identification using neural networks.

Automatic misogyny identification in Twitter has

been firstly investigated by Anzovino et al. (2018).

2 Task and Data description

2.1 Task description

In this part, we describe one of the subtasks

HaSpeeDe 2 participating in EVALITA 2020. This

task introduces its novelty from three main aspect-

s (Language variety and test of time, Stereotyp-

ical communication, Syntactic realization of HS).

We participated in Task A - Hate Speech Detection

(Main Task), a binary classification task aimed at

determining the presence or the absence of hateful

content in the text towards a given target (among

Immigrants, Muslims or Roma people).

The AMI shared task proposes that misogy-

nous content in Italian is automatic identification

in Twitter. It is organized according to two main

subtasks, namely subtask A - Misogyny & Ag-

gressive Behaviour Identification and subtask B -

Unbiased Misogyny Identification. We participate

in subtask A, the system must recognize whether

the text is misogyny, and if it is misogyny, it must

also recognize whether it expresses an aggressive

attitude.

2.2 Data description

HaSpeeDe 2 task organizer provides a new H-

S training dataset (binary task) based on Twit-

ter data, accompanied by a test set including both

in-domain and out-of-domain data (tweets + news

headlines), as well as from different time periods.

The HaSpeeDe 2020 new training set already con-

tains the Twitter dataset of HaSpeeDe 2018. The
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new dataset contains a total of 6,839 tweets (label

0 means NOT HS, label 1 means HS), of which

HS contains 2,766, NOT HS contains 4,703, the

tweets headlines test set contains 1,263 tweets, and

the news headlines test set contains 500 elements.

In the experimental run, the data we recommend

for this task is the result of combining the Face-

book dataset (training set + test set) of HaSpeeDe

2018 with the new training set of HaSpeeDe 2020,

this is to analyze the influence of out-of-domain

texts in the training set. The two contain a total of

10,839 comments/tweets.

The AMI organizer provided a raw dataset

(5,000 tweets) as the training set for participants in

subtask A, the raw dataset is a balanced dataset of

tweets manually labeled according to two levels:

• Misogynous: defines if a tweet is misogy-

nous or not misogynous. Label 0 means Not

misogynous tweet, label 1 means Misogy-

nous tweet.

• Aggressiveness: denotes the subject of the

misogynistic tweet (misogynous tweet is la-

bel 1). Label 0 means Non-aggressive tweet,

label 1 means Aggressive tweet. Not misog-

ynous tweet (misogynous tweet is label 0) are

labeled as 0 by default.

For the test set (1,000 tweets) for subtask A pro-

vided by the AMI organizer, only the annotations

on the “misogynous” and “aggressiveness” fields

in the raw dataset will consider.

Figure 1: 5-fold stratified sampling to the training

set

As shown in Figure 1, we use stratified sam-

pling technology (StratifiedKFold), using Strati-

fiedKFold cross-validation instead of ordinary k-

fold cross-validation to evaluate a classifier. The

reason is that StratifiedKFold can utilize stratified

sampling to divide, which can ensure that the pro-

portion of each category in the generated training

set and validation set is consistent with the origi-

nal training set so that the generated data distribu-

tion disorder will not occur. In the experiment, we

used 5-fold stratified sampling. For the HaSpeeDe

2 training set (Merged dataset), each of which in-

cluded the randomly sampled training set (8,671)

and validation set (2,168). For the AMI training

set (raw dataset), each of which included the ran-

domly sampled training set (4,000) and validation

set (1,000).

3 Description of the system

Figure 2: System architecture diagram for Task A

(HaSpeeDe 2)

In this part, we introduce our final submission

system. Figure 2 shows the overall framework

of the system we submitted to HaSpeeDe 2 Task

A. We use the pre-trained multi-language model

XLM-RoBERTa. We discover the limitations of

BERT’s pooler output (P O) and obtained rich se-

mantic information by extracting the hidden state

(The last four hidden layers) of XLM-RoBERTa,

which is used as input for Convolution Neural Net-

work and K-max Pooling (CNN + K-max Pool-

ing). Then, we input the output of (CNN + K-max

Pooling) into the Ordered Neurons LSTM (ON-

LSTM). Finally, we concatenate the P O and out-

put of ON-LSTM ON-LSTM together and pass it
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through the Linear layer and Softmax for the final

classification.

Figure 3 shows the overall framework of the

system we submitted to AMI subtask A. We

use the pre-trained multi-language model XLM-

RoBERTa. We first get pooler output (P O) and

obtained rich semantic information by extracting

the hidden state (The last four hidden layers) of

XLM-RoBERTa, which is input into Ordered Neu-

rons LSTM (ON-LSTM). Then, we input the out-

put of ON-LSTM into Capsule Network.Finally,

we concatenate the P O and output of Capsule to-

getherand through the Linear layer and Softmax

for the final classification.

Figure 3: System architecture diagram for subtask

A (AMI)

3.1 XLM-RoBERTa and hidden layer state

Early work in the field of cross-language under-

standing has proved the effectiveness of multi-

lingual masked language model (MLM) in cross-

language understanding, but models such as

XLM (Lample and Conneau, 2019) and Multilin-

gual BERT (Devlin et al., 2018) (pre-trained on

Wikipedia) are still limited in learning useful rep-

resentations of low resource languages. XLM-

RoBERTa (Conneau et al., 2020) shows that the

performance of cross-language transfer tasks can

be significantly improved by using the large-scale

multi-language pre-training model. It can be un-

derstood as a combination of XLM and RoBER-

Ta. It is trained on 2.5 TB of newly created clean

CommonCrawl data in 100 languages. Because

the training of the model in this task must make

full use of the whole sentence content to extract

useful semantic features, which may help to deep-

en the understanding of the sentence and reduce

the impact of noise on speech. Therefore, we use

XLM-RoBERTa in this work.

In the classification task, the original output of

XLM-RoBERTa is obtained through the last hid-

den state of the model. However, the output usual-

ly does not summarize the semantic content of the

input. Recent studies have shown that abundan-

t semantic information features are learned by the

top hidden layer of BERT (Jawahar et al., 2019),

which we call the semantic layer. In our opinion,

the same is true of XLM-RoBERTa. Therefore, in

order to make the model obtain more abundant se-

mantic information features, we propose the sys-

tem as shown in Figure 2 for HaSpeeDe 2 Task A.

Firstly, we get P O. Secondly, we extract the hid-

den state of the last four layers of XLM-RoBERTa

and input them into CNN and K-max Pooling.

Then, input into ON-LSTM. For AMI subtask A,

we propose the system as shown in Figure 3. First-

ly, we get P O. Secondly, we extract the hidden s-

tate of the last four layers of XLM-RoBERTa and

input them into ON-LSTM. Then, input into Cap-

sule.

3.2 CNN and K-max Pooling

As shown in Figure 2, we input the extracted

hidden states of the last four layers of XLM-

RoBERTa into CNN and K-max Pooling for con-

volution operations to obtain multiple feature

maps. The specific operation: a sentence contains

L words, each of which has a dimension of d after

the embedding layer, and the representation of the

sentence is formed by splicing the L words to form

a matrix of L ∗ d. There are several convolution k-

ernels in the convolutional layer, the size of which

is N ∗ d, and N is the filter window size. The con-

volution operation is to apply a convolution kernel

to create a new feature in a matrix that is spliced

by words. Its formula is as follows:

Cl = f(w ∗ x(l : L+N − 1) + b) (1)

where l represents the lth word, Cl is the feature,

w is the convolution kernel, b is the bias term, and

f is a nonlinear function. After the convolution

operation of the whole sentence, a feature map is

obtained, which is a vector of size L + N - 1.
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Another important idea of CNN is pooling. The

pooling layer is usually connected behind the con-

volution layer. The purpose of introducing it is to

simplify the output of the convolutional layer and

perform dimensionality reduction on the features

of the Filter to form the final feature. Here is the

K-max Pooling operation, which takes the value

of the scores in Top K among all the feature val-

ues, and retains the original order of these feature

values, that is, by retaining some feature informa-

tion for subsequent use. Obviously, K-max Pool-

ing can express the same type of feature multiple

times, that is, can express the intensity of a certain

type of feature; in addition, because the relative

order of these Top K eigenvalues is preserved, it

should be said that it retains part of the position

information. However, this location information

is only the relative order between features, not ab-

solute location information.

3.3 Ordered Neurons LSTM

For HaSpeeDe 2, as shown in Figure 2, we input

the output of CNN and K-max pooling into ON-

LSTM. For AMI, as shown in Figure 3, We input

the extracted hidden states of the last four layers

of XLM-RoBERTa into ON-LSTM. ON-LSTM is

a new variant of LSTM, which sorts the neurons

in a specific order, allowing the hierarchical struc-

ture (tree structure) to be integrated into the LSTM

to express richer information. The gate structure

and output structure of ON-LSTM are still similar

to the original LSTM. The difference is that the

update mechanism from �ct to ct is different. The

formula is as follows (Shen et al., 2018):

�ft = −→cs(softmax(W
f̃
xt + U

f̃
ht−1 + b

f̃
) (2)

�it = ←−cs(softmax(W
ĩ
xt + U

ĩ
ht−1 + b̃

i
) (3)

wt = �ft ◦ �it (4)

ct =wt ◦ (ft ◦ ct−1 + it ◦ �ct) + (�ft − wt)

◦ ct−1 + (�it − wt) ◦ �ct
(5)

Among them, −→cs and ←−cs are cumsum() opera-

tions in the right and left directions, respectively.

the newly introduced �ft and �it represent the mas-

ter forget gate and master input gate respectively.

wt represents a vector where the intersection part

is 1 and the rest is all 0. In this way, the high-level

information remains a considerable long distance,

while the low-level information may be updated at

each step of input, thereby embedding the hierar-

chical structure through information grading.

3.4 Capsule Network

As shown in Figure 3, we input the output of ON-

LSTM into Capsule. In the deep learning mod-

el, spatial patterns are aggregated at a lower lev-

el, which helps to represent higher-level concepts.

We use the Capsule Network (Sabour et al., 2017)

to enhance the models feature extraction capabil-

ities, spatial insensitivity methods are inevitably

limited by the abundant text structure (such as

saving the location of words, semantic informa-

tion, grammatical structure, etc.), difficult to ef-

fectively encode, and lack of text expression abili-

ty. The Capsule network effectively improved this

disadvantage by using neuron vectors instead of

individual neuron nodes of traditional neural net-

works to train this new neural network in the dy-

namic routing way. The Capsule’s parameter up-

date algorithm is routing-by-agreement, a lower-

level capsule prefers to send its output to higher-

level capsule whose activity vectors have a big s-

calar product with the prediction coming from the

lower-level capsule. The calculation formula of

the Capsule is as follows:

Vj =
∥ Sj ∥

2

1+ ∥ Sj ∥2
Sj

∥ Sj ∥
(6)

Sj =
∑

i

Cij ûj|i, ûj|i = Wijui (7)

where Vj is the vector output of capsule j and

Sj is its total input, prediction vectors ûj|i is by

multiplying the output ui of a capsule in the layer

below by a weight matrix Wij , the Cij are cou-

pling coefficients that are determined by the itera-

tive dynamic routing process.

The most fundamental difference between the

Capsule network and the traditional artificial neu-

ral network lies in the unit structure of the net-

work. For traditional neural networks, the calcula-

tion of neurons can be divided into the following

three steps: 1. Perform a scalar weighted calcu-

lation on the input. 2. Sum the weighted input

scalars. 3. Nonlinearization from scalar to the s-

calar. For the Capsule, its calculation is divided

into the following four steps: 1. Do matrix multi-

plication on the input vector. 2. Scalar weighting

of the input vector. 3. Sum the weighted vector.

4. Vector-to-vector nonlinearization. The biggest

difference between the Capsule network and the
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traditional neural network is the unit output. The

output of the traditional neural network is a val-

ue, while the output of the Capsule network is a

vector, which can contain abundant features and is

more interpretable.

3.5 Experiment setting

For the XLM-RoBERTa, we use XLM-

RoBERTa-base6 pre-trained model, which

contains 12 layers. We use Binary cross-entropy,

Adam optimizer with a learning rate of 5e-5.

The batch size is set to 32 and the max sequence

length is set to 80. We extract the hidden layer

state of XLM-RoBERTa by setting the out-

put hidden States is true. The model is trained in

8 epochs with a dropout rate of 0.1.

For the Convolution Neural Network,we use

2D convolution (nn.Conv2d7). The size of the

convolution kernel is set to (3,4,5) and the num-

ber of convolution kernels is set to 256.

For the ON-LSTM, we set the hidden units to

128 and num levels to 16.

For the Capsule Network, we set num capsule

to 10, dim capsule to 16, routings to 4.

4 Results and Discussion

Task Our Score Best Score Rank

HaSpeeDe Macro F1

Tweets 0.7717 0.8088 8

News 0.6922 0.7744 7

AMI Average F1

subtask A 0.7313 0.7406 3

Table 1: Classification results of our best runs on

the HaSpeeDe 2 Task A and AMI subtask A.

Table 1 reports the official results of the best

runs on the two tasks we participate in. For these

two tasks, we submitted the results of two runs,

and the results of both runs were ideal and equally

matched. In the following subsections, the results

obtained in each task will be discussed.

4.1 HaSpeeDe 2 Task A

In our experiment, we find the limitations of P O

for sentiment analysis of hate text in Italian lan-

guages. In the classification task, the original out-

6https://huggingface.co/xlm-roberta-base
7https://pytorch.org/docs/stable/generated/torch.nn.Conv2d

XLM-RoBERTa with only P O in News

The validation set of 1-fold

Category P R F1 Instances

Not Hate 0.70 0.981 0.817 1355

Hate 0.886 0.259 0.401 813

Macro F1 0.793 0.62 0.609 2168

XLM-RoBERTa with only P O in Tweets

The validation set of 1-fold

Category P R F1 Instances

Not Hate 0.805 0.569 0.667 1355

Hate 0.659 0.858 0.745 813

Macro F1 0.723 0.713 0.706 2168

Table 2: Precision, Recall, F1 score and Instances

for XLM-RoBERTa with only P O in HaSpeeDe

2 Task A (The validation set is the first fold in the

5-fold stratified cross-validation)

The number of different hidden layers of

XLM-RoBERTa (The validation set of 1-fold)

Systems HS-News HS-Tweets

Hidden layers Macro F1 Macro F1

The last layers 0.623 0.725

The last two layers 0.646 0.734

The last three layers 0.66 0.749

The last four layers 0.703 0.798

Table 3: The performance of our model at different

hidden layers (The validation set is the first fold in

the 5-fold stratified cross-validation)

put of BERT is P O. In the same way, we just put

P O as the output of XLM-RoBERTa.The results

are shown in Table 2. We can see that the results

are not good when only P O is used as the output

of XLM-RoBERTa. We think that just using P O

as the output will lose some effective semantic in-

formation. So we think that deep and abundant

semantic features are effective for this work. We

extract the hidden state of XLM-RoBERTa and we

also discover that the performance of the model

improves with the increase of the semantic layer.

Table 3 shows the performance of our model at d-

ifferent semantic layers. Table 4 shows our results

on the test set.

4.2 AMI subtask A

In this work, we have similar tasks as discussed in

Section 4.1, and we consider the influence of P O

for identifying misogyny content. We conduct ex-

periments on the AMI subtask A base on the mod-
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The last four hidden states of XLM-RoBERTa

News P R F1 Macro

F1

Not Hate 0.7486 0.8965 0.8159 0.6922

Hate 0.7203 0.4696 0.5685

Tweets P R F1 Macro

F1

Not Hate 0.8037 0.7285 0.7643 0.7717

Hate 0.7448 0.8167 0.7791

Table 4: Results of Macro F1 on Test set

el in HaSpeeDe 2, and in order to improve the per-

formance, we propose a new method base on this

model. Table 5 shows the comparative experimen-

tal data of the CNN + K-max Pooling + ON-LSTM

method and the ON-LSTM + Capsule method. Ta-

ble 6 shows the results of our new model for A-

MI subtask A on the test set. Run 1 only extracts

the last four hidden layer states of XLM-RoBERTa

and inputs them into ON-LSTM, then through the

Capsule Network, and finally performs classifica-

tion (without using P O). Run 2 is to concatenate

the output of the Capsule Network with the ob-

tained P O and input it to the classifier for final

classification (using P O). We think that concate-

nate the P O and the hidden layer will retain richer

semantic information and show excellent results.

Base on XLM-RoBERTa model

(The validation set of 1-fold)

Method Macro F1

CNN + K-max Pooling + ON-LSTM 0.786

(HaSpeeDe 2 Model)

ON-LSTM + Capsule 0.857

(AMI model)

Table 5: Comparison of experimental data be-

tween CNN + K-max Pooling method and ON-

LSTM + Capsule method on the validation set.

(The validation set is the first fold in the 5-fold

stratified cross-validation)

5 Conclusion

In the experiment, we find the limitation of on-

ly using pooler output as the XLM-RoBERTa’s

output. To obtain deeper and more abundant se-

mantic features, we extract the hidden layer s-

System Average F1

Run 1 (without using P O) 0.7014

Run 2 (using P O) 0.7313

Table 6: The results on the test set for AMI subtask

A

tate of XLM-RoBERTa. The result shows that it

is helpful to improve the performance of XLM-

RoBERTa to obtain more abundant semantic infor-

mation features by extracting the hidden state of

XLM-RoBERTa. We test the effects of using the

external dataset (Merged dataset) and not using

the external dataset (raw dataset). Our conclusion

is that using data from the same social network for

training and test is a necessary condition for good

performance. In addition, adding data from differ-

ent social networks can improve results.
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