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Abstract

This report describes an approach to solve

the DaDoEval document dating subtasks

for the EVALITA 2020 competition. The

dating problem is tackled as a classifica-

tion problem, where the significant length

of the documents in the provided dataset

is addressed by using sentence embed-

dings in a hierarchical architecture. Three

different pre-trained models to generate

sentence embeddings have been evaluated

and compared: USE, LaBSE and SBERT.

Other than sentence embeddings the clas-

sifier exploits a bag-of-entities representa-

tion of the document, generated using a

pre-trained named entity recognizer. The

final model is able to simultaneously pro-

duce the required date for each subtask.

1 Introduction

To solve the DaDoEval task (Menini et al., 2020)

for the EVALITA 2020 competition (Basile et al.,

2020) a model should be able to assign a temporal

span from a discrete set of candidates to a docu-

ment, i.e. recognizing when the document was is-

sued. As many other NLP tasks, like author iden-

tification or topic assignment, this task can be re-

duced to a classification problem.

The provided dataset contains documents writ-

ten by the Italian statesman Alcide De Gasperi in

the time span 1901-1954, labeled with the year in

which they were issued. The dating task is di-

vided into different subtasks of increasing granu-

larity. The first subtask requires to classify a doc-

ument into one of five representative periods in De

Gasperi’s life as identified by historians. (Table 1)

The second and the third subtasks require to date

a document more precisely, using a five-year span

for the former and the precise year for the latter.

These subtasks are referred to as the same-genre

subtasks.

ID Period description Time span

A Habsburg years 1901-1918

B Beginning of political activity 1919-1926

C Internal exile 1927-1942

D From fascism to the Italian Republic 1943-1947

E Building the Italian Republic 1948-1954

Table 1: Historical periods of De Gasperi’s life

Other than on a blind test set kept from the

same-genre dataset, the model has been also eval-

uated on three additional cross-genre subtasks. In

this case, documents coming from a De Gasperi’s

epistolary archive were used to build an external

blind test set. The cross-genre subtasks require to

classify documents with the same increasing time

granularity as the same-genre ones.

The tasks are evaluated using macro-averaged

F1. Baseline results using logistic regression and

tf-idf on a bag-of-word representation are pro-

vided by the task proponents in table 2.

Subtask Macro-Average F1

Historical 0.827

Five-years 0.485

Single-year 0.126

Table 2: Proponents baseline

All of the results and the described experiments

have been implemented using TensorFlow and ex-

ecuted on the platform Google Colab. The lim-

itations of the platform regarding continuous us-

age are not negligible and had an acknowledgeable

weight in multiple decisions.

In section 2 different approaches to deal with

long text classification are described and the var-

ious sentence embeddings models are presented.

In section 3 the peculiarities of the dataset are dis-

cussed. In section 4 the different sentence embed-

dings models are evaluated and compared with al-

ternative approaches over a single subtask. In sec-

tion 5 the architecture of the final model used to
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solve all the subtasks is described, its results are

reported in section 6 and discussed in section 7.

2 Methodological survey

The use of pre-trained transformers such as BERT

(Devlin et al., 2019) has remarkably improved the

state of the art in many NLP tasks, text classifica-

tion included. Furthermore contextual word em-

beddings produced by pre-trained transformers are

preferable when dealing with polysemy. Docu-

ments from a wide time span could manifest lexi-

cal change, so polysemy may significantly emerge

(Blank, 1999).

When dealing with text classification using the

transformer model the first architectural issue is

given by the length of the documents. To classify a

text a special symbol is usually inserted at the start

of the input sequence, then the output correspond-

ing to that symbol is fed into a neural network to

retrieve the predicted class. Since the maximum

input size for a BERT transformer is 512 tokens, it

is unlikely that the whole document will fit. Dif-

ferent architectures are available to overcome this

problem.

For certain domains it has been studied that not

all of the text is needed to achieve good classifi-

cation accuracy. For instance Sun et al. (2020)

propose to select only part of the text, like the

head, or the tail or both, up to reducing the text

size to fit the input layer of the transformer. The

random selection of tokens inside a document has

also proven to be effective for topic classification

of academic papers (Liu et al., 2018).

Recently different solutions started to exploit

hierarchical architectures, segmenting the text to

consequently analyze it in its entirety. The use

of sentences may be intuitively perceived as more

meaningful than fixed-length segments. Accord-

ingly, three different sentence embeddings solu-

tions have been selected to be implemented and

evaluated for the DaDoEval task. All of them pro-

vide pre-trained multilingual models, satisfying so

the computational constraints and the task require-

ments.

Sentence-BERT, also known as SBERT,

produces sentence embeddings by stacking a

pooling layer on the top of a BERT transformer.

A pre-trained BERT model is fine-tuned using

Siamese networks, back-propagating over the

cosine similarity of supposedly semantically

related sentences. (Reimers and Gurevych,

2019) A monolingual model can be then distilled

and expanded to other languages by training

a student model to replicate the behavior of

the teacher model, and under the assumption

that the vector representation of translated sen-

tences should coincide. (Reimers and Gurevych,

2020). The authors of SBERT published

distiluse-base-multilingual-cased,

a distilled model pre-trained on many languages

including Italian.

The Universal Sentence Encoder, or USE, com-

prises different architectures trained on the same

set of tasks to enable transfer learning for many

NLP tasks with different requirements. (Cer et al.,

2018) The original USE has then been expanded

for multilingual applications providing two pre-

trained models, a transformer and a CNN, both

available on Tensorflow HUB. (Yang et al., 2019)

Lastly, the Language-agnostic BERT Sentence

Embedding model, or LaBSE, produces sen-

tence embeddings by using a fine-tuned BERT

model. The LaBSE model is designed similarly

to SBERT, using two sharing-weights transform-

ers initialized by a pre-trained BERT model. The

main difference lies in the datasets and the tasks

used for fine-tuning. The authors report the re-

markable results of LaBSE for languages unseen

but somehow related to those in the training set.

(Feng et al., 2020) This result may be useful to

fill the gaps between contemporary Italian and the

XX-century Italian language in the dataset.

3 Data Analysis

The overall dataset contains 2759 manually la-

beled documents of variable length written by Al-

cide De Gasperi during its political life. However,

the development dataset provided by the propo-

nents contains only 2210 of them, since the re-

maining ones are kept for the blind same-genre

test set. The dataset is extremely unbalanced since

the number of elements per time period varies con-

siderably. For instance by analyzing figure 1 it is

evident how some years contribute to the dataset

with few documents. The lack of data for these

periods remarkably impacts the overall accuracy

of the learning process. The development set pro-

vided by the proposers has been split into a train-

ing set and a validation set to assess the capabili-

ties of the different tested models. The training set

was composed by sampling the 80% of the devel-

opment dataset, leaving the remaining 20% to the
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Figure 1: Number of documents per year from

1901 to 1954.

validation split. This choice reflects the proportion

between the size of the provided development set

and the overall dataset.

Without altering the validation split for the as-

sessment, the training data can be augmented to

contrast the unbalancing. The hierarchical solu-

tion highly increases the number of tokens that

can be used to classify a document, nonetheless

the number of sentences per document should be

constrained under a fixed constant. When truncat-

ing a document to limit the number of sentences,

the remaining part is then inserted in the dataset

as a new document instead of discarding it. The

data augmentation procedure described has been

implemented under the assumption that the less

represented years contain the longest documents.

While this holds for some classes, the effect of

data augmentation didn’t impact on the overall dis-

tribution.

Method Time

SBERT 223.068s

LaBSE 3364.272s

USETRANS 154.277s

USECNN 29.681s

Table 3: Time required by each sentence embed-

ding technique to process the training set.

The tokenizer for the Italian language included

in the NLTK library has been used to split each

document into a list of sentences (Bird et al.,

2009). The content of each sentence has been to-

kenized instead with a custom tokenizer for each

one of the sentence embeddings techniques, since

they may require different configurations and their

vocabulary must be used. A common issue in this

scenario is given by the rate of out-of-vocabulary

tokens (Wang et al., 2019), but this hasn’t been

evaluated since the interfaces offered by the se-

lected models don’t offer insights over the OOV

rate or other token-level statistics. The time re-

quired to produce the embeddings over the train-

ing set is reported in table 3.

4 Building blocks selection

Because of the computational limitations, many

experiments have been conducted only on one sub-

task, relegating the others to a subsequent phase.

The historical subtask has been chosen because of

the better balancing of the dataset and the fore-

seeable and more promising results. The provided

dataset has been split using stratified sampling and

data augmentation in a consistent training set and a

smaller validation set. The training split covers the

80% of the provided development set, leaving the

remaining 20% to the validation one. All of the

results are produced by averaging multiple runs,

to overcome the non-deterministic and unpredicta-

bles effects of the GPUs used for training.

4.1 Truncation based classification

The first experiments used a pre-trained BERT

multilingual model for text classification. To over-

come the constraint over the input size the docu-

ments were truncated up to their first 512 tokens.

As expected the truncation has proven to be in-

effective since, even after fine-tuning, the model

didn’t converge on the training set for any subtask.

The results aren’t significant and therefore not re-

ported.

4.2 Sentence embeddings

Once each document is represented as a sequence

of sentence embeddings, two different classifica-

tion models have been implemented and evalu-

ated. The first is a Recurrent Neural Network

with two bidirectional LSTM layers followed by

a combination of dropout and dense layers of re-

ducing width. The other classifier is based on

the transformer architecture, where a transformer

block composed of a multi-headed self-attention

layer with 128 heads, dropout and layer normal-

ization is followed by a combination of dropout

and dense layers as in the previous solution.

The results of the experiments over the combi-

nation of sentence embeddings and the two clas-

sifiers are reported in table 4, showing how the

combination of SBERT and the transformer-based

classifier is the most adequate. With the excep-

tion of LaBSE, all the other sentence embeddings

models gave better results when coupled with a
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TR VL

Top Loss Acc F1 Loss Acc F1

LaBSE

RNN 0.356 0.875 0.884 0.663 0.778 0.781

Trans 0.559 0.771 0.697 0.960 0.713 0.616

SBERT

RNN 0.143 0.955 0.975 0.690 0.824 0.829

Trans 0.060 0.982 0.987 1.235 0.850 0.851

USECNN

RNN 0.193 0.937 0.959 0.780 0.775 0.780

Trans 0.217 0.920 0.937 0.850 0.821 0.819

USETransformer

RNN 0.105 0.969 0.978 0.780 0.815 0.823

Trans 0.192 0.923 0.972 0.773 0.822 0.830

Table 4: Results for the historical periods subtask

over training and validation set using different se-

quence embeddings.

transformer block than with a recurrent neural net-

work. Also, the two variants of USE manifested a

more significant gap when coupled with the RNN

classifier than with the transformer-based one. Fi-

nally, the performance drop of the LaBSE model

may reflect a condition also explored by Reimers

and Gurevych (2020), where a comparable perfor-

mance gap with SBERT occurs in semantic textual

similarity tasks.

4.3 Bag-of-entities

Another approach to tackle the subtasks con-

sists of exploiting the knowledge of a pre-trained

named entity recognizer. It is reasonable to sup-

pose that the entities extracted by a document

will produce a good representation for the doc-

ument itself. In the context of document dating

this could be meaningful by assuming that the is-

sues discussed by the author will vary during the

years, consequently influencing the entities con-

tained. By building a vocabulary of unique enti-

ties it is possible to represent each document as a

bag-of-entities, then a multi-layer dense classifier

with dropout can be trained to predict the correct

time span.

Named entity recognition is achieved using one

pre-trained CNN for the Italian language dis-

tributed by spaCy (Honnibal and Montani, 2017).

Three variants of the same model are provided but,

since their differences heavily impact on the model

size rather than on the performances (Table 5), the

medium sized model has been chosen without fur-

ther validation. Because of this it is not possible

to assess how the performances of the NER alone

influence the performances of the overall system.

The NER model returns for each entity a pair

containing its content and a label regarding its

role. It is possible to consider as a member of the

entities vocabulary only the textual content or the

unique pair of text and label, both methods were

implemented and compared but finally only the la-

bel was chosen as representative of the entity.

Small Medium Large

F1 86.57 88.54 89.40

Precision 86.85 88.76 89.56

Recall 86.29 88.33 89.24

Size 13MB 43MB 544MB

Table 5: Model size and benchmark as provided

by spaCy for the Italian language pre-trained mod-

els. (Explosion.ai, 2020)

4.4 Results

The transformer classifier using sentence embed-

dings provided by SBERT is chosen as the fi-

nal candidate since it’s the best performing model

on the validation set. As previously discussed,

the model selection procedure only considered the

first subtask because of the magnitude and the bal-

ancing of its dataset. To roughly estimate the be-

havior on all the subtasks both the sentence em-

beddings classifier and the bag-of-entities solution

have been retrained from scratch on the specific

subtasks labels and evaluated on the validation set.

The results are reported in table 6.

SBERT+Trans Bag-of-entities

Task Baseline TR VL TR VL

Historical 0.827 0.930 0.846 0.997 0.841

Five-years 0.485 0.482 0.354 0.996 0.563

Single-year 0.126 0.086 0.040 0.990 0.211

Table 6: Macro-averaged F1 for all the subtasks

5 Model Architecture

It is therefore clear that both the approaches have

their advantages on different subtasks. More pre-

cisely the sentence embeddings one has proven to

be more effective when dealing with the historical

periods subtask, while the bag-of-entities obtains

better results on the finer ones. The problem of

combining these two solutions is now tackled.

The trivial solution would be to hardwire in a

single model the different approaches, producing

so the output for the first subtask using a sentence

embeddings model and for the other subtasks with
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Figure 2: Architecture of the final model.

a bag-of-entities one. While this solution would

be acceptable, and seemingly over the baseline ac-

cording to the estimates on the validation set, it is

reasonable to assume that the representations for

these subtasks could be shared, improving the per-

formances. Different variations of the same archi-

tecture are therefore evaluated on the validation set

to monitor such improvement.

In the final model, the sentence embeddings

produced by SBERT are fed to a transformer block

containing a multi-headed self-attention layer, its

output is then averaged and concatenated with the

bag-of-entities representation of the document be-

fore being fed to a multi-layer neural network. The

output of each layer of this network is also fed to

a dedicated neural network that produces the out-

put of each subtask. The selected order for the

subtasks in the multi-layer dense classifier places

the historical classification first, followed by the

five-years and then the single-year classification.

A graphical representation of the architecture is in

figure 2.

Both the reverse of the subtasks order and the

absence of hierarchy, by connecting all the classi-

fication networks directly to the transformer block,

have been tested. Also, the supposed additional

value of the concatenation with the entities repre-

sentation has been experimentally evaluated. The

results of these variations are reported in table 7,

where the selected final model for the competition

Historical Five-years Single-year

BoE Order TR VL TR VL TR VL

N F 0.987 0.828 0.961 0.554 0.577 0.144

N B 0.988 0.828 0.930 0.566 0.871 0.204

N A 0.983 0.813 0.973 0.560 0.920 0.228

Y F 0.991 0.842 0.980 0.599 0.852 0.236

Y B 0.993 0.842 0.988 0.578 0.897 0.247

Y A 0.991 0.820 0.994 0.560 0.967 0.242

Table 7: Results for the different subtasks over the

training and the validation sets using different ar-

chitectures. The first column refers to the use of

the bag-of-entities representation in the model as

in Yes or No, the second to the order of the sub-

tasks as in Backward, Forward and Absent.

is on the fourth row.

6 Results

The model has been evaluated by using two in-

dependent test sets: same-genre and cross-genre.

The first one is a blind test set, containing docu-

ments from the same source of the provided devel-

opment dataset. The cross-genre set is instead an

external test set, containing documents from a dif-

ferent source, specifically from an archive of epis-

tolary documents of the same subject.

For each subtask two runs per test set were sub-

mitted, for brevity in table 8 only the average re-

sult of the submitted runs is reported. The model

performs over the baseline in the same-genre eval-

uation for each subtask, also improving the perfor-

mances with respect to the validation set. Instead,

concerning the cross-genre evaluation, the model

replicates the results of the baseline and shows a

significant drop in respect to the validation set.

Same-genre Cross-genre

VL BL TS BL TS

Historical 0.842 0.827 0.857 0.368 0.379

Five-years 0.599 0.458 0.609 0.171 0.168

Single-year 0.236 0.126 0.265 0.020 0.055

Table 8: F1 macro-averaged results for the differ-

ent subtasks over the validation set (VL), the test

sets (TS) and the respective baselines (BL).

7 Conclusions

The contribution of the bag-of-entities represen-

tation was certainly helpful, but this should not

overshadow the performance improvement given

by the introduction of the hierarchical model. The

first three rows in the already discussed table 7
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report the results of the model without any con-

tribution from the bag-of-entities representation.

Whilst neither of these was elected as the best can-

didate, there is a remarkable improvement over the

independent use of the very same building blocks

of the final architecture for each subtask.

The described architecture is prone to multiple

variations and only some of them have been for-

mally evaluated and compared. Nonetheless, the

selected final model was able to surpass the same-

genre baseline for all of the different subtasks.

Anyhow the performance drop in the cross-genre

test should be interpreted as a limit to the gen-

eralization power of the chosen model. A wider

exploration of the models may increase the over-

all performances for both the same-genre and the

cross-genre tasks.

Also, targeting multiple subtasks at the same

time made nontrivial the choice of a final model,

therefore it has been carried out intuitively consid-

ering the results over the validation set for each

subtask. A formal approach to this issue may re-

sult in a finer model selection.

Despite the discussed approximations, the use

of sentence embeddings models has proven to be

effective also on tasks different from the ones

they were originally conceived for, and compatible

with other representations such as bag-of-entities.
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