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Abstract

We interact with the world by moving our body: legs for locomotion, hands
for dexterous tasks, and articulatory muscles to communicate. It is known
that these movements result from patterns of electrical impulses in the nervous
system. However, it is not yet known how the brain controls the fine aspects
of movement. One important characteristic of movement control in the brain is
directional tuning - a preferential neuronal response to an executed direction.
In this work, we examine where and how the brain encodes movement directions
in unimanual and bimanual movements in humans.

In order to address this question, we designed a motor experiment for direc-
tional movements. A hand device was developed in order to precisely monitor
hand movements while 7 right-handed healthy participants executed a motor
task. The task was built similarly to a game in which participants reached
radial targets using wrist movements of one or both hands. After training,
subjects executed the motor task in a magnetic resonance scanner.

Functional imaging data were acquired and analysed using novel multivoxel
pattern analysis, in which we calculate pairwise dissimilarities of patterns of
fMRI voxel activity across movement conditions. We tested for encoding of
unimanual (contralateral and ipsilateral) and bimanual movements in cortical
regions of interest. Kinematics data were also analysed to test for performance
effects of direction and hand combination.

We found significant encoding of contralateral and bimanual movements in
all tested regions. Ipsilateral movements were strongly represented in both
hemispheres, except for right supplementary motor area and anterior-superior
parietal lobule. Furthermore, the right (non-dominant) hemisphere encoded
contralateral movements more preferentially than ipsilateral ones, when com-
pared with the left hemisphere.

These results are in line with recent findings of well-defined ipsilateral move-
ment representations. Future work will involve decomposing bimanual tuning
functions in order to find a quantitative relationship between bimanual and
unimanual encoding.
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Resumo

A interação com o mundo é feita através de movimento - desde a locomoção
até à comunicação verbal - tornando o controlo de movimento um dos aspetos
fundamentais de maior interesse em neurociência. O controlo de movimento
tem sido alvo de observação desde cedo em estudos comportamentais e neurofi-
siológicos, e sabemos hoje que os movimentos voluntários resultam de padrões
de impulsos elétricos gerados no sistema nervoso. Contudo, não conhecemos
ainda os aspetos mais precisos da geração de padrões de movimento nem a sua
relação com parâmetros como direção, velocidade, etc.

Uma caracteŕıstica importante do controlo de movimento é a existência de
tuning direcional - que consiste numa resposta neuronal preferencial a uma
direção de movimento. Ao executar movimentos numa direção preferida, alguns
neurónios despolarizam a uma frequência máxima, e a mesma diminui gradual-
mente à medida que o movimento se afasta da direção preferida. Este fenómeno
foi caracterizado em 1982 em áreas motoras (córtex motor primário) ao serem
executados movimentos direcionais do braço contralateral.

Contudo, estudos recentes mostram a existência de tuning direcional não só
para o membro contralateral, mas também para o membro ipsilateral. Estas
representações direcionais foram encontradas com medições electrofisiológicas
ao ńıvel celular, e também com técnicas modernas de imagiologia que medem
sinal proveniente de volumes da ordem de mm3, como ressonância magnética
funcional. Com recurso a ambos os tipos de técnicas foram encontradas repre-
sentações ipsilaterais bem estruturadas para movimentos ao ńıvel do braço bem
como dos dedos.

Desta forma, ambos os hemisférios cerebrais codificam movimentos dire-
cionais de ambas as mãos. Sabemos também, por experiência quotidiana, que
os movimentos bimanuais são bem coordenados, o que sugere que os mesmos são
gerados tomando em conta informação de ambas as mãos. No entanto, a relação
entre os padrões neuronais de movimentos bimanuais e unimanuais ainda não é
clara.

Nesta dissertação pretende-se localizar e caracterizar tuning direcional du-
rante movimentos unimanuais e bimanuais no cérebro humano. Desta forma
temos como objectivo procurar quais as regiões corticais que codificam movi-
mentos direcionais da mão contralateral, da mão ipsilateral, bem como as rep-
resentações de movimentos bimanuais e a sua relação com movimentos uniman-
uais.

Para tal, foi desenhada uma experiência motora para testar movimentos
direcionais, que foi executada em simultâneo com a aquisição de imagens de
ressonância magnética funcional.

Foi desenvolvido um dispositivo para monitorizar de forma precisa movi-
mentos da mão. De forma a assegurar compatibilidade com o ambiente em
ressonância magnética, foram constrúıdos dois mańıpulos ergonómicos com re-
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curso a impressão 3D em nylon. Os mańıpulos foram equipados com sensores de
rotação resistivos, e foram montados numa mesa de suporte desenvolvida para
o efeito.

A fim de treinar os participantes e controlar a experiência, foi desenvolvido
um protocolo motor organizado de forma semelhante a um jogo de alvos. Os
participantes controlaram a posição de cursores num ecrã utilizando movimentos
das mãos, monitorizados pelo dispositivo. O objectivo da protocolo motor foi
atingir 6 alvos radiais com os cursores e voltar à posição central, com movimentos
de cada uma das mãos, ou as duas (para todas as combinações de 6 alvos para
cada mão). No total, a experiência consistiu em 48 condições de movimento - 6
movimentos radiais para a mão esquerda, 6 para a mão direita e 36 combinações
bimanuais.

A experiência motora foi executada por 7 sujeitos destros saudáveis. Após
uma sessão de treino, a experiência decorreu num scanner de ressonância magnética
funcional Siemens Trio 3T, onde foram adquiridas imagens funcionais durante
10 repetições da experiência para cada sujeito. Adicionalmente, foram adquiri-
dos dados de cinemática para as duas mãos durante as sessões de treino e de
teste.

A análise de dados de cinemática consistiu na observação de tempos de
reação e de movimento em cada condição. Comparámos condições unimanu-
ais e bimanuais, testámos efeitos de direção, e ainda combinações bimanuais
(movimentos simétricos, paralelos ou não relacionados). Para cada uma destas
hipóteses foram usados os testes estat́ısticos aplicáveis. Não foram observados
efeitos significativos nos tempos de reação, de forma consistente, para qual-
quer das condições em estudo. Pelo contrário, os tempos de movimento foram
consistentemente senśıveis aos efeitos estudados.

As imagens por ressonância magnética funcional foram analisadas numa
primeira fase conforme o procedimento tradicional. Este consiste no pré-pro-
cessamento - envolvendo correções espaciais de efeitos de campo magnético,
filtragem temporal, alinhamento com a imagem anatómica e segmentação. De
seguida foi aplicado um modelo linear de forma de forma de independente para
cada voxel (unidade discreta de volume) nas imagens. O modelo consistiu em 48
variáveis categóricas, correspondentes às condições de movimento em estudo, e
10 variáveis categóricas correspondentes às sessões de repetição da experiência.
O objetivo deste modelo é a estimação dos pesos (β) da regressão linear, i.e.,
para cada condição é estimada a influência da mesma no sinal em cada voxel.
De seguida é posśıvel fazer inferência sobre os valores β - sob a hipótese nula de
que são, em média, zero.

Procedendo desta forma, foi aplicado um teste t aos regressores β associados
a movimentos da mão esquerda, direita, e movimentos bimanuais para as regiões:
área sensorial somática I (S1), cortéx motor primário (M1), córtex pré-motor
ventral e dorsal (PMv, PMd), área motora suplementar (AMS), lóbulo parietal
superior, anterior e posterior (LPSa, LPSp) e córtex visual (V12). Foram en-
contrados valores de ativação predominantemente associados com movimentos
contralaterais e bimanuais, e ativação menor em movimentos ipsilaterais. Os re-
sultados coincidem fortemente com a perspetiva clássica de que cada hemisfério
está associado a controlo da mão contralateral.
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Contudo, os métodos univariados testam o quanto os voxels (ou regiões)
variam a sua resposta com condições individuais, tornando a comparação en-
tre condições de movimento dif́ıcil. Adicionalmente, estes métodos são indica-
dos para o mapeamento de ativação perante est́ımulos, mas não para avaliar a
estrutura da representação de condições, i.e., caracterizar respostas neuronais
associadas conjunto de est́ımulos - como é o caso de tuning direcional.

Desta forma, foi aplicado um modelo de análise representacional no qual se
pressupõe que os est́ımulos podem ser caracterizados por padrões de activação -
neste caso correspondentes aos valores beta para cada voxel quando é executada
uma condição. Neste modelo é calculada uma medida de (dis)similaridade entre
todos os pares de condições. Neste projecto foi utilizada a distância Euclidiana,
sendo que as comparações entre pares das 48 condições foram organizadas em
matrizes de distância.

Os resultados revelam, qualitativamente, a presença duma estrutura de tun-
ing direcional bem definida para movimentos contralaterais, bem como ipsilat-
erais. Também os movimentos bimanuais apresentaram uma estrutura de tuning
bem definida e diferenciada entre regiões. De forma a quantificar e inferir acerca
da presença de codificação direcional, os valores de distância correspondentes
às condições contralaterais, ipsilaterais e bimanuais foram testados estatisti-
camente. Este teste assenta no pressuposto de que, perante a inexistência de
codificação, as distâncias são zero (este pressuposto foi confirmado). Os resulta-
dos indicam uma forte codificação direcional de movimentos contralaterais para
todas as regiões testadas. Este resultado é coincidente com estudos anteriores
que encontram tuning direcional contralateral em todas as regiões em que o
mesmo foi investigado. Contudo, encontrámos também uma forte codificação
de movimentos ipislaterais, excepto na AMS e LPS anterior no hemisfério dire-
ito (não dominante). Estes resultados são coerentes com estudos recentes que
mostram uma forte presença de codificação de movimentos ipsilaterais.

Os movimentos bimanuais estão também caracterizados por uma forte repre-
sentação. Contudo, existe a hipótese de que estes estejam presentes apenas como
consequência da codificação direcional de movimentos da mão contralateral (ou
ipsilateral), e não directamente associados à codificação especializada de movi-
mentos bimanuais. Esta hipótese é, contudo, de elevado interesse, já que uma
codificação bimanual especializada pode explicar o mecanismo da coordenação
bimanual. Desta forma, as matrizes de distância foram reorganizadas em ter-
mos de movimentos da mão esquerda e da mão direita. Os mapas resultantes
foram comparados qualitativamente com simulações, revelando uma codificação
bimanual maioritariamente associada com movimentos contralaterais. Contudo,
a AMS e o córtex premotor ventral aparentam codificar movimentos bimanuais
de forma não-linear, que poderá indicar alguma especialização em movimentos
bimanuais que poderá ser útil para coordenação. Trabalho futuro envolverá
avaliar quantitativamente estes mapas de forma a perceber quanta codificação
bimanual é gerada de forma especializada.

Os resultados deste estudo coincidem com estudos recentes de codificação
ipsilateral, e revisitam questões acerca da codificação bimanual. No futuro
pretende-se decompor a codificação bimanual, avaliar de forma extensa e con-
tinua a superf́ıcie cortical, cerebelo e núcleos da base. Adicionalmente, esper-
amos executar futuras aquisições em novos participantes. Este tipo de estudo
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pretende responder a questões no âmbito do controlo neural de movimento, que
poderão ser úteis futuramente no contexto da reabilitação e controlo robótico.
Consideramos também que os métodos de procura de codificação poderão ser
utilizados para caracterização do sistema motor de sujeitos saudáveis em com-
paração com casos patológicos como acidente vascular cerebral, fornecendo um
meio de avaliação dos mesmos.
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Chapter 1

Introduction

1.1 Context

The aspects of motor control result from electrical impulses generated by
the brain - specific neuronal activity results in fine and precise movements.
Several brain areas such as the motor cortex and the cerebellum are known
to be involved in controlling motor functions both in planning and execution
phases of movement [1].

However, we are not yet able to fully characterize movement encoding. Since
1982, we know some neurons are tuned to perform movements of the contralat-
eral arm in certain directions, i.e., their firing (electrical impulse) frequency is
maximal when an arm movement is performed in a preferred direction (PD) and
gradually decreases when movements step away from the PD [2]. Even though
the classical view is that each hemisphere controls the contralateral arm, several
studies have shown that there is both arm and finger-specific activity in each
hemisphere [3–5]. If each hemisphere contains information about movements of
the both arms, how are bimanual movements encoded? Everyday experience
tells us we can control both hands simultaneously with high accuracy in ac-
tivities which require coordination such as tying shoelaces, driving, etc. This
suggests bimanual movements are generated by taking into account informa-
tion from both hands. In this case, bimanual movements might be encoded as a
function of the analogous unimanual cases. Previous studies have addressed this
question, but it is not yet fully clear how bimanual and unimanual movements
are related [6, 7].

In order to further investigate how the brain controls movement, several
research groups use robotic devices which allow precise measurements of move-
ment parameters such as limb position, force and speed. Additionally, some of
these devices allow imposing force fields or move limbs passively [7, 8]. Using
such devices allows scientists to conduct motor experiments with well defined
behavioural boundaries for movement direction, speed or reaction time, and
they provide precise temporal data which can be analysed to assess kinematic
characteristics of movement. Besides kinematics, it may be desired to mon-
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itor neural activity. Several neurophysiology studies use direct measurement
techniques such as single-unit recordings or electrocorticography (ECoG) [2–4].
This technique can be applied to non-human primates in an invasive manner
and provides high temporal resolution at the cost of low spatial coverage, as a
only limited number of electrodes can be placed in the brain.

Alternatively, imaging techniques such as positron emission tomography
(PET) or functional magnetic resonance imaging (fMRI) allow broad coverage
of brain volume at the cost of temporal and/or spatial resolution. In partic-
ular, fMRI can be used to localize activation areas during motor tasks and
compare movement conditions [5]. This technique is characterized by high (up
to whole-brain) spatial coverage, but low (on the order of seconds) temporal
resolution and low functional signal-to-noise ratio. However, because it is non-
invasive, fMRI is the predominant neuroscience technique for research in human
subjects [9].

In this dissertation, we investigate how unimanual and bimanual wrist move-
ments are encoded in the brain using a paradigm based on a classical motor task,
monitored using modern devices and techniques.

This study allows us to characterize encoding of directions in the healthy
human brain. Aside from the fundamentally neuroscientific purpose, it would
be possible to apply it clinical context. Patients suffering from complications
with motor impact, such as stroke, might benefit from close characterization of
directional encoding during rehabilitation. Moreover, this knowledge could be
used to improve the current state of brain-controlled devices which make use of
directional features.

1.2 Objectives and Outline

In this dissertation we attempt to investigate the following questions:

• Which brain areas are directionally tuned for contralateral movements?
• Which areas encode ipsilateral tuning?
• Are there any areas specialized in bimanual tuning?

This dissertation describes the process conducted to address these questions.
In Chapter 1 we present the context, relevance and outline of this dissertation.

Chapter 2 comprises three sections which introduce the relevant topics in this
work: a) Section 2.1 outlines neuroanatomy and physiology concepts with focus
on the motor system, and reviews neurophysiological, imaging and behavioural
findings; b) Section 2.2 defines main concepts in functional MRI acquisition and
data analysis. c) Section 2.3 briefly presents applications of robotics in motor
control and overviews magnetic-resonance compatibility.

In Chapter 3, Sections 3.1 to 3.3 detail the process of building hardware and
software for running the motor task. Sections 3.4 and 3.5 point out the most
important aspects in the experimental paradigm, as well as the demographics of
subjects included in the study. Behavioural and imaging data analysis methods
are described in Sections 3.6 and 3.7.
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Results are presented in Chapter 4, starting with behavioural/kinematics
effects of bimanuality and direction in Section 4.1. Imaging results are pre-
sented in Section 4.2, spanning from traditional univariate maps to multivariate
representation of movements.

Chapter 5 contains the discussion, which starts with some considerations
about the experimental design, followed by interpretation of behavioural and
imaging results. These are then compared to previous findings described in the
literature.

The major conclusions in this study are presented in Chapter 6. Methodol-
ogy is also discussed, and future work is suggested.
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Chapter 2

Background

2.1 Neuroanatomy and physiology of motor con-
trol

The nervous system is responsible for movements, voluntary or not. Whereas
non-voluntary movements can be generated by the spinal cord as a reflex, vol-
untary movements can be complex and their generation involves several brain
regions [1]. Within the motor system, we can consider three major levels: spinal
cord, brain stem and forebrain. In this dissertation we focus on forebrain level,
particularly cortical areas such as the primary motor cortex (M1), somatosen-
sory cortex (S1), supplementary motor area (SMA) and premotor cortex, which
are located around the central sulcus. We also analyse posterior regions such as
the superior parietal lobule and visual cortex.

This chapter introduces some of the concepts used in this work in order to
analyse such a complex system.

2.1.1 Representation, Topography and Hierarchy

Representation

Movements, visual stimuli, speech and sensory stimuli are represented in
the cortex. This means some neurons are active for certain sensations or ac-
tions - whether they are simple arm contraction movements or more abstract
representations of visualized and executed tasks [1].

Each movement is then characterized by a pattern of neuronal activity which
generates it [1]. Representations have also been shown not to be fixed in both
animals with brain injury and in healthy humans [1, 10]. This is particularly
important in post-stroke rehabilitation in humans, since representations can be
changed even after short-term (1 hour) training [11].

Cortical representations are not, however, similar across subjects. Represen-
tations of finger movements, for instance, appear to be specific for each person,
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that is, the pattern of activity for a specific movement is different across sub-
jects [5].

The overall structure, however, is similar across subjects - the relative dif-
ferences or similarities between movement patterns are identical [5, 12]. This
means the way finger movements are organized in the cortex is similar across
subjects, but the fine activation patterns for each finger vary. Furthermore, this
representational structure seems to be driven by hand use [12].

Topography

The brain is functionally specialized - neurons are organized over the cortex
according to their function. Neurons with similar functions, such as motor
control, are clustered together in different sites than neurons associated with
vision, for example [1].

Within each functional region, there is a topographical organization, i.e.,
there is a coherent organization within neighbouring neurons to encode a certain
function. In the retina, for instance, there are retinal maps which encode a
two-dimensional map of the visual field (retinotopy). Such organization is also
present in the visual cortex. Likewise, sensory and motor maps also exist in
several motor cortical structures, and can be represented by sensory and motor
homunculus (somatotopy) [1].

The topographic organization is thought to be existing at birth, and op-
timized during development by reorganizing terminations in the corticospinal
tract. This reorganization is likely to be modulated by use and sensorymotor
consequences of movement [13].

In the scope of this project, the topographic organization of cells in the cere-
bral cortex is of particular importance. Neurons in M1 are clustered according
with their preferred directions of movement, as demonstrated by Eiseberg [14]
- this is what makes it possible for us to study directional tuning at voxel level
in fMRI, where signal in each voxel is influenced by a large number of neurons.

Hierarchy

If movements are represented in several structures over the cortex, and this
representation is well organized - how do the different cortical regions interact
to control movements?

The classical view is that premotor areas generate complex multi-joint mo-
tor programs which are then sent to M1, where simple muscular control is
achieved. In this case, movement parameters such as direction and velocity are
represented in the neuronal population, both at muscle level or by coding an
abstract workspace around the body [1, 15,16].

However, there is also evidence that stimulating premotor areas generates
grasping and exploratory-resembling movements, as tested with electrical stimu-
lation in primates and humans [17,18]. This suggests that movement parameters
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such as direction or velocity may be represented only indirectly - as argued in
recent studies on the dynamical systems approach [19].

2.1.2 Directional tuning

Movement representations are specific to certain movement features. In the
scope of this dissertation, we are mainly interested in the representation of
directional tuning. In 1982 Georgopoulos et al. have shown, with single-cell
recordings, that neurons in the motor cortex are tuned for directions. This
means a neuron may have a preferred direction (PD) for which the firing fre-
quency is maximal. When movements are performed in directions which step
away from the PD, the firing frequency decreases gradually [2]. This concept is
called directional tuning.

Directional tuning has been shown to exist in both 2D and 3D space, and
the movement direction appears to result from coding of several neurons. The
population vector is defined as the vectorial sum of preferred directions in 2D
or 3D space, and the resulting direction from the population vector is highly
similar to the real movement direction [20,21]. Directional tuning also exists not
only for space, but also for isometric pulse forces and ramp-and-hold (gradually
increasing) forces [22,23].

There is a broad group of brain regions where directional tuning has been
found, namely motor and premotor cortex, supplementary motor area, globus
pallidus and cerebellum [24]. Directionally tuned regions have been found not
only using single-cell recordings, but also with fMRI, in which each voxel con-
tains a large number of neurons [4,25]. Finding directional tuning between such
large neuron populations illustrates the topographic organization of the motor
system.

Given that cells have preferred directions, several attempts of modelling their
behaviour over direction have been made. Early models have cosine functions
as a description of tuning functions [20]. However, alternative models with
flexible tuning width and modality described tuning functions at cell level more
accurately [26]. Tuning curves can also be modelled using Gaussian tuning
functions [7, 27]. We should not, however, think of tuning functions as fixed
representations - the tuning width of the whole population can vary with the
experimental paradigm - more accuracy requires narrower tuning width [24].

Even though cells are tuned for specific directions, their referential is not
always the same: cells have a certain preferred direction which refers to the
muscular movements or an extrinsic axis of reference. The concepts of intrinsic
and extrinsic coordinate frame were explored in the work of Kakei et al. [28]. In
that study, primates performed wrist movements in different pronation/supina-
tion positions, so that moving in one direction would require different muscles
depending on wrist position.This allowed the authors to distinguish between
an intrinsic frame of reference, which refers to the body and muscular activity,
and an extrinsic frame of reference (e.g., the room). There are intrinsic-tuned
neurons which will fire mostly when a certain anatomical action is performed
(e.g. extension of a certain muscular group) regardless of external coordinate
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frames. Extrinsic-tuned neurons will respond maximally when a certain direc-
tion in an external frame of reference (e.g. to the left) is aimed, regardless of
hand pronation/supination [28].

2.1.3 Bimanual coordination and ipsilateral activity

Everyday tasks such as cooking or tying shoelaces tell us both hands are
move together in synchronized, but no necessarily similar manner. This phe-
nomenon is known as bimanual coordination, and it’s often associated with a
related concept - bimanual interference. While bimanual coordination refers
to temporal or spatial coupling in tasks such as swimming, interference refers
to the difficulty in executing bimanual tasks such as the popular challenge of
rubbing your stomach while tapping your head. Bimanual tasks can be very
different relatively to the similarity between the movements of each hand: some
are isomorphic tasks, such as pushing / pulling, and others are quite differenti-
ated, such as playing the guitar. The diversity of tasks illustrates the flexibility
in coordinating movements.

Behavioural insight

Behavioural studies show there is are bilateral movement constraints in space
and/or time, phase in cyclic movements and homology [29]. There is a pref-
erence in the motor system for simple, integer combination rhythms of both
hands such as 1:1 or 2:1. Even though it is possible to produce movements
with polyrhythms, producing these movements requires training, and speeding
the task pace causes these rhythmic patterns to fall back to simpler ones [30].
Bilateral patterns which deviate from phase or anti-phase synchronization also
exhibit poor stability, indicating a preference for simple temporal relashion-
ships, particularly 0°and 180° [29,31,32]. Movements with different amplitudes
are also affected by bimanual coordination: when one of the hands performs
movements with varying amplitude the other hand tens to move in a similar
manner, despite being supposed to move with constant amplitude [29, 33]. Bi-
manual movements have also been shown to have a dependency on direction:
if one hand moves vertically and the other horizontally, trajectories are clearly
worse than when both hands move in similar directions [34]. Moreover, there is
a directional preference when both hands move in mirror symmetric (intrinsic)
directions and parallel directions (in extrinsic space) - timeseries of horizon-
tal and vertical movement trajectories for all combinations were analysed with
respect to phase coherence between both hands, and the results show better
synchronization for mirror symmetric and parallel movements [35, 36]. There
is a clear preference in bimanual control for intrinsic movements, which recruit
homologous muscles [36]. However, extrinsic movements recruit different mus-
cles, suggesting the motor system codes not only for muscles, but also for an
external workspace (see Section 2.1.2).

Even though there are clear behavioural constraints for certain bimanual
combinations, difficult tasks are possible to overcome through training [29].
Unstable phase modes in tasks similar to previously referred are possible to
execute without falling back to in-phase modes when subjects are instructed to
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maintain the pattern [37]. Furthermore, informing subjects with direct visual
cues instead of symbolic text cues facilitates bimanual coordination [38]. This
suggests bimanual control is highly dependent in the task engagement and in the
cues given to test subjects. If bimanual control involves cueing and planning,
what brain areas are involved?

Physiological and imaging studies

Part of the research in bimanual coordination focuses on lesions of certain
brain areas in monkeys and humans. Lesion to SMA in monkeys caused dupli-
cation of movements in bimanual reaching tasks. In 1984, Brinkman proposed
that this structure informs the contralateral hemisphere via the corpus callosum
to prevent such duplication [39]. Tanji and colaborators also found neurons with
different encoding of bimanual and unimanual movements in SMA and premo-
tor areas [40], leading to the idea that SMA and premotor areas where the loci
responsible for bimanual coordination.

However, in 1998, Donchin et al. tested target-reach movements in monkeys
using a bimanual interface and found encoding of bimanual movements in M1.
69% of neurons probed in M1 showed bimanual specific activity and 64% in
SMA, which suggested M1 is at least as important as SMA in bimanual con-
trol [3]. Cells in M1 were also more correlated to intended direction of movement
than to muscle kinematics. These results challenged the idea that M1 is respon-
sible only for low-level contralateral muscular control, and proved that despite
important for bimanual coordination, SMA is not the sole responsible structure.
Not only M1 and SMA are associated with bimanual movements: several re-
searchers looked for differences between unimanual and bimanual movements by
looking for activation and representation in both unimanual and bimanual con-
ditions using fMRI, for executed and observed (visual input) movements. The
results show that the networks responsible for unimanual movements are the
same as for bimanual movements, confirming there are no bimanual-specialized
structures in the cortex [41–43]. At the present time, the idea that bimanual
coordination is controlled by specialized structures is not widely supported.

Instead, the prevailing idea is that several motor areas play a role in bimanual
coordination and communicate via the corpus callosum [29]. In fact, callosotomy
patients can move one hand vertically and the other horizontally with much more
accuracy than a healthy control - i.e., without spatial interference effects [34].
Even though independence if facilitated in callosotomy patients, i.e., bimanual
interference is reduced, spatial coordination of both hands is negatively affected
- at least for novel tasks [34,44,45] . If both hemispheres communicate in order
to couple bilateral movements, and if there is no specific loci that solely controls
bimanual actions, what structures are involved in this network?

Koeneke and collaborators compared bimanual and unimanual movements
in a coordination task: the bimanual case involved controlling a cursor with
two homologous fingers, and the unimanual case required two fingers of the
same hand. The results reveal no network specific for bimanual movements.
In fact, the authors suggest that differences in the amount of activation are
more likely to relate to task difficulty than to bimanual vs unimanual activa-
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tion [41]. Alternatively, Debaere and collaborators investigated the activated
areas in two bimanual motor tasks: one of the tasks included online movement
feedback - this is the externally guided task. The internally generated task in-
volved doing the same task, but with the eyes closed. For the externally guided
task, superior parietal cortex (SPL), the premotor cortex (PM), the thalamus
and cerebellar lobule VI were active, whereas basal ganglia (BG), the SMA,
cingulate motor cortex, the inferior parietal, frontal operculum, and cerebellar
lobule IV-V/dentate nucleus were active for the internally generated task. [46]
In this study, two different bimanual conditions were studied with or without
visual feedback. Because interference was reduced with visual feedback, it’s not
fully clear whether different activation patterns are related to internal and ex-
ternal representations, or to better spatial or temporal coupling caused by the
existence of visual feedback [47]. The problem of spatial vs symbolic cues was
revisited by Diedrichsen et al. in an fMRI study. The task consisted of per-
forming unimanual and bimanual hand reaching movements in two directions:
forwards and sideways. Bimanual movements could be either congruent (both
hands forwards or sideways) or incongruent (one hand forwards and the other
sideways). When evaluating the hypothesis symbolic > spatial cues, significant
activation was found in posterior SPL, ventral premotor cortex and inferior
frontal gyrus in the left hemisphere (strong lateralization). Furthermore, the
comparison incongruent > congruent revealed significant activation in posterior
lateral SPL and left inferior cerebellum [48]. It was suggested that SPL codes
for spatial representation rather than for movement parameters - incongruent
targets may require increased monitoring and more complex representation that
targets which require homologous movements or parallel trajectories. The left
hemisphere lateralization for congruency preference indicates lef themisphere
specialization - in agreement with previous findings for complex tool use [47–49].

Ipsilateral representations

The classical concept is that each hemisphere controls the contralateral side
of the body [1]. However, as discussed in the previous section, both hemispheres
communicate via the corpus callosum for bimanual coordination. Consequently,
during bimanual movements there are both contralateral and ipsilateral repre-
sentations of movement [6].

However, the ipsilateral component has been shown to be present not only
during bimanual movements, but also during unimanual ones [5, 50]. Ganguly
and collaborators were even able to build a brain-machine interface by success-
fully predicting hand position from ipsilateral M1 activation [4]. In this case,
what is the role of the ipsilateral representation during unimanual moveme-
ments?

One hypothesis is that this representation exists only due to passive out-
flow of information by inter-hemispheric communication [5]. Souteropoulos et
al. stimulated the corticospinal tract and found no direct connection between
this fiber bundle and the ipsilateral forelimb [51]. Moreover, Diedrichsen and
Wiestler suggested that the ipsilateral representation is associated to mirror
movements, and it needs to be suppressed in order to avoid them in bimanual
actions [5].
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An alternative hypothesis is that each hemisphere actively controls the ipsi-
lateral arm [52]. Post-stroke recovery studies indicate that the ipsilateral hemi-
sphere may play an important, yet maladaptative role in controlling the arm
after stroke in the opposite hemisphere [53–55].

In this study, we will revisit both classical concepts and recent findings and
compare them with our results.

2.2 Functional magnetic resonance imaging

The dominant technique in cognitive neuroscience is functional magnetic
resonance imaging (fMRI) [56,57]. This functional neuroimaging method allows
mapping brain activity correlates by comparing experimental conditions with
rest. In fMRI, it is possible to cover a large brain volume divided across small
volumes on the order of mm3 - at the cost of poor temporal resolution and
low functional signal-to-noise ratio when compared, for instance, with EEG
[57]. Due to its non-invasive protocol and absence of time-consuming electrode
placement, fMRI is more adequate to studies in humans where data acquisition
in several brain regions in important.

In this section we will briefly overview the fundamental principles of nuclear
magnetic resonance (NMR), BOLD contrast, fMRI designs and representational
similarity analysis.

2.2.1 Principles of NMR and image formation

Hydrogen nuclei are used in magnetic resonance imaging for their abundance
in the human body and adequate magnetic properties [56, 58]. In absence of
a magnetic field, protons in the human body spin with random orientation.
However, when placed in a magnetic field, hydrogen nuclei align with the field
in one of two states: parallel or anti-parallel. This alignment takes the form of
a movement called precession, in which the proton spin axis rotates around the
magnetic field axis at the Larmor frequency [58].

The measured magnetization signal results from several protons - this is the
net magnetization. Applying radiofrequency (rf ) pulses causes protons to ab-
sorb energy, switching between parallel and anti-parallel states, and spin phase
becomes coherent for all excited protons. After the rf pulse is applied, protons
loose energy and phase coherence, and recover longitudinal magnetization [58].

The loss of transverse magnetization due to spin-spin interactions is charac-
terized by the T2 constant, intrinsic to the biological tissue. Because there are
field inhomogeneities, the signal decays faster. T ∗2 is the constant which com-
prises both effects. The recovery of longitudinal component is characterized by
the T1 constant, which is highly dependent of biological tissue, since it involves
losing energy to the surrounding molecules (spin-lattice). T1 is also dependent
on the magnetic field, and T1 values are usually much higher than T2 values [57].

In order to select the anatomical volume to be imaged, spatial encoding
is necessary. Gradients are applied to the magnetic field in order to modify
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the Larmor frequency locally. Afterwards, rf pulses will excite protons within
this slab. Space along x and y directions is encoded by magnetic and phase
gradients [57,58].

Pulse sequences are protocols for exciting and reading signal in MR. Knowing
T2 and T1 constants of tissues allows to use different pulse sequences which
emphasize T1 or T2 contrasts, by controlling parameters such as the rf pulse
energy, repetition time (TR), etc.

The signal decay is detected by receiver coils, and has to be reconstructed
to form an image. Because signals are acquired in k -space (frequency domain),
images are obtained by converting to the space domain using the Fourier Trans-
form [58].

Some sequences allow faster acquisition than others. In particular, the echo
planar imaging (EPI) acquisition method uses repeated T ∗2 -contrast sequences
for fast volumetric coverage at the cost of high sensitivity to artifacts. Gradient-
echo EPI is one of the methods used in fMRI due to fast acquisition of repeated
volumes and the physiological properties it highlights [57,59]. Neurophysiology
principles and data processing in functional MRI are discussed in the next topic.

2.2.2 BOLD contrast and fMRI

Neurons in the brain take up oxygen perfused from the blood. Unlike oxy-
haemoglobin, deoxyheamoglobin is paramagnetic, so it has a shorter T ∗2 , which
causes lower MR signal than oxyhaemoglobin because it distorts the magnetic
field locally, increasing proton dephasing [57, 58]. However, higher metabolic
activity areas have higher signal because the oxygenated blood supply to those
areas overcomes their need in oxygen. As a consequence, MR signal is higher
during activation than rest. This is known as the Blood Oxygen Level Depen-
dent (BOLD) effect. However the observed change is, small, usually between
0.25% and 5% [9].

Because the signal-to-noise ratio in fMRI is low, carrying out an fMRI ex-
periment involves several steps as introduced below.

Paradigm and fMRI designs

Due to low functional SNR, it is necessary to repeat the experimental con-
ditions several times in fMRI to minimize noise across images. For each partici-
pant, several runs of the same experiment are conducted in two possible designs:
blocked or event-related. Blocked designs involve executing conditions (motor
tasks, visual stimuli, etc) for 10 to 30 seconds in an alternating pattern. Blocks
are then convolved with the hemodynamic response function (HRF) and condi-
tions are compared [56, 60]. Alternatively, conditions can be treated as events
in event-related designs. In this case events are sorted randomly and separated
by shorter time intervals than blocked designs. The hemodynamic response is
then convolved with an event which is treated as an ocurrence in one timepoint
(as opposed to a block or time interval) [60]. Blocked designs typically hold
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better sensitivity, whereas event-related designs are allow more flexible post hoc
characterization of events in regression models [56,60].

Alternatively to behaviourally-clamped experiments, it is possible to con-
tinuously monitor free behaviour and include monitoring data as regressors in
the fMRI model. This approach is not limited to the some of the constraints of
conventional fMRI paradigms (in which natural behaviour is not present) and
might be especially useful with uncooperative patients [57].

Preprocessing

Subjects move their heads within an acquisition, causing image-to-image
voxel positions to vary. Head motion, even on the order of 1mm, can cause
brain edge activation artifacts [56]. Furthermore, EPI data is sensitive to field
inhomogeneities and affected by eddy currents which cause image distortion [58].
Moreover, the signal intensity over the brain volume is not homogeneous, as
proton spins will be affected by the strength of the excitation field and proton
density [56]. The previously stated effects have spatial consequences on data.
However, there are also some considerations about how timeseries are affected:
EPI acquisitions of a volume are carried in either interleaved or consecutive slice
acquisitions. Because each slice is acquired at a different time, the HRF phase
is captured differently in each slice. As a consequence, these effects should be
corrected prior to timeseries modelling.

After image acquisition, the basic workflow for fMRI data preprocessing
involves the following steps [56]:

• Slice timing correction
• Head motion correction
• Distortion correction
• Bias field correction
• Coregistration to anatomical image
• Temporal and spatial filtering

General Linear Model and Contrasts

The general linear model (GLM) expresses a dependent variable y as a lin-
early weighted sum of n explanatory variables x plus an error term ε [60]:

y = x1β1 + x2β2 + ...+ xnβn + ε (2.1)

Or equivalently in matrix form for a set of y represented in matrix Y :

Y = Xβ + ε (2.2)

where X is the design matrix and ε is the variance-covariance matrix.

In order to obtain the regression coefficients, that is, estimating β, several
regression methods which minimize the error ε can be used. Amongst them is
the least-squares method, with matrix form solution [60]:

β̂ = (XTX)−1XTY (2.3)
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In fMRI, the GLM is commonly used in a massive univariate approach for
each voxel, that is, each voxel is modelled independently. In this case, Y is
the matrix of voxel signals at each timepoint after preprocessing and X is the
design matrix [56,60]. The design matrix specifies regressors associated with the
conditions of the experimental design: for each condition, a column can contain
a label for categorical or quantitative characteristic in a condition. For example,
a categorical label of animate or inanimate objects in a visual experiment, or a
quantitative force level in a motor experiment could be included in the design
matrix. These are examples of simple models - alternatively one could use HRF
timepoints as regressors for each condition in the design matrix. It is possible
to include not only the canonical HRF, but also its derivatives to account for
subject-specific, session or region variations. Optionally, nuisance regressors
such as head motion parameters or session-specific labels can be included. Read
Friston et al. for detailed specification of design matrices [60]. After model
specification, β must be estimated. In fMRI, the matrix of β values represents
the contribution of the regressors for the measured signal at each voxel.

From the matrix of β values, statistical inference can be made. Contrast vec-
tors, or matrices, allow us to establish hypothesis about our data by performing
comparison operations between β values in different conditions [60]. In an fMRI
study, such hypothesis could be whether a visual stimulus causes significantly
higher activation than at baseline (no stimuli) or higher/lower activation than
a stimulus B. After estimating the contrast, a statistical parametric map is ob-
tained, representing t-values or F-values at each voxel - corresponding to the
hypothesis that was tested. Packages such as SPM implement fMRI analysis
from preprocessing to statistical inference [61].

2.2.3 Multivoxel pattern analysis

Traditional fMRI methods make inferences based on massive univariate mod-
els for each individual voxel. However, cognitive neuroscience methods have
been focusing on multivariate models which treat the activity in several voxels
as patterns for each condition [62] - an approach which has been named multi-
voxel pattern (MVP) classification, or multivoxel pattern analysis (MVPA) [63].
While traditional univariate methods focus on single voxel activation with the
purpose of localizing brain functions, MVPA highlights how conditions are en-
coded in sets of voxels [62].

In MVPA, measures (or correlates) of voxel activity for each condition (or
stimulus) are organized into vectors - if N voxels are included in the analysis,
than each condition is represented by a vector of dimension N. These vectors are
in a high-dimensional space, called representational space. In representational
space, each value of activation can be, for example, the β value from the general
linear model [63].

To conduct analysis in representational space, we can use classification meth-
ods and make inferences based of pattern discrimination - classification accu-
racy - for the classifier chosen [64]. Alternatively, we can calculate a measure
of (dis)similarity between conditions - correlation or distances - which is called
representational similarity analysis (RSA) [65,66].
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In RSA, a measure of dissimilarity between conditions is computed, result-
ing in a matrix of pairwise comparisons - a representational dissimilarity matrix
(RDM). It is possible to make direct inference on each value (pairwise compar-
ison) in the RDMs to test for significant difference between stimulus encoding;
it is possible to compare RDMs between subjects or regions; and it is possible
to test models of theoretical RDMs by regression. For more detail in RSA, read
Nili et al. [66]. More details will be given in Section 3.7 on the application of
RSA in this project.

2.3 Robotics in motor control research

Research in motor control often involves using robotic devices - they allow
accurate measuring of motor parameters such as position, velocity and forces,
and can also be used to impose force fields [67]. Some of these 2D arm-level
robots are used to study the mechanisms of dynamic stiffness adaptation [68,69].
Similar robots can be used to investigate bimanual coordination (introduced
in Section 2.1.3), both in primates and humans, and control of visual-motor
interactions [3, 48,70,71].

In this work, a wrist monitoring device was built and a motor task soft-
ware was implemented, resulting in a framework for wrist movement kinematic
research.

2.3.1 MR-compatible devices

Combining robots and MR techniques can be useful for assessing clinical
condition of patients through force feedback, haptic interfaces, mechanical vi-
brators for MR elastography or clinical surgery [72].

Some of the most challenging aspects of using robots in MR environment
include the tight space for patients’ body and robotic device inside the MR
scanners and electromagnetic compatibility. Ferromagnetic materials should
not be used in MR environment since they may become projectiles under the
influence of the strong static magnetic field, or heat due to the influence of Eddy
currents caused by switching magnetic field gradients (which can cause burns
on the patient). Interference between both systems, leading to noise induction
in external sensors and MR image distortions may happen. For this reason,
materials used in MR environment inside the imaging area should have very
low magnetic susceptibility. Nevertheless, small ferromagnetic components are
acceptable if they are anchored and outside the imaging region [72].

Devices can be classified, relative to their possible use in MR environment,
as MR-safe, MR-conditional or MR-unsafe devices. MR-safe devices pose no
known risks when in MR environment, and MR conditional devices pose no
known risks under specified conditions of use and MR-unsafe are known to pose
risks [73]. In this dissertation, we describe the components which make the
wrist device, justifying its classification as MR-conditional.
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Several studies in cognitive neuroscience have used devices in MR environ-
ment and even fMRI studies in neonates for motor control [8,73–75]. In adults,
MR-compatible robots have also been used. Detailed information about one
particular fMRI robot for arm movements can be found in [76]. This model
was built using materials with low magnetic susceptibility for the structure and
optical sensors which provide precise information about joint position. The
framework for development of the wrist device in the present dissertation is
similar to the arm robot - it shares the same input/output data acquisition unit
and part of the same software code.
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Chapter 3

Methods

In order to investigate directional movement representations in the human
brain, human subjects were asked to make movements in several directions while
functional MR data were acquired. The experimental task consisted of a game-
like setup, where participants reach for several radial targets displayed on a
screen. It contains three main components:

• Wrist device/manipulanda: used as a hardware interface for executing
movements - the analogous of a joystick in a gaming setup.

• Task software: shows targets and cursor positions. Each cursor, left and
right, is controlled by the corresponding manipulandum - analogous to a
game.

• MRI scanner: Siemens Magnetom Trio 3T system was used for functional
data acquisition.

The experimental setup is summarized in Figure 3.1.

Figure 3.1: Diagram depicting the experimental setup. 1- Projector
for visual feedback. 2- Wrist device, mounted over the participants’
abdomen. 3- Filter box where the cables from the wrist device plug in.
4- Sensoray s626 data acquisition unit for analog sensor signal.
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3.1 Wrist device

3.1.1 Wrist manipulanda

Because the task is performed in supine position for more than one hour, both
in training and testing, the wrist device needs to be ergonomic. It was formerly
designed by Esmaeili and collaborators, based on a fencing grip configuration
[77]. The computer-aided design (CAD) files were kindly granted by the authors,
and two handles - left and right - were 3D printed at the Bartlett School of
Architecture, University College London. Both handles were printed using nylon
selective laser synthering (SLS) for MR safety. Figure 3.2a shows the CAD for
the wrist device, and the corresponding 3D printed version in Figure 3.2b.

(a) Right hand ConfiGrip CAD de-
sign [77].

(b) Right hand wrist device handle
SLS printed in nylon.

Figure 3.2: Wrist device handle. Pitch (green) and yaw (blue) move-
ments are possible, but roll (red) is deliberately constrained by the de-
vice structure.

Considering the position of a resting hand grasping the device and pointing
forwards, similarly to griping a fencing sword, there are two axis of rotation:
horizontal (yaw) and vertical (pitch). Rotation (roll) is purposely restrained by
the device design.

3.1.2 Support table

In order to mount the devices rigidly in the MR bed, a support table was
designed in a CAD software (Trimble Sketchup) [78]. It serves two purposes:
1) mount the wrist devices onto it and support the weight of subject’s hands;
2) tightly clamp wires and cables which connect the rotary sensors to the data
acquisition channel. Figure 3.3 depicts the CAD design and the Delrin® plastic
prototype.

The table is adjustable in height (12 to 18 cm), tilt (approximately ± 30°)
and distance to/away from the head. This can be done by choosing between
different slots on the Siemens Trio scanner bed, or for small adjustments, sliding
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(a) (b)

Figure 3.3: a) CAD of the device table (software: Trimble SketchUp).
b) Picture of the table used in the experimental setting (material:
Delrin® plastic)

the acrylic base plates which hold the two manipulanda in place, on top of the
table.

Both devices, manipulanda and table, were machined by Jonathon Henton at
the Institute of Neurology, UCL. This process involved making parts such as the
manipulanda length rods, base plates, mounting lids on the wrist manipulanda,
and fabricating the support table. The base plates serve other purposes such as
providing a stable mounting point for the horizontal axis encoder, and clamping
cables which carry the encoder signal to the amplifier box.

3.2 Sensors, filters and data acquisition unit

Rotation sensors were used to precisely measure angular displacement. The
Bourns 3382H potentiometer was the chosen model as it demands little space
requirements - a consequence of it’s dimensions (11 × 12 × 2 mm). The lin-
earity tolerance is up to 2% signal and because it is a carbon-resistive 5kΩ
potentiometer, amplification was not required [79].

Each encoder has 3 pins: ground (GND), positive voltage feed (V+) and
signal. GND and V+ were connected to the output of a data acquisition Sen-
soray s626 card [80]. V+ value was set to 5 volt, and signal value was read
differentially with a ground pair between 0 and 5 V (16 bit resolution including
sign).

Twisted pairs were used for electromagnetic interference reduction both in
the flexible stranded wire and solid-core wire [81]. Two twisted pairs were
connected to each of four (left and right × vertical and horizontal axis) encoders:
GND+V+ and GND+Signal. Stranded wire was used in the proximal sections of
the manipulanda due to its flexibility, allowing free hand movements. Stranded
wire is also mechanically compliant with constant bending and twisting, making
it resistant to continuous use. It was then soldered onto solid-core wire in
Shielded Foiled Twisted Pair (SFTP) cable. This cable is rigid as a consequence
of solid-core wires - and therefore it was used for clampling onto the acrylic
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plate for mechanical support. This is especially important for MR-safety, since
no metal components should be left hanging free. (Figure 3.4).

Figure 3.4: Left manipulandum mounted on top of the support table.
For participants’ protection, plastic lids and foam pillows covered wiring
sections near the wrists.

Each cable, one for each device, has a female 10 pin circular connector used
for legacy and compatibility with other devices in the laboratory. Long cables
used in MR environment are then plugged into a DB25 connector in the breakout
wall - between the magnet and in the control room - and are plugged into the
filter box in Figure 3.5.

Figure 3.5: The filter box establishes connection between the two manip-
ulanda and the computer, connecting to a DB25 rectangular connector
as input from the manipulanda to a 50 pin connector as output towards
the s626 card in the computer.

The filter box contains one low-pass 20 Hz cutoff frequency RC filter for each
encoder, used for high frequency noise reduction in MR environment.

The filter box is then connected to the Sensoray s626 acquisition unit - V+

is controlled, encoder signals are read, external counters are set and read, and
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the repetition time (TR) counter is plugged in the computer for task-scanner
synchronization.

3.3 Motor task

The motor task was programmed in a similar manner to a game - the user,
in this case the test subject, has the objective of obtaining points. In order to
get points, participants must correctly move one or two cursors towards radial
targets accurately and within time bounds.

3.3.1 Structure

C++ was the programming language used to implement the motor task for
legacy and compatibility with other tasks and devices already existing in the
laboratory - similarly to some hardware components. Therefore, some of the
C++ classes already existed in the laboratory and were integrated in the project
structure.

Each experimental session contains several repetitions of individual motor
tasks, referred to as trials. In this specific task they consist of individual
reaching movements towards a radial target with one or two hands. Several
directions have to be tested, so trials for all possible movement combinations
are grouped into an experimental run - also called a block. During participants’
training and testing sessions, several blocks with randomized trial entries are
executed.

Over the course of the experiment, visual feedback is given to the exper-
imenter and the participant through two separate screens. The participants’
screen displays task-related objects and point feedback, as depicted in Fig-
ure 3.6.

1
2

3
4

Figure 3.6: Visual elements in the participants’ screen. 1 -
Fixation cross; 2 - start box; 3 - target; 4 - cursor.

The experimenter screen displays the control shell with experiment variables:

• Subject name: name (reference) for each participant
• Block number: the run number for each participant
• Trial number: the trial number in each run
• Points: number of points in current trial and block
• TR: TR number for synchronization with the MR scanner
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• State: the current state of the machine

3.3.2 State progression

To illustrate the task flow, the more relevant timesteps are represented in a
flowchart (Figure 3.7).

Figure 3.7: Flowchart indicating main states and decisions in the motor task
software (left) and appearance of the participants’ screen (right). Feedback
is given by the fixation cross at the center of the screen.

Runs are executed as a group of trials, in which every trial is executed as
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an iteration of the state machine in Figure 3.7. At the end of each block, a file
with task information at every timepoint is created. Additionally, a file with
summary trial-by-trial measurements for all blocks is created for each subject.
Both these types of files were used for kinematics data analysis and general
linear model specification in imaging data analysis.

At the end of each trial the participant’s performance is evaluated as a Good
Movement or not, and points are attributed accordingly. A Good Movement
consists of a spatially accurate trial executed within all correct time bounds:

• wait in Start Boxes;
• move only after the Go Cue;
• start moving within maximum reaction time;
• execute the movement within limited time (reaching the target and re-

turning to startBox).

One point is given per accurate target reach. In bimanual trials two points are
required to make a Good Movement.

3.4 Subject information and Task Parameters

A total of 7 subjects participated in the experiment. Demographics and
experiment parameters are presented in table Table 3.1.

Table 3.1: Participants’ information and task-specific parame-
ters used in the motor experiment.

Number of Participants 7

Gender 4 Females

Age (years) 27.7±5.1

Dominant hand Right

Number of Targets 6

No. of Conditions 48

Trials per Block 96

Unimanual/Bimanual repetitions 2/2

Time per Trial (ms) 7

Time to plan movement 2000

Hold time in Training Mode (ms) 1500

Maximum movement time 1000

StartBox diameter / outer tolerance (cm) 1.6 / 0.5

Target diameter (cm) 1.6

Target radial inner/outer tolerance (cm) 1 / 0.5

Target radial tolerance from center (degrees) 10
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3.5 Experimental protocol and data acquisition

Participants were recruited and accepted according to the following require-
ments:

• Age range : 18 to 35 years old
• Healthy
• Right handed
• 18 cm width from back to abdomen (able to fit in our experimental setup)

All participants were given an information sheet, specific to this project,
containing relevant information about the study, objectives and protocol. After
explaining the task to participants they were asked to sign the Informed Con-
sent. A total of 3 sessions were conducted. The first session was for training
- participants learned how to do the task by following instructions from the
experimenter. Each participant used the setup as demonstrated in Figure 3.8,
which shows the pronation position for the body and the resting position of
the wrists. The latter blocks within the training session consisted mostly of
performance optimization.

The remaining two sessions were carried out in MR environment, using Well-
come Trust UCL Siemens Trio 3 Tesla MR system. These correspond to scan-
ning (or testing) sessions. The setup used in MR environment is similar to
training. The device is adjusted in the MR room, and during Field-Map acquisi-
tion participants go through a practice run. However there is no communication
between the experimenters and the participant within runs, except in the cases
of technical failures or subject discomfort. Testing involves two sessions of 5
blocks each. Participants were allowed to rest between runs according to their
own will. All subjects were reimbursed for their time during the experiment
plus a bonus proportional to the points achieved in the motor task.

3.6 Kinematic analysis

Behavioural data analysis consisted of analysing timeseries of kinematics for
different conditions. Analysis was conducted in Matlab® 2012b language/en-
vironment using files from the C++ program output. Kinematic measures of
position for both manipulanda were recorded at every 5 ms, corresponding to a
frequency of 200 Hz.

We are mainly interested in comparing directions/conditions of movement
with respect to movement time (MT) and reaction time (RT). Particularly, we
can ask specific questions which relate to Section 2.1 such as:

• Are unimanual and bimanual movements different?
• Does direction of movement affect performance?
• Are intrinsically related bimanual movements performed better than ex-

trinsic or unrelated?

These questions were addressed by comparing: a) Unimanual vs Bimanual
conditions; b) Directions of movement; and c) Mirror-symmetric, Parallel and
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Figure 3.8: Device in use: resting position adopted by the participants.
This particular example corresponds to the training setting. Anatomical
variability is covered by hardware adaptations discussed in Section 3.1.

directionally unrelated movements. These conditions were evaluated with re-
spect to kinematic performance variables recording during training and testing
conditions - reaction times, movement times and hand decoupling.

Reaction time was obtained by a state transition: from center hold to mov-
ing states. In the motor task, this is triggered by any of the cursors exiting the
start box. Movement time is calculated from the duration in state moving - in
the motor task it corresponds to the time interval between leaving the start-
boxes and returning to them after hitting the target. Additionally, decoupling
was calculated by adding the time difference at movement start and end dur-
ing bimanual movememts. Decoupling was applied to bimanual combinations
(intrinsic, extrinsic and unrelated) only.

Results are presented in section 4.1 visually, and applicable statistical test
results are shown for each case.

3.7 fMRI data analysis

fMRI analysis was conducted in Matlab environment using SPM8© package
and the RSA Toolbox [82]. Additional Matlab routines were written in the
Motor Control Group with Atsushi Yokoi and Jörn Diedrichsen.

3.7.1 Preprocessing and GLM

Preprocessing was conducted according with the following order:

• Slice timing correction
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• EPI realignment and unwarp (distortion correction)
• Field bias correction
• Functional to anatomical image registration
• Anatomical image segmentation (white and grey matter)

Coregistrations to anatomical images were based on manual definitions of
EPI image position. Upon GLM specification, functional data was high-pass
filtered in the time domain at 128Hz, without spatial filtering.

The general linear model was specified with 48 categorical variables of inter-
est - corresponding to 48 conditions in our event-related experiment. The onset
for each stimulus was imported from motor task files, as well as the condition
label for trials. The design matrix X (equation 2.2) contained one regressor per
trial per timepoint - resulting from HRF convolution with boxcar function - and
one additional regressor per session:

Y
(T×P )

= X
(T×K)

β
(K×P )

+ ε
(T×P )

(3.1)

Where T is the number of timepoints (or scanner TR’s), P is number of vox-
els, and K = number of conditions × number of sessions + nuisance regressors
(in this case, one per session).

Estimation of β values (regression coefficients) was performed using the SPM
package, which implements the Restricted Maximum Likelihood algorithm [83].
After estimation, t−contrasts against rest were calculated for each condition,
and also for Unimanual Left, Unimanual Right and Bimanual movements.

These contrasts were mapped for each subject on a cortical surface which was
reconstructed using FreeSurfer software suite [84]. Surface maps with overlayed
contrasts were visualized using Caret software [85].

3.7.2 Representational dissimilarity analysis

Experimental conditions were compared using RSA after GLM estimation.
We will now introduce the rationale for using RSA in this project.

Each condition - hand movements in this case - is characterized by a pattern
of neuronal activity [65]. Since cortical functions are organized in a topograph-
ical way, we would expect groups of neurons which encode similar conditions to
be anatomically close [1]. In fact, it is possible to detect directional tuning at
voxel level using fMRI, which relies on activity in discrete volumes on the order
of mm3 scale volume [4].

If a cortical region encodes a certain stimulus (visual, motor, etc) this region
will therefore exhibit distinct activity patterns for the conditions it encodes.
For each condition, there is an activity pattern Ui which can be represent as a
vector with an activity value for each neuron or voxel. A set of conditions can
be concatenated into a matrix U(N×P ) where N is the number of conditions and
P is the number of voxels.
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One way of assessing the dissimilarity between conditions is to compute the
Euclidean distance in voxel space [65]. One can calculate the inner product
matrix of U:

G = UUT (3.2)

where each element Gi,j is the inner product between conditions i and j. The
G matrix sustains information about the distance of each pattern to baseline
activity in the diagonal. Additionally, it is possible to calculate the squared
Euclidean distance from G in each point [86]:

Dii = Gii +Gjj − 2Gij (3.3)

whereD is the distance matrix calculated from the patterns U . By definition,
all values in the diagonal of D are zero and the matrix is symmetric. The upper
or lower triangular of D contains the pairwise distance between all conditions
in U.

From this point onwards we will refer to distance matrices and represen-
tational dissimilarity matrices (RDMs) indistinctly. However, RDMs can be
calculated from any measure of dissimilary between two patterns, such as 1-
minus-correlation, angle distance in voxel space, etc [66,87].

RDM Simulations

Given a directionally tuned set of voxels, what is the structure of a theoretical
RDM? This question was addressed by simulating the voxel response for equally
separated directions. Given a set of voxels, we assign to each one a preferred
direction ϕ. The tested directions are θ, which would be the directions for
movements executed in an experiment. The simplest voxel response would be
when the voxel only exhibits activity aθ,ϕ if the tested direction matches its
preferred direction:

aθ,ϕ =

1, if θ = ϕ

0, otherwise
(3.4)

In this case, U is given as a matrix of aθ,ϕ:

U =


aθ1,1 · · · aθ1,P

aθ2,1 · · · aθ2,P
...

. . .
...

aθN,1 · · · aθN,P

 (3.5)

where N is the number of conditions (or θ directions) and P is the number
of voxels. In U , rows are activity patterns, and columns are voxel tuning
functions.

The symmetric distance matrix calculated using equations 3.2 and 3.3 will
have, by definition, diagonal equal to zero. The off-diagonal values will yield
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some value which will depend on how distant the patterns are in voxel space.
In this case, all patterns are equally distinct (Figure 3.9). This is equivalent to
having a tuning function as narrow as possible, i.e., a Dirac δ.
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Figure 3.9: RDM for simulated patterns with narrow tuning func-
tion. Tested movements (θ) spanning from 0° to 300°.

If we assume our set of voxels is in the left cerebral hemisphere and codes
both contralateral and ipsilateral movements, we can represent the RDMs for
contralateral and ipsilateral movements together (Figure 3.10). In this RDM,
conditions 1 to 6 refer to left hand movements, and 7 to 12 refer to right hand
movements in similar directions (Table 3.2). The first and third quadrant repre-
sent unimanual left and right movements - similarly to Figure 3.9. The second
and fourth quadrants represent the relashionship between unimanual left and
unimanual right movement encoding. The simplest case, where contralateral
and ipsilateral tuning functions are uncorrelated, generate high distance be-
tween them.

Table 3.2: Correspondence between condition number and move-
ment direction for unimanual movements of the left and right hands
in the RDMs.

Direction 0° 60° 120° 180° 240° 300°

Condition
Left Hand 1 2 3 4 5 6

Right Hand 7 8 9 10 11 12

If there are tuning functions for unimanual movements, how are bimanual
movements encoded? The simplest case is for us to assume that bimanual
activity patterns will be a linear function of unimanual tuning (ϕ subscripts
were dropped for clarity):

a(θL, θR) = a(θL) + a(θR) (3.6)

Therefore, we can generate two separate components for bimanual left and
bimanual right tuning. If both hands perform movements in N directions, there
are N2 combinations of movements. In a set of voxels which is exclusively left
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Figure 3.10: RDM for simulated patterns with narrow tuning func-
tion for left and right hands. Tested movements (θ) spanning from
0° to 300°.

hand tuned, only left hand movements will affect the RDM (Figure 3.11a). The
same applies for right hand movements (Figure 3.11b). Each condition number
in the RDM corresponds to the combination of a left and right hand direction,
as shown in table Table 3.3.

Table 3.3: Correspondence between condition number and move-
ment direction for unimanual movements of the left and right hands
in the RDMs.

Direction
Left Hand 0° 0° 0° 0° ... 300° 300° 300° 300°
Right Hand 0° 60° 120° 180° ... 120° 180° 240° 300°

Condition 1 2 3 4 ... 33 34 35 36

If we assume the total distance to be separable, i.e., the overall distance for
all conditions to be the sum of the previously shown components, we get the
distance matrix shown in (Figure 3.12).

However, tuning functions might not be as narrow as a single voxel. If
we simulate tuning functions as a Gaussian function centered on the preferred
direction and width σ [88]:

aθ,ϕ = a+ b · exp
(
− 0.5

[
θ − ϕ

σ

]2)
(3.7)

Where a and b are constants which model offset and amplitude. The re-
sulting RDM predicts that distances will increase away from the diagonal up to
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Figure 3.11: RDMs for left (a) and right (b) hand movements for all bimanual
combinations. Each of these RDMs are calculated from patterns based on the
assumption of equation 3.6.

180°separation, and from that point they should decrease again. This effect can
be observed in Figure 3.13.

Distance estimation

In the previous topic we simulated RDMs in order to predict how patterns
of motor activity can be analysed using RSA. With fMRI data, we can use
the β̂ values from the GLM as patterns for each condition - but these patterns
contain noise with spatial structure. This happens, for example, in voxels which
have a nearby blood vessel. Such noise structure compromises reliability in the
analysis [87].

In order to account for this effect, we can first estimate the variance-covariance
matrix from the error term after GLM estimation (equation 2.2):

Σ̂ =
1

T
εT ε (3.8)

And afterwards we perform multivariate normalization of the β̂ values using
Σ̂:

Û = β̂Σ̂−
1/2 (3.9)

We will refer to this operation as pre-whitening.

If we calculate distances directly from these beta values, they will still be
positively biased - so it is still not possible to infer directly on distance values.
We can address this problem by cross-validating distances. If we have R repe-
titions of the experiment, i.e., R sessions, we can start by calculating the inner
product using a modified version of equation (3.2).

Ĝ =
1

R2 −R

a=R,b=R,a 6=b∑
a=1,b=1

UaU
T
b (3.10)
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Figure 3.12: Simulated RDM for all conditions, ob-
tained as a linear combination of the RDMs for uni-
manual and bimanual tuning functions.

where a and b iterate from 1 to R sessions. This is equivalent to split-half
or leave-one-out cross-validation [87].

We then apply equation 3.3 to the estimated inner product matrix:

D̂ii = Ĝii + Ĝjj − 2Ĝij (3.11)

This computation was performed for all subjects independently, using the
RSA toolbox [66, 82]. We obtained squared distance values in voxel space,
cross-validated at session level. Because we expect loci of the motor system
to encode movements differently from each other, RDMs where calculated for:
primary motor cortex (M1), SMA, anterior and posterior SPL, PMv and PMd.
Additionally, we extended this analysis to primary and secondary visual cor-
tex (V12). ROIs were defined using Caret software - anatomical images were
aligned to a template, and ROIs were obtained from pre-defined template re-
gions adapted from Wiestler and Diedrichsen [89].

We also quantify directional tuning in unimanual left, right and bimanual
cases. If there is no directional tuning, on average there will be no significant
distance values. By assuming the distance matrices entries will be zero in this
case, we can average the unimanual left, right and bimanual parts of the RDMs
and test the hypothesis that these values are, on average, zero. Unimanual and
bimanual parts are depicted in Figure E.1.

Bimanual tuning decomposition

The previous quantifications allows us to make inferences about unimanual
contralateral and ipsilateral encoding. We are also able to test for encoding
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Figure 3.13: Simulated RDM for all conditions, ob-
tained from patterns calculated according with equation
3.7, for a tuning width value of 30°.

during bimanual movements, but this effect may be due to the fact that either
hand is moving - hiding possible effects of both hands and/or non-linear inte-
gration during bimanual movements. We futher investigate bimanual encoding
by decomposing RDMs into distance tuning maps. We will now introduce the
rationale for this decomposition.

If an ROI is encoding unimanual movements, we can estimate distance tuning
functions by reorganizing the RDMs in terms of angle deviation. We start by
redefining RDMs in terms of ∆θ and align rows/columns in the RDMs. We then
compute the average and estimate the unimanual tuning function of distance
over ∆θ as depicted in Figure 3.14.
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Figure 3.14: Unimanual tuning function derived from
the RDM in Figure 3.13.

Similarly, we can reorganize the bimanual parts of the RDMs. Bimanual
tuning functions can result from a linear combination of unimanual left and
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right movements, or non-linear multiplicative combination. Bimanual tuning
functions vary in both ∆θ for the left hand and right hand, in such way that
a purely left-hand tuned region would result in the tuning map show in Fig-
ure 3.15a, and for the right hand in Figure 3.15b. A region can also be tuned for
both hands during bimanual movements in an additive or multiplicative (non-
linear) manner. In the case of additive encoding, the resulting map corresponds
to a linear combination of left and right tuning (Figure 3.15c). Alternatively,
regions might encode movements of both hands non-linearly, which would result
in Figure 3.15d.

We decomposed the bimanual RDM sections using the previously described
method, with which we make qualitative observations on the nature of bimanual
tuning (Chapter 5). Quantitative analysis using this method will be discussed
in the scope of future work in Chapter 6.
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Figure 3.15: Bimanual tuning functions derived from a simulated RDM
with bimanual left (a) and right hand tuning (b). Left and right can be
combined into linear, additive tuning (c) and multiplicative tuning (d).
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Chapter 4

Results

In this chapter we present the results of computations and statistical tests
performed on behavioural/kinematics data and imaging data.

In summary, reaction times are not significantly different across unimanual or
bimanual movements, directions nor hand combinations. Opposingly, there are
significant effects on movement times across the previously referred conditions.
Regarding imaging results, we present distance matrices for the tested movement
conditions. We found strong contralateral and bimanual encoding across all
regions, and strong ipsilateral encoding in most regions.

Details of these results can be found for behavioural/kinematics data in
Section 4.1 and for imaging data in Section 4.2.

4.1 Behavioural

The questions posed in Section 3.6 were addressed in the upcoming sections.
Section 4.1.1 presents the results from comparisons between unimanual and
bimanual conditions with respect to RT and MT. At unimanual level, effects
of direction in performance were tested in Section 4.1.2. At bimanual level,
we tested effects dependent on directional relationship between both hands in
Section 4.1.3.

Over these sections, conditions were compared individually for each subject,
as each individual may behave distinctly from the others. This approach follows
the same assumption of individuality as in RSA.

Additionally, conditions were compared within environments, i.e., within
training and scanning settings. The motivation for comparing these popula-
tions separately for each setting are, on one hand, the environmental differences
between training and scanning setups (loud MR scanner noise inexistant in
training, room lighting, etc); and on the other hand, the visually evident bi-
modality in reaction time histograms when both training and testing data are
overlayed (Appendix A, Figure A.1)
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All datasets were confined to movements correctly executed, which account
for 93% ± 5% of the total number of trials in each subset.

4.1.1 Unimanual vs Bimanual

Boxplots for RTs and MTs during unimanual and bimanual conditions are
presented in Figures 4.1 and 4.2. All data were tested for normality using the
Kolmogorov-Sminorv test with α = 0.05. Since all data subsets rejected the null
hypothesis (that they come from a normal distribution), comparisons between
unimanual and bimanual subsets were conducted using the non-parametric Mann-
Whitney U test.

Figure 4.1 does not show visually pronounced differences between unimanual
and bimanual conditions. Moreover some participants have higher bimanual RT
median, whereas others have higher unimanual RT median. Only Subj.No. 3
and 7 have significant differences (marked with *) between these two conditions,
as they rejected the null hypothesis that unimanual and bimanual RTs come
from the same distribution (Mann-Whitney U test, α = 0.05).
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Figure 4.1: Boxplots of reaction times in unimanual (Uni) and bimanual
(Bi) for all subjects in a) training and b) testing sessions. Significant
differences in reaction time between unimanual and bimanual conditions
are marked by * (α = 0.05, Mann Whitney U test). Neither population
is normally distributed (Kolmogorov-Sminorv test, α = 0.05).

Movement times were treated similarly to reaction times. Unlike RTs, MTs
are visually different for unimanual and bimanual movements within each sub-
ject (Figure 4.2). Furthermore, bimanual movements involve longer MTs in all
cases and this difference is always significant. Similarly to RTs, unimanual and
bimanual MTs were compared using the Mann Whitney U test with α = 0.05
after testing for normality.
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Figure 4.2: Boxplots of movement times in unimanual (Uni) and bimanual
(Bi) for all subjects in a) training and b) testing sessions. Significant
differences in movement time between unimanual and bimanual conditions
are marked by * (α = 0.05, Mann Whitney U test). Neither population is
normally distributed (Kolmogorov-Sminorv test, α = 0.05).

4.1.2 Preferred directions

We searched for effects of direction in movements of either hand. Figure 4.3
shows radar plots of reaction times - for each direction, the median reaction time
is represented.Because data is not normally distributed (Kolmogorov-Sminorv
test, α = 0.05), the non-parametric Kruskall-Wallis test was used to search for
directional effects in RTs. Significance (α = 0.05) is denoted by *.

Similarly to unimanual-bimanual comparisons, RT data does not account for
a significant effect in most subjects, and significance is not always kept through
training and scanning datasets (Figure 4.3).Only Subj. No. 2 shows significant
and persisnt effect across hands and sessions.

Figure 4.4 represents MT data similarly to RT data in Figure 4.3. The
Kruskall-Wallis test was also used in MT data, with α = 0.05. The results are
visually different from RT - left hand movements appear to have shorter MTs
across the horizontal axis, particularly for the left hand (Figure 4.4).Significant
effects are also present across a higher number of subjects than in RT results,
particularly for the left hand (Figure 4.4).

4.1.3 Intrinsic vs Extrinsic vs Unrelated

Bimanual movements can be grouped in terms of the relationship of both
hands. We defined intrinsic movements as combinations of mirror-symmetric
hand movements; extrinsic as parallel combinations; and the remaining are un-
related. Figures 4.5 to 4.7 display boxplots of RTs, MTs and hand decoupling
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(c) Left hand, scanning
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(d) Right hand, scanning

Figure 4.3: Radar plots of median reaction times for unimanual movement
directions of all subjects, for the left (a and c) and right (b and d) hands.
Significant effects of direction are marked by * (Kruskall-Wallis test, α = 0.05)

for the training (left column) and scanning (right column) for all subjects.

The previous procedure for testing data for normality was applied. Kruskall-
Wallis test results (significance for α = 0.05 indicated by *) for RT are indicated
in Figure 4.5. We applied this statistical test to check for effects of bimanual
relationship in performance. Hand relationship does not account for effects in
RT except for Subj. No. 3 in training and Subj. No. 7 in scanning sessions.
Additionally, there is no consistence across testing and scanning results.

MT results are presented in Figure 4.6. All subjects except No. 7 have a
significant effect of hand relationship in MTs. Moreover, significance is kept
through training and testing results (Figures 4.6 a and b). The majority of
subjects have lower intrinsic movement median MT than extrinsic or unre-
lated.

Bimanual movements were also analysed in terms of hand decoupling. As
we can see in Figure 4.7 only subjects No. 1, 4 and 7 have significant hand
relationship effects in decoupling, but significance is kept though training and
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(d) Right hand, scanning

Figure 4.4: Radar plots of median movement times for unimanual move-
ment directions of all subjects, for the left (a and c) and right (b and
d) hands. Significant effects of direction are marked by “*” (Kruskall-
Wallis test, α = 0.05)

scanning sessions. However, the lowest RT median is not always associated with
intrinsic movements, even in subjects with significant effects (Figures 4.7 a and
b, Subj. No. 4 and 7).
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Figure 4.5: Boxplots of reaction times in intrinsic (Int), extrinsic (Ext)
and unrelated (Unr) for bimanual movements in a) training and b) scan-
ning sessions. Significant effects in reaction time for movement cate-
gories are marked by * (α = 0.05, Kruskall-Wallis test). Neither popu-
lation is normally distributed (Kolmogorov-Sminorv test, α = 0.05).
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Figure 4.6: Boxplots of movement times in intrinsic (Int), extrinsic (Ext)
and unrelated (Unr) for bimanual movements in a) training and b) test-
ing sessions. Significant effects in movement time for movement cate-
gories are marked by * (α = 0.05, Kruskall-Wallis test). Neither popu-
lation is normally distributed (Kolmogorov-Sminorv test, α = 0.05).
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Figure 4.7: Boxplots of decoupling (ms) in inrinsic (Uni), extrinsic (Ext)
and unrelated (Unr) for all subjects in a) training and b) testing ses-
sions. Significant differences in decoupling time between unimanual and
bimanual conditions are marked by * (α = 0.05, Kruskall-Wallis test).
Neither population is normally distributed (Kolmogorov-Sminorv test,
α = 0.05).
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4.2 Imaging

After comparing movement conditions with respect to kinematic perfor-
mance (Section 4.1), we now focus on analysing them with respect to functional
activation in MRI. We start by localizing activation correlates using a classical
univariate method (Section 4.2.1). Afterwards we present the results of RSA
(Section 4.2.2), find which brain regions encode movement (Section 4.2.3), and
present unimanual and bimanual tuning functions (Section 4.2.4).

4.2.1 Hand movement localization

We can visualize activation areas for each subject by looking at contrast
maps. Univariate contrast maps for unimanual left, unimanual right, and bi-
manual movements for each subject are shown in Appendix C, Figures C.1
to C.7. These maps result from computing t-Contrasts for the β values obtained
as output from SPM software, as described in section Section 3.7.1. Images con-
tain contrasts mapped onto a 3D cortical surface using Freesurfer and Caret for
ROI identification.

Contrast maps like these allow us to identify which brain regions are active
during certain conditions.

We can use the cortical segmentation in Caret, derived from a cortical atlas,
to visually inspect these results. There is, across all subjects, higher activation
during contralateral movements than ipsilateral movements. Bimanual move-
ments, on the other hand, have much higher and widespread activation than
unimanual movements.

It is also noteworthy that activation is not fully similar, both in value and
loci, across subjects, i.e., there is inter-subject variation in activation foci.

Given the high inter-subject variability, we quantified activation individually
for each subjecct in the following ROIs, for both hemispheres: S1, M1, PMv and
PMd, SMA, V12, SPLa and SPLp. Results are show in Appendix D, Figures D.1
to D.7.

4.2.2 Representation Dissimilarity Matrices

The previous section shows results for activation/localization, but they do
not tell us about encoding/tuning. The results in Figure 4.8 show the RDMs
for the S1 and M1 regions averaged across all subjects using the methodology
in Section 3.7.2. Results for the remaining ROIs can be found in Appendix F,
Figure F.1.

This measure of encoding is adimensional (average of dissimilarity values).
Inter-subject correlations can be found in appendix G.

In the RDMs, each value is a cross-validated pairwise comparison between
conditions. By observing left and right hemispheres, we can observe that the
high distance values between ipsilateral and bimanual movements stand out
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Figure 4.8: RDMs averaged across all Full Study Subjects for the S1 and M1
regions in the left and right hemispheres. Each value in the RDMs is the squared
distance in voxel space, between every two conditions (arbitrary units).

(Figures 4.8 and F.1, see Figure E.1 for RDM sections). Furthermore, ipsilateral
and contralateral movements are highly dissimilar across all ROI’s. Directional
tuning also appears to be present for contra and ipsilateral movements in all
ROI’s, event though tuning structure is encoded with different strength and
width across regions.

4.2.3 Contralateral, Ipsilateral and Bimanual encoding

Visual inspection of the RDMs provides quantitative pairwise information
and qualitative information about encoding/tuning structure. However, we can
quantify contralateral, ipsilateral and bimanual encoding by taking distance
values in certain parts of the RDMs and testing this difference for zero median
as an estimate of encoding.

Results can be found in Figure 4.9, methods in Section 3.7.2, and RDM
sections in Figure E.1. This evaluation is based on the assumption that distance
values will be zero if the true distance between conditions is zero. We further
confirmed this assumption by randomizing condition labels.

Furthermore, we can ask if a certain region encodes Contralateral movements
more or less strongly than Ipsilateral movements. If Contralateral and Ipsilateral
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Figure 4.9: Unimanual Left, Right and Bimanual estimate of encoding
for each ROI in the left (a) and right (b) hemispheres, averaged across all
subjects. Values obtained by averaging distance values in the RDMs.
Significance indicated by *, One-Sample Wilcoxon Signed-Rank Test,
α = 0.05.

movements are encoded differently, we can test for differences in Unimanual Left
and Right distance values with the Mann-Whitney U-test. Table 4.1 contains
the p-values for a two-sided Mann-Whitney U test of contralateral and ipsilateral
encoding in all tested ROI’s.
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Table 4.1: P-values for tested differences between Contralateral
and Ipsilateral tuning. Mann-Whitney U test. Highlighted p-
values indicate significance, α = 0.05.

LH RH

S1 0.1618 0.0030

M1 0.1847 0.5014

PMd 0.9240 0.1473

PMv 0.4660 0.1386

SMA 0.7231 0.0020

V12 0.0379 6.1641e-05

SPLa 0.2133 3.5207e-06

SPLp 0.1645 0.1737

4.2.4 Bimanual tuning functions

In order to extract bimanual tuning maps, we can reorganize distance values
in terms of angle difference for the left (∆θL) and right (∆θR) hand directions.
Bimanual tuning can simply arise when left hand movements, for example, are
being executed - left hand tuned neurons/voxels will respond the same way
regardless of movements being unimanual or bimanual. In this case, bimanual
encoding values will be significant, but they could be explained by left hand
movements alone. This scenario would predict the result in Figure 3.15a, and
similarly for right hand movements in Figure 3.15b.

Bimanual tuning maps could, however, take different shapes if voxel re-
sponses combine them in a linear (Figure 3.15c) or non-linear manner (Fig-
ure 3.15d).

In this section we show the results for bimanual tuning maps in left and right
hemisphere ROIs. Figure 4.10 shows bimanual tuning maps for S1 and M1.

Results for the remaining ROIs can be found in Appendix H, Figure H.1.
The majority of ROIs strongly resembles bimanual tuning associated with the
contralateral hand, when compared with the maps obtained by simulation (Fig-
ure 3.15). Some ROIs, however, have tuning maps varying with both left and
right hand directions, such as SMA and PMv.

Bimanual tuning maps will be qualitatively discussed in Chapter 5.
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Figure 4.10: Bimanual tuning maps for M1 and S1, obtained by re-organizing the
RDMs and averaging squared distance values (arbitrary units, distance before
normalization by number of voxels). Left and Right hemispheres on left and
right side of figure, respectively.
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Chapter 5

Discussion

5.1 Behavioural

Kinematic analysis in this project was conducted individually for each sub-
ject, in order to account for different motor performances. Moreover, we sep-
arated training and testing subsets, due to the discrepancy between a quiet
training room and a constrained loud MRI room. We illustrate the performance
difference between environments by showing histograms of reaction time for one
subject in Figure A.1. Significant differences were found between environments,
both in unimanual and bimanual movements.

We might consider that performance is different in training and scanning
setups because subjects are more experienced after training. However, that
hypothesis would predict that reaction times would be shorter in training en-
vironment, but we observe the opposite. Moreover, no learning effects were
observed over time due to task simplicity. Participants were allowed to experi-
ence the task before data acquisition, as part of instructing them - purposely
discarding learning effects.

5.1.1 Unimanual vs Bimanual

With the exception of Subjs. No. 3 and 7, RT does not predict whether
movements are unimanual or bimanual (Figure 4.1). For the remaining subjects,
RTs are not even consistently higher in bimanual movements than unimanual
ones. We might expect slower reaction to bimanual movements due to higher
number of targets and limbs to control. However, subjects were prompted with
the targets 2 seconds before movement onset, which provides time for movement
planning. In fact, bimanual RT discrepancy is eliminated when direct visual cues
are presented, which might be a consequence of bimanual interference associ-
ated with the duration of movement planning for generation of complex motor
commands [38].

Unlike RTs, MTs are consistently higher in bimanual movements than uni-
manual, across all subjects and environments (Figure 4.2). This finding suggests
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that bimanual movements are harder to execute. During bimanual movements,
the motor system is required to synchronize both hands and direct them ac-
curately towards two targets instead of one. Speed-accuracy tradeoff is a well-
known effect in motor behaviour, consisting of degrading performance when
speed is increased, and vice-versa (model review in [90]). Even though speed-
accuracy studies typically concern unimanual movements, it might be possible
that controlling two hands accurately takes more time (less speed).

5.1.2 Preferred directions

We also analysed, in terms of RT and MT, the effects of directions during
unimanual movements (Figures 4.3 and 4.4). In these figures, we display the
median, rather than the mean of each subject, because it better represents
a skewed population, and because it is the value presented in the center of
boxplots. This way the median is a representative value of the populations we
study across kinematics data.

Except for subject No. 2, RT differences do not seem to be explained by
direction (Figure 4.3). For the remaining subjects, directional effects in RT are
not consistent across hands not sessions, except for Subj. No. 4, right hand.
Therefore, we cannot conclude RT has a strong directional effect. Again, this
might be explained by the fact that movements are visually cued before onset
[38]. However, further research should be conducted to test for any muscular
constraints at subject level that, despite not observed in our study, might be
associated with wrist pronation/supination.

We also tested for directional effects in MTs similarly to RTs (Figure 4.4).
These effects are more frequent than RT, particularly for Subjs. No. 3 and 6
who present strong directional effects. The remaining subjects are not always
coherently sensitive to direction across hands nor sessions. Movements along the
horizontal axis (0° and 180°) seem to be associated with shorter MTs. However,
the reason might not have neural origin - instead, these movements could be
simply associated with wrist flexion movements being more easily performed
than ulnar deviation. This hypothesis could be tested in the future by rotating
the device in a similar manner to the work of Kakei et al., or by analysing
natural movement statistics, relating them to daily hand usage [28].

5.1.3 Intrinsic vs Extrinsic vs Unrelated

Another question we were interested in regards the influence of hand rela-
tionship in bimanual movement performance. We split out bimanual data into
intrinsic (mirror-symmetric), extrinsic (parallel) and unrelated (all the remain-
ing ones) movements.

As shown in Figure 4.5, hand relationship does not have an effect in reaction
time. This is something we would also expect directly from providing visual
cues [38]. MTs, however, are consistently sensitive to hand relationship, with
the exception of Subj. No. 7 during scanning sessions Figure 4.6. Intrinsic
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combinations frequently have lower MTs than parallel and unrelated, suggest-
ing that performing these movements is easier. Moreover, parallel movements
are often associated with lower MTs than unrelated. We would actually expect
these effects to be present, and it should be a direct consequence of bimanual
interference. Such effects have been observed before, and suggest that neural
control of bimanual movements is sensitive to parameters of both hands, imply-
ing inter-hemispheric cross talk [35,36].

Given the previous conclusions, we would expect hands to be more tightly
coupled during intrinsic movements than parallel or unrelated. We added the
time difference at the beginning and end of each hand movement and used it as
a measure of decoupling (Figure 4.5). However, except from Subjs. No. 1 and
4, no consistent effects were observed. It might be possible that our measure of
decoupling is not sensitive enough to reveal an effect, because it measures two
timepoints rather than accompanying the hands over the whole trajectories.

5.2 Imaging

5.2.1 Hand movement localization

The univariate contrast maps displayed in Figures C.1 to C.7 show T-statistic
values for each voxel. These T-values are the result of computing the t-statistic
at each voxel for the conditions in study (unimanual Left, Right or bimanual)
against the resting baseline - and hold negative or positive values according
with β value correlation with the condition in study. Each activation value is
calculated as a β weight of the HRF regressor - in a way that activation values
in fMRI do not represent neuronal activation per se, but rather correlates of the
hemodynamic response. Inter-subject variability can be associated not only with
neurological variables, but may also have physiological origin (blood perfusion,
for example) [58].

Commonly across all subjects, we find significant activation in nearly the
whole cortical surface. Contralateral movements appear to be associated with
higher activation than ipsilateral ones, as would be predicted by the classical
view of contralateral movement control. Despite weak, ipsilateral activation is
also present. Yet, this does not tell us whether there is directional encoding or
not.

Bimanual movements seem to activate both hemispheres similarly in both
hemispheres and more significantly than in unimanual cases. However, we can-
not directly compare T-values in unimanual and bimanual conditions because
higher bimanual T-values might associated with higher number of bimanual
conditions, relative to unimanual ones.

Instead, we can get this information from the β values in each ROI by
averaging them and testing the mean against zero (Figures D.1 to D.7).

Ipsilateral activation is typically lower than contralateral and bimanual, as
expected, and not always significantly different from zero. Some regions activate
more during unimanual than bimanual movements, suggesting their preference
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for bimanual movements. This effect appears to be more frequent in regions
hierarchically closer to muscles such as S1 or M1. Opposingly, premotor areas
which are though to be associated with movement planning and abstract move-
ment representations are more highly activated during bimanual movements.

These values, however, will tell us whether a certain region activation is,
on average, positively, negatively or non correlated with the condition in study.
Similarly to the contrast maps, we find high inter-subject variability. More-
over, there is no consistent average activation across ROIs - some subjects have
higher PM activation whereas other have higher S1 or M1 activation. V12 is
an important example, as some subjects have low (non-significant) activation
(Figures D.3 and D.5) or even negative (Figure D.6).

Even though we can quantify activation at every voxel for all conditions,
this does not mean active voxels encode a certain condition. For example, if a
certain voxel is always equally active for left hand movements, we would not
be able to decode directional information from it. Moreover, because activation
sites are not exactly the same for all subjects, averaging activation values for
each voxel across all subjects would tell us which areas are commonly recruited
across a population, but fine subject-specific variations, possibly important for
motor encoding, would average towards non-significant values, causing us to
loose important information.

This is part of our motivation to complement univariate analysis with mul-
tivariate pattern analysis - where we assume that the overall relationship be-
tween conditions will be the same for every individual, but each subject may
have specific encoding patterns. Therefore, we focus on the common structure
of representation rather than average activation.

5.2.2 Representational Dissimilarity Matrices

Pairwise comparisons between conditions can be found in Figures 4.8 and F.1.
These figures contain RDMs averaged across all subjects, and generally, higher
distance values are indicative of stronger encoding. Within-subject correlations
can be found in Appendix G, Figure G.1.

In both hemispheres and across all ROIs, directional tuning appears to be
present. In fact, directional tuning has been found in all motor regions where
it has been sough for [24]. However, its structure has not yet been fully charac-
terized.

We start by analysing unimanual contralateral parts of the RDMs, i.e., UL
for ROIs in the left hemisphere, and UR in the right hemisphere (Figure E.1).
Directional tuning is clearly present, though with different strength and width.
Interestingly, ipsilateral tuning also appears to be present in almost all ROIs.
The presence of ipsilateral encoding once again challenges the classical view of
contralateral control, and presents a clear structure, similarly to recent findings
[4, 5].

Unimanual tuning, both for left and right hands, appears to have larger
width in regions such as S1 and M1, when compared to V12 or SPLp (Fig-
ures 4.8 and F.1, simulations in Figures 3.12 and 3.13, RDM sections in Fig-
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ure E.1). Narrower tuning functions don’t imply better encoding per se, but can
be a consequence of higher innervation. Tuning width is also known to depend
on task directional accuracy, e.g., tasks with closer targets would generate nar-
rower tuning functions [24]. In this sense, it is possible that lower-level motor
areas such as M1 are more sensitive to task accuracy for modulation of tuning
functions.

The RDM sections that stand out the most are clearly the Contra & Ipsi and
Ipsi & Bimanual (for ROIs in the left hemisphere this corresponds to UL & Bi-
manual). The fact that contralateral and ipsilateral tuning is highly dissimilar
suggests that each hemisphere codes for movements of both hands differently.
Since the patterns for contralateral and ipsilateral tuning are different but exist
in the same neural representational space, they can be though of as representa-
tional maps rotated from each other in neural space [63].

Moreover, bimanual tuning is highly dissimilar from ipsilateral tuning, but
not from contralateral tuning (Left and Right S1 and M1). This suggests that
there bimanual tuning might derive from contralateral tuning. However, because
we are estimating the Euclidean distance in representational space, our measure
might also be capturing differences in the vector norm caused by lower ipsilateral
activation. We will address this question in the future.

Bimanual tuning is also strongly present across the cortex, particularly in
V12, anterior and posterior SPL, S1 and M1. In particular, bimanual tuning
structure in V12 strongly resembles simulated bimanual left and right compo-
nents (Figures 3.11a and 3.11b). We have not yet developed a suitable decom-
position of the bimanual component, but this question will be adressed in the
future.

Future work for our multivariate approach might also involve relating be-
havioural data with RDMs. One way of doing this might be to include reaction
and movement times in the general linear model as confound regressors - influ-
encing our β regressors of interest (condition-specific).

5.2.3 Contralateral, Ipsilateral and Bimanual enconding

In this section, we quantify movement encoding by taking the average of
contralateral, ipsilateral and bimanual parts of the RDMs for each ROI (results
in Figure 4.9).

As expected, we found significant contralateral enconding in all ROIs. More
interestingly, we find significant ipsilateral encoding in all ROIs in the left hemi-
sphere, and most ROIs in the right hemisphere, matching resent results where
strong ipsilateral representations were found [4, 5].

Bimanual encoding is always stronger than unimanual in all ROI’s. In the
simplest case, bimanual movements are composed by a linear combination of
bimanual ones, which would predict that it is at least as strong as unimanual
components.

Contralateral encoding is significant across all ROI’s, unlike ipsilateral, which
is not significant in right SMA and SPLa. We further investigated differences
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between contralateral and ipsilateral encoding (Table 4.1), revealing that the
right hemisphere has significantly weaker ipsilateral tuning than the left hemi-
sphere. Given that the right hemisphere is the non-dominant, these findings
suggest that the non-dominant hemisphere is more specialized in the sense that
it encodes contralateral movements preferentially.

Such quantification provides a useful estimate of how strongly directions are
encoded in each ROI. Because we simply take the average, we don’t force a spe-
cific tuning function shape. Instead we only rely on assumption that absence of
encoding will lead to zero distance. We confirmed this by randomizing condition
labels on real data, which resulted in zero-distance RDMs. However, we should
point out that the average distance computation is sensitive to the tuning width
(see contralateral M1 and SPLp response, Figure 4.9) - wider tuning functions
will lead to distance values which decrease gradually after 180° difference (M1
and S1 RDMs, Figure 4.8).

5.2.4 Bimanual tuning functions

Future steps in this project will involve decomposing bimanual tuning and
test its relationship to unimanual tuning. We can reorganize RDMs into tuning
functions of representational distance over angle difference (∆θ), as simulated
in 3.15. From these figures, we can visualize what the structure of a left or right
hand tuned ROI is like - it varies only along the directions of the arm it encodes
for. Alternatively, ROIs may encode for both hands linearly or non-linearly.

If we apply this computation for the bimanual parts of the RDMs, we ob-
tain the results shown in Figure H.1. We can qualitatively compare these tuning
functions with the ones simulated in Figure 3.15. Most ROIs in the left and right
hemispheres appear to have bimanual tuning strongly related to contralateral
tuning. However, right SMA and PMv resemble non-linear encoding as simu-
lated in Figure 3.15, suggesting these regions might play a specialized role in
bimanual control. If an ROI encodes directions of left and right hand non-
linearly, that ROI is coding for bimanual movements in a specialized manner
and this mechanism may be important for bimanual coordination.

Even though we have not yet conducted a quantitative evaluation of linear
and non-linear tuning - and consequently cannot evaluate how significant each
encoding type is - these results motivate us to look further into this question. Fu-
ture steps will involve quantitative evaluation of linear/non-linear components
for modelling bimanual tuning from the RDMs.
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Chapter 6

Conclusions and Future
work

In this thesis, we investigate directional tuning in unimanual and bimanual
movements using novel techniques. For the most part, we find clear differences
in unimanual and bimanual performance, particularly in movement times. Di-
rectional effects are also present in unimanual movements. However, these are
not fully consistent across all subjects, and the cause for them should be revis-
ited by examining daily behaviour where wrist directions vary. One interesting
approach would be to monitor wrist movement frequency in everyday task over
each direction and relate it to reaction and movement time performance in our
study.

We would also expect bimanual movements to be highly different across in-
trinsic, extrinsic and unrelated combinations. However, our findings suggest
except for movement times, reaction times and synchronization between hands
are not related to these combinations. One possible explanation is that move-
ments in this project were simple and did not involve quick cyclic repetition, in
which case we would expect intrinsic movements to out-perform extrinsic and
unrelated ones [36].

The image analysis methods used in this work were based on novel fMRI
analysis. Using multivoxel pattern analysis allows us to look for the structure of
directional movements and compare it with simulated results based on previous
tuning function definitions [7]. Similarly to previous studies, we find directional
tuning in all tested regions [24]. Contralateral tuning is present in all ROI’s, as
predicted by the classical view in motor control. However, we also find strong
ipsilateral representations - also present in recent studies at arm and finger
movements [4, 5].

Bimanual movement encoding, like unimanual movements also seems to be
present strongly across all ROI’s. However, the presence of bimanual tuning
can be explained simply because corresponding unimanual movements are being
executed, i.e., bimanual representations might result from linear integration of
unimanual movements. Nevertheless, controlling both hands simultaneously in
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highly coordinated movements, such as tying laces or playing the piano, might
benefit from a multiplicative encoding scheme where bimanual tuning functions
result from specific combinations of unimanual components. We cannot yet
quantify how much bimanual tuning is explained by additive or multiplicative
tuning, but we hope to address this question in the future.

Further analysis on this dataset should be conducted in order to quantify
each type of bimanual encoding. Particularly, relating simulated bimanual en-
coding results with results from real data in regression models might be key to
answer this question.

One issue with ROI analysis is the selection bias it implies: because analysis
in conducted in priorly specified regions, areas outside those regions are ignored.
Furthermore, the specification of an ROI does not account for small variations
within the region which might be otherwise evident in smaller area specifications.
One approach which would complement our methods is searchlight analysis.
This method consists of conducting our multivoxel pattern analysis in a small
spherical ROI which iterates over the cortical surface. Using this approach
would not only increase the cortical area we analyse, but would also allow us
to obtain continuous encoding maps, analogous to t-contrast maps obtained in
univariate analysis.

Besides analysis methods, experiment tools could also benefit from improve-
ment. Future studies might benefit from revisiting the wrist device structure to
achieve more comfortable and natural positions. More importantly, sensors and
device-sensor coupling should be improved. Despite accurate, resistive-surface
encoders wear out very quickly, forcing us to replace them frequently. A suitable
MR-compatible alternative would be optical rotation encoders.

Regarding the experiment design, one alternative to using wide wrist range
of movements would be imposing force fields and having subjects countering
them. This approach would not only mitigate problems associated with move-
ment range in the MR scanner, but would also allow controlling the experiment
difficulty more easily by modulating force amplitude and direction.

Regardless of the methods used, the experiment could be improved by in-
creasing the population sample beyond 7 subjects, which was not possible due
to time constraints.

Despite the issues and future improvements to be made, our results match
recent findings, and challenge old ones. Knowledge about the structure of move-
ment encoding might be key in future clinical applications for movement impair-
ments and disorders. Characterizing the motor system in healthy and patho-
logical cases might be particularly useful as a way of evaluating the progress
of rehabilitation therapy methods, and it might provide a framework for active
control of neuroprosthetic devices.
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Appendix A

Bimodal distribution
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Figure A.1: Histograms of reactions times of Subj.No. 1 during unimanual
(a) and bimanual (b) movements. Training data (dark grey) overlayed by
scanning data (light grey). a) Neither training nor scanning reaction times
are normally distributed (Kolmogorov-Sminorv test, α = 0.05). Within
unimanual and bimanual RT’s, training and testing sets come from dif-
ferent distributions (Mann-Whitney U test, unimanual set: p = 1 · 10−32;
bimanual set: p = 1 · 10−63).
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Appendix B

Cortical regions

(a) (b)

(c) (d)

Figure B.1: Regions of Interest (ROI) adapted from reference
[89] overlayed on fsaverage sym template.
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Appendix C

Univariate contrast maps -
Full Study
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(a) (b)

(c) (d)

(e) (f)

Figure C.1: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 1.
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(a) (b)

(c) (d)

(e) (f)

Figure C.2: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 2.
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(a) (b)

(c) (d)

(e) (f)

Figure C.3: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 3.
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(a) (b)

(c) (d)

(e) (f)

Figure C.4: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 4.
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(a) (b)

(c) (d)

(e) (f)

Figure C.5: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 5.
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(a) (b)

(c) (d)

(e) (f)

Figure C.6: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 6.
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(a) (b)

(c) (d)

(e) (f)

Figure C.7: t-Contrast maps for unimanual left, unimanual right
and bimanual movements for the Left and Right Hemispheres,
Subj.No 7.
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Appendix D

ROI Quantification of
activity correlates
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Figure D.1: Average beta-value across defined ROI’s for S1. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Figure D.2: Average beta-value across defined ROI’s for S2. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Figure D.3: Average beta-value across defined ROI’s for S3. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Figure D.4: Average beta-value across defined ROI’s for S4. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Figure D.5: Average beta-value across defined ROI’s for S5. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Figure D.6: Average beta-value across defined ROI’s for S6. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.

68



S1 lh M1 lh PMd lh PMv lh SMA lh V12 lh SPLa lh SPLp lh

0.1

0

0.1

0.2

0.3

0.4

0.5

* *
*

*
* * * ** * *

*
* *

*
** * *

*
* *

* *

UniL UniR Bim

A
v
er

ag
e 

 v
al

u
es

 (
a.

u
.)

(a)

S1 rh M1 rh PMd rh PMv rh SMA rh V12 rh SPLa rh SPLp rh

0.1

0

0.1

0.2

0.3

0.4

0.5

* * * *
* *

*
** *

* *
* *

* ** * * *
* *

*
*

UniL UniR Bim

A
v
er

ag
e 

 v
al

u
es

 (
a.

u
.)

(b)
Figure D.7: Average beta-value across defined ROI’s for S7. Error bars indicate
standard error, and significance is marked by * - t-test under the null-hypothesis
that the mean of the population is zero, α = 0.05.
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Appendix E

RDM sections

Figure E.1: Sections of representational dissimilarity
matrices in this study. UL and UR indicate distances for
unimanual left and right conditions, respectively. Con-
tra & Ipsi refers to the distance between unimanual left
and right patterns. The Bimanual part are the dis-
tances between bimanual conditions for all directional
combinations. UL & Bimanual and UR & Bimanual
contain the distances between each of the unimanual
and bimanual movements.
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Appendix F

RDMs
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Figure F.1: RDMs averaged across all Full Study Subjects for the the remaining
regions of interest in the left and right hemispheres. Each value in the RDMs
is the squared distance in voxel space, between every two conditions (arbitrary
units).
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Appendix G

Inter-Subject RDM
correlations
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Figure G.1: Inter-subject correlations of RDMs at each ROI. Box on the
left corresponds to the Left Hemisphere. Box on the right corresponds
to the Right Hemisphere.
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Appendix H

Bimanual Tuning Maps
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Figure H.1: Bimanual tuning maps for PMd, PMv (a) and SMA, V12, SPLa and
SPLp (b) for the left and right hemispheres for the specified ROI’s, obtained by
re-organizing the RDMs and averaging squared distance values (arbitrary units,
distance before normalization by number of voxels).
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