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ABSTRACT 

Design and Evaluation of a Hybrid Multi-Task Learning for Optimizing the Deep 

Reinforcement Learning Agents 

Nelson Vithayathil Varghese                                                          Advisor:   

Ontario Tech University, 2021                                                       Dr. Qusay H. Mahmoud 

Driven by recent technological advancements within the artificial intelligence domain, 

deep learning has emerged as a promising representation learning technique. This in turn 

has given rise to the evolution of deep reinforcement learning that combines deep learning 

with reinforcement learning methods. Subsequently, performance optimization achieved 

by reinforcement learning intelligent agents designed with model-free based approaches 

were predominantly limited to systems with reinforcement learning algorithms learning 

single task. Such a model was found to be quite data inefficient, whenever agents needed 

to interact with more complex, rich data environments. This thesis introduces a hybrid 

multi-task learning-oriented approach for optimization of deep reinforcement learning 

agents operating within different but semantically similar environments with related tasks. 

Empirical results obtained with OpenAI Gym library-based Atari 2600 video gaming 

environment demonstrate that the proposed hybrid multi-task learning model is successful 

in addressing key challenges associated with the performance optimization of deep 

reinforcement learning agents. 

 
Keywords: Deep Reinforcement Learning; Neural Networks; Deep Learning; Multi-task 

Learning; Actor-Critic  
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Chapter 1 

Introduction  

Over the last few decades, the reinforcement learning domain has been well established its 

position as a vital topic within technological areas such as robotics and intelligent agents 

[1]. The core objective of RL is to address the problem of how reinforcement learning 

agents should explore their environment optimally, and thereby learn to take optimal 

actions to achieve the highest possible reward while in a given state [2]. Supported by 

recent advancements within the machine learning field, RL has been cemented its position 

as one of the major machine learning paradigms that deal with an RL agent's behavior 

pattern within an environment. In comparison to the performance of machine learning 

systems based out of contexts such as supervised learning, and unsupervised learning, 

oftentimes performance of traditional RL agents was not optimal. This was primarily due 

to the difficulties related to deducing the optimum policy out of the massive state-action 

space associated with the environment of RL problems. At the same time, the inception of 

deep learning with its very high level of representational learning capability has given a 

new dimension to the field of reinforcement learning namely, deep reinforcement learning. 

As a result of these advancements, DRL agents have been applied to various areas such as 

continuous action control,3D first-person environments, and gaming. Especially in the field 

of gaming, DRL agents are proven to be extremely successful and could surpass the human-

level performance on classic video games like Atari as well as board games such as chess 

and Go [3].  
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Despite the impressive results with a single-task-based approach, the RL agent is 

found to be less efficient with environments that are more complex and richer in data such 

as 3D environments. One of the directions to improve the efficiency of the RL agent in 

such an environment is by the application of multi-task-based learning. During multi-task 

learning, a set of closely related tasks from the operating environment will be learned 

concurrently by individual agents with the help of a deep reinforcement algorithm such as 

A3C (Asynchronous Advantage Actor-Critic) [4]. With this approach, at regular intervals, 

the neural network parameters of each of these individual agents will be shared with a 

global network. By combining the learning parameters of all the individual agents, the 

global network derives a new set of parameters, which will be shared back with all the 

agents. The key objective of this methodology is to enhance the overall performance of the 

RL agent by transferring the learning, shared knowledge, among multiple related tasks 

running within the same environment. One of the most widely accepted multi-task learning 

methodologies within reinforcement learning is named parallel-based multi-task learning, 

in which a single RL agent master a group of diverse tasks [5]. The core idea behind this 

approach mainly relies on the architecture used by the deep reinforcement learning model 

based on a single learner, often known as a critic, combined with different actors. Each of 

the individual actors generates their learning trajectories, which are a set of parameters, 

and sends them to the learner module, also called a critic module either synchronously or 

asynchronously fashion. After this stage, each of the actors retrieves the latest set of policy 

parameters from the learner before the next learning trajectory begins. With this approach, 

learnings from each of the individual tasks will be shared with every other task, which 

internally improves the overall learning momentum of the RL agent.  
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The major motivation behind the proposed hybrid multi-task approach is to address 

some of the major challenges associated with the existing multi-task deep reinforcement 

learning (MTDRL) paradigm. Especially, attempting to address key challenges such as 

partial observability, effective exploration, and lastly the amount of training time required 

to achieve an acceptable level of performance. 

1.1 Contributions 

The main contribution of this thesis is a hybrid multi-task learning model for the 

optimization of the performance of deep reinforcement learning agents. The vision of this 

thesis is that the hybrid multi-task model designed, implemented, and evaluated will serve 

as a prototype for addressing the challenges mentioned in the previous section. To this end, 

the following research contributions are presented:  

 Design and development of a hybrid multi-task learning model to optimize the 

performance of DRL agents. 

 Evaluation of DRL agent’s performance with hybrid multi-task learning model 

within the context of the aforementioned challenges. 

 Empirical analysis of the optimization in DRL agent's performance with hybrid 

multi-task learning model by using the OpenAI Gym library-based Atari 2600 game 

environments. The analysis is conducted with multiple games having both a high 

level of similarity and dissimilarity. 
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1.2 Thesis Outline 

This remainder of this thesis is structured as follows.  

Chapter 2 presents the background of reinforcement learning which includes its 

ecosystem, Markov property, and key challenges associated with reinforcement learning. 

Further on, this chapter explains the various existing approaches that are attempted on the 

multi-tasking front of DRL. Finally, it also covers the details on various related work done 

within the same arena, with special focus given on three of the state-of-the-art frameworks 

namely DISTRAL, IMPALA, and PopArt.  

Chapter 3 provides details on the design aspects of the proposed hybrid multi-task learning 

model and its architecture. To this end, this chapter starts by introducing the details of 

actor-critic learning methodology, followed by the information on the role of both actor 

and critic in the overall learning process. Subsequently, this chapter explains how to 

leverage the actor-critic model's parallel, multi-task learning capabilities into the proposed 

hybrid multi-task learning model by adopting the A3C into multi- gaming(hybrid) 

environment.  

Chapter 4 includes the details on the implementation of a hybrid multi-task learning model 

by using the worker agents. To this end, this chapter provides various aspects related to the 

worker agents, such as the architecture of worker agents, the training workflow of worker 

agents, and how worker agents could be extended to a multi-task learning environment. 

Along with this, it also covers the specific details of worker agent’s implementation by 

using neural networks such as CNN and how it will be applied to the OpenAI Gym library. 

Additionally, this chapter also gives details on the various machine learning libraries and 

IDE used for the implementation.  
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Chapter 5 covers the information related to all the experiments conducted and related 

results obtained with the hybrid multi-task model. The first section of this chapter focuses 

on the evaluation of the hybrid multi-task model by using the Atari 2600 based gaming 

environments and various test configurations attempted. Details related to the experiments 

conducted with both desktop-based test environment as well as cloud-based environment 

namely Paperspace are provided in this part. Further on, the second section of the chapter 

focuses on analyzing both the test results obtained as well as how well a hybrid multi-task 

learning model could optimize the performance of DRL agents by mitigating the DRL 

challenges. 

Finally, Chapter 6 provides the conclusion and details of the future work planned.  

1.3 Summary 

This chapter provided a preliminary discussion on some of the key challenges associated 

the multi-task deep reinforcement learning. To this end, this chapter has introduced the 

core goal of this thesis as to design a hybrid multi-task learning model to optimize the 

performance of the deep reinforcement learning agent. Chapter 2 discusses the background 

and eco-system of reinforcement learning, along with the details of various multi-task 

learning approaches on the deep reinforcement learning front and related works done. The 

main contribution of this thesis is a hybrid multi-task learning model for the optimization 

of the performance of deep reinforcement learning agents.  
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Chapter 2 

Background and Related Work 

This chapter provides information on reinforcement learning background by including the 

details such as RL ecosystem, Markov property, and key challenges associated with RL-

based intelligent agents. In addition to this, this chapter also presents the topic of multi-

task learning, followed by various approaches and techniques that are developed for 

achieving multi-task learning on the RL front. Following this, details regarding the related 

work carried out on the multi-task learning on the DRL front is presented, with special 

focus given on three of the DRL multi-task learning state-of-the-art frameworks namely 

Distal, IMPALA and PopArt. 

2.1 Reinforcement Learning  

Reinforcement learning is one of the prominent ML paradigms dealing with sequential 

decision-making that involves mapping situations to actions in a way that maximizes the 

associated reward. Within RL ecosystems, the learner, which is also known as an agent, is 

not explicitly instructed on which actions to take at each timestep t, but instead, the RL 

agent must follow a trial-and-error method to identify which actions generate the most 

reward. One of the most challenging aspects of the RL is that actions that have already 

been carried out may affect not only the immediate reward but also the further states and, 

through that, all subsequent rewards. Reinforcement learning distinguishes itself from 

other machine learning methods by the above two characteristics--trial-and-error search 

and delayed reward [1]. 
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2.1.1 The Ecosystem of Reinforcement Learning  

A standard reinforcement learning setup consists of an agent situated within an 

environment E, where an agent will be interacting with the environment in discrete 

timesteps. At each of these timesteps t, the agent will be in a state St (St € S) and will be 

performing a chosen action At (At € A) within the environment E. Further on, the 

environment responds by updating the current state St to a follow-up state St+1 with a new 

timestep t+1 and also gives a reward r (St, At) € ℛ to the agent, indicating the reward value 

of performing an action in the preceding state St [1]. Fig. 2.1 below represents the standard 

ecosystem for a reinforcement learning environment at any given timestep t. By performing 

multiple actions in a sequential learning manner in a sequence of associated states s, with 

related actions a, respective follow-up states s’ and rewards r, several episodes of tuples of 

<s, a, s’, r> are generated. At any given state St, the goal of the agent is to determine a 

policy π that can create a state-to-action mapping that maximizes the accumulated reward 

over the lifetime of the agent for that particular state [6].  

 

Figure 2.1: The ecosystem of Reinforcement Learning. 
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 At any point in the time t, the goal of the RL agent is to select the actions in such a 

way that it maximizes its expected return. The reward returned at any given time step t is 

the quantity that can be represented as  

𝑅 = 𝛾 𝑟(𝑆  , 𝐴 ) 

 

where γ € (0,1) is the discount factor that multiplies the future expected reward and varies 

on the range of [0,1]. At any moment, the goal of the DRL agent is to maximize the 

expected return from each state St. The action value indicated by Qπ(s, a) = 𝔼 [Rt|St = s, a]  

is the expected return for taking an action a in state s by following a policy π. Similarly, 

the optimal value function indicated by Q*(s, a) = maxπ Qπ(s, a) is the maximum action 

value for action a and state s that is achievable by any policy. Similarly, the value of any 

state s under policy π is defined by Vπ(s) = 𝔼 [Rt|St = s] which is simply the expected return 

for following the policy π from state s. The Q(s, a) is often used as a measure of the value 

of the agent being in that particular state s and taking an action a to reach that state. The 

famous Bellman's equation mentioned below is used as a reference to calculate the Q(s, a) 

for every action in every state that helps an agent to make decisions about its future moves.  

  Q’(s,a)= Q(s,a) + α[R(s,a)+ γ maxQ`(s`,a`)-Q(s,a)]                                                     (1) 

where Q(s, a), Q’(s, a), α, R(s, a), γ and maxQ` (s`, a`) represents the current Q value, new 

Q value calculated, learning rate, the reward for taking that action a in state s, discount 

factor(γ) and the maximum expected future reward was given the new state s`  respectively, 

with all the possible actions from that state.  
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 In the case of value-based model-free reinforcement learning methods, the action-

value function Q(s, a) is often represented by using a function approximation method, such 

as a neural network. In such a case an approximate action-value function that parameterized 

with θ represented as Q(s, a;θ). The updates for the parameters are decided with the help 

of a suitable RL algorithm. In contrast to the aforementioned value-based methods, policy-

based model-free RL methods directly parameterize the policy π(a|s;θ) and update the 

parameter by performing, typically approximate, gradient ascent on 𝔼 [Rt].   

2.1.2  Markov Property  

Formally, the reinforcement learning environment is considered as the mathematic 

representation of a Markov decision process (MDP) [7]. Major components of MDP 

consists of the following: 

 Set of all possible states that an agent can be while in the environment, represented 

by S. 

 Set of all possible actions, A, that an agent can take while in a state s € S. 

 Transition dynamics function defined as T (s, a, s’) = Pr (St+1 = s’|St = s, A = a). 

Since the actions are considered part of a probability distribution, here T represents 

distribution over the possible resulting state by taking a specific action while in a 

given state s. 

 A reward function, R, is associated with a state transition by taking a specific action 

R (St, at, St+1). 

 A discount factor γ [0,1], will be used for the calculation of discounted future 

rewards associated with each state transition. Generally, a low discount factor value 

will be applied for expected future rewards for state transitions leading to the nearby 
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states, whereas a high discount factor value will be applied for rewards associated 

with actions leading to states that are far from the current state [7]. 

Reinforcement learning models are denoted by the Markov decision process because often 

such models make the Markov assumption. The core idea behind the Markov assumption 

is that if one knows the current state one is in, then the history, sequence of actions, and 

states that took the agent to the current state, does not matter. Going with this key 

assumption, the core concept underlying each of the RL problems is the Markov decision 

property—which says that only the current state will have an influence on the next state, 

and given the current state, the future is independent of the past. In another way, it can be 

interpreted as any action taken at state St can be solely based on the state immediately 

preceding it, St-1, but totally independent of all other states { S0, S1, ........, St−2 } [8]. In the 

context of RL, the term policy π is used to define a mapping from a state to a related action 

that is defined over the probability distribution of actions.  

This can be denoted as π(s): S−>Pr (A = a|S). A policy is considered to be an 

optimum policy π*(s) for a state s if the specified action taken from that particular state can 

lead to the maximum expected discounted future reward [7]. In theory, the final objective 

behind each of the RL agents is to solve the MDP by deducing an optimum policy. 

2.1.3 Key Challenges in Reinforcement Learning  

Some of the major challenges related to reinforcement learning (RL) can be summarized 

as follows: 

 By heavily relying only on the reward values, an agent needs to follow a brute-force 

strategy to derive an optimal policy. 
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 For every action taken while in a particular state, the RL agent needs to deal with 

the complexities related to the maximum expected discounted future reward for that 

action. This scenario is denoted as the (temporal) credit assignment problem [9]. 

 In environments with a 3D nature, the size of the continuous state and action pairs 

can be quite large. 

 Observations of an agent from a complex environment heavily depend solely on its 

actions, which can contain strong temporal correlations. 

2.2 Multi-Task Learning  

The traditional learning methodology followed in machine learning is to learn one task at 

a time. Under this methodology, complex and large problems are broken into small and 

independent subproblems that are learned separately, then eventually all of this learning is 

combined towards the overall solution of the problem [10]. There could be occasions in 

which this approach can be less productive, especially when dealing with complex real-

world scenarios (such as autonomous driving systems) that have a source of information 

with a lot of interdependent tasks. For these kinds of situations, if multiple tasks can learn 

together and then share their knowledge among themselves, eventually that would make 

the generalization performance of the overall system increase to a greater extent in 

comparison to the traditional approach explained above. Multitask learning (MTL) is 

defined as an inductive transfer mechanism with the key objective to improve 

generalization performance [11]. The core objective behind multi-tasking is to follow a 

learning-to-learn methodology to leverage the domain-related information accumulated by 

training the individual, related tasks in parallel with a shared representation of the system 

[12]. In this way, the knowledge that is acquired during each task learning can be utilized 



12 
 

and thereby help other tasks be learned better. Eventually, with this approach multitask 

learning improves the overall generalization performance, which can be applied across 

many domains including RL and can be used with different learning algorithms within the 

RL arena. From the perspective of reinforcement learning, multi-task learning is an 

approach intended to optimize the performance of an agent under the assumption that 

performance bottleneck problems experienced by the agent are drawn from the same 

distribution. When it comes to deep reinforcement learning, multi-tasking could be applied 

from various levels, such as single-agent–multiple tasks and multiple agents–multiple 

tasks.  

2.3 Multi-Task Deep Reinforcement Learning  

In recent years, with growth in AI and DL arena, DRL has been merged as the state-of-the-

art in many benchmark tasks as well as in real-world problems. Due to this reason, a 

growing level of attention has been paid to various methods for its optimization as well. 

The following sections discuss various approaches and techniques developed for multi-task 

DRL that are presented in related works. 

2.3.1 Transfer Learning Oriented Approach 

Before the inception of deep learning into the reinforcement learning arena, most of the 

early research efforts on the development of the multi-task-oriented algorithm within 

reinforcement learning attempted to use assistance from transfer learning. The core idea 

behind transfer learning is about transferring knowledge across different but the related 

source and target tasks to improve the performance of machine learning (ML) algorithms 

used for learning the target task [13]. Transfer within reinforcement learning 

predominantly focuses on deriving various methods to transfer knowledge from a set of 
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source tasks to a target task. This approach has shown good results when the similarity 

levels within the source and target tasks were similar [14]. If the similarity level between 

the source and target tasks is quite high, then the transferred knowledge can be quite easily 

used by the underlying learning algorithm to solve the target task efficiently [15]. This is 

due to the reason that under such a situation, learning algorithms could achieve optimal 

performance by leveraging the transferred knowledge rather than relying on more data 

samples for learning the target task. By leveraging the above methodologies, transfer 

learning methods have been already applied to single agent-based RL algorithms [16].  

There were also research attempts related to extending the same methodologies 

concerning the multi-agent systems, wherein agents interact with other agents acting in the 

same environment and then use the knowledge resulting from their actions as well [17]. In 

general, multi-agent systems are based on a joint policy that the agents learned in the source 

task (training task), and then use this policy knowledge to formulate the initial policy of 

the agents in the target task towards the same [18]. Transfer of knowledge is done 

differently between the source and target tasks with the help of multiple transfer methods, 

such as for instance transfer, representation transfer, or parameter transfer. In each of these 

methods, underlying transfer algorithms rely heavily on the prior knowledge learned when 

solving a set of similar source tasks, and then use it as a reference to bias the learning 

process on any new task [14]. 

2.3.2 Learning Shared Representations 

Learning the shared representations for value functions is an approach that is quite similar 

to the transfer learning methodology [19]. This method was developed based on the 

function approximation capability of neural networks and their application into the 
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reinforcement learning domain [3]. The major factor behind the success of deep neural 

networks with reinforcement learning was due to deep learning algorithms' key ability to 

distill meaningful representations from high-dimensional input states associated with the 

environment [20]. This key factor scaled up the applicability of RL to more complex 

environments and scenarios that were previously impossible or demanded a great level of 

feature engineering [3]. The ability to develop a good abstraction of the environment and 

the agent’s role within that environment are the pivotal factors behind the success of this 

approach [21]. The core idea behind this approach is based on the assumption that different 

tasks that an RL agent needs to learn during its life may have a shared structure and in-built 

redundancy [14]. If these common factors can be abstracted, then they could play a vital 

role in speeding up the entire learning process. Learning shared representations is a way to 

achieve this objective through learning robust, transferable abstractions of the environment 

that generalize over a set of tasks encountered by the agent while in the environment [19]. 

 The value function is one of the key ideas within the RL domain and is being used 

primarily in conjunction with functional approximators to generalize over large state-action 

spaces associated with an agent’s environment [22]. Value functions are being calculated 

and used as a key measure to indicate how good a particular state is. Value functions exhibit 

a compositional structure concerning the state space and goal states [23]. Additionally, 

earlier researches have shown that value functions can capture and represent knowledge 

beyond their current goal that can be leveraged or re-used for future learning [22]. By 

leveraging the state-action value space of common structures shared among different tasks 

that an RL agent will be handling during its lifetime while in an environment, optimal value 

functions can be learned. This can be achieved by accommodating the common structure 
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mentioned above into the popular value iteration and policy-iteration procedures named 

fitted Q-iteration and approximate policy iteration, respectively.  

2.3.3 Progressive Neural Networks 

This is an approach quite similar in nature to the transfer learning methodology. This 

method was developed based on the function approximation capability of neural networks 

[24]. One of the major challenges associated with the optimization of multi-task learning 

within the DRL arena was related to leveraging the transfer of learning, and also how to 

avoid catastrophic forgetting. As a solution to this problem, various researches have been 

conducted, and one such step forward in this direction is an approach named progressive 

neural networks. It has the ability to protect itself from catastrophic forgetting and can also 

leverage prior knowledge with the help of lateral connections to previously learned 

features. The progressive neural network is a multi-tasking methodology developed by 

DeepMind using the concept of lateral features transferring that leverages on neural 

networks [25]. The key characteristic of the model proposed by this methodology is that it 

possesses the ability to learn new tasks and also maintain previous knowledge learned with 

the help of progressive neural networks. The idea of having a continuous chain of 

progressive neural networks is to facilitate the transfer of knowledge across a series of 

tasks. Conceptually, progressive neural networks have been designed with two major goals. 

Firstly, have a system with the ability to incorporate prior knowledge during the learning 

process at each layer of the feature hierarchy. Secondly, develop a system with immunity 

to a catastrophic forgetting scenario [14].  

 One of the biggest advantages of this approach is that progressive networks have the 

ability to retain a group of pre-trained models throughout the entire training cycle [25]. In 
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addition to this, progressive networks can also learn lateral connections from the pre-

trained model to extract useful features for new tasks. This kind of approach with a 

progressive nature brings richer compositionality, and also allows easy integration of prior 

knowledge at each layer of the feature hierarchy. This type of continual learning allows the 

agents to not only learn a series of tasks that are experienced in sequence but 

simultaneously possess the ability to transfer knowledge from previous tasks to improve 

convergence speed [26]. Progressive networks integrate these features into the model 

architecture where catastrophic forgetting is prevented by instantiating a new neural 

network (a column) for each task that is being solved during an agent's lifetime in the 

environment. Along with this, knowledge transfer is enabled through lateral connections 

to the list of features from the previously learned columns [25]. At any timestep, whenever 

a new task is learned, the model adds a new column of knowledge into its existing 

framework in the form of a new neural network unit. Further on, this new unit will be used 

during the learning of successive tasks. Each column (neural network unit) will be trained 

to solve a particular Markov decision process (MDP) [25]. One of the possible downsides 

associated with this methodology is that it could be computationally expensive due to its 

growing size as the learning cycle progresses. 

2.3.4 PathNet 

PathNet is a multi-task reinforcement learning approach that was developed with the 

objective of achieving artificial general intelligence (AGI) by combining the aspects of 

transfer learning, continual learning, and multitask learning [26]. It is based on a neural 

network algorithm that uses multiple agents that are embedded in the neural network. The 

objective of each of these agents is to identify which parts of the network to re-use while 
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learning new tasks [12]. Agents are the pathways (also known as genotypes) within the 

neural network that determine the subset of parameters that are used during the learning 

process [27]. These parameters, which are used for the forward propagation of the learning 

process, often undergo modification during the backpropagation stage of the PathNet 

algorithm. During learning the learning process, a tournament selection genetic algorithm 

will be used for the selection of pathways through the neural network. Agents execute 

actions within the neural network and build the knowledge on how effectively existing 

parameters in the environment of the neural network can be re-used for new actions (tasks) 

[28]. Agents often work in parallel with other agents who are learning other tasks and share 

parameters among them for positive knowledge transfer; otherwise, they update the disjoint 

parameters that are causing negative knowledge transfer [27]. 

A PathNet architecture consists of a deep neural network having L layers, with each 

layer having M modules. Each of these modules will be a neural network. The integrated 

outputs of the modules from each of the layers will be passed into the active modules in 

the next layer [14]. In every layer, there will be a maximum number of modules (typically 

3 or 4) that are allowed for each of the pathways [27]. The final layer within the neural 

network of each of the tasks that are being learned is unique and will not be shared with 

any other task within the environment. One of the advantages of the PathNet is that with 

this approach a neural network can quite efficiently reuse existing knowledge instead of 

learning from scratch for each task. This feature could be extremely useful in the context 

of reinforcement learning, where there are numerous interrelated tasks present in state 

space. PathNet has exhibited positive results for the knowledge transfer for binary MNIST 

dataset (Modified National Institute of Standards and Technology), CIFAR-100 dataset 
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(Canadian Institute for Advanced Research), and SVHN dataset (The Street View House 

Numbers) supervised learning classification tasks and a set of Atari and Labyrinth 

reinforcement learning tasks. 

2.3.5 Policy Distillation 

Policy distillation (PD) and actor-mimic (AM) are the two approaches that leverage the 

concept of distillation towards achieving multi-task deep reinforcement learning. 

Distillation is an approach related to minimizing computational costs of ensemble methods 

[29]. An ensemble is nothing but a set of models whose prediction values are combined by 

following a weighted averaging or voting method [30]. Ensemble methods have been one 

of the significant research areas in the past decade, and some of the popular ensemble 

methods include names such as bagging, boosting, random forests, Bayesian averaging, 

and stacking [30]. Two of the disadvantages associated with most of the ensembles are that 

they are often large in terms of memory size needed, and slow due to the time required to 

execute them at run-time. To cope with these disadvantages, the distillation technique was 

proposed, which is based on a model compression methodology. The key idea used behind 

this methodology was to compress the function that is learned by a complex model (often 

an ensemble) into a much scaled-down, faster model that has comparable performance with 

the original ensemble [30]. Later on, the same methodology was mapped into the neural 

networks’ domain [31].   

 By following the concept of model compression that was explained above, policy 

distillation can be viewed as a technique used to extract the policy of a reinforcement 

learning agent [32]. Further on this policy will be used to train a new network that performs 

at the expert level with a smaller size and with higher efficiency [33]. Furthermore, the 
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same methodology can be extended to consolidate multiple task-specific policies into a 

single policy for the RL agent. Early researches of policy distillation were done with the 

reinforcement learning algorithm named DQN (deep Q-network). The policy distillation 

technique was successfully used for transferring one or more active policies from deep Q-

networks to an untrained network [14]. DQN is one of the popular state-of-the-art model-

free approaches used for reinforcement learning by using deep neural networks, which 

operates within an environment with discrete action choices. This algorithm was shown to 

surpass human-level performance on a group of diverse Atari 2600 games [3]. Distillation 

can be applied both at a single task level (single game policy distillation) as well as a multi-

task level as a knowledge transfer method from a teacher model T to a student model S. 

Under the single task policy distillation, data generation will be done by the teacher 

network (a trained DQN agent), and further supervised training will be carried out by the 

student network. In order to achieve multi-task policy distillation, n different DQN-based 

single-game experts (agents) are trained separately [30]. After this, these agents 

individually generate the inputs and targets and store these data in different memory 

buffers. Further on, the distillation agent learns from these n data stores sequentially. 

2.3.6 Actor-Mimic  

One of the key aspects of an intelligent agent is its capability to act in multiple 

environments and transfer the knowledge accumulated from past experiences to new 

situations. Actor-mimic is such an approach that mainly concentrates on multitask and 

transfer learning aspects. These capabilities enable an intelligent agent (RL agent) to learn 

how to act with multiple tasks simultaneously and then generalize this accumulated 

knowledge to new domains [34]. In general, actor-mimic can be viewed as a method for 
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training a single deep policy network by using a group of related source tasks. A model 

that was trained with this method was found to reach expert-level performance on many 

games. More importantly, with a significant level of similarity between the source and 

target tasks, features that are learned during the training of the source tasks can be used 

well for generalization while training the target tasks [35]. 

The actor-mimic approach leverages both deep reinforcement learning and model 

compression techniques to train a single policy network. The objective of such training is 

to make the network learn how to act in a set of distinct tasks under the guidance of several 

expert teachers [14]. Further on, representations learned by this deep policy network can 

be used for generalizing to new tasks with no prior expert guidance. This approach was 

predominantly tested within the arcade learning environment (ALE) [36]. Often, actor-

mimic is treated as part of the larger imitation learning class of methods that are based on 

the idea of using expert guidance to teach an agent how to act within an environment. Under 

the imitation learning methodology, a policy will be trained to directly mimic an expert's 

behavior during sampling the actions from the mimic agent [34]. 

2.3.7 Asynchronous Advantage Actor-Critic 

A3C (asynchronous advantage actor-critic) is an algorithm that was introduced by 

DeepMind, which proposed a parallel training approach. As per this methodology, there 

will be multiple agents (also known as workers) that are executing in parallel on multiple 

instances of the same environment [4]. These multiple workers running in parallel 

environments update a global value function in an asynchronous fashion. During the 

training, at any particular time-step t, all these parallel agents will be experiencing a variety 

of different states, which almost makes the learning of all agents unique. As a result of this 
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uniqueness factor, A3C provides agents with an effective as well as an efficient exploration 

of the entire state space within the environment [37]. Originally, A3C was an extension of 

the actor-critic method, wherein there will be two independent neural network components 

named actor and critic, each with its loss functions [14]. An actor can be considered as a 

function approximator that guides on how to act, as it is being judged by RL methods, such 

as Q-learning or in REINFORCE. In both of these methods, a neural network will be 

computing either a function that leads to a policy or directly calculating the policy itself 

[38]. The role of the critic is more like evaluating the effectiveness of the policy made by 

the actor and giving feedback for further enhancement of the policy [4]. 

The subsections that are covered under Section 2.3 have provided details on various 

approaches and techniques that are developed for facilitating multi-task learning within the 

reinforcement learning domain. To this end, this chapter has provided a platform to 

understand the existing approaches attempted so far. Next, in section 2.4 we would discuss 

the related state-of-the-art research efforts conducted within the area of multi-task deep 

reinforcement learning by the research organizations such as Google DeepMind and 

OpenAI.  

2.4 Related Work  

This section provides the details on the related work done on the multi-task DRL front. 

Before the inception of deep reinforcement learning, most of the multi-task-oriented 

algorithms relied on transfer learning to realize proper control over different tasks. Besides, 

some research efforts were carried out to investigate the joint training of multiple value 

functions or policy functions over a set of tasks [39] [40]. However, the functionalities of 

all of these algorithms were limited by handcrafted features. Even though a huge amount 
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of work has been done to improve DRL algorithms over single tasks, relatively there is 

much less amount of work done for multi-task scenarios. Some of those research attempts 

either focused on the exploration and generative models or explored learning universal 

abstractions of state-action pairs or feature successors, which are quite similar in nature to 

transfer learning methodology [41]. DiGrad (Differential Policy Gradient) is an approach 

developed for simultaneous training of multiple tasks sharing a set of common actions in 

continuous action spaces. The proposed framework is based on differential policy gradients 

and can accommodate multi-task learning in a single actor-critic network. This framework 

was designed predominantly for efficient multi-task learning in complex robotic systems 

and tested on 8 link planar manipulators and 27 degrees of freedom (DoF) Humanoid for 

learning multi-goal reachability tasks for 3 and 2 end effectors respectively [42]. Another 

research work related to the multi-task learning done was based on the model-based 

approach to deep reinforcement learning which we use to solve different tasks 

simultaneously. This model was developed with a recurrent neural network inspired by 

residual networks that decouple memory from computation allowing to model complex 

environments that do not require lots of memory [5]. Another relevant work at the multi-

task front done was mainly attempting to address the partial observability issue of RL with 

help of the deep decentralized multi-task multi-Agent reinforcement learning method. It 

was based on a decentralized single-task learning approach that is robust to concurrent 

interactions of teammates and presented an approach for distilling single-task policies into 

a unified policy that performs well across multiple related tasks, without explicit provision 

of task identity [43]. Diffusion-based Distributed Actor-Critic (Diff-DAC) is a deep neural 

network-oriented distributed actor-critic algorithm designed to single-task and to average 
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multitask reinforcement learning (MRL). In this method, each individual agent is having 

access to data from its local task only, and during the learning, process agents share their 

value-policy parameters with neighbors to converge to a common policy but without 

having a central node [44]. For the remainder of this section, we will focus on comparing 

and contrasting the three state-of-the-art approaches namely DISTRAL, IMPALA, and 

PopArt. 

2.4.1 DISTRAL 

DISTRAL (DIStil and TRAnsfer Learning) is a new approach that was developed for 

multi-task training by designing a framework with the objective of simultaneous 

reinforcement learning of multiple tasks [6]. The major design focus was on building a 

general framework for distilling the centroid policy and then transferring common 

behaviors of individual workers in multi-task reinforcement learning. Instead of the 

parameter sharing among the various workers within the environment, the key idea behind 

the design of DISTRAL was to share a distilled policy that can capture common behavior 

across tasks. After deducing the distilled policy, further on, it will be used to guide task-

specific policies through regularization by using a Kullback-Leibler (KL) divergence [34]. 

In this way, firstly knowledge gained in one task is distilled into the shared policy, and then 

finally transferred to other tasks. With this approach, each worker will be individually 

trained to solve its task by staying as much close as possible with the shared policy. This 

shared policy will be trained by using the distillation which acts as the centroid of all task 

policies [45]. This method was proven to be quite efficient for the transfer of knowledge 

on RL problems that involve complex 3D environments.  
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 DISTRAL approach has proven to be outperforming the traditional way of using 

shared neural network parameters for multitasking or transfer reinforcement learning by a 

huge margin. This was predominantly due to the two major factors listed below. Firstly, 

distillation plays a vital role in the optimization procedure when using KL divergences as 

a means to regularize the output of task models towards a distilled model deduced from the 

individual task policies. Secondly, usage of the distilled model itself as a method to 

regularize for training the individual task models within the environment. More 

importantly, using the distilled model as a method to regularize, brings the aspect of 

regularizing the networks (of individual workers) in a more meaningful space such as task 

policies than at the parameters' level [27]. 

2.4.2 IMPALA 

IMPALA (Importance Weighted Actor-Learner Architecture) approach proposed by 

Google DeepMind is a distributed agent architecture developed by adopting a single 

reinforcement learning agent having a single set of parameters. One of the key aspects of 

the IMPALA approach is its ability to effectively use the resources in a single-machine 

training environment, while it can also be scaled to multiple machines without sacrificing 

data efficiency or resource utilization. By leveraging on a novel off-policy correction 

method named V-trace, IMPALA can achieve quite stable learning at high throughput by 

combining decoupled acting and learning [46]. Typically, the architecture of a deep 

reinforcement learning model is based on a single learner(critic) that is combined with 

multiple actors. In this ecosystem, every individual actor generates its learning cycle 

parameters (also known as trajectories), and then sends that knowledge to the learner 

(critic) through a queue. The learner collects the same kind of trajectories from all the other 
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actors in the environment and prepares a central policy. Before the next learning cycle 

(trajectory), every actor retrieves the updated policy parameters from the learner(critic) 

[46]. This approach is quite close to the reinforcement learning algorithm named A3C, and 

the architecture of the IMPALA has been heavily inspired by this RL algorithm. 

IMPALA’s model follows a topology of multiple actors and learners can collaborate to 

build knowledge. 

 IMPALA follows an actor-critic setup to learn a Policy π and, a baseline function 

named Vπ.  Major components of the IMPALA system consist of a set of actors who 

continuously generating trajectories of experience, and additionally, there could be one or 

more learners that use these generated experiences sent from actors to learn π, which is an 

off-policy. At the start of each trajectory, an actor will update its local policy µ to the latest 

learner policy π. Further on the actor will run that policy for n steps in its environment. At 

the end of these n steps, the actor sends another trajectory of states, actions, and rewards 

together with related policy distributions to the learner. In this manner, the learner will be 

continuously updating its policy π each time when trajectory information is collected from 

the actors within the environment [46].  In this manner, IMPALA architecture collects 

experiences from different learners which are passed to a central learner. Further on this 

central learner calculate the gradients, and generates a model with independent actors and 

learners. One of the key aspects of this IMPALA architecture is that actors need not be 

present on the same machine, but can be distributed across many machines. 

2.4.3 PopArt 

As an attempt to enhance the issues associated IMPALA model, DeepMind proposed a 

new method named PopArt to improve reinforcement learning in multi-task environments. 
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The core objective of PopArt is to minimize the distraction dilemma problem associated 

with the IMPALA model and, thereby stabilize learning to facilitate the adoption of multi-

task reinforcement learning techniques [47]. Distraction Dilemma refers to the probability 

of learning algorithms getting distracted by a few tasks from the set of multiple tasks to 

solve. It often leads to the challenge related to establishing a balance between the needs of 

multiple tasks within the same environment competing for the limited resources of a single 

learning system. The PopArt model is designed based on the original IMPALA architecture 

model with the combination of multiple convolutional neural network layers with other 

techniques such as word embeddings with the help of a recurrent neural network of type 

long-short term memory (LSTM) [47]. 

PopArt methodology works by adapting the contributions from each of the 

individual tasks to the agent's updates. This way PopArt ensures that all agents will have 

their role and a proportional impact on the overall learning dynamics. The key aspect of 

the PopArt relies on modifying the weights of the neural network based on the output of 

all tasks within the environment. In the initial stage, PopArt estimates the mean as well as 

the spread of the ultimate targets such as the score of a game across all tasks under 

consideration. Further on PopArt use these estimate values to normalize the targets before 

updating the network’s weights. This approach makes the learning process more stable and 

robust. With the experiments conducted with Atari 2600 games, PopArt has demonstrated 

improvements over other multi-task reinforcement learning architectures [47]. 
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Table 2.1. Comparison of State-of-the-art Solutions. 

 

Details of 
Feature 

Name of Solution 

DISTRAL IMPALA PopArt 

Distraction 
Dilemma problem 

No Yes No 

Master Policy-
based Framework 

Yes Yes Yes 

Operation 
Methodology 

Policy 
Distillation 

Actor-critic 
model-based 
distributed 

system 

Extension of 
IMPALA with 

support for RNN 
such as LSTM 

Multi-task 
Learning Support 

Yes Yes Yes 

 

Optimization of RL agent's performance is an active area of research and there has 

been a growing amount of literature detailing the various approaches attempted to increase 

the performance levels of RL-based intelligent agents. The related work is here focused on 

three state-of-the-art multi-task learning frameworks from Google DeepMind, but there are 

research papers belonging to different domains that have utilized the ideas from other 

related research efforts. A deep reinforcement learning optimization framework (DRLOF) 

is a method to determine the optimal operating conditions for a commercial circulating 

fluidized bed (CFB) power plant that strikes a good balance between performance and 

environmental issues. The DRLOF included the CFB as an environment created from over 

1.5 years of plant data with a 1 min sampling time which interacted with an advantage 
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actor-critic (A2C) agent of two architectures named ‘separate-A2CN’ and ‘shared-A2CN’. 

The framework was optimized by maximizing electric power generation within the 

constraints of the plant’s capacity and environmental emission standards, taking into 

consideration the cost of operations [48]. Deep Reinforcement Learning (DRL) has 

recently spread into a range of domains within physics and engineering, wherein DRL has 

been used to direct shape optimization [49]. An artificial neural network trained through 

DRL is able to generate optimal shapes on its own, without any prior knowledge, and in a 

constrained time. Trading strategies are well depicted as an online decision-making 

problem involving imperfect information and aiming to maximize the return while 

restraining the risk. There have been researching efforts focusing on designing a rule-based 

policy approach to train a deep reinforcement learning agent for automated financial 

trading. During this multiplex process, the agents which are trained on 504 risky datasets, 

use the fundamental concepts of proximal policy optimization to improve their own 

decision-making by adjusting their action choice against the uncertainty of states [50]. 

Another research work done related to HVAC proposed a data-driven DRL-based method 

to minimize HVAC users’ energy consumption costs while maintaining users’ comfort. 

The applied DRL method's efficiency is enhanced by conducting multi-task learning that 

can achieve an economic control strategy for a multi-zone residential HVAC system in 

both cooling and heating scenarios [51]. There were efforts that attempted to achieve 

optimization by attempting to combine Q-learning achievements with DISTRAL's multi-

task learning capabilities into hybrid architecture called Rainbow. This architecture 

proposed a method to achieve higher performance in multi-task DRL scenarios by adopting 

a rainbow agent by leveraging the DISTRAL framework [52]. Another research effort 
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named Auto-Agent-Distiller (A2D) framework, adopted a neural architecture search 

(NAS) method applied to DRL to automatically search for the optimal DRL agents for 

various tasks that optimize both the test scores and efficiency [53]. 

2.4.4 Summary 

The topics mentioned as the subsections under section 2.4 have given information on the 

state-of-the-art research efforts conducted within the multi-task deep reinforcement 

learning by presenting state-of-the-art models such as DISTRAL, IMPALA, and PopArt. 

In addition, this section has also listed out various research efforts from literature, that are 

done towards the optimization of RL intelligent agents. In the next section, chapter 3, we 

discuss the design methodology and other related aspects of the proposed hybrid multi-task 

learning model by leveraging on the A3C model. 
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Chapter 3 

Hybrid Multi-Task Learning Model  

This chapter describes the design aspects of the proposed multi-task learning model and its 

architecture. To this end, the chapter first presents the overview of the hybrid A3C model 

and further explains the actor-critic methodology. Along with this, the role of both actor 

and critic modules in the overall learning process is also explained. Finally, details of the 

A3C are provided to explain how the parallel multi-task learning capabilities of actor-critic 

methodology could be adopted into the hybrid multi-tsk learning model. 

3.1 Hybrid A3C Model 

The major motivation behind the proposed hybrid multi-task approach is to address and 

mitigate some of the key challenges associated with DRL multi-tasking, which are not fully 

covered by the state of the art. Our proposed approach would be attempting to address the 

optimization bottlenecks posed by challenges such as partial observability, effective 

exploration, and also the amount of training time needed to achieve acceptable levels of 

performance [54]. 

The proposed approach named the hybrid A3C model is an attempt to address most 

of these aspects, by extending the basic actor-critic model to two different environments 

with a high level of semantic similarity. Within the context of the proposed hybrid multi-

task learning model, the notion of semantic similarity relies on two key aspects. The 

foremost aspect is related to the high level of similarity in terms of the actions that DRL 

agents in both environments are going to take at any state s. For, instance, DRL agents’ 

actions in both environments could be from a common 4 member-tuple {up, down, right, 
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left}, which will decide the state transition probability. The impact of the aforementioned 

factor will become more prevalent when the nature of the agents’ rewarding tasks in both 

environments are also the same. For instance, if we consider two games namely Breakout-

v0 and Pong-v0 from the Atari-57 family, the aim of the DRL agents operating in both 

environments is to balance a paddle to hit a ball by choosing one of the actions from the 

above mentioned 4-member tuple. Another example could be a game pair such as 

DemonAttack-v0 and SpaceInvaders-v0, where the aim of the agent is to balance a ship 

and shoot the enemies. The decision to choose the A3C algorithm for building the proposed 

hybrid multi-task learning model was after the careful examination of few factors that were 

lagging within the related works analyzed. To start with, the optimization of the DRL 

agent’s performance is more challenging whenever state-action space is massive, which is 

the case with a model-free environment. As the DRL will be heavily relying on the high 

representational learning power of DL, it is highly important to have the neural network 

with many balanced weights that could lead to better agent policy. To achieve this 

objective, gradient-based knowledge sharing is the optimal choice as it would help to 

balance the weight matrix of underlying neural networks. Secondly, an on-policy agent 

setting is the most preferred way for the DRL agent to derive an optimal policy in less 

amount time in comparison to the off-policy agent setting. Lastly, coupling the aspect of 

transfer learning with multi-task learning would boost the learning speed of DRL agents 

when there is a semantic similarity between the tasks executed within the multiple 

environments. Having these details, the A3C algorithm was found to be the right choice to 

achieve these objectives, especially with its actor-critic-based design. An algorithm such 

as DQN (Deep Queue Network) was not able to meet the above-mentioned aspects as it 
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was having an off-policy-based agent setting. DRL agent functioning with an off-policy-

based algorithm such as DQN could be selecting the actions randomly, which could further 

lead to more training time to optimize the agent’s performance. The key aspect the of A3C 

algorithm is its ability to learn multiple instantiations of a single target task simultaneously, 

and also its ability to improve the model's performance by transferring the knowledge 

between multiple instantiations [4]. From the perspective of a model-free environment with 

massive state space, A3C’s multi-threaded-based working model would increase the 

momentum of DRL agents’ performance optimization. The proposed hybrid A3C approach 

will be leveraging this key aspect and will attempt to achieve this objective across, two 

different by semantically similar environments with related tasks. The hybrid approach will 

be heavily relying on the applicability of the multi-threaded capability of the A3C 

algorithm across semantically related tasks running in two different environments. In 

addition to this, as A3C is based on the actor-critic methodology, this allows the agent to 

directly derive the policy to decide the action to take at each state. When it comes to 

algorithms such as DQN, which is based on the notion of the Q-value function, the selection 

of the action will be based on Q-value. In relation to this, actor-critic-based A3C gives an 

added advantage over Q-value function-based algorithms such as DQN. A3C-based 

learning could be more complex with a very high number of workers running with the 

possibility of negative knowledge or gradient transfer. The proposed approach could be 

treated as a model running two threads of the A3C algorithm, wherein each thread will be 

managing the multiple instantiations of the tasks running in each environment. Each of 

these individual threads would consider itself as a subtask such as A and B, with each of 

them sharing its individual learning with the learner in an asynchronous manner. Further 
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on, the learner (global network) will be converging the knowledge from both of these 

threads and deducing a new policy, that will be applied back on the threads. The key aspect 

of the hybrid approach is only to enhance the performance of the RL agent through a joint-

learning through multi-task learning approach by using deep reinforcement learning. Fig. 

3.1 shows the high-level architecture model of the proposed hybrid multi-task approach. 

The hybrid A3C model deploys multi-threaded asynchronous variants of the 

advantage actor-critic algorithm. The major objective behind designing this model is to 

find a methodology that can train deep neural network policies reliably and without large 

resource requirements. During the development of the hybrid A3C model, initially, we 

conducted its validation on a desktop-based environment which is having a dual-core CPU 

on a single machine. Under this environment, we have conducted basic level testing with 

a pair of actor-learner worker threads. With this, one (actor-learner) worker thread was 

assigned to run the task from each game’s environment. Over the course of the execution, 

this model asynchronously attempts to derive and optimize the global policy based on the 

observations that multiple actors-learners running in parallel are likely to be exploring 

different parts of the environment. At an individual actor-learner module level, it is possible 

to have different exploration policies in each module to maximize this diversity. In this 

way, having different exploration policies in different threads of the actor-learner module, 

the overall changes being made to the global network parameters by these different actor-

learners applying asynchronous updates in parallel are likely to be less correlated. This 

model is designed to run on a single machine with a standard multi-core CPU and applied 

to a variety of Atari 2600 domain games for testing. 
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Figure 3.1: The architecture of the hybrid multi-task learning model. 
 

The semantic similarity aspect of the related tasks running two different gaming 

environments is the most vital factor to achieve the above-mentioned objectives, which 

otherwise give challenges in terms of negative knowledge transfer. Negative Transfer is 

considered to be one of the key challenges while dealing with the multi-tasking aspect 

within the reinforcement learning domain. The main idea of knowledge transfer learning 

in a multi-task context is that transferring knowledge accumulated from learning from a set 

of source samples under one agent may improve the performance of another task agent 

while learning on the target task [34]. However, this knowledge transfer could impact the 

overall learning progress and performance of the agent in either way, positively or 

negatively. If there is a considerable difference between the source tasks and target tasks, 

then the transferred knowledge could create a negative impact. 
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Having multiple environments with a high level of semantic similarity would in-

directly improve the partial observability by exchanging the learning across the agent's 

operating environment [55]. Similarly, having multiple actor-critic models operating 

simultaneously across two semantically similar environments would mitigate RL agent's 

issues associated with effective exploration, and the training time required to reach an 

optimized performance level [56]. 

3.2 Actor-Critic Methodology 

Unlike some simpler techniques which are based on either value-iteration (Q-learning) 

methods or policy-gradient (PG) methods, the actor-critic (AC) methodology combines the 

best parts of both the methods, which are the algorithms that predict both the value function 

V(s) as well as the optimal policy function π(s) [57]. In other words, actor-critic methods 

consist of two models, namely an actor module and a critic module. Thereby AC attempt 

to combine the aspects of both policy gradient and value gradient into a single model. Fig. 

3.2 shows the diagram of actor-critic methodology. 

 

 

 

 

 

Figure 3.2: Actor-Critic model. 
 

The actor acts as a policy network, that decides for a given state which action a to be taken 

at each given time step t. The critic consists of a value network Vπ(s, a) that tells how 
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promising action is under the current state s. Having said that, in its role critic outputs an 

evaluation value V(s, a) for the actor, which indirectly helps the actor to adjust its policy 

for better results. At the same time, both actor and critic networks update themselves 

according to the knowledge gathered by their respective neural networks from the 

environment. This internally helps the agent to converge its policy to the optimal policy 𝜋∗ .  

In summary, the critic module updates the value function parameters w, and depending on 

the algorithm it could be either action-value Qw(a|s) or state-value Vw(s) whereas the actor 

module updates the policy parameters θ for πθ(a|s), in the direction suggested by the 

critic.Fig.3.3 shows the single actor-critic worker agent flowchart [38]. The learning agent 

uses the value from the value function calculated by the critic module to update the optimal 

policy function of the actor module. Note that here the policy function means the 

probabilistic distribution of the action space. To be exact, the learning agent determines the 

conditional probability P(a|s;θ) which otherwise means parametrized probability that the 

agent chooses the action a when in state s. 

 

Figure 3.3: A single thread of actor-critic worker execution. 

 
The policy is often modeled as a function 𝜋 (𝑎|𝑠) that is parameterized to θ. The value of 

the DRL agent's reward function depends on this policy, and the algorithms are used to 
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optimize θ. The reward function is defined as below, wherein dπ(s) notation refers to the 

stationary distribution of Markov chain for πθ (for the on-policy state distribution under π).   

𝐽(𝜃) = ∑ 𝑑 (𝑠)𝑉 (𝑠)                                                              (1) 

        = ∑ 𝑑 (𝑠) ∑ 𝜋 (𝑎|𝑠)𝑄 (𝑠, 𝑎)                                   (2) 

 

Within the AC model, the critic is in charge of updating the value function parameters w, 

and based on the DRL algorithm it could be either an action-value function Qw(a|s) or state 

value function Vw(s). Based on the details of the value function shared by the critic, the 

actor updates the policy parameter θ for the 𝜋  (𝑎|𝑠). The execution of an actor-critic 

algorithm can be explained by the below steps [58].  

1. Initialize s,θ,w at random, and sample a~𝜋  (𝑎|𝑠) 

2. For t= 1…T: 

a. Sample reward Rt~R(s,a) and next state s`~P(s`|s,a); 

b. Then sample next action a`~𝜋   (𝑎`|𝑠`) 

c. Update the policy parameters:𝜃 ← 𝜃 + 𝛼    𝑄  (𝑠, 𝑎)∇ 𝑙𝑛𝜋  (𝑎|𝑠); 

d. Compute the correction (TD error) at time t for action-value: 

i. 𝛿  = 𝑟  + 𝛾𝑄 (𝑠`|𝑎`) − 𝑄 (𝑠, 𝑎) 

ii. Use it to update the parameters of the action-value function as given   
𝑤 ← 𝑤 + 𝛼 𝛿 ∇ 𝑄 (𝑠, 𝑎) 

e. Update 𝑎 ← 𝑎` and 𝑠 ← 𝑠` 

 

Both the learning rates αθ and αw, are predefined for policy and value function parameter 

updates respectively. 



38 
 

3.3 Actor 

An actor is a module that controls how a policy-based DRL agent behaves within an 

environment. The actor takes as input the state and outputs the best action. It essentially 

controls how the agent behaves by learning the optimal policy 𝜋∗.Policy-based algorithms 

such as Policy Gradients (PG) and REINFORCE try to find the optimal policy directly 

without the Q -value as the intermediate step [59]. Often an actor could be a function 

approximator such as a neural network with its objective as to identify the best action while 

a DRL agent is in a state St at time step t. The neural network could be either fully connected 

or a CNN. 

3.4 Critic 

The critic, on the other hand, evaluates the action by computing the value function (value-

based). The role of the critic is to evaluate how good an action is taken by the agent with 

the help of a value-based approach. As in the case of the actor, the critic also could be a 

function approximator such as a neural network.  The result is that the overall architecture 

will learn to play the game more efficiently than the two methods separately. 

3.5 Asynchronous Advantage Actor-Critic(A3C) 

A3C is a state-of-the-art DRL algorithm developed based on the AC methodology. This 

algorithm is designed to function both in discrete and continuous action space 

environments and can be treated as the multi-thread version of the original AC algorithm. 

A3C makes the AC algorithm converge faster by running multiple agent threads [33]. Each 

of these threads consists of an independent actor-critic pair that interacts with the 

environment simultaneously. The agents, which are also known as workers, are trained in 

parallel and update periodically a global network, which holds shared parameters. The 
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updates are not happening simultaneously and that’s where the asynchronous comes from. 

The unique exploration experience offered by each of the global actor-critic networks. With 

such multiple threads sharing the experience with a global network in an asynchronous 

fashion, A3C eliminates the bias of continuous experience trajectory by feeding only a 

small batch of experience tuple (s, a,r,s`) at any time. After each update, the agents reset 

their parameters to those of the global network and continue their independent exploration 

and training for n steps until they update themselves again. With this approach, the 

information flows not only from the agents to the global network but also between agents 

as each agent resets its weights by the global network, which has the information of all the 

other agents. Fig. 3.4 depicts the ecosystem of a single actor-critic worker.  

 

Figure 3.4: The ecosystem of single A3C worker thread with Atari 2600. 
 

A3C uses a deep neural network to model both a policy network 𝜋(𝑎 |𝑠 ; 𝜃) and a 

value network 𝑉(𝑠 ; 𝜃). For a given state St, the policy network (which is the “actor”) 

predicts the optimal action to take at St while the value network (which is the “critic”) 

approximates the future reward from taking the optimal action at St. By theory, these two 

networks are separate, but in practice, we use the same convolutional layers for both the 
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policy and value networks with separate output layers at the end. The Asynchronous nature 

of A3C means that multiple actor-critic threads are running at the same time, each with its 

environment. Each thread steps through its environment with its own local CNN, 

periodically updating a globally shared CNN wherein all networks have an identical 

architecture. For each thread, at every tmax local steps or when a terminal state is reached, 

that thread syncs its local parameters with the global parameters, computes gradients, and 

applies them upstream to the global network [60].  

A3C follows online learning by adopting a policy gradient method, directly from the states 

as they are processed by each worker agent thread. The policy is developed naturally as 

each thread runs within its stochastic Atari 2600 based gaming environment and updates 

to the global parameters. This methodology suggests that A3C does not overfit to any 

particular state trajectory of a specific worker thread. Fig. 3.5 shows the worker agent 

thread’s architecture with CNN modules. 

 

Figure 3.5: The architecture of the worker agent thread in A3C. 
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The notion of Advantage A is used to measure the difference between the expected reward 

and estimated reward. By using the value of advantage instead, the agent also learns how 

much better the rewards were than its expectation. This gives a new-found insight to the 

agent into the environment and thus the learning process is better. The advantage metric is 

given by the following expression 

Advantage: A = Q (s, a) – V(s)                                                (3) 

where Q refers to the Q value calculated by the critic module based on the actual reward 

and TD error following an actor's policy-based chosen action. The Advantage function 

named 𝐴(𝑆 𝑎 ; 𝜃, 𝜃 ) is calculated that needs to be discounted future rewards accumulated 

to 𝑡  or at the terminal state. 

𝐴(𝑆 𝑎 ; 𝜃, 𝜃 ) = ∑ 𝛾 𝑟 + 𝛾 𝑉(𝑠 ; 𝜃 ) − 𝑉(𝑠 ; 𝜃 )            (4) 

Gradients associated with both policy and value networks are denoted by the following 

equations (5) and (6) respectively, which are calculated by summing over all the states in 

the past 𝑡  local iterations of each worker agent thread's execution [60]. 

∇ `𝑙𝑜𝑔𝜋(𝑎 |𝑠 ; 𝜃)𝐴(𝑠 , 𝑎 ; 𝜃, 𝜃 )                                                 (5) 

𝑑𝜃 = 𝑑𝜃 + 𝜕(𝑅 − 𝑉 𝑠 ; 𝜃` )  ∕ 𝜕𝜃`                                         (6) 

The pseudocode of the A3C algorithm for each worker agent thread within the hybrid 

multi-task model is given by the algorithm mentioned below [4].As the design of the hybrid 

multi-task learning model is having multiple worker agents running within the 

environment, multiple instances of the same algorithm will be utilized. The framework of 

the algorithm used within the hybrid multi-task learning model is having the format of 
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actor-critic methodology based asynchronous learning technique created by Google 

DeepMind. Each instance of the A3C algorithm for each individual worker threads 

maintains a policy 𝜋(𝑎 |𝑠 ; 𝜃`)  and an estimate of the value function 𝑉(𝑠 ; 𝜃` ) . The values 

of both policy and value functions are updated after having 𝑡  number of actions by the 

agent or when the terminal state is reached. There will be a CNN with a Softmax output 

for creating the policy 𝜋(𝑎 |𝑠 ; 𝜃`) .  

 

________________________________________________________ 

A3C Algorithm – pseudocode for each actor-leaner thread. 

________________________________________________________ 

 

// Assume global shared parameter vectors θ and  𝜃 and global shared counter T = 0 
// Assume thread-specific parameter vectors𝜃   and 𝜃`  
Initialize thread step counter 𝑡 ← 1 
repeat 
 Reset gradients  𝑑𝜃 ← 0  and 𝑑𝜃 ← 0 
 Synchronize thread-specific parameters 𝜃` = 𝜃 and  
               𝜃` = 𝜃  
 𝑡 = 𝑡 
 Get state 𝑠  
 repeat 
   perform 𝑎 according to the policy 𝜋(𝑎 |𝑠 ; 𝜃`) 
   Receive reward 𝑟  and new state  𝑠  
   𝑡 ← 𝑡 + 1 
   𝑇 ← 𝑇 + 1 
 until terminal  𝑠  or 𝑡 − 𝑡 == 𝑡  
 𝑅 = {0 terminal 𝑠  
 𝑅 = 𝑉(𝑠 , 𝜃` ) for terminal 𝑠  //Bootstrap from last  

state 
for 𝑖 ∈ {𝑡 − 1 … . . 𝑡 } do 
   𝑅 ← 𝑟 + 𝛾𝑅 
   Accumulate gradients wrt 
 𝜃`: 𝑑𝜃 ← 𝑑𝜃 + ∇ `  𝑙𝑜𝑔𝜋(𝑎 |𝑠 ; 𝜃`)(𝑅 − 𝑉(𝑠 ; 𝜃` )) 
   Accumulate gradients wrt  

𝜃` : 𝑑𝜃 + 𝜕(𝑅 − 𝑉(𝑠 ; 𝜃` )) ∕ 𝜕𝜃  
end for 
Perform an asynchronous update of 𝜃 using 𝑑𝜃 and of   
 𝜃 using 𝑑𝜃  

until  𝑇 > 𝑇  
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3.6 Summary 

This chapter has presented the details of the design methodology that is followed towards 

the development of the hybrid multi-task model, and various aspects of the A3C algorithm 

that will be leveraged. To this end, it provides the applicability of the basic A3C approach 

towards the optimization of the DRL agent. In the next section, chapter 4, will be presented 

with the details on the implementation of a hybrid multi-task learning model with various 

machine learning libraries and related tools.  
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Chapter 4 

Implementation  

This chapter describes the implementation of the proposed hybrid multi-task model which 

is based on the A3C algorithm. The presented hybrid multi-task model is implemented 

using multiple tools, and various libraries related to data science, machine learning, and 

deep learning. This section of the thesis details all those components along with their role 

in the presented framework.  

4.1 Prototype Overview 

Throughout the implementation, the prototype was tested with various games under the 

Atari 2600 environment provided within the OpenAI Gym [61]. The Gym library is a 

toolkit made by OpenAI for developing and comparing RL algorithms. The first stage of 

the hybrid multi-task model was constructed by adopting the A3C algorithm for the gaming 

environment Breakout-v0.  The high-level architecture of the model is based on the actor-

critic methodology. In our context, the actor is a neural network that parameterizes the 

policy (π (a | s) and critic is another neural network that parameterizes the value function 

V(s). The policy network outputs the policy (π), based on which the actor chooses an action 

within the environment, and the value network outputs the value function V(s). Each of 

these networks has its respective weights which are often represented by notations such as 

θp and θv.  

π (a|s, θp) = Neural Network (input: s, weights: θp)                  (1) 

V (s, θv) = Neural Network (inputs, weights: θv)                        (2)  
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 A more graphic intense Atari 2600 gaming environment will be used to execute the 

hybrid multi-task learning model as it offers a relatively complex environment having an 

infinite number of state-action spaces to deal with. In order to accommodate and handle 

this environment, the CNN-based deep neural network model was used for the validation.  

4.2 Multi-Task Worker Agent Model 

At the root level, this environment will employ a pair of CNN models to implement both 

actor and critic modules for a single worker. There will be multiple instances of the CNN 

class objects to implement the multiple worker threads used within the multi-task model. 

Similarly, the global network was also deployed as a pair of CNN to support the 

implementation of actor-critic modules at the global network level.   

 

Figure 4.1: A3C multi-task worker agent model. 
 

Fig. 4.1 shows the high-level architecture view of the multi-task model having N 

worker threads of execution coordinated and managed by a global network. Each of these 

individual blocks is made up of a pair of CNN networks, each for the actor(policy) and 

critic (value function) modules. In other words, A3C utilizes N worker agents attacking the 
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same game environment while being initialized differently. This indirectly points out that 

each of these agents starts at a different point in their environment so they will go through 

the same environment in different ways to solve the same problem. 

4.3 Training Workflow of Worker Agent 

Within the A3C-based multi-task worker agent environment, each of the individual worker 

agents is managed by the global network directly. Under this scheme, initially, each of the 

workers is reset with parameter values shared by the global network, later on, the worker 

interacts with its own individual copy of the environment. Even though each of the worker 

agents is operating within the same game environment, they are being initialized 

differently. This gives an opportunity for each of these agents to start at a different point in 

their environment. Fig. 4.2 shows the training workflow of each agent with the global 

network. 

 

 

Figure 4.2: Training workflow of worker agent thread. 
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During the course of its operation, each worker agent plays a fixed number of game 

episodes and calculates the value and respective policy loss. As these modules, both actor 

and critic are implemented using the neural network, gradient values are calculated from 

the losses incurred during its operation. These gradient values will be shared with the global 

network after the work agent finishes a fixed number of game episodes.  

The algorithm behind the operation of the A3C multi-task worker agents' model is 

mentioned below. 

_________________________________________ 

Algorithm of A3C-based multi-task model worker agent. 

_____________________________________________________ 

while not done: 

 𝒂 = 𝒔𝒂𝒎𝒑𝒍𝒆 𝒂𝒏 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂~𝝅𝜽(𝒂|𝒔) 

 𝒔`, 𝒓, 𝒅𝒐𝒏𝒆 = 𝑷𝒆𝒓𝒇𝒐𝒓𝒎 𝒂𝒄𝒕𝒊𝒐𝒏 𝒂 − 𝒆𝒏𝒗. 𝒔𝒕𝒆𝒑(𝒂) 

 𝑮 = 𝒓 + 𝜸𝑽(𝒔`) 

 𝑳𝒑 = −(𝑮 − 𝑽(𝒔))𝐥𝐨𝐠 (𝝅 𝒂|𝒔, 𝜽𝒑 ) 

 𝑳𝒗 = (𝑮 − 𝑽(𝒔))^𝟐 

 𝜽𝒑 = 𝜽𝒑 − 𝜶 ∗ 𝒅𝑳𝒑
∕ 𝒅𝜽𝒑

 

 𝜽𝒗 = 𝜽𝒗 − 𝜶 ∗ 𝒅𝑳𝒗
∕ 𝒅𝜽𝒗

 

 

During the operation, each of the worker agents loops through each step of the game, and 

samples the action, and updates the weights of both the neural networks- actor and critic. 

The algorithm runs until a preset number of episodes of the game are played, wherein 

initially an action a is sampled from the actor (policy network). Further on, upon 

completion of that action respective reward (r) and new state (s’) are calculated. Based on 

the new state reached, the total discounted future return (G) is calculated by applying the 

discount factor (gamma). Based on this each of the individual neural networks calculates 
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its policy loss (Lp), and value loss (Vp) [62]. Further on, the neural network uses gradient 

descent to update the respective network weights (ϴp – policy network weight and ϴv – 

value network weight) to minimize the loss. 

4.4 Architecture of Worker Agent 

At the root level, this environment will employ a pair of convolutional neural network 

(CNN) models to implement both actor and critic modules for a single worker. There will 

be multiple instances of the CNN class objects to implement the multiple-worker threads 

used within the multi-task model. Similarly, the global network is also deployed as a pair 

CNN to support the implementation of actor-critic modules at the global network level. 

These neural network models act as a function approximator by processing each screenshot 

of the game as its input. We have used RMSprop optimizer with this implementation [63]. 

The role of the RMSprop optimizer lies in optimizing the neural work weights for both 

policy and value networks of a hybrid multi-task model. Neural network’s weight 

optimization happens during the backpropagation stage when the gradient descent 

algorithm attempts to modify the network weight based on the loss function values for both 

policy and value networks. During the first stage of experiments, the evaluation of the 

multi-task learning model was performed on a machine having two cores (dual-core). 

Under this initial test setup, each worker agent will be running on each individual core, and 

hence both worker agents are executed in parallel. Now every so often, this global network 

is going to send its weights to a set of worker agents each with their own copy of policy 

and value network. Further on each of these individual worker agents will be playing a few 

episodes of the game under its environment using its network weights from its own 

experience. From its own experience, each worker agent can calculate its own policy 
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gradient updates and value updates. Knowledge of these updates will be limited to only 

these individual worker agents. Eventually, worker agents send their gradient values to the 

global network so that the global network can update their weights accordingly. Fig. 4.3 is 

a diagrammatic representation of CNN based model used to implement each of the 

individual worker agent threads. 

 

Figure 4.3: CNN based architecture of a single A3C worker agent 
 

Every so often the global network gives its new updated parameters back to its 

working agents so worker agents are always working with a relatively recent copy of the 

global network. In this working model, worker threads play episodes of games under their 

respective environments, find the errors, and calculate the update gradients which will be 

shared with the global network on a regular basis. Fig. 4.4 shows the sharing of gradient 

updates by individual worker agents with the global network. 
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Figure 4.4: Gradient update by worker agents with the global network. 

 
4.5 OpenAI Gym 

OpenAI Gym is a toolkit developed by the openAI for the purpose of reinforcement 

learning research [64]. This toolkit can be used for both developing and comparing 

reinforcement learning algorithms. Gym supports teaching agents everything from walking 

to playing games like Pong or Pinball. The gym open-source library provided by the 

openAI gives you access to a standardized set of environments and entirely compatible 

with any numerical computation library, such as TensorFlow or Theano. In addition to the 

gym software library, OpenAI Gym also maintains a website (gym.openai.com) where one 

could see the scoreboards for all of the environments, showcasing results submitted by 

various users. OpenAI Gym has been designed based on the idea of the episodic setting of 

reinforcement learning, wherein an agent’s experience is broken down into a series of 

episodes. During each episode play, the agent’s initial state is randomly chosen or sampled 

from a distribution, and further on its interaction proceeds until the environment reaches a 

terminal state for the specific game. The objective or goal during episodic reinforcement 

learning is to maximize the expectation of total reward per episode. With this, an agent 



51 
 

aims to achieve a high level of performance in as few episodes as possible. In our current 

experiments, we have employed the hybrid multi-task model to function within the Atari 

2600 gaming environment with the help of the Gym library.  

4.6 TensorFlow 

TensorFlow is an end-to-end open-source platform developed by Google for a machine 

learning system. It is designed to operate at a large scale and in heterogeneous 

environments. The TensorFlow framework uses dataflow graphs to represent computation, 

shared state, and the operations that change the state [65]. Within TensorFlow 

computations are expressed as stateful dataflow graphs, which could contain nodes across 

different machines within a cluster, and also within a machine across multiple computing 

devices such as multicore CPUs, general-purpose GPUs, and custom-designed ASICs 

known as Tensor Processing Units (TPUs) [66]. TensorFlow provides support for a variety 

of applications, with a focus on training and inference on deep neural networks. In our 

experiments conducted with a hybrid multi-task model, we have used the Tensorflow_gpu-

2.0.0 version which supports the operation of TensorFlow-based networks on GPUs. It also 

supports the stable operation of Python-based applications [67].  

4.7 PyCharm  

PyCharm is an integrated development environment (IDE) used specifically for the Python 

language. As an IDE, it provides code analysis, a graphical debugger, an integrated unit 

tester, integration with version control systems, and data science with Anaconda [68]. For 

the development of the hybrid multi-task learning model, we have used Windows-based 

PyCharm Community Edition that is released under the Apache License and used Python 

3.7 version.  
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Table 4.1. Summary of Development Environment. 

Name Details 
OS Windows 10 
IDE PyCharm 2019.3.5 
Language Python 3.7 
Machine Learning Library TensorFlow_GPU-2.0.0 
NVIDIA GPU Library CUDA Toolkit 10.0 
NVIDIA GPU Library cuDNN v7.6.5 
NVIDIA Deep Learning Library TensorRT 6.0 
NVIDIA HPC GPU Quadro P5000 
Cloud Server OS Windows 10 
Reinforcement Learning Toolkit OpenAI Gym 0.18.0 

 

4.8 Summary 

This chapter has detailed the implementation of the hybrid multi-task learning model 

including details of the tools and libraries used. Details of the implementation have 

provided the information of the multi-task worker agent model, and how the multi-task 

worker agents will be used for the multi-task learning within the Atari 2600 based gaming 

environment. In addition, details related to tools and libraries such as PyCharm, 

TensorFlow, and OpenAI Gym are also provided. In the next chapter, the evaluation of the 

implemented hybrid multi-task learning model and related results obtained are presented. 

In addition to this, there would be details related to the analysis of the test results obtained 

during the experiments with the hybrid multi-task learning model. 
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Chapter 5 

Evaluation and Results 

This chapter presents the details on the experiments conducted with the proposed hybrid 

multi-task learning model on Atari 2600 based gaming environments under multiple test 

configurations and associated results obtained. Initial sections of this chapter focus entirely 

on the experiment efforts done with both desktop-based test environment as well as cloud-

based environment namely Paperspace and present the results collected. Following this, 

the latter part of the chapter focuses on analyzing both the test results obtained as well as 

how well a hybrid multi-task learning model could optimize the performance of DRL 

agents by mitigating the DRL challenges.  

5.1 Model Validation Methodology  

This section provides details on the evaluation of the hybrid multi-task learning model and 

the associated results obtained during those experiments. Having said that hybrid multi-

task model learning attempts to optimize the performance of a DRL agent by hybrid multi-

task learning approach, it leverages the A3C algorithm’s multi-threaded and asynchronous 

approach to deep reinforcement learning [69]. This algorithm gives the capability to have 

a model to be trained with multiple, different explorations of a single target task, providing 

data sparsity, and avoiding the use of memory replay [5]. Given the multi-threading 

characteristics, the proposed hybrid model attempts to leverage A3C’s ability to perform 

multi-task learning without modifications when applied to different, but semantically 

related tasks. To do so, we simultaneously train multiple tasks using a single A3C model, 

allowing the network to asynchronously share knowledge obtained from and to all tasks. 
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The hybrid A3C model attempts to learn two different tasks and then combine the learning 

to accelerate the performance. Evaluation of the proposed hybrid multi-task model will be 

conducted on a prototype based on the A3C model and trained with the Atari 2600 

environment provided in the OpenAI Gym. Validation of the proposed hybrid multi-task 

model is done by using RL environments based on Atari 2600 games, and the various 

games used within the experiments are from the Atari-57 family. All the games from this 

family are designed with the same resolution parameters (210x160x3) such that the 

proposed hybrid multi-task framework could be tested with any other game from this 

family without needing any change in the design. The feature extraction module within the 

hybrid multi-task learning model is compatible across all the games from Atari-57. The 

decision to choose Atri2600 games for the validation of the model was primarily due to the 

availability of the OpenAI Gym library that provides the APIs game creation with a built-

in reward structure. It is also possible to extend this model validation with other real-time 

environments such as autonomous driving, and in such a case the feature extraction module 

needed to be modified as the resolution of the images could be much higher. This in turn 

means that there will be changes in terms of preprocessing image resolution, number of 

convolution layers, number of filters, size of the filters, type of the filter, filter stride values. 

In addition to this, the developer should be also taking care of the DRL agent’s reward 

structure for that environment. A3C algorithm used for the experiments will be based on 

Google DeepMind's paper titled-asynchronous methods for deep reinforcement learning.  

5.1.1  Single Agent Actor and Single Agent Critic  

As a preliminary step towards the development of the proposed system model, the initial 

set of experiments are conducted on a desktop-based environment with the game of 
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CartPole-v0 which is having a finite set of action and state space. The methodology 

followed was to individually develop the single-agent actor which is based on policy 

gradient, and similarly a single agent critic which is a value-based network to measure the 

performance. Both these networks were developed as the standard feedforward neural 

networks and experiments are conducted for the finite number of episodes. As an outcome 

of the experiment performance of both single-agent actor and critic are measured.  

 

Figure 5.1: Single-agent actor – average rewards. 

 

 

Figure 5.2: Single-agent actor- total rewards. 
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Figure 5.3: Single-agent actor- merged results. 

 
Fig. 5.1 to Fig. 5.3 represent the test results generated for the single-agent actor model 

based on the feedforward neural networks model, and Fig. 5.4 to Fig. 5.6 represent the test 

results generated for the single-agent critic model based on the feedforward neural 

networks.  

 

 

Figure 5.4: Single-agent critic-average rewards. 
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Figure 5.5: Single-agent critic-total rewards. 

 

 

Figure 5.6: Single-agent critic-merged rewards. 

 
It is evident from the statistics that policy gradient-based actor is able to increase the 

rewards over the episodes gradually. At the same time, the value-based critic module is 

able to show the increment in performance in the early episodes, with a small dip in the 

mid episodes with a fluctuating result for the forthcoming episodes. 

5.1.2 A3C Multi-Worker Model on Desktop Platform 

At the initial stage of the evaluation of the proposed hybrid multi-task learning model, A3C 

based multi-worker model is built and verified with a single OpenAl Atari 2600 gaming 

environment. During the course of the experiments, multiple OpenAI Atari 2600 gaming 

environments will be used for the evaluation of the proposed model, which involves Pong-



58 
 

v0, Breakout-v0, SpaceInvaders-v0, DemonAttack-v0, and Pheonix-v0. During the first 

stage of evaluation, the performance of the reinforcement learning agent will be measured 

individually on each of these gaming environments to generate the initial test statistics. The 

test results generated by the A3C model were trained within the OpenAI Atari 2600 

environments provided in the OpenAI Gym [20]. In the next step towards the evaluation 

of a proposed hybrid multi-task model, the A3C algorithm based on a multi-worker agent-

based environment is created for a more graphic intense Atari 2600 game environment 

Breakout-v0 as represented by Fig 5.7. From the perspective of a DRL agent, this 

environment is being treated as a complex one as we will be having an infinite number of 

state-action spaces to deal with. In order to accommodate and handle this environment, a 

convolutional neural network (CNN) based model was used for the validation. This 

configuration was tested under a desktop-based environment by using a multi-task 

environment having four worker threads that combinedly executed 500,000 steps of the 

game. Each of the individual threads is having its own individual copy of the environment 

but different from one another in terms of the view of the gaming environment. The 

proposed hybrid multi-task learning model brings the aspect of optimization of DRL agents 

by having multi-agent-based multi-task learning between the two semantically similar 

environments. This model helps to achieve the  DRL agent optimization objective by 

sharing the knowledge (gradients) by multiple - workers running simultaneously within the 

hybrid environments. Due to the semantic similarity between the tasks running in hybrid 

environments, the revised parameters shared by the global network with individual workers 

would help them to use the consolidated knowledge in optimizing their individual policies. 
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This in turn would lead to taking better actions at each stage and thereby increase the 

expected sum of future rewards. 

 

Figure 5.7: A3C multi-task workers environment for Breakout-v0. 

 

 

Figure 5.8: Breakout-v0 multi-task workers model-average rewards. 
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Figure 5.9: Breakout-v0 multi-task workers model-total rewards. 

 

 

Figure 5.10: Breakout-v0 multi-task workers model – merged results. 
 

Fig. 5.8 to Fig. 5.10 show the test results captured for the A3C algorithm based on the 

multi-task worker model for the Atari 2600 gaming environment named Breakout-v0. This 

testing was carried out by using 4-worker agents or worker threads based A3C model to 

generate the initial set of results of a desktop-based test environment.    As a further attempt 

towards the evaluation of the proposed hybrid multi-task model, the A3C algorithm-based 
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multi-worker agent environment is also created for one more graphic intense Atari 2600 

game environment named- Pong-v0. The decision to choose Pong-V0 was after the careful 

examination of the high level of similarity level among these two games, Breakout-V0 and 

Pong-V0. Having a reasonable level of similarity could act as an accelerator during the 

validation of the proposed hybrid multi-task learning model execution. Similar to the way 

how Breakout-v0 was tested earlier under a multi-task worker environment, the Pong-v0 

game was also tested under a desktop-based environment by using a multi-task 

environment having four worker threads that combinedly executed 5 million steps of the 

game. Each of the individual threads is having its own individual copy of the environment 

but different from one another in terms of the view of the gaming environment. This 

environment will be having an infinite number of state-action spaces to deal with during 

the optimization of the DRL agent. In order to accommodate and handle the Pong-v0 

gaming environment, a similar CNN-based model was used during the validation of the 

multi-task learning model. In both Pong and Breakout, a player must control a paddle in 

order to hit a ball. For Pong, the player must attempt to make an opponent miss the ball, 

while for Breakout the goal is to break as many bricks as possible. Fig. 5.11 shows the 

snapshot view of the Breakout-v0 and Pong-v0 environments. 

 

Figure 5.11: Snapshot of Breakout-V0 and Pong-v0 game environment. 
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Fig. 5.12 to Fig. 5.14 show the test results captured for the A3C algorithm based on the 

multi-task worker model for the Atari 2600 gaming environment named Pong-v0.  

 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 5.12: Pong-v0 multi-task workers model-average rewards. 

 
 

 

 

 

 

 

 

Figure 5.13: Pong-v0 multi-task workers model-total rewards. 
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Figure 5.14: Pong-v0 multi-task workers model-merged results. 

 
 

As part of the detailed and exclusive evaluation of the proposed hybrid multi-task 

model, we decided to pick one more pair of Atari 2600 games namely Space Invaders-v0 

and DemonAttack-v0 from the Gym library. The decision to choose these two games as 

the second test pair was after the examination of the high level of semantic similarity 

between their pattern play. Both these games are based on the theme of shooting wherein 

the player should be able to control a moving ship with the capability of shooting and 

hitting the enemies. The following Fig. 5.15 shows the snapshot view of the SpaceInvader-

v0 and DemonAttack-v0 environments. 

 

 

 

 

 

Figure 5.15: SpaceInvaders-v0 and DemonAttack-V0 environment. 
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In terms of complexity, Space Invaders is relatively less complex as the enemies in 

this game move more in a regular fashion than in the other game. Whereas in Demon 

Attack, there are a wide variety of enemies who moves more randomly with the capability 

to shoot back, which makes the gameplay more complex from the perspective of the RL 

agent. More importantly, every game used in this experiment has its own reward structure 

that is in-built by the Gym library. In other words, even though there is some level of 

semantic similarity between the games chosen within each test pair, the scoring and reward 

structure followed within each game is unique.  

Similar to the way how previous two games from the first pair were tested, the 

SpaceInvaders-v0 game was also tested under a desktop-based test environment by using 

a multi-task worker model having four worker threads that combinedly executed about 

500,000 steps of the game. Fig. 5.16 to Fig. 5.18 show the test results captured for the A3C 

algorithm based on the multi-task worker model for the Atari 2600 gaming environment 

named Space Invaders-v0. 

 

 

Figure 5.16: SpaceInvaders-v0 multi-task workers model-average rewards. 
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Figure 5.17: SpaceInvaders-v0 multi-task workers model-total rewards. 

 
Each of the individual threads is having its own individual copy of the environment 

but different from one another in terms of the view of the gaming environment. This 

environment will be having an infinite number of state-action spaces to deal with during 

the optimization of the DRL agent. In order to accommodate and handle the Space Invader-

v0 gaming environment, a similar CNN-based model was used during the validation of the 

multi-task learning model. This testing was carried out by using a 4-worker agents-based 

A3C model to generate the initial set of results of a desktop-based test environment. 

 

Figure 5.18: SpaceInvaders-v0 multi-task workers model- merged results. 
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Similar to the way how Space Invader-v0 was tested earlier under a multi-task 

worker environment, the DemonAttack-v0 game was also tested under a desktop-based 

environment by using a multi-task environment having four worker threads that 

combinedly executed 500,000 steps of the game.  

 

Figure 5.19: Demon Attack-v0 multi-task workers model-average rewards. 

 

 

 

Figure 5.20: DemonAttack-v0 multi-task workers model-total rewards. 
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Figure 5.21: DemonAttack-v0 multi-task workers model-merged results. 
 

Each of the individual threads is having its own individual copy of the environment but 

different from one another in terms of the view of the gaming environment. This 

environment will be having an infinite number of state-action spaces to deal with during 

the optimization of the DRL agent. Fig. 5.19 to Fig. 5.21 shows the test results captured 

for the A3C algorithm based on the multi-task worker model for the Atari 2600 gaming 

environment named Demon Attack-v0. 

5.1.3 A3C Multi-Worker Model on Paperspace Cloud Platform 

In order to test and generate better results with a higher number of episodes of gameplay 

for each game under the proposed hybrid multi-task model, we decided to test the proposed 

model under a cloud-based test environment. As part of this, we opted to move our testing 

to machines with GPU with CUDA cores support under the cloud environment hosted by 

Paperspace [70]. This allowed us to rent a server in the cloud with much higher throughput 

than that of our local machine. Paperspace server used has up to 8GB of graphic memory 

and 32 GB of RAM and equipped with NVIDIA GPU - Quadro P5000 having CUDA 
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support (with 2560 CUDA cores) to facilitate the parallel computing for deep learning 

applications [71]. During this process, we configured a couple of Windows OS-based 

virtual test machines namely Gen 2 (P4000) having NVIDIA GPU supported with CUDA 

cores in the cloud environment.  

 

Figure 5.22: Test environment of Paperspace cloud server machine. 
 

Each of the Atari2600 games was tested with 8 worker agents for a higher number 

of global steps. In order to capture the test results, a tensor board visualization tool was 

employed which uses the event file captured during the test execution to generate the test 

execution results.  

Fig. 5.23 to Fig. 5.26 show the test results captured for the A3C algorithm based on 

the multi-task worker model for the Atari 2600 gaming environments under the virtual test 

machines under the cloud environment. Note that test result figures on the Paperspace cloud 

server environment were generated within Tensor Board (TensorFlow's visualization 

toolkit). In all those figures the numbers on the x-axis represent the global steps in millions 
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(taken by the agent), and the numbers on the y-axis represent the rewards (game score). 

The same convention applies to Figures 5.23 to 5.39. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Breakout-v0 standalone test result with 8 multi-workers. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Pong-v0 standalone test result with 8-multi-workers. 
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Figure 5.25: DemonAttack-v0 with 8-multi-task workers. 

 
 

 

 

 

 

 

 

 

 

 

Figure 5.26: SpaceInvaders-v0 with 8-multi-task workers. 

 
5.1.4 Hybrid Multi-Task Learning Model  

Now, as the next step in the verification of our proposed hybrid multi-task model, we 

have tested the model by running two semantically similar games simultaneously. 
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Figure 5.27: A hybrid multi-task model of Breakout-v0 and Pong-v0. 

 
At the end of testing, the individual test score for each game was captured. Since 

we have chosen two pairs of games with semantic similarity, we created a separate test 

setup for each pair. Fig. 5.27 shows the diagrammatic representation for each pair under 

the hybrid multi-task model. In order to maintain the uniformity of testing, each of the 

individual games was tested with 8 worker agents which totals to 16 worker threads 

altogether within the test environment. Fig. 5.28 and Fig. 5.29 respectively show the test 

execution results captured for breakout-v0 and Pong-v0 under the joint test environment. 
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Figure 5.28:  Breakout-v0 test results with the hybrid multi-task model. 

 
 

 

 

 

 

 

 

 

 

Figure 5.29: Pong-v0 test results with the hybrid multi-task model. 

 
These test results are generated based on the experiments conducted with the 

Paperspace cloud server machines having the Nvidia GPU supported by CUDA cores. This 

environment facilitates the large-scale testing for the hybrid multi-task model having a 

CNN-based feature extraction module. In a similar fashion, we created the joint test 

environment for the second test pair consisting of Atari2600 gaming environments, 

SpaceInvader-v0, and DemonAttack-v0. In order to maintain the uniformity of testing, 
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each of the individual games was tested with 8 worker agents which totals to 16 worker 

threads altogether within the test environment.  

 

 

 

 

 

Figure 5.30: DemonAttack-v0 test results with the hybrid multi-task model. 

 
 

 

 

 

 

 

Figure 5.31: SpaceInvaders-v0 test results with the hybrid multi-task model. 
 

Fig. 5.30 and Fig. 5.31 show the test results for each of the individual games within 

the tested pair of games. In order to measure the impact of the DRL agent's performance 

under the proposed hybrid multi-task model while testing with environments with high 

semantic dissimilarity, we have also conducted two pairs of testing. In this testing first pair 
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of testing was done using DemonAttack-v0 and Pong-v0, which are having a high level of 

semantic dis-similarity level. Under this test environment, the performance of each of the 

individual games will be measured to see the impact of negative knowledge (gradient 

transfer). A similar test setup will be made ready for the second pair consisting of Atari2600 

gaming environments namely, SpaceInvader-v0 and Breakout-v0. Fig. 5.32 and Fig. 5.35 

show the diagrammatic representation for each of the test pairs mentioned above. 

 

 

 

 

 

 

 

Figure 5.32: DemonAttack-v0 results for the semantic dissimilar test. 
 

 

 

 

 

 

 

Figure 5.33: Pong-v0 results for the semantic dissimilar test. 
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Figure 5.34: SpaceInvaders-v0 results for the semantic dissimilar test. 

 
 

 

 

 

 

 

Figure 5.35: Breakout-v0 results for the semantic dissimilar test. 
 

During our test efforts, we also conducted experiments to measure the impact of 

individual game scores when the hybrid multi-task model is tested with three semantic 

similar games namely SpaceInvader-v0, DemonAttack-v0, and Pheonix-v0. Fig. 5.36 

shows the hybrid multi-task learning model for the same configuration. Even though each 

of these games has a semantic similarity factor, at the same time, each of them is having 

its own reward structure.   
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Figure 5.36: The hybrid multi-task model of SpaveInvader-v0, DemonAttack-v0, and 
Pheonix-v0. 

 

Fig. 5.37 to Fig. 5.39 show the respective test results captured with the hybrid multi-

task model for the three OpenAI Atari 2600 gaming environments with a high level of 

semantic similarity 
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Figure 5.37: DemonAttack-v0 test results with  hybrid multi-task model for 3 
semantically similar environments. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.38: Pheonix-v0 test results with  hybrid multi-task model for 3 semantically 
similar environments. 
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Figure 5.39: SpaceInvaders-v0 test results with  hybrid multi-task model for 3 
semantically similar environments. 

 
5.1.5 Summary 

The details mentioned under the subsections of section 5.1 have presented the evaluation 

of the hybrid multi-task learning model by using the Atri2600 gaming environment. The 

model was tested with two pairs of games, with each pair having individual games with a 

high level of semantic similarity to measure the impact of the hybrid multi-task learning 

model in optimizing the performance of the DRL agent. Likewise, experiments were also 

conducted to measure the impact of negative knowledge transfer on the model by running 

the experiments on pairs of games having a high level of dissimilarity. Additionally, the 

model was also used to test the impact on performance when a greater number of Atari 

2600 games with semantic similarity are executed together with the hybrid multi-task 

learning model.  
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5.2 Analysis of Test Results  

This section analyzes the test results obtained with the hybrid multi-task model tested with 

various Atari 2600 gaming environments. In the first stage of the testing, we conducted a 

standalone kind of testing with each of the individual gaming environments individually. 

In order to conduct this testing, we have created the A3C algorithm-based multi-thread 

model wherein each of the games is tested by using 8 worker threads. In order to maintain 

the uniformity of the testing throughout this experiment, we have kept the count of worker 

threads as 8 for all the gaming environments. We tested our model by adding the final 

LSTM layer after the feedforward network to obtain the best performance of the A3C 

algorithm as a whole. We have extensively used NVIDIA GPU - Quadro P5000 having 

CUDA support (with 2560 CUDA cores) to facilitate parallel computing as it involves the 

use of CNN to process game screen images. More importantly, in the first stage of testing, 

we choose two sets of games, with set 1 consisting of Breakout-v0 and Pong-v0, then set 2 

consisting of games SpaceInvaders-v0 and DemonAttack-v0. The decision to choose these 

games to form two sets was after the clear examination of semantic similarity factor among 

them. As anticipated, the base A3C-based multi-thread model was able to achieve 

performance enhancement on all of these games during the testing due to the parallel multi-

task learning aspect of A3C. We have conducted the testing for 25 million to 30 million 

global steps for each of these individual games to have convincing test results for 

comparison with future state tastings planned [72].  

In the second stage of testing, we experimented with our proposed hybrid multi-

task model approach, wherein we trained two games, but with high-level semantic 

similarity, simultaneously. In contrast to the first stage testing, where gradients shared to 



80 
 

the global network by worker agents are all of the same types, in the hybrid environment 

we have two different types of worker threads. As it is anticipated, the performance of 

individual games under the hybrid environment was not on par with standalone 

performance results obtained with the first stage of testing. As and when the progress of 

the game, we could see the impact of positive knowledge sharing among these two tasks 

that are trained jointly. Due to the semantic similarity among them, updates shared by the 

global network could mitigate some of the key challenges associated with partial 

observability in comparison to a single game-based environment. Based on the test results 

obtained with each of the sets that we mentioned earlier, we could see that each of the 

games under each set could boost its performance over the course of the training. By this, 

we can establish that our hybrid multi-task model is able to learn multiple similar gaming 

tasks simultaneously without degradation in performance for any one of the individual 

gaming tasks [72]. In comparison to the state-of-the-art methods discussed which are based 

on the distillation methodology, the hybrid multi-task model adopts to train and learn the 

method for a multi-task actor-critic network from the scratch. Along with this, the hybrid 

multi-task approach also measures the impact amount of positive knowledge transfer done 

through parameter sharing. As we have adopted a model-free-based approach, it is 

relatively less computationally intensive compared to a model-based approach.  

In the next stage of testing with the hybrid multi-task model, we conducted 

experiments by testing the hybrid multi-task model with two different pairs of games with 

a high level of semantic dissimilarity. As we could see from the test results obtained, 

negative knowledge transfer or the gradients shared by two semantically dissimilar worker 

training threads had a huge impact on the individual games' score. As the test results 
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indicate, all the individual games ‘performance was hugely affected due to negative 

knowledge transfer. Finally, we also tested our model to see the impact on the positive 

knowledge transfer by training more than two semantically similar tasks with the same 

number of workers allocated to each game [72]. The test results obtained indicate that as 

the number of worker threads increases, updates shared by the global network deteriorates 

in comparison to a hybrid multi-task model with two semantically similar tasks. This 

situation possibly requires more tuning on the hyperparameter front as well as catastrophic 

forgetting of the neural networks of the gaming environments, which will be addressed in 

the future work planned.   

The objective behind the proposed hybrid multi-task learning model is to leverage 

multi-task learning capabilities offered by the core actor-critic methodology by using the 

A3C algorithm to optimize the DRL's performance. By having a hybrid multi-task-based 

learning environment, wherein agents belonging to different but semantically similar 

games, we aimed at addressing some of the key challenges associated with the existing 

multi-task DRL. In order to showcase, the extent to which our model could address those 

issues, we would like to have a case study based on the test results obtained. For this 

purpose, we are using both the standalone and hybrid model test results obtained for the 

Breakout-v0 game as indicated by Fig. 5.23 and Fig. 5.28 respectively. In order to have a 

fair comparison and derive a convincing conclusion, we have ensured that the same amount 

of resources have been allotted in both test scenarios in terms of the number of worker 

threads, test configurations, and the number of global steps taken parameter. By having a 

comparison of these two test results, it is quite evident that in terms of the training time 

needed, the hybrid model could surpass the performance of the standalone model much 
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ahead of time. After running the Breakout-v0 under a standalone model for 2.5+e5 (25 

Million) global steps, the highest score it could achieve was a little over the range of 12, 

whereas the hybrid model could surpass the same level in almost half of its execution time. 

In continuation to this, it is reasonable to conclude that hybrid multi-task learning by having 

a group of different but semantically similar environments with similar tasks could reduce 

the impact of partial observability that restricts a DRL agent from choosing the optimal 

action while in a state. Due to the impacts of the positive knowledge transfer facilitated by 

the gradient transfers from the second environment's agents, the actor module within each 

worker is having a better policy to choose the optimal action while in a step. Having said 

this, by possessing better policy parameters actor module is in a better position to explore 

the environment in a much effective way and choose the optimal action in each state. This 

in turn is expected to improve throughout the DRL agents' execution as more positive 

knowledge transfer is anticipated to happen with more global steps of game play. The same 

kind of comparison case study could be applied to other game test pairs from the 

experiment. Seen in the light of these observations, it is reasonable to conclude that the 

hybrid multi-task learning model is able to address the objectives, it was aiming for, to a 

great extent. In general, the operation of a DRL agent within its environment is always 

governed by either exploration or exploitation. Often when an agent starts functioning 

within an environment, it starts with zero knowledge and explores the environment by 

taking random actions. Over a period of time DRL agent accumulates a reasonable amount 

of knowledge from the exploration process, so that for decisions related to future actions it 

could exploit the knowledge which is already gathered. When it comes to the hybrid multi-

task learning model, there are multiple task workers running simultaneously within the 
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hybrid environment and share the knowledge among them. By having a global network 

that consolidates the knowledge from individual task workers and then shares the revised 

parameter list with individual workers, each of the task workers are in a better position to 

derive optimal policies to make their exploration as effective as possible. This effective 

exploration gives the benefit of speeding up the learning process of the DRL agent which 

indirectly helps them to optimize their performance in terms of the rewards received at 

each state.   

Finally, we also would like to have a comparison of the proposed hybrid multi-task 

learning model against the three state-of-the-art techniques that were mentioned under the 

related work. In comparison to the hybrid multi-task model which relies on the idea of 

sharing the network learning parameters by a global network to individual workers, the 

DISTRAL model works on the idea of sharing a distilled centroid policy that would 

regularize the workers running in the environment. When it comes to the comparison with 

the IMPALA model, its design approach is having similarity to the hybrid multi-task 

learning model in terms of the actor-critic methodology as it follows the topology of a set 

of actors with either a single learner or multiple learners. Within the IMPALA model, the 

learner's role is to create a central policy to be shared with the actors. Along with these 

learners have the flexibility to communicate among themselves for sharing the gradients. 

In the hybrid multi-task model, workers' accumulated gradients transfer or knowledge 

transfer among workers always governed by the global network. The knowledge transfer 

happens between the task workers running within the different environments under the 

hybrid multi-task learning model in the form of gradient transfer. As each of the individual 

worker tasks is based on the A3C-based model, the gradients shared by them with the 
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global network position the hybrid multi-task learning model to do a positive knowledge 

transfer among the individual games. This will be reflected within each environment when 

the updated parameter list that consolidates the combined learning parameters from 

individual task workers is shared by the global network to each task worker. Additionally, 

the current implementation of the hybrid multi-task model mandates that all the workers 

be present on the same machine, where the IMPALA model supports distributed system-

based working environment for the workers. The PopArt model is being considered as an 

extension of the IMPALA model itself and designed to address key issues such as 

distraction dilemma and thereby stabilize the process of multi-task learning. When it comes 

to the adopted learning methodology, the hybrid model follows an actor-critic-based A3C 

algorithm-oriented technique whereas all the other models are based on an actor-learner 

method. Likewise, the DISTRAL model, a hybrid multi-task model is designed to function 

under a single-machine environment, and models such as IMPALA and PopArt can support 

both single machines as well as distributed machines-based environments. The hybrid 

multi-task model follows a gradient-based knowledge sharing by the workers with the 

global network. In the case of IMPALA and PopArt, actors share the trajectories of 

experience (3-member tuple of state, action, rewards) with the global network for sharing 

the knowledge. Knowledge sharing within the DISTAL is based on sharing the individual 

policies by the actors with the learner to derive the centroid policy [72]. The following 

chapter concludes the thesis and presents future work. 
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Table 5.1. Comparison of the Hybrid Model with State-of-the-art Solutions. 

Feature 
Name 

Hybrid 
Model 

DISTRAL IMPALA PopArt 

Model Multi-
agent RL 

Single-agent 
RL 

Single-
agent RL 

Single-
agent RL 

Learning 
Methodology 

Actor-
Critic 
(A3C) 

Actor-Learner Actor-
Learner 

Actor-
Learner 

Operating 
Mode 

Single 
Machine 

Single 
Machine 

Single 
Machine/ 
Scalable to 
multiple 
machines 

Single 
Machine/ 
Scalable to 
multiple 
machines 

Method of 
sharing 

Learning 
Parameter 

Share 
gradients 
to the 
global 
network 

Share 
individual 
policies of 
actors’ with 
learner 

Share 
experience 
trajectories 
with learner 

Share 
experience 
trajectories 
with learner 

Multi-task 
Learning 
Approach 

Multi-
threaded 
A3C  

Centroid 
policy 

Centroid 
policy 

Centroid 
policy 

Knowledge 
Transfer 
Method 

Parameter 
sharing by 
a global 
network 

Regularization 
by learner 

Policy 
sharing by 
the learner 

Policy 
sharing by 
the learner 
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Chapter 6 

Conclusion and Future Work 

This thesis presented the design and evaluation of a hybrid multi-task learning model. The 

design of the proposed hybrid model emphasizes the applicability of the actor-critic 

methodology and then attempted to leverage its parallel multi-task learning capabilities by 

using A3C across multi- gaming(hybrid) environments. A hybrid model-based multi-task 

learning approach facilitates the optimization of the DRL agent’s performance. The 

subsequent level of optimization achieved by the DRL agent relies on the hybrid model’s 

multi-task learning capability which in turn guides the actor module to choose the best 

possible action at every state (as a policy π). Following this critic calculates that particular 

state’s value which further leads to the advantage of that action. 

The implementation majorly covers the information of the multi-task worker agent model 

and the usage of multi-task worker agents for achieving multi-task learning within the Atari 

2600 based gaming environments. This chapter also outlines the information on the testing 

carried out under a cloud-based environment namely Paperspace, which is having GPU 

with CUDA support. Along with this, this section also has outlined the software packages 

that were selected for the construction of the model. This includes details related to tools 

and libraries such as PyCharm, TensorFlow, and OpenAI Gym package. 

Evaluation and related results were obtained for the implementation of the presented hybrid 

multi-task learning model under the Atari 2600 gaming environment. The model was tested 

extensively with two pairs of Atari 2600 games, with each of the pair having games with a 

high level of semantic similarity to measure the impact of the hybrid multi-task learning 
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model in optimizing the performance of the DRL agent. Similarly, experiments were also 

conducted to measure the impact of negative knowledge transfer on the model by running 

the experiments on pairs of games having a high level of dissimilarity. Additionally, the 

model was also used to test the impact on performance when a greater number of Atari 

2600 games with a high level of semantic similarity are executed together with the hybrid 

multi-task learning model. For all the experiments conducted, related test results are 

generated to reflect the impact on the DRL agent's performance. The current 

implementation of the hybrid multi-task learning model could achieve performance 

optimization with hybrid environments that are having two games, but the model’s 

performance was found to be suboptimal when the number of games increased beyond two. 

This limitation demands the hybrid model to have an additional design component to 

mitigate the impacts of negative knowledge transfer. 

For future work,  

 Conduct the experiments of the hybrid multi-task model with more complex 

gaming environments having a higher number of worker threads under GPU cloud 

server-based machine environment to draw strong conclusions on hybrid multi-task 

learning. 

 Extend the validation of the hybrid multi-task learning model with real-time 

application-oriented environments and investigate the changes needed to achieve 

performance optimization. 

 As part of the test data analysis, come up with a mathematical based equation to 

measure the level of performance optimization achieved.   
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 Investigate the steps to mitigate the impacts of negative knowledge transfer and 

catastrophic forgetting in deep reinforcement multi-task learning. 
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Appendix  

Appendix A. Source Code  

Source code files related to worker agent creation, feature extraction from the game images using 

CNN, game worker thread training, game state handling and constants are provided below. Each 

of these source files are responsible for handling specific functionalities that are required during 

the course of the hybrid multi-task learning model’s test execution by using the OpeanAI Gym 

library for Atari2600 games.  

A1. A3C worker   

The objective of this source file is to create the global network as well the worker agent threads, 

the spawn the same. Additionally, this source file handles the test data collection, so as to 

generate the final test statistics by using tensor board utility.  

hybrid_env_movs= 0 
test_stop= False 
 
device = "/gpu:0" 
 
if MODE_LSTM: 
  global_knowledge_network = HybridA3CLSTMNN(ACTION_SIZE, -1, device) 
training_worker_threads = [] 
learning_rate_parameter = tf.placeholder("float") 
grad_applier = RMSPropApplier(learning_rate = learning_rate_parameter, 
                              decay = RMSP_ALPHA, 
                              momentum = 0.0, 
                              epsilon = RMSP_EPSILON, 
                              clip_norm = GRAD_NORM_CLIP, 
                              device = device) 
 
for thread in range (PARALLEL_THREADS_SIZE):    
  training_thread = HybridA3CTrainingWorker(thread, global_network, 
initial_learning_rate,                               
learning_rate_parameter,                                      
grad_applier, MAX_TIME_STEP, device = device) 
training_threads.append(training_thread) 
 
# Create the tensorflow session 
hybridsession = 
tf.Session(config=tf.ConfigProto(log_device_placement=False, 
                                        allow_soft_placement=True)) 
 
hybridstart = tf.global_variables_initializer() 
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hybridsess.run(hybridstart) 
 
# Test results capture with tensorboard utility 
hybrid_score_parameter = tf.placeholder(tf.int32) 
tf.summary.scalar("score", hybrid_score_parameter) 
hybrid_all_results = tf.summary.merge_all() 
hybrid_results_record = tf.summary.FileWriter(LOG_FILE, 
hybridsession.graph) 
 
def train_function(parallel_index): 
  global global_steps_sofar  
  training_thread = training_worker_threads[parallel_index] 
  while True: 
    if stop_requested: 
      break 
    if global_steps_sofar> MAX_TIME_STEP_PARAMETER: 
      break 
    diff_global_steps= training_thread.process(hybridsession, 
    hybrid_env_movs, hybrid_results_record,hybrid_all_results, 
    hybrid_score_parameter) 
 
    global_steps_sofar+= diff_global_steps     
     
def signal_handler(signal, frame): 
  global stop_testing 
  stop_testing = True 
   
train_worker_threads = [] 
for thread in range(PARALLEL_THREADS_SIZE): 
  train_threads.append(threading.Thread(target=train_function, 
args=(thread,))) 
   
signal.signal(signal.SIGINT, signal_handler) 
 
for thread in train_threads: 
  thread.start() 
   
for t in train_threads: 

thread.join() 
 
 
 

A2. Feature extraction  

This source file abstracts the functionalities needed to process the game screen images by using 

the convolutional neural network. References were made from source such as 

https://programtalk.com/python-examples/tensorflow.device/ for the feature extraction methods 

using the convolutional networks. 
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class HybridA3CNN(object): 
  def __init__(self, 
               agent_mov_count, 
               worker_no,                
               test_platform="/cpu:0"): 
    self._agent_mov_count = agent_mov_count 
    self._worker_no = worker_no 
    self._test_platform = test_platform     
 
  def loss_calculate(self, hyperentropy_param): 
    with tf.device(self._test_platform): 
      self.a = tf.placeholder("float", [None, self._agent_mov_count])          
      self.td = tf.placeholder("float", [None])       
      log_pi = tf.log(tf.clip_by_value(self.pi, 1e-20, 1.0))            
      hybrid_entropy_val= -tf.reduce_sum(self.pi * log_pi, 
reduction_indices=1) 
       
      actorpolicyloss = - 
tf.reduce_sum(tf.reduce_sum(tf.multiply(log_pi, self.a),      
      reduction_indices=1) * self.td + hybrid_entropy_val_param* 
hyperentropy_param)      
      self.r = tf.placeholder("float", [None])       
      criticvalueloss = 0.5 * tf.nn.l2_loss(self.r - self.v)       
      self.total_loss = actorpolicyloss + criticvalueloss 
 
  def synchcronize_process(self, src_netowrk, name=None): 
    source_variables = src_netowrk.get_vars() 
    destination_variables = self.get_vars() 
 
    synchcronize_operations = [] 
    with tf.device(self._test_platform): 
      with tf.name_scope(name, "HybridA3CNN", []) as name: 
        for(source_variables, destination_variables) in 
zip(source_variables, destination_variables): 
          synchcronize_operation = tf.assign(destination_vaiables, 
source_variables) 
          synchcronize_operations.append(synchcronize_operation) 
 
        return tf.group(*sync_ops, name=name) 
 
  def _fc_variable(self, weight_shape): 
    input_channels  = weight_shape[0] 
    output_channels = weight_shape[1] 
    d = 1.0 / np.sqrt(input_channels) 
    bias_shape = [output_channels] 
    weight = tf.Variable(tf.random_uniform(weight_shape, minval=-d, 
maxval=d)) 
    bias   = tf.Variable(tf.random_uniform(bias_shape,   minval=-d, 
maxval=d)) 
    return weight, bias 
 
  def _conv_variable(self, game_img_align): 
    w = game_img_align[0] 
    h = game_img_align[1] 
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    input_channels  = game_img_align[2] 
    output_channels = game_img_align[3] 
    d = 1.0 / np.sqrt(input_channels * w * h) 
    bias_shape = [output_channels] 
    weight = tf.Variable(tf.random_uniform(game_img_align, minval=-d, 
maxval=d)) 
    bias   = tf.Variable(tf.random_uniform(bias_shape,   minval=-d, 
maxval=d)) 
    return weight, bias 
  def _hybridcnn2d(self, x, W, stridesize): 
    return tf.nn.conv2d(x, W, strides = [1, stridesize, stridesize, 1], 
padding = "VALID") 
 
class HybridA3CLSTMNN(HybridA3CNN): 
  def __init__(self, 
               agent_mov_count, 
               worker_no 
               test_platform="/cpu:0" ): 
    HybridA3CNN.__init__(self, agent_mov_count, worker_no, 
test_platform) 
 
    scope_name = "net_" + str(self._worker_no) 
    with tf.device(self._test_platform), tf.variable_scope(scope_name) 
as scope: 
      self.W_conv1, self.b_conv1 = self._conv_variable([8, 8, 4, 16])  # 
stridesize=4 
      self.W_conv2, self.b_conv2 = self._conv_variable([4, 4, 16, 32]) # 
stridesize=2 
       
      self.W_fc1, self.b_fc1 = self._fc_variable([2592, 256])       
      self.lstm = tf.nn.rnn_cell.BasicLSTMCell(256, state_is_tuple=True)       
      self.W_fc2, self.b_fc2 = self._fc_variable([256, agent_mov_count])       
      self.W_fc3, self.b_fc3 = self._fc_variable([256, 1])       
      self.s = tf.placeholder("float", [None, 84, 84, 4]) 
     
      hybrid_cnn_l1 = tf.nn.relu(self._hybridcnn2d(self.s,  
self.W_conv1, 4) + self.b_conv1) 
      hybrid_cnn_l2 = tf.nn.relu(self._hybridcnn2d(hybrid_cnn_l1, 
self.W_conv2, 2) + self.b_conv2) 
      hybrid_cnn_l2_flatlayer = tf.reshape(hybrid_cnn_l2, [-1, 2592]) 
      hybrid_fc_l1= tf.nn.relu(tf.matmul(hybrid_cnn_l2_flatlayer, 
self.W_fc1) + self.b_fc1)    
      hybrid_fc_l1_restruct = tf.reshape(h_fc1, [1,-1,256])           
      self.step_size = tf.placeholder(tf.float32, [1]) 
      self.initial_lstm_state0 = tf.placeholder(tf.float32, [1, 256]) 
      self.initial_lstm_state1 = tf.placeholder(tf.float32, [1, 256]) 
      self.initial_lstm_state = 
tf.nn.rnn_cell.LSTMStateTuple(self.initial_lstm_state0,                                                             
self.initial_lstm_state1)     
      hybridlstm_result, self.lstm_state = tf.nn.dynamic_rnn(self.lstm,                                                        
hybrid_fc_l1_restruct,initial_state = self.initial_lstm_state,                                                        
sequence_length = self.step_size,time_major = False,                                                        
scope = scope) 
 
      hybridlstm_result = tf.reshape(lstm_outputs, [-1,256])       
      self.pi = tf.nn.softmax(tf.matmul(hybridlstm_result, self.W_fc2) + 
self.b_fc2)        
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      v_ = tf.matmul(hybridlstm_result, self.W_fc3) + self.b_fc3 
      self.v = tf.reshape( v_, [-1] ) 
      scope.reuse_variables() 
 
      self.W_lstm = tf.get_variable("basic_lstm_cell/kernel") 
      self.b_lstm = tf.get_variable("basic_lstm_cell/bias") 
      self.reset_state() 
 
 
   def reset_state(self): 
    self.lstm_state_out = tf.nn.rnn_cell.LSTMStateTuple(np.zeros([1, 
256]), np.zeros([1, 256])) def run_policy_and_value(self, sess, s_t): 
    pi_out, v_out, self.lstm_state_out = sess.run( [self.pi, self.v, 
self.lstm_state], feed_dict = {self.s : [s_t], 
                                                                
self.initial_lstm_state0 : self.lstm_state_out[0], 
                                                                
self.initial_lstm_state1 : self.lstm_state_out[1], 
                                                                
self.step_size : [1]} ) 
 
    return (pi_out[0], v_out[0]) 
 
  def run_policy(self, sess, s_t):     
    pi_out, self.lstm_state_out = sess.run( [self.pi, self.lstm_state], 
                                            feed_dict = {self.s : [s_t], 
                                                         
self.initial_lstm_state0 : self.lstm_state_out[0], 
                                                         
self.initial_lstm_state1 : self.lstm_state_out[1], 
                                                         self.step_size 
: [1]} )                                             
    return pi_out[0] 
 
  def run_value(self, sess, s_t): 
    prev_lstm_state_out = self.lstm_state_out 
    v_out, _ = sess.run( [self.v, self.lstm_state], 
                         feed_dict = {self.s : [s_t], 
      self.initial_lstm_state0 : self.lstm_state_out[0], 
      self.initial_lstm_state1 : self.lstm_state_out[1], 
                                      self.step_size : [1]} ) 
     
    self.lstm_state_out = prev_lstm_state_out 
    return v_out[0] 
 
  def get_vars(self): 
    return [self.W_conv1, self.b_conv1, 
            self.W_conv2, self.b_conv2, 
            self.W_fc1, self.b_fc1, 
            self.W_lstm, self.b_lstm, 
            self.W_fc2, self.b_fc2, 
            self.W_fc3, self.b_fc3] 
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A3. Worker thread training 

This source file handles the functionalities required to train the individual workers of the games 

selected for testing. Also, worker tracks the state of the game at each step, and records the score 

once it reaches to the terminal state. References were made from source such as  

https://programtalk.com/python-examples/tensorflow.device/  for the lstm based neural networks 

used in agent worker training . 

class HybridA3CTrainingWorker(object): 
  def __init__(self, 
               worker_thread_index, 
               global_knowledge_network, 
               initial_learning_rate_parameter, 
               learning_rate_input, 
               grad_applier, 
               max_global_time_step, 
               device): 
 
    self.worker_thread_index = worker_thread_index 
    self.learning_rate_input = learning_rate_input_parameter 
    self.max_global_stepsime_step = max_global_time_step 
 
    if MODE_LSTM: 
      self.local_network = HybridA3CLSTMNN(GAME_ACTION_SIZE, 
worker_thread_index, device) 
 
 
    self.local_network.loss_calulate(ENTROPY_BETA) 
    with tf.device(device): 
      var_refs = [v._ref() for v in self.local_network.get_vars()] 
      self.gradients = tf.gradients( 
        self.local_network.total_loss, var_refs, 
        gate_gradients=False, 
        aggregation_method=None, 
        calculate_gradients_with_ops=False) 
 
    self.apply_gradients = grad_applier.apply_gradients( 
      global_knowledge_network.get_vars(), 
      self.gradients )       
 
    self.sync = 
self.local_network.synchcronize_process(global_knowledge_network)     
    self.game_state = HybridGameState()     
    self.local_t = 0 
    self.initial_learning_rate_parameter = 
initial_learning_rate_parameter 
    self.episode_reward = 0 
    self.prev_local_t = 0 
 
  def _anneal_learning_rate(self, global_time_step): 
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    learning_rate = self.initial_learning_rate_parameter * 
(self.max_global_stepsime_step - global_time_step) / 
self.max_global_time_step 
    if learning_rate < 0.0: 
      learning_rate = 0.0 
    return learning_rate 
 
  def choose_action(self, pi_values): 
    return np.random.choice(range(len(pi_values)), p=pi_values) 
 
  def _hybrid_scorecapture(self, hybridsession, hybrid_results_record, 
hybrid_all_results, hybrid_score_parameter, score, hybrid_env_movs): 
    summary_str = hybridsession.run(hybrid_all_results, feed_dict={ 
      hybrid_score_parameter: score 
    }) 
    hybrid_results_record.add_summary(summary_str, hybrid_env_movs) 
    hybrid_results_record.flush() 
     
  def set_start_time(self, start_time): 
    self.start_time = start_time 
 
  def hybridproc(self, hybridsession, hybrid_env_movs, 
hybrid_results_record, hybrid_all_results, hybrid_score_parameter): 
    gamestates = [] 
    gameactions = [] 
    gamerewards= [] 
    gamevalues= [] 
    terminal_end = False 
    hybridsession.run( self.sync ) 
    start_local_t = self.local_t 
 
    if MODE_LSTM: 
      LSTM_init = self.local_network.lstm_state_out     
 
    for thread in range(LOCAL_STEPS_MAX): 
      pi_, value_ = 
self.local_network.run_policy_and_value(hybridsession, 
self.game_state.s_t) 
      action = self.choose_action(pi_) 
 
      gamestates.append(self.game_state.s_t) 
      gameactions.append(action) 
      gamevalues.append(value_) 
 
      if (self.worker_thread_index == 0) and (self.local_t % 
LOG_INTERVAL == 0): 
        print("thread "+str(self.worker_thread_index)+"\t| 
pi={}".format(pi_)) 
        print("thread "+str(self.worker_thread_index)+"\t| 
V={}".format(value_)) 
 
      self.game_state.hybridproc(action) 
 
      gamereward= self.game_state.reward 
      gameterminalstate = self.game_state.terminal 
 
      self.episode_reward += gamereward    
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      gamerewards.append( np.clip(reward, -1, 1) ) 
      self.local_t += 1 
     
      self.game_state.update() 
       
      if gameterminalstate: 
        gameterminal_state = True 
        print("thread "+str(self.worker_thread_index)+"\t| 
score={}".format(self.episode_reward)) 
 
        self._hybrid_scorecapture(hybridsession, hybrid_results_record, 
hybrid_all_results, hybrid_score_parameter, 
                           self.episode_reward, hybrid_env_movs) 
           
        self.episode_reward = 0 
        self.game_state.reset() 
        if MODE_LSTM: 
          self.local_network.reset_state() 
        break 
 
    cummulative_reward = 0.0 
    if not gameterminal_state: 
      cummulative_reward = self.local_network.run_value(hybridsession, 
self.game_state.s_t) 
 
    gameactions.reverse() 
    gamestates.reverse() 
    gamerewards.reverse() 
    gamevalues.reverse() 
    hybridbatch_si = [] 
    hybridbatch_a = [] 
    hybridbatch_td = [] 
    hybridbatch_reward = [] 
    
    for(ai, ri, si, Vi) in zip(gameactions, gamerewards, gamestates, 
gamevalues): 
      cummulative_reward = ri + GAMMA * cummulative_reward 
      hybridtd = cummulative_reward - Vi 
      hybrid_a = np.zeros([GAME_ACTION_SIZE]) 
      hybrid_a[ai] = 1 
 
      hybridbatch_si.append(si) 
      hybridbatch_a.append(hybrid_a) 
      hybridbatch_td.append(hybridtd) 
      hybridbatch_reward.append(cummulative_reward) 
 
    cur_learning_rate = self._anneal_learning_rate(hybrid_env_movs) 
 
    if MODE_LSTM: 
      hybridbatch_si.reverse() 
      hybridbatch_a.reverse() 
      hybridbatch_td.reverse() 
      hybridbatch_reward.reverse() 
 
      hybridsession.run( self.apply_gradients, 
                feed_dict = { 
                  self.local_network.s: hybridbatch_si, 
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                  self.local_network.a: hybridbatch_a, 
                  self.local_network.hybridtd: hybridbatch_td, 
                  self.local_network.r: hybridbatch_reward, 
                  self.local_network.initial_lstm_state: LSTM_init, 
                  self.local_network.step_size : [len(hybridbatch_a)], 
                  self.learning_rate_input: cur_learning_rate } ) 
    else: 
      hybridsession.run( self.apply_gradients, 
                feed_dict = { 
                  self.local_network.s: hybridbatch_si, 
                  self.local_network.a: hybridbatch_a, 
                  self.local_network.hybridtd: hybridbatch_td, 
                  self.local_network.r: hybridbatch_reward, 
                  self.learning_rate_input: cur_learning_rate} ) 
         
    diff_local_t = self.local_t - start_local_t 
    return diff_local_t 
 

A4. Game state handling 

This file is used to create the instance of the game by using the gym library and then also to do 

the preprocessing( re-sizing and grayscale conversion) of the game images for the training.  

class HybridGameState(object): 
  def __init__(self, index,display=False, crop_screen=True, 
frame_skip=4, no_op_max=30): 
    self.index = index 
    self._display = display 
    self._crop_screen = crop_screen 
    self._frame_skip = frame_skip 
    if self._frame_skip < 1: 
      self._frame_skip = 1 
    self._no_op_max = no_op_max 
 
    if(index == 1): 
      GYM_ENV='Pong-v0' 
    else: 
      GYM_ENV = 'Breakout-v0' 
 
    self.env = gym.make(GYM_ENV) 
     
    # print "action space=", self.env.action_space 
    self.reset()    
 
  def _process_frame(self, action, reshape): 
    reward = 0 
    for i in range(self._frame_skip): 
      observation, r, terminal, _ = self.env.step(action) 
      reward += r 
      if terminal: 
        break 
      # observation shape = (210, 160, 3) 
 
    grayscale_observation = skimage.color.rgb2gray(observation) 
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    # shape (210, 160) range = [0.0, 1.0] 
 
    if self._crop_screen: 
      # resize to height=110, width=84 
      resized_observation = 
skimage.transform.resize(grayscale_observation, (110, 84)) 
      resized_observation = resized_observation.astype(np.float32) 
      # crop to fit 84x84 
      x_t = resized_observation[18:102,:] 
    else: 
      # resize to height=84, width=84 
      resized_observation = 
skimage.transform.resize(grayscale_observation, (84, 84)) 
      x_t = resized_observation.astype(np.float32) 
 
    if reshape: 
      x_t = np.reshape(x_t, (84, 84, 1)) 
    return reward, terminal, x_t 
     
  def reset(self): 
    self.env.reset() 
     
    # randomize initial state 
    if self._no_op_max > 0: 
      no_op = np.random.randint(0, self._no_op_max + 1) 
      for _ in range(no_op): 
        self.env.step(0) 
 
    _, _, x_t = self._process_frame(0, False) 
     
    self.reward = 0 
    self.terminal = False 
    self.s_t = np.stack((x_t, x_t, x_t, x_t), axis = 2) 
     
  def process(self, action): 
    if self._display: 
      self.env.render() 
    r, t, x_t1 = self._process_frame(action, True) 
 
    self.reward = r 
    self.terminal = t 
    self.s_t1 = np.append(self.s_t[:,:,1:], x_t1, axis = 2)     
 
  def update(self): 
    self.s_t = self.s_t1 

 

A5. Constant values  

This file is used to define the constant values such as game selection, number of global steps, 

neural network regularization, and discount factor setting. 

LOCAL_STEPS_MAX = 25  
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RMSP_ALPHA = 0.99  
RMSP_EPSILON = 0.1  
 
#LOG_FILE = './graphSPACELSTMT5' 
#LOG_FILE = './graphPGLSTMT25' 
#LOG_FILE = './graphBRKLSTMT25' 
#LOG_FILE = './graphSPACELSTMT5' 
#LOG_FILE = './graphDEMNLSTMT25' 
#LOG_FILE = './graphSPACELSTMT25' 
#LOG_FILE = './graphBRKELS30MN' 
LOG_FILE = './graphPHEONLS30MN' 
INITIAL_ALPHA_LOW = 1e-4     
INITIAL_ALPHA_HIGH = 1e-2    
 
PARALLEL_SIZE = 8 # parallel thread size 
#GYM_ENV = 'Pong-v0' 
#GAME_ACTION_SIZE = 4  
#GYM_ENV = 'Breakout-v0' 
#GAME_ACTION_SIZE = 4  
GYM_ENV = 'Phoenix-v0' 
GAME_ACTION_SIZE = 8  
#GYM_ENV = 'DemonAttack-v0' 
#GAME_ACTION_SIZE = 6  
#GYM_ENV = 'SpaceInvaders-v0' 
#GAME_ACTION_SIZE = 6  
INITIAL_ALPHA_LOG_RATE = 0.4226  
GAMMA = 0.99  
ENTROPY_BETA = 0.01  
MAX_GLOBAL_TIME_STEP = 10 * 10**7 
GRAD_NORM_CLIP = 40.0  
MODE_LSTM = True 

 


