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Summary

With the rise of technology these days, high frequency trading (HFT) has become a new norm in the

financial world, especially in the most liquid markets such as equity. Previous study has shown that

arbitrage opportunities are built into the current most popular CLOB market design, and there is

rent devision between exchanges and trading firms. This thesis applies general results in the Nash-in-

Nash bargaining model to a trading game setting, and derives conditions for existence of Nash-in-Nash

equilibrium and the Nash-in-Nash prices. It can then be shown that the condition for there to exist Nash-

in-Nash equilibrium is equivalent to the condition for there to exist Order Book Equilibrium (OBE) in

the trading game setting in [3], and the implication on rent division by Nash prices are equivalent to

the ESST prices in the OBE in [3]. This thesis also investigates five out of the seven stylized facts

documented in [3] in the Japan equity market setting. Market shares of exchanges in Japan are stable

over time, yet the market is tipping significantly. The per share trading fee was economically small before

merger of OSE and TSE, yet it has not been economically small in JPX after the two exchanges merged.

Exchanges in Japan do not earn significant revenue from technology and information service, and there is

no economically significant upper trend in this part of revenue. The empirical validation of these stylized

facts in Japan equity market, as inverse of what holds in the US, supports the necessity of an integrated

market for (i) the market shares to be interior, (ii) the per share trading fee to be economically small,

and (iii) the part of revenue from exchange specific speed technology to be economically significant and

growing.
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1 Introduction

With the rise of technology these days, high frequency trading (HFT) has become a new norm in the

financial world, especially in the most liquid markets such as equity. There has been discussions on

the current market design against this background. As shown in Budish, Cramton, and Shim (2015,

hereinafter referred to as [2]), arbitrage opportunity is built into the continuous limit order book (CLOB)

market design. It has been further shown in Budish, Lee, and Shim (2019, [3]) that there is division of

the latency arbitrage rents between trading firms and exchanges realized by the Exchange Specific Speed

Technology (ESST) fee, which depends on the ESST user-provider relationship formed among them.

While these results are based upon strategic argument without being embedded into any specific game

model, the Nash-in-Nash bargaining model seems to be a natural fit for this situation and potential to

provide more understanding of it, as is also brought forward in [3]. In another previous study by Collard-

Wexler, Gowrisankaran, and Lee (2019, [6]), it has been shown that Nash-in-Nash equilibrium for general
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bipartite multiple-player-to-multiple-player bargaining games exists under certain set of assumptions.

The theoretical part of this thesis applies the general bilateral oligopoly Nash bargaining model in [6]

to a setting in which multiple exchanges and multiple trading firms negotiate upon division of the

arbitrage surplus resulted from HFT, investigates conditions for existence of solutions in the Nash-in-

Nash bargaining game setting, and compares these to those in [3].

[3] has also documented and validated seven stylized facts in the US equity market, some of which

are implied by the model. It is interesting to see whether this model can be generalized to situations in

other markets, and how and why so (not). The second part of this thesis tries to validate or invalidate

five out of the seven stylized facts in the Japan equity market.

In the theoretical part, we consider a model setting that is similar to that in [3]. The object is one

security, whose fundamental value can be perfectly observed from a signal, which is a random variable

that evolves with compound jump process. There are four types of strategic players in the game. Investors

mainly get his/her payoff from satisfaction of buying/selling needs for the security itself. Trading Firms

(TFs) and Informed Traders are arbitrageurs. Exchanges earn payoff from charging the other three

agents for speed technology and order matching. The game consists of a one-time played pregame and

two infinitely repeated sub-games. In the pregame, Exchanges posts per share trading fees. The first

sub-game is a bargaining game, where bipartite negotiations happen between TFs and Exchanges on

the Exchange Specific Speed Technology (ESST) fees and ESST user-provider relationships forms. The

second is a trading game similar to the Stage Three game set in the Multiple Exchange Game in [3],

consisting of two sessions per time period. In the first session TFs post their orders and make liquidity

in Exchanges, and in the second session potential liquidity takers come and act. In each time period the

bargaining game is first played, and then the trading game.

It can then be shown that the condition for there to exist an equilibrium in the Nash-in-Nash bar-

gaining game is equivalent to the condition for there to exist OBE in the trading game setting in [3], and

the Nash prices are equivalent to the ESST prices in the OBE in [3]. The bargaining game setting also

shed a light on equilibrium where there are discrete and continuous exchanges in the market. We use the

order book equilibrium (OBE) as solution concept in the trading game, and pure-strategy weak perfect

Bayesian equilibrium concept with passive beliefs in the bargaining game. For different sets of relation-

ships formed between TFs and Exchanges, there exists different equilibria for the trading game, resulting

in different flow profit expectations. This gives the flow profit function for TFs and Exchanges. Given

these flow profit functions, Nash-in-Nash equilibrium prices, specific form of the marginal contribution

functions, and conditions for existence of Nash-in-Nash equilibrium can be derived.

We then go on to validate five out of the seven the stylized facts first documented by [3] in Japan

equity market1. A summary of the seven stylized facts in the original paper can be found in Table 1.

The most significant difference between Japan and US equity market is that the Japan market is

not integrated in the sense that with regulations such as the Unlisted Trading Privileges (UTP) and

Regulation National Market System (Reg NMS) in the US, assets are accessible and fungible across

exchanges. What is more, after the merger of OSE and TSE in 2012, although the market is fragmented

1 Stylized facts 1 and 2 are not studied due to difficulty to access relevant data.
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Table 1. Summary of the Seven Stylized Facts

Stylized Fact No. Statement in [3] In Japan Equity Market

1
“Many Exchanges Simultaneously at the Best

Bid and Best Offer”
Not checked

2 “Linear Depth-Volume Relationship” Not checked

3

“Exchange Market Shares are Interior and

Relatively Stable, Both Aggregate and

Within-Symbol”

Partly True

(Stable, but not Interior)

4 “Average Trading Fees are Economically Small”
Partly True

(Different among Exchanges)

5 “Money-Pump Constraint Binds” True

6
“Exchanges Earn Significant Revenues from

Data and Co-Location/Connectivity (i.e., ESST)”
Not True

7

“Exchange Revenue from Data and

Co-Location/Connectivity has Grown Significantly

in the Reg NMS Era”

Not True

in form, it lacks actual competition. The empirical validation of these stylized facts in Japan, as inverse

of what is validated in the US, support the necessity of an integrated market for (i) the market shares

to be interior, (ii) the per share trading fee to be economically small, and (iii) the part of revenue from

exchange specific speed technology to be economically significant and growing.

More specifically, it is shown that market shares of exchanges in Japan is very stable over time, yet

not interior. The market is tipping significantly in Japan, even more so on individual stock level than

on the aggregate level. As for per share trading fee, the money pump restriction holds in Japan; the per

share trading fee was economically small in OSE before merger, TSE before merger, and NSE, yet it is

not economically small in JPX. Furthermore, there is a negative correlation between exchange groups’

per share trading fees in absolute terms and their market shares. As for revenues from ESST, exchanges

in Japan do not earn significant revenue from it; although there is a statistically significant upper trend

in the percentage of revenues from ESST fee, the trend is not economically significant.

Equity markets witnesses fragmentation in the recent decade, especially in the US equity market.

There have been studies that investigate interactions among exchanges. Chen and Duffie (2020, [5])

develops a model where assets can be traded in different exchanges and found that market fragmentation

leads to lower depth but more informative prices. Baldauf and Mollner (2019, [1]) develops a model

of imperfect competition and studies the tradeoff between competed down trading fees and increased

arbitrage rent in fragmented equity market. They also estimates the model for an Australian security

and found that competition does not increase investors’ benefits in that case.

There has been not many theoretical studies built on the Nash-in-Nash bargaining model. Spulber

(2017, [39]) extend the model for the situation where the downstream firms are complements. By

considering a two-stage game where the players make supply schedule proposals in the first stage and

engages in Nash-in-Nash bargaining in the second stage. Spulber found that there exists a unique
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equilibrium with weakly dominant strategy and the outcome turns out to be joint-profit maximizing.

The theoretical part of this thesis tries to extend the Nash-in-Nash bargaining model by applying it to a

more specific setting. The contribution of this part is two-fold. On the one hand, by applying the general

Nash-in-Nash bargaining model to a more specific trading setting, the result from the bargaining model

supports the equilibrium results in the trading game. On the other hand, the consistency between the

condition for equilibrium existence of the Nash-in-Nash bargaining game and that in the trading game,

which is independently derived with purely strategic arguments without being embedded in a bargaining

game, supports and provides more intuitive understanding for the former.

Empirically, bargaining models are most often used to understand integration in typically oligopolistic

markets, such as the health insurance market, the television market, etc. In Ho and Lee (2019, [13]), a

bargaining model is estimated to investigate how horizontal integration affect equilibria in health care

markets, with interactions among hospitals, insurer providers, employees (large insurance demanders),

and individuals considered. It is argued that although concentration in insurance providers may cause

increase in insurance premium and hospitals’ income, the resulted stronger bargaining power of them

may exert offsetting effect. In another work of Ho and Lee (2020, [14]), Nash-in-Nash bargaining solution

is adapted to this insurer-hospital negotiation framework. Dafny, Ho and Lee[8] further investigate the

bargaining game in health care market, looking into cross-market hospital mergers and their effect on price

change. They found that price increase will arise when marginal contribution of new agreement among

insurers and hospitals is decreasing. In particular, adjacent hospital mergers and mergers of hospitals

who share common insurers generates more price effect. Effect of vertical integration is investigated in

Crawford et. al.[7] in the US television broadcasting market, which also has its pros and cons towards

social welfare, and it is found that the final result highly relies on program access rules. Both these two

studies do simulation for an integrated market. In [3], equity market which is effectively integrated due to

certain regulations is considered. The empirical part of this thesis contributes to the market integration

literature in the sense that an actually fully integrated, competition-less market, i.e. the Japan equity

market is studied. There are two significant mergers in Japan equity market, the merger of JASDAQ

and OSE, and that of OSE with TSE. Effect of these two mergers are also implied by the results of the

empirical part of this thesis.

The model in this thesis, which has been first built up by [2], has done well in depicting the essentials of

US equity exchange competitions, as is shown in [3]. However, this market fragmentation and integration

is not true in many other markets, including Japan equity market. There has long been studies that

supports this market concentration equilibrium result. Pagano (1989, [33]) has proposed a model based

on the idea that “trading volume and absorptive capacity of the market tend to feed positively on each

other”, and proved that there exists more than one equilibria depending on the belief about the other

traders. When there are two markets and the trading cost is the same on both markets, then there is

one unique equilibrium where all traders trade on one of the markets; when there are two markets and

the transaction cost is not the same, then there are multiple equilibria where market is concentrated as

well as fragmented. When the two-market fragmentation equilibrium does happen, traders form clusters

on different markets by sizes of their intended transactions. The empirical part of this thesis suggests
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that the model in [33] better captures the Japan equity market. Another theoretical explanation can

be found in Ellison and Fudenberg (2003, [9]), who has shown that in models where there are both

increasing returns from concentration and the “market-impact effect” that results in preference to less

crowded market, there exists a “plateau of equilibria” with two markets, and market will tip only

when the market share of one of them falls beyond a certain threshold. This why concentration or

fragmentation question was raised again in Cantillon and Yin (2010, [4]), which propose to endogenize

market structure in further studies. They also put forward many other interesting questions for potential

research, including considering the multi-sidedness of exchanges and how other businesses such as listing

affect the competition among them.

The rest of this thesis is organized as follows. Section 2 deals with the theoretical model where all

exchanges are continuous. Section 2.1 sets up the model and the game. After game set-up, the solution

concept used is specified in Section 2.2, and useful definitions in the bargaining game equilibrium are

given in Section 2.3. Section 2.4 first prepares some useful definitions, and then go on to describe

the four equilibria corresponding to four equivalent classes of sets of relationships formed between TFs

and Exchanges in the trading game, and give the flow profit to TFs and Exchanges under this set of

relationship formed. Section 2.5 derives the marginal contribution functions, Nash prices, and conditions

for equilibrium to exist. Section 3 then discusses the situation where there are discrete and continuous

exchanges. Section 4 illustrates empirical study of five out of seven of the stylized facts documented by

[3] in the Japan equity market, with each subsection discussing one fact. Section 5 concludes.

2 ‘Nash-in-Nash’ Bargaining Approach to Rent Division in CLOB

Market Design

2.1 Model Setup and Review of Results in Previous Works

2.1.1 Value of the Security

Notations in this thesis are mostly inherited from [2] and [3].

Let there be a security, x, that trades in the market, and a signal, y, that is perfectly correlated to the

fundamental value of x. Further assume that x can always be liquidated at no cost at its fundamental

value, and that x can be traded in continuous units and prices.

We consider discrete time setting with time periods indexed t = 1, 2, . . . being infinitely many and

time between time periods being Λ > 0. Let y be a random variable that follows a compound jump

process, with jump probability λjump per time period. Each time period is divided into two sessions,

and jumps happen at the end of the first session. Jumps are distributed symmetrically with mean 0

and bounded support. The limit of this process when Λ → 0 is consistent with the geometric Brownian

Motion process, which is much more used for modeling equity value evolvement in financial literatures.

The specific distribution of jumps is irrelevant here. Formally, let yt− be the value of y at the first session

of time t, and let yt+ be the value of y at the second session of time t, then y is a random variable such
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that

Pr[yt− − yt+ ̸= 0] = λjump

with the probability density function fy(j) =
d
djFy(j) symmetric around j = 0, where

Fy(j) ≡ Pr[yt− − yt+ ⩽ j|yt− − yt+ ̸= 0].

Let the size of jump that happens at time t be denoted by

Jt = |yt− − yt+ |.

Then this J is also a random variable with a distribution that we call jump-size distribution.

Each jump in y, when it happens, is likely to be observed either privately (by only one player) or

publicly. Let the probability of a jump happens and can only be observed privately per period be λpri

and the probability of a publicly observable jump per period be λpub. The public jump and the private

jump are two mutually exclusive events, i.e. λpri+λpub = λjump. Assume that private jumps and public

jumps have the same jump size distribution.

2.1.2 Players, Orders, and Market Rules

There are four types of strategic players that we consider, the Exchanges, the Trading Firms (TFs), the

Investors, and the Informed Traders.

An Investor is a player with inelastic need to to buy or sell one unit of x, with buying and selling needs

equally probable. This need happens stochastically with the probability of λinv per time period. Investors

seek to maximize their payoff, where the payoff function of an investor is πinvest(p, y) = v+(y− p) when

the need is to buy one unit of x, and πinvest(p, y) = v − (y − p) when the need is to sell one unit of x.

Here, p is the price at which the investor trade x, and y is the signal that represent fundamental value

of x when investor trade; v ≫ 0 represent the inelastic need such that v > |y− p| whenever |y− p| is not

infinity2. This guarantees that it is always optimal for an investor when it arrives the market to trade

immediately, as long as there is liquidity.

TFs and Informed Traders are arbitrageurs and do not have intrinsic needs to buy or sell x. They

seek to maximize their expected payoff y − p when they buy one unit of x, and p − y when they sell

one unit of x. An Informed Trader is the single player that observes a private jump, if one happens.

Informed Trader has definite payoff given a private jump happens. However, TFs has indefinite payoff in

a continuous limit order book (CLOB) exchange given public jump happens, which will be clearer after

elaboration of the CLOB rules and the game setting.

TFs are classified into three categories based on the fastest speed at which they can trade, which has a

one-to-one relationship to the set of speed technology that they possess. There are TFs with no cutting

edge general-purpose speed technology (hereafter referred to as slow TFs), TFs with general-purpose

speed technology but no exchange specific speed technology(ESST)3 (hereafter referred to as fast TFs),

2 |y − p| = ∞ represents the fact that there is no liquidity offered in the market.
3 ESST started to appear in many exchanges with the arising of high frequency trading (HFT). The forms of ESST

include co-location services, network services, proprietary high frequency data feed, etc. This will be discussed upon in the

empirical validation section of this thesis.
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and TFs with ESST (hereafter referred to as TFs with ESST on Xj). Note here that all TFs that

possess ESST for some Exchange(s) must possess general speed technology in the first place. There is no

such speed classification or any other classification for Investors and Informed Traders. Exchanges can

operate under two kinds of market designs, the CLOB design, and the Frequent Batch Auction (FBA)

design. We will set the game for CLOB design exchanges, and discuss what will happen for FBA design

exchanges in Section 3.

TFs, Investors, and Informed Traders can send messages to an Exchange or Exchanges. These

messages can be limit orders - a tuple consists of a specified unit of the security, a “buy/sell” action, and

a specified highest(lowest) price to buy(sell) - or cancellations, to cancel previously placed limit orders4.

Then, according to CLOB rules, each Exchange process these orders serially in the order of their arrival,

construct limit order book with stack of “ask”s (limit sell order prices) and “bid”s (limit buy order

prices), match marketable orders with orders on the book, or eliminate an order from the order book

when processing cancellations. If there are multiple orders arriving at Xj at the same time period, orders

sent by TFs with ESST on Xj will be processed with highest priority, orders by fast TFs and Informed

Traders with second highest priority, and orders by slow TFs and Investors with lowest priority. If there

are orders by agents within the same priority group arriving at Xj at the same time, they are processed

serially in random order. It is also required in this thesis that “each Exchange sell ESST to at least two

TFs or not sell ESST at all” in this thesis, realized in the same manner as in [3]. Thus when there is

only one fast TF with ESST on some exchange Xk, then it is equivalent to the situation where there

is no fast TF with ESST on this exchange. There is no place for slow TFs in equilibria in the CLOB

Exchanges, according to a similar model in [2] Budish, Cramton, and Shim (2015) (hereafter [2]). For

this reason, from now on we will refer to fast TFs simply as TFs, and specify when they possess ESST

of a particular Exchange.

Exchanges earn profit from two sources, charging TFs for using its ESST, and charging trading agents

per-share trading fee when orders are matched and completed. Let the ESST fee be denoted by F and the

per-share trading fee be f . ESST fee take the form of a one-time payment, and per-share trading fee can

have three different structures: the two-sided structure, the maker-taker structure, and the taker-maker

structure. In a two-sided structure, the two counter-parties in a completed trade are both charged f per

share of the transaction; in a maker-taker structure, liquidity maker is charged f , and liquidity taker is

subsidized f ; in a taker-maker structure, it is the other way around. In equilibrium, f will be zero in

the two-sided and the taker-maker structures, and effectively zero in the maker-taker structure.

There are two assumptions that are important to this model, the accessibility and the fungibility of

securities. These assumptions are satisfied in US by the Unites States securities regulation ([3, section

2, pp.7]), and when applying this model to other markets, it is necessary to check whether these two

4 Other kinds of orders such as market orders, immediate or cancel(IOC) orders, etc. as proxies to place limit orders

and cancellations(for example, a market buy order tells the Exchange to place a limit buy order with price equal to the

lowest ask in the current order book, an IOC order tell the Exchange to place a limit order at specified price and cancel

that order at the end of this time period if it still remains in the order book). We model these other types of orders using

explicit combinations of the limit orders and cancellations. That is, no other type of order will be involved in the model in

this thesis.
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assumptions are met. By assumptions 2.2 and 2.1, all messages from players are effectively sent to all

Exchanges simultaneously.

Assumption 2.1 (A.Fungibility). Assume that x can always be traded on any exchange, i.e., the trading

fee f < ∞ on any exchange, regardless of the trading history of x, where it is listed, etc. The fundamental

value of x is also independent of where it is traded5.

Assumption 2.2 (A.Accessibility). Assume that any order on any exchange can be access without

friction at any time. The per share trading fee f must be economically small. Let fij be the per-share

trading fee that Xj charges on entity i (can be an investor or a TF), then fij must be the same for any

i, regardless of any other conditions (e.g. whether i has purchased ESST from Xj or not. Furthermore,

all trading cost on an exchange can be incorporated into F and f , and no other cost will be incurred in

the process (e.g. quoting fee, etc.)6.

2.1.3 The Pregame

All M Exchanges post their per-share trading fees f = (f1, . . . , fM ). This pregame is played one-time

before the following games start.

2.1.4 The Bargaining Game

The bargaining game is an application of the Nash bargaining model in [6, Section II, pp. 170]. This

model is suitable for the situation between the Exchanges and TFs for agreements among them are

interdependent and have externalities.

Only TFs and Exchanges are involved in the bargaining game. Let X be the set of Exchanges on

which x trades, indexed by j = 1, 2, . . . ,M (X = {X1, X2, . . . XM}), and T be the set of fast TFs that

trades x, indexed by j = 1, 2, . . . , N (T = {T1, T2, . . . TN}), where M ⩾ 2 and N ⩾ 3 7.

Let G = T × X be the set of potential relationship between T and X , with elements being ordered

pairs (i, j), representing the relationship that Ti has purchased ESST from Xj . Let Gi,T be the subset

of relationships that involve Ti, and G−i,T be the subset of relationships that does not involve Ti. Define

Gj,X and G−jX analogously. For any subset A ⊆ G, let Ai,T = A ∩ Gi,T , and A−i.T ,Aj,X ,A−j,X be

analogously defined.

Let {πi,T (A)}i=1,...,N ;A⊆G and {πj,X(A)}j=1,...,M ;A⊆G be the expected profit that TFs realize from

arbitrage in trading game per time period, and expected profit that Exchanges realize from transaction

fees per time period, given that a set of ESST user-provider relations A has been formed. Note that

ESST fees are not included in Exchanges’ profit functions. The specific form that these profit functions

take will be discussed in Section 2.4.

5 The regulatory rule Unlisted Trading Privileges (UTP) guarantees that any securities traded in the US satisfy this

assumption.
6 This assumption is satisfied in the US based on a set of rules by Regulation National Market System (Reg NMS).
7 With the assumptions 2.2 and 2.1, X should be all the exchanges in the system that governed by these institutional

regulations. And by considering x as the value-weighted portfolio of all securities in the system, this is a model for the

division of all rents from latency arbitrage in the system.
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For immediate equilibrium to exist, discounting is adopt in this model. Assuming all TFs are faced

with the same discount factor and all Exchanges are are faced with another, denote the discount factors

for TF’s by δT = e−rTΛ, and the discount factors for Exchanges by δX = e−rXΛ, where rT and rX are

risk-free interest rates. Let At be the set of ESST user-provider relationship formed up to time period t

(t included).

In the bargaining game, every pair of Ti and Xj negotiate independently over the lump-sum ESST

fee Fij that Ti pays to Xj to become a possessor of ESST on Xj . Assume that all trading firms are

symmetric, and hence in equilibrium, Fij will be the same for all i with fixed j. For this reason, we use

Fj to represent the ESST fee that Xj charge for all Ti’s in equilibrium.

The bargaining game then runs as a generalized Rubinstein (1982) bargaining game [34]. It begins

in an odd period t0 ⩾ 1 with At0−1 = ∅. In odd periods t, each Exchange Xj proposes simultaneously

{Fij}(i,j)∈Gj,X\At−1 to each Ti with which Xj has a potential relationship but which has not been formed

yet; each Ti received a proposed ESST price then simultaneously decide whether to purchase ESST

at the proposed price or not. In even periods t, each Ti simultaneously offers {Fij}(i,j)∈Gi,T \At−1 to

Exchanges that Ti has a potential relationship with but not formed yet; each Xj received an offer then

simultaneously decide whether to accept or reject this offer. In each period t, if an ESST price offer Fij

is accepted, then the ESST fee is paid from Ti to Xj , and the set of ESST user-provider relationship

At is formed between the two immediately in this period t. During period t, all offer information is

private. At the beginning of the next period t + 1, each TF and Exchange observe the history of play,

including what offers are made and whether they are accepted and rejected, and of course including At,

the formed set of relationships so far. The formed relationship remain formed throughout the rest of

the time. There will be no meaningful strategic play in the bargaining game after any period T where

AT = G.

The trading game then started in the same time period. After the trading game, the expected profit

πi.T (At) and πj,X(At) will be received by Ti and Xj at the end of time t.

2.1.5 The Trading Game

We now review the game setting and equilibrium results of the multi-exchange trading game as in [3,

Section 3.2, pp. 19], with modifications to fit the setting in this thesis. The modifications do not affect

the equilibrium results. All four types of players and nature are involved in the trading game8.

There is a pre-game before the trading games. Then starting from time t0, the trading game starts.

There is one trading game per time period, which is divided into two sessions. The trading game is

repeated infinitely. The discount factors are the same as what is specified in the bargaining game.

Session 1: At the beginning of the trading game at time t, a state vector (yt− ,ωωωt−) is publicly

observed by all players as a common knowledge, where yt− is the signal value, and ωωωt− = (ω1, . . . , ωM )t−

where ωj represents the order book of Xj . All Ti have the chance to send limit orders to all exchanges

8 This game model can also be viewed as an adaptation from the Multiple-Exchange Game in [3, Section 3.2, pp. 19]

by merging the Stage One and Stage Two game into the bargaining Game, turning it from non-cooperative games to a

cooperative game, and from a finite unrepeated game to an infinitely repeated game.
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(recall that this is effectively the case assuming 2.2) to trade up to qi units of x at price better than or

equal to pi (let this limit order be denoted by oij = (qij , pij), or to cancel an order sent before. When

qi > 0, this is a limit buy order, and when qi < 0, this is a limit sell order. Each exchange then serially

process the orders they receive, if there are messages arriving at the same time, ties are broken by speed

category of the TFs sending those messages, and randomly within the speed technology groups. The

order book state then change to ωωωt+ and is observed publicly by all players.

Session 2: Nature moves and there are three events that may happen:

• Event 1: With probability λinv, an investor arrives with demand to trade one unit of x. The

investor can send one message to all exchanges.

• Event 2: With probability λpri, a jump in y happens and yt+ is observed by only a single Informed

Trader. The Informed Trader can send one message to all exchanges.

• Event 3: With probability λpub, a jump in y happens and yt+ is observed publicly by all players.

Each TF can send one limit order or one cancellation message to all exchanges.

Here, Event 2 and Event 3 are mutually exclusive events, Event 1 and Event 2 are independent, and

Event 1 and Event 3 are also independent. We model investor need and jump in y as independent events

here, instead of mutually exclusive events as in [2]. Thus, the probability that there is no event in this

session is 1− λinv − λpri − λpub + λinv(λpri + λpub) ⩾ 0.

Each exchange then serially processes the orders they receive. If there are messages arriving at the

same time, ties are broken by the speed category to which the sender of the message belong, and randomly

within the speed groups. After processing all orders, the order book state is observed by all players,

and yt+ is also observed by all players. All players then have a single opportunity to send cancellation

messages to all Exchanges. Note that it is optimal for all players whose orders remain on the order

book of any Exchange to send cancellation messages due to the Markov property of y. Processing of the

cancellation orders does not affect the equilibrium9. The order book state is then changed to ωωω(t+1)− ,

and the next time period starts.

2.2 Equilibrium Concept

For the solution concept of the trading game, we adopt the pure-strategy order book equilibrium (OBE)

concept, first defined in [3, Appendix A.1, pp.70]. In a word, an OBE is a set of orders such that there is

“no profitable price improvements” and “no robust deviations”. This solution concept take “the presence

of other potential liquidity providers” into account for evaluating profitability of deviation, resulting in

equilibrium where TFs provide liquidity at competitive prices. Explanation for non-existence of MPE

with more detail and formal definition of OBE can be found in [2]. For the solution concept of the

bargaining game, the pure-strategy weak perfect Bayesian equilibrium concept with passive beliefs as

specified in [6, Section II.A, pp.172] is adopted.

9 This is equivalent to the case where all players use immediate-or-cancel orders instead of limit orders.
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2.3 Rubinstein and Nash-in-Nash Prices

We now recall definitions for Nash-in-Nash prices and the generalized Rubinstein prices in [6, Section

II.B, pp.174].

To prepare for the necessary ingredients for the two set of prices, define the marginal contribution

functions derived from the profit functions

∆πi,T (A,B) ≡ πi,T (A)− πi,T (A \ B), B ⊂ A ⊂ G,

and similarly

∆πj,X(A,B) ≡ πj,X(A)− πj,X(A \ B), B ⊂ A ⊂ G.

Definition 2.3 (Rubinstein prices). The Rubinstein prices form a vector {FR
ij,T , F

R
ij,X}{i,j}∈G where

FR
ij,X =

(1− δi,T )∆πi,T (G, {(i, j)})− δi,T (1− δj,X)∆πj,X(G, {(i, j)})
1− δi,T δj,X

,

FR
ij,T =

δj,X(1− δi,T )∆πi,T (G, {(i, j)})− (1− δj,X)∆πj,X(G, {(i, j)})
1− δi,T δj,X

.

Note that in this Rubinstein alternating offer bargaining setting, the strategy for each Exchange is

a set of prices {Fij,X}(i,j)∈Gj,X
that it will offer in odd periods; the strategy for each TF is the set of

prices {Fij,T }(i,j)∈Gi,T
that it will offer in even periods. In equilibrium, Fij,X should make Ti indifferent

between accepting this offer and having its own offer accepted in the next period, vice versa for Fij,T ,

given that (i, j) is the last unformed relationship in G.

Definition 2.4 (Nash-in-Nash prices). The Nash-in-Nash prices are a vector {FNash
ij }{i,j}∈G where

FNash
ij ≡ argmax

p
[∆πj,X(G, {(i, j)}) + p]bj,X × [∆πi,T (G, {(i, j)})− p]bi,T

=
bj,X∆πi,T (G, {(i, j)})− bi,T∆πj,X(G, {(i, j)})

bi,T + bj,X
.

For any i, j such that {(i, j)} ∈ G, the Nash-in-Nash price pNash
ij is the Nash bargaining solution

between Ti and Xj given this relationship is the last one to form in G. The sign of this definition is

inverse of that in [6] because the payment direction is reversed in the TF and Exchange model (i.e., here

the payment goes from TFs to Exchanges, rather than from downstream firm to upstream firms).

By [6, Lemma 2.1, pp.174], Rubinstein prices converge to Nash-in-Nash prices when the time interval

Λ → 0.

2.4 Equilibrium of the Trading Game and Latency Arbitrage, and Flow

Profit Functions for the Bargaining Game

For disposition convenience, we make the following definitions:

Definition 2.5. It is said that σj amount of liquidity of security x is provided on Xj at spread s around y,

if and only if the order book ωj of x on Xj contains limit orders oij = (qij , pij) such that (i)
∑

i:qij>0 qij =

σj, (ii)
∑

i:qij<0 qij = −σj, (iii) pij = y− s
2 , ∀(i, j) s.t. qij > 0, and (iv) pij = y+ s

2 , ∀(i, j) s.t. qij < 0.
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Definition 2.6. s∗ctn is the solution for s to the equation

λinv ·
s

2
= (λpri + λpub)L(s), (1)

where

L(s) ≡ Pr
[
J >

s

2

]
E
[
J − s

2

∣∣∣J >
s

2

]
.

Note that there exists one unique strictly positive solution to this equation, as the left-hand-side of the

equation is a monotone increasing function of s that ranges from 0 to +∞, and the right-hand-side is a

monotone decreasing function of s with an infimum of 0.

s∗ctn is the bid-ask spread that leaves TFs indifferent between providing one unit of liquidity and

sniping other’s stale quotes on any single exchange where all the TFs are in the same speed group and

where the per share trading fee is 0, first deducted in [3, equation (3.1)]. To snipe a stale quote is when

a profitable public jump happens. to try to trade with the quotes at the price before jump. This is

profitable due to the assumption that x can always be liquidated for its fundamental value with no cost.

Proof of this runs as follows. It is profitable for all TFs that are not the liquidity provider to snipe

the stale quote when such a jump happens, and for the liquidity provider with the stale quote to submit

cancellation message at the same time to avoid being sniped. Since all of their orders are with same

processing priority, the conditional probability for one stale quote sniping TF to successfully snipe or for

the liquidity provider to successfully avoid being sniped, is equal to the probability that a certain order

wins over the other N −1 in random tie-breaking. This probability is 1
N , and the conditional probability

that the stale quote is sniped is 1− 1
N = N−1

N . Therefore, the expected payoff of sniping other’s quotes

at spread s is λpubL(s); and the expected payoff of providing liquidity at s is

λinv ·
s

2
−
(
λpri +

N − 1

N
λpub

)
L(s),

the expected gain from trade with investors at spread s, subtract the expected loss from jump. Equating

this and the expected payoff of sniping stale quotes, we have the equation 1.

One important and interesting point to notice is that the equilibrium spread is independent of N ,

the number of TFs. That is, with an arbitrary greater than 1 number of TFs on an Exchange, no matter

how many of them there are, there will be a strictly positive constant liquidity cost (bid-ask spread) and

latency arbitrage prize, which results from the CLOB design. As is argued in [2], inefficiency is built

into the CLOB design and cannot be competed away.

Moreover, the following condition for Exchanges is useful for illustration.

Definition 2.7. Given A a set of relations formed, if for an Exchange j, either (i) all TFs have purchased

ESST from Xj, or (ii) the number of TFs which have purchased ESST from Xj is less than or equal to

1, then Xj is referred to as a fair Exchange. The exchange is said to be unfair otherwise.

If all TFs have purchased ESST on Xk or the number of TFs that have purchased ESST on Xk is no

more than 1, then all TFs will be in the same speed group on this Exchange and the tie-breaking when

processing orders arriving at the same time is fair among all TFs.
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There are 4 equivalent classes of set of ESST use-provider relationships that are of use for solution

of the bargaining aame, and there exists an equilibrium for each one of them in the trading tame. We

describe the equilibria, the equilibria payoff for TFs and Exchanges, and illustrate proofs for them one

by one.

Proposition 2.8. Assume M ⩾ 3 and N ⩾ 3. For any time t such that all Exchanges are fair exchanges

as defined in Definition 2.7, for any vector of market shares σσσ∗ = (σ∗
1 , . . . , σ

∗
M ) where

∑
j σ

∗
j = 1, there

exists an equilibrium of the trading game specified as follows:

Pre-game: Xj’s simultaneously post per share trading fees f∗
j = 0,∀ j;

Session 1:
σ∗
j∑

j∈arg mink fk
σ∗
k
of total liquidity is provided on Xj such that j ∈ argminj fj at spread

s∗ctn around yt− . There may be arbitrary units of x offered at arbitrary spread that is out of J ’s support.

Session 2:

- When an investor arrives, he/she immediately sends orders for
σ∗
j∑

j∈arg mink(
sk
2

+fk)
σ∗
k
units of x to

Xj (j ∈ argminj fj) at marketable price in those exchanges.

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by a single Informed Trader,

the Informed Trader immediately sends orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞).

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by all players, all TFs,

regardless of speed group, immediately send orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞);

all TFs with outstanding orders on any Exchange with ask prices < yt+ −fj or bid prices > yt+ +fj

immediately send cancellation messages for all such orders.

After the above messages are processed, and yt+ observed by all players, they simultaneously send can-

cellation messages for all orders that they have post earlier and still remain on the order book of any

Exchange.

In this equilibrium, the profit to Exchanges is

πj,X(At) = 0, ∀ j ∈ {1, . . . ,M}; (2)

and the expected profit to TFs is

πi,T (At) =
1

N
λpubL(s

∗
ctn) ≡

Π∗
ctn

N
, ∀ i ∈ {1, . . . , N}. (3)

The proof of this proposition can be done by rejecting all profitable deviation.
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Proof. We first consider the deviation by some Xk to post per share trading fee fk ̸= 0. First, note that

the payoff function for Exchanges given the trading game equilibrium is

uk(fk) =



σ∗
k∑

j∈arg minj fj
σ∗
j
× fj × (λinv + λjump − λinvλjump), if j ∈ argminj fj

0, if j /∈ argminj fj

and the payoff in proposed equilibrium is 0. Posting fk < 0 is not profitable because it will render weakly

negative payoff. Posting fk > 0 is also not profitable because it will leave k /∈ argminj fj = {j : fj = 0},

resulting in 0 payoff. This subgame is a Bertrand price competition, where in equilibrium prices are

competed to the lowest possible value, which is 0 in this case due to the money-pump restriction [3,

pp.26].

We then consider the possible deviations by some Th in Session 1. (i) It is either not profitable or

not a robust profitable deviation for Th to offer liquidity on any Xj such that j /∈ argminj fj . Because

of higher cost of trading fee, higher spread should be taken in such Xj ’s to render strictly higher profit.

Then if there is already no less than one unit of x offered in the Exchanges with minimum trading fee, no

investor will trade with the additional liquidity offered at wider spread. If the total unit of x offered in

the Exchanges with minimum trading fee is less than one, then there will be safe price improvement by

other TFs to provide the remaining unit in the Exchanges with minimum trading fee at the breakeven

spread, which will make the deviation in question no longer profitable.

(ii) It is not a robust deviation for Th to offer additional units of x on any Exchange Xj such that

j ∈ argminj fj at spread s∗ctn. Since then there will be more than one unit of x offered, probability that

the liquidity will be taken by an investor will be strictly less than 1, but the expected loss from being

sniped will stay the same, resulting in a strictly smaller expected payoff for Th. (iii) It is not profitable

for Th to offer additional units of x on any Exchange Xj such that j ∈ argminj fj at a spread s′ > s∗ctn.

The additional liquidity with wider spread will never be taken by investors but the expected loss from

being sniped stays the same, resulting in strictly negative expected payoff. (iv) It may be profitable for

Th to offer additional l ⩽ 1 units of x on an Exchange Xj such that j ∈ argminj fj at a spread s′ < s∗ctn

but it is not a safe profitable price improvement. Note that there exists some ε > 0, such that[
λinv

s∗ctn − ε

2
−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn − ε)

]
· l + 1

N
λpubL(s

∗
ctn) >

1

N
λpubL(s

∗
ctn),

i.e. λinv
s∗ctn − ε

2
−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn − ϵ) > 010.

To provide l ⩽ 1 liquidity at spread s∗ctn − ε is profitable because narrower spread guarantees that the

liquidity will be taken, and Xh still has the opportunity to snipe other TFs quotes at the spread s∗ctn.

But to respond to this price improvement, other TFs can withdraw l units of liquidity that they offer,

resulting in expected payoff of Xh being reduced to[
λinv

s∗ctn − ε

2
−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn − ε)

]
· l < 1

N
λpubL(s

∗
ctn),

10 Since λpri +
N−1
N

λpub < λpri + λpub, the solution to λinv
s
2

=
(
λpri +

N−1
N

λpub

)
L(s) is strictly smaller than the

solution to λinv
s
2
= (λpri + λpub)L(s).
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and this price improvement is no longer profitable.

(v) It is not a robust deviation for Th to change the bid or ask prices in any of its order to a price at

spread s′ > s∗ctn. This deviation is profitable because

λinv
s′

2
−
(
λpri +

N − 1

N
λpub

)
L(s′) > λinv

s∗ctn
2

−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn).

The order will be taken by investors at a probability 1 with strictly larger gain and the expected loss

from being sniped will be strictly smaller. Yet if it does, other TFs can engage in safe profitable price

improvement by offering the quantity of liquidity at spread s∗ctn on exchanges where price is not at spread

s∗ctn in the deviation. This response is profitable because from this particular quantity of liquidity, the

expected payoff by making this response

λinv
s∗ctn
2

−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn) +

1

N
λpubL(s

′),

is strictly greater than 1
N λpubL(s

′), the expected payoff by not making this response, and the expected

payoff for the rest of the liquidity stays the same; it is safe because the expected payoff from this response

on this particular quantity of liquidity even if the deviating TF(s) withdraw(s) that liquidity, as

λinv
s∗ctn
2

−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn) =

1

N
λpubL(s

∗
ctn)

is still strictly greater than 1
N λpubL(s

′), i.e. the deviation still remains profitable.

(vi) It is not profitable for Th to change the bid or ask price in any of his equilibrium order to a price

at spread s′ < s∗ctn because

λinv
s′

2
−
(
λpri +

N − 1

N
λpub

)
L(s′) < λinv

s∗ctn
2

−
(
λpri +

N − 1

N
λpub

)
L(s∗ctn).

(vii) It is not profitable for Th to offer less quantity than what it offers in the equilibrium because

the profit from providing liquidity λinv
s∗ctn
2 −

(
λpri +

N−1
N λpub

)
L(s∗ctn) is strictly positive.

Due to inelasticity of demand, investors, when they arrive, cannot be better off by waiting instead

of trading immediately. It is also not profitable to take on any other unit vector because any σj > σ∗
j

units of x, if any, is at a much wider spread. As for Informed Traders, it is obvious that there is no

profitable deviations since the strategy as described realizes the maximum possible expected payoff for

the Informed Traders∑
j

λpriPr

[
J >

s∗ctn
2

+ fj

]
E

[
J − s∗ctn

2
− fj

∣∣∣J >
s∗ctn
2

+ fj

]
,

given the other players’ strategies in the trading game. The same goes for TFs in Session 2. It is always

more profitable to try to snipe than not to, and to try to cancel the stale quotes than not to. At last it

is optimal for all players to cancel all remaining orders on the order book at the end of the game because

of the Markov property of y.

Therefore, there is neither safe profitable price improvements nor robust deviations for any players

given this strategy profile, and such a strategy profile is an OBE of the trading game. In this equilibrium,

profit to any Exchange is 0 because the only source of their profit would be fj ’s. Profit to any TF is

equal to expected payoff from sniping quotes or providing liquidity at spread s∗ctn.

15



In particular, we have

πj,X(G) = 0, ∀ j ∈ {1, . . . ,M}; (4)

and

πi,T (G) =
1

N
λpubL(s

∗
ctn) ≡

Π∗
ctn

N
, ∀ i ∈ {1, . . . , N}. (5)

We now consider any other time t when not all Exchanges are fair. This is equivalent to saying that

there is some TF who has not purchased ESST from all Exchanges, inheriting the name in [3], such a TF

Tk is called a lone-wolf. We first consider the situation where there is only one lone-wolf TF and there

is only one unfair Exchange left (which is going to be fair if the lone-wolf TF purchase ESST from it).

Proposition 2.9. Assume M ⩾ 3 and N ⩾ 3, for any time t such that there is exactly one Xj0 for

which |At
j0
| = N − 1 and for all j ̸= j0, |At

j | = Nor |At
j | ⩽ 1, let i /∈ At

j0
be i0, for any vector of market

shares σσσ∗ = (σ∗
1 , . . . , σ

∗
M ) where

∑
j σ

∗
j = 1, there exists an equilibrium of the trading game specified as

follows:

Pre-game: All Xj’s simultaneously post per share trading fees f∗
j = 0,∀ j;

Session 1: With sN , s̃i0(fj0), and s̃−i0(fj0) defined as below, assuming sN < s̃i0(fj0) < s̃−i0(fj0)+

2fj0 , (i) when s̃i0(fj0) ⩽ s∗ctn, Ti0 provides
σ∗
j∑

j∈arg mink fk,j ̸=j0
σ∗
k
of liquidity on Xj (j ̸= j0)’s at spread

s̃i0(fj0) around yt− , and no liquidity is provided on Xj0 ; (ii) when s̃i0(fj0) > s∗ctn,
σ∗
j∑

j∈arg mink fk,j ̸=j0
σ∗
k
of

liquidity is provided on Xj (j ̸= j0)’s at spread s∗ctn by arbitrary set of TFs, and no liquidity is provided

on Xj0 . There may be arbitrary units of x offered at an arbitrary spread that is out of J ’s support on

any exchange(s). The strategy given sN < s̃i0(fj0) < s̃−i0(fj0) does not hold is irrelevant.

Session 2:

- When an investor arrives, it immediately sends orders for
σ∗
j∑

j∈arg mink(fk+
sk
2 )

σ∗
k
units of x to Xj at

marketable price in that exchange, ∀ j such that j ̸= j0; or if liquidity is only provided on Xj0 , then

investor sends order for 1 unit of x to Xj0 at marketable price.

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by a single Informed Trader,

the Informed Trader immediately sends orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞).

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by all players, all TFs,

regardless of speed group, immediately send orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞);

16



all TFs with outstanding orders on any Exchange with ask prices < yt+ −fj or bid prices > yt+ +fj

immediately send cancellation messages for all such orders.

After the above messages are processed, and yt+ observed by all players, they simultaneously send can-

cellation messages for all orders that they have post earlier and still remain on the order book of any

Exchange.

The spread sN is the solution to the equation

λinv
sN

2
−
(
λpri +

N − 1

N
λpub

)
L (sN ) = 0 (6)

The spread s̃i0(fj0) is the solution to the equation

1

N
λpubL(s̃i0 (fj0 ))

=λinv

(
s̃i0 (fj0 )

2
− 2fj0

)
−
(
λpri +

N − 2

N − 1
λpub

)
Pr

[
J >

s̃i0 (fj0 )

2

]
E

[
J −

s̃i0 (fj0 )

2
+ 2fj0

∣∣∣J >
s̃i0 (fj0 )

2

]
.

(7)

The spread s̃−i0(fj0) is the solution to the equation

1

N − 1
λpubPr

[
J >

s̃−i0 (fj0 )

2
+ fj0

]
E

[
J −

s̃−i0 (fj0 )

2
− fj0

∣∣∣J >
s̃−i0 (fj0 )

2
+ fj0

]
=λinv

(
s̃−i0 (fj0 )

2
− fj0

)
−
(
λpri +

N − 2

N − 1
λpub

)
Pr

[
J >

s̃−i0 (fj0 )

2
+ fj0

]
E

[
J −

s̃−i0 (fj0 )

2
+ fj0

∣∣∣J >
s̃−i0 (fj0 )

2
+ fj0

]
.

(8)

In this equilibrium, the expected profit to Exchanges is

πj,X(At) = 0, ∀ j ∈ {1, . . . ,M}; (9)

the expected profit to TFs is

πi0,T (At) =
1

N

N − 2

N − 1
λpubL(s̃N ) ∈

(
N − 2

N − 1

Π∗
ctn

N
,
Π∗

ctn

N

)
(10)

for the lone-wolf TF i0, and

πi,T (At) =
1

N
λpubL(s̃N ) ∈

(
Π∗

ctn

N
,
N − 1

N − 2

Π∗
ctn

N

)
, ∀ i ∈ {1, . . . , N} \ {i0} (11)

for all other TFs, where s̃N is but a more convenient way to denote s̃N (0).

Note that this situation is a special case of all cases where there are lone-wolf TF(s). The proof of

this proposition is thus very similar to the proof of Lemma A.2 (”Lone-Wolf Lemma”) in [3, Section

A.2.2, pp.74]. The two propositions are different in that (i) the condition of f = 0 is given as preliminary

in the said Lemma but it is a result of equilibrium here; (ii) the profit bound derived here is different

from that in [3], and it will be shown that the one derived in this thesis is correct.

We first explain the meaning of the three kinds of spread that are important to this proposition.

Equation (6) is the breakeven condition for Ti0 . At any spread s greater than sN , lone-wolf TF Ti0

will be willing to provide liquidity, and it would prefer providing liquidity at this spread s and earn

positive profit, if not providing liquidity leads to liquidity not provided on Xj (j ̸= j0)’s at all.

Solution s̃i0(fj0) to equation (7) is the spread thatleave any non-lone-wolf TF indifferent between

sniping Ti0 in fair exchanges at spread s̃i0(fj0) and providing liquidity in the one unfair exchanges Xj0
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at spread s̃i0(fj0)− 2fj0 . To see this, note that the left hand side of equation (7) is the total profit that

each Ti, (i ̸= i0) can get from sniping Ti0 on Xj (j ̸= j0), where the bid ask spread is s̃i0(fj0) and all

Xj (j ̸= j0) has zero transaction fee. The right hand side is the expected net profit that some Ti (i ̸= i0)

can get being the sole liquidity provider on Xj0 , providing liquidity at spread s̃i0(fj0) − 2fj0 . The first

term is the profit from investor, and the second is the loss from being sniped.

As for equation (8), it is the condition for Ti (i ̸= i0)’s to be indifferent between sniping and providing

liquidity on Xj0 . The left hand side is the expected profit that each Ti, (i ̸= i0) can get from sniping

other liquidity providers on Xj0 , where the bid ask spread is s̃−i0(fj0) and the transaction fee on Xj0 is

fj0 . On the right hand side, it is the expected net profit that each Ti, (i ̸= i0) can get from being the

sole liquidity provider on Xj0 , with trading fee fj0 and bid-ask spread s̃−i0(fj0). The solution to this

equation thus leave Ti (i ̸= i0)’s indifferent between sniping and providing liquidity on Xj0 .

Proof. We first consider the deviation by some Xk, k ̸= j0 to post per share trading fee fk > 0. This

deviation is not profitable given the strategy of TFs and Investors. We then consider the deviation by Xj0

to post per share trading fee fj0 > 0. First note that any fj0 > 0 such that sN < s̃i0(fj0) < s̃−i0(fj0)+2fj0

will not result in any profit for Xj0 , because in all circumstances liquidity will not be provided and traded

onXj0 . Now we show that this condition always holds and strategies under the condition that this relation

does not hold will never be reached by changing fj0and thus does not affect the equilibrium.

Fix fj0 = f , by (6), we have

λinv
sN

2
=

(
λpri +

N − 1

N
λpub

)
L (sN ) .

By (7), we have

λinv
s̃i0 (f)

2
=2λinvf +

1

N
λpubPr

[
J >

s̃i0 (f)

2

]
E

[
J −

s̃i0 (f)

2

∣∣∣J >
s̃i0 (f)

2

]
+

(
λpri +

N − 1

N − 2
λpub

)
Pr

[
J >

s̃i0 (f)

2

](
E

[
J −

s̃i0 (f)

2

∣∣∣J >
s̃i0 (f)

2

]
+ 2f

)
=

(
λpri +

N(N − 1)− 1

N(N − 1)
λpub

)
L(s̃i0 (f)) + 2

[
λinv + Pr

[
J >

s̃i0 (f)

2

](
λpri +

N − 2

N − 1
λpub

)]
f

>

(
λpri +

N(N − 1)− 1

N(N − 1)
λpub

)
L(s̃i0 (f))

>

(
λpri +

N − 1

N
λpub

)
L(s̃i0 (f)).

By (8), we have

λinv

(
s̃−i0 (f)

2
+ f

)
= 2λinvf +

1

N − 1
λpubL(s̃−i0 (f) + 2f)

+

(
λpri +

N − 2

N − 1
λpub

)(
L(s̃−i0 (f) + 2f) + 2Pr

[
J >

s̃−i0 (f)

2
+ f

]
f

)
= (λpri + λpub)L(s̃−i0 (f) + 2f) + 2

[
λinv + Pr

[
J >

s̃−i0 (f)

2
+ f

](
λpri +

N − 2

N − 1
λpub

)]
f

>

(
λpri +

N(N − 1)− 1

N(N − 1)
λpub

)
L(s̃i0 (f) + 2f) + 2

[
λinv + Pr

[
J >

s̃i0 (f)

2
+ f

](
λpri +

N − 2

N − 1
λpub

)]
f

Since λinv

2 x is increasing with respect to x and C · L(x) + D is decreasing in x given exogenous

variables C and D, the above equations determine unique sN , s̃i0(fj0), s̃−i0(fj0) + 2fj0 and by the

pairwise comparison of the right hand side of the equations, we have

sN < s̃i0(f) < s̃−i0(f) + 2f, ∀ f.
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Also, since s∗ctn is just the solution to (8) when f = 0, s∗ctn < s̃−i0(f), ∀ f > 0.

Now that the pre-game action is well justified, the rest of the proof of the equilibrium part of this

proposition is the same as [3, pp.74].

We now proceed to the proof of profit in equilibrium.

By taking f = 0 in (7), and denote s̃i0(0) by s̃N for illustration convenience, we have

λinv
s̃N
2

=

(
λpri +

N(N − 1)− 1

N(N − 1)
λpub

)
L(s̃N ). (12)

Now, by providing liquidity at spread s̃N on fair exchanges, the profit earned by the lone-wolf TF is

πi0,T (At) = λinv
s̃N
2

−
(
λpri +

N − 1

N
λpub

)
L(s̃N ). (13)

Plugging (12) in, we have

πi0,T (At) =

(
λpri +

N(N − 1)− 1

N(N − 1)
λpub

)
L(s̃N )−

(
λpri +

N − 1

N
λpub

)
L(s̃N ) (14)

=

(
N(N − 1)− 1

N(N − 1)
− N − 1

N

)
λpubL(s̃N ) (15)

=
1

N

N − 2

N − 1
λpubL(s̃N ). (16)

Now since the function L(·) is decreasing, and s̃N < s∗ctn, we have

πi0,T (At) ∈
(
N − 2

N − 1

Π∗
ctn

N
,
Π∗

ctn

N

)
.

The lower bound is derived from (14) and the upper bound from (13). Now the profit that all the other

N − 1 none-lone-wolf Ti’s profit from sniping Ti0 is

π−i0,T (At) =
1

N
λpubL(s̃N ).

Then,

π−i0,T (At) ∈
(
Π∗

ctn

N
,
N − 1

N − 2

Π∗
ctn

N

)
.

Remark 2.10. There are three points to notice for this proposition.

1. In particular, when At
i,T = Gi,T , ∀ i ̸= i0, for all i,

πi,T (G \ {i, j}) = 1

N

N − 2

N − 1
λpubL(s̃N ) ∈

(
N − 2

N − 1

Π∗
ctn

N
,
Π∗

ctn

N

)
, ∀ j; (17)

πk,T (G \ {i, j}) = 1

N
λpubL(s̃N ) ∈

(
Π∗

ctn

N
,
N − 1

N − 2

Π∗
ctn

N

)
, ∀k ̸= i, ∀ j; (18)

and

πh,X(G \ {i, j}) = 0, ∀h ∈ {1, . . . ,M}, ∀ (i, j). (19)

We denote

πLW
N ≡ πi,T (G \ {i, j}) = 1

N

N − 2

N − 1
λpubL(s̃N )

from now on.

19



2. The expected profit for the lone-wolf TF is strictly less than the expected profit it could have been

collected if it made another purchase to make all Exchanges fair, while the expected profit for all

other TFs is greater than the amount they can get if all Exchanges are fair. By exerting the threat

to offer liquidity only on the unfair Exchange Xj0 , the none-lone-wolf TFs gain more power than

the lone-wolf and manage to gain more from the game. The Exchange whose existence enables this

threat gain profit only from selling ESST to all none-lone-wolf TFs through the bargaining game to

share the surplus.

3. Now expected profit earned by all TFs is

πi0,T (At) + (N − 1)π−i0,T (At) =
1

N

N − 2

N − 1
λpubL(s̃N ) +

N − 1

N
λpubL(s̃N )

=
N(N − 1)− 1

N(N − 1)
λpubL(s̃N )

< λpubL(s̃N ).

This fact is surprising because λpubL(s̃N ) is the gross latency arbitrage prize that is created by

TFs, and no profit has gone anywhere else - exchanges realizing positive trading fee, for instance.

Nevertheless, the total profit that all TFs gain is strictly less than the gross prize they create, in fact,

exactly a portion of 1
N(N−1) of the prize is lost. It could be an interesting topic to investigate the

reason for this loss, and the possibility of further reducing this total profit by further diversification

in the portfolio of each TF’s ESST providers, to allow for more lone-wolves and more room for

check among them.

We now investigate the equilibrium where there is still only one lone-wolf TF and the number of

exchanges with which it does not has ESST provider-purchaser relationship is more than 1.

Proposition 2.11. Assume M ⩾ 3 and N ⩾ 3. For any time t such that At
i,T contains the same set

of exchanges for all i ̸= i0, At
i0,T

⊂ At
i,T is the proper subset, and |At

i0,T
| ∈ [1,M − 2], for any vector

of market shares σσσ∗ = (σ∗
1 , . . . , σ

∗
M ) where

∑
j σ

∗
j = 1, there exists an equilibrium of the trading game

exactly the same as the one above.

Proof is similar to the one for proposition 2.9. It is actually much simpler because now the action by

exchanges to post zero trading fee is justified by the price competition among themselves. From this we

have that in particular (when At
i,T = Gi,T , ∀ i ̸= i0), ∀ i,

πi,T (G \ A) =
1

N

N − 2

N − 1
λpubL(s̃N ) ∈

(
N − 2

N − 1

Π∗
ctn

N
,
Π∗

ctn

N

)
, ∀A ⊆ Gi,T . (20)

πk,T (G \ A) =
1

N
λpubL(s̃N ) ∈

(
Π∗

ctn

N
,
N − 1

N − 2

Π∗
ctn

N

)
, ∀k ̸= i, ∀A ⊆ Gi,T ; (21)
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and

πh,X(G \ A) = 0, ∀h ∈ {1, . . . ,M}, ∀A ⊆ Gi,T . (22)

Last, we consider a situation where there the lone-wolf is not TF but Exchange. Consider the set

of relationship where there is one lone-wolf exchange for which the number of formed relationship with

TFs is greater than or equal to 1 but less than the number connections all other exchanges.

Proposition 2.12. Assume M ⩾ 3, N ⩾ 3. For any time t such that At
j,X contains the same set of

TFs for all j ̸= j0, At
j0,X

⊂ At
j,X is a proper subset, and |At

j0,X
| ∈ [2, N − 2], for any vector of market

shares σσσ∗ = (σ∗
1 , . . . , σ

∗
M ) where

∑
j σ

∗
j = 1, there exists an equilibrium of the trading game specified as

follows:

Pre-game: All Xj’s simultaneously post per share trading fees f∗
j = 0;

Session 1: Define Nj0 = |At
j0,X

|. With s̃N,Nj0
(fj0) defined as below, Ti’s which do not purchase

ESST from Xj0 collectively provides
σ∗
j∑

j∈arg mink fk,j ̸=j0
σ∗
k
of liquidity on Xj (j ̸= j0)’s at spread s̃N,Nj0

(fj0)

around yt− , and no liquidity is provided on Xj0 . There may be arbitrary units of x offered at an arbitrary

spread that is out of J ’s support on any arbitrary Exchange(s).

Session 2:

- When an investor arrives, it immediately sends orders for
σ∗
j∑

j∈arg mink(fk+
sk
2 )

σ∗
k
units of x to Xj at

marketable price in that exchange, ∀ j such that j ̸= j0; or if liquidity is only provided on Xj0 , then

investor sends order for 1 unit of x to Xj0 at marketable price.

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by a single Informed Trader,

the Informed Trader immediately sends orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞).

- If J > s
2 + fj happens for some s ⩾ 0 and some j, and is observed by all players, all TFs,

regardless of speed group, immediately send orders to sell infinite units of x to Xj at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fj), or to buy infinite units of x to Xj at yt−+

s
2 when yt+−yt− ∈ ( s2+fj ,∞);

all TFs with outstanding orders on any Exchange with ask prices < yt+ −fj or bid prices > yt+ +fj

immediately send cancellation messages for all such orders.

After the above messages are processed, and yt+ observed by all players, they simultaneously send can-

cellation messages for all orders that they have post earlier and still remain on the order book of any

Exchange.
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The spread s̃N,Nj0
(fj0) is the solution to the equation

1

N
λpubL(s̃N,Nj0

(fj0 ))

=λinv

(
s̃N,Nj0

(fj0 )

2
− 2fj0

)
−
(
λpri +

Nj0 − 1

Nj0

λpub

)
Pr

[
J >

s̃N,Nj0
(fj0 )

2

]
E

[
J −

s̃i0 (fj0 )

2
+ 2fj0

∣∣∣J >
s̃N,Nj0

(fj0 )

2

]
.

(23)

In this equilibrium, the expected profit to Exchanges is

πj,X(At) = 0, ∀ j ∈ {1, . . . ,M}; (24)

the expected profit to TFs is

πi,T (At) =


2Nj0

−N

Nj0
λpubL(s̃N,Nj0

), Ti does not purchase ESST from Xj0 ;

1
N λpubL(s̃N,Nj0

), otherwise,

(25)

where s̃N,Nj0
≡ s̃N,Nj0

(0).

Proof of this is again similar to proof of proposition 2.9. The only point that needs more justification

is that despite that in this situation providing liquidity is actually less profitable than sniping on the

same set of exchanges, given the formed equilibrium, none of the TFs which do not purchase ESST from

Xj0 would withdraw their liquidity provision. This is justified by the fact that s̃N,Nj0
> sN .

Now note that for any set of relationships formed, at equilibrium, all Exchanges will post zero trading

fee. This is true because positive trading fee would not only increase the cost to provide liquidity, but

also the cost to snipe. For any j, either it is fair, or it is unfair. If it is fair and other exchanges are also

fair, then it has to post zero trading fee because of Bertrand competition; if it is fair and other exchanges

are unfair, then trading on Xj already costs more than trading on other exchanges, and posting positive

trading fee would not encourage any TF to provide liquidity on it. If Xj is unfair and all other exchanges

are fair, then according to proposition 2.9 it will post zero trading fee. In fact, in this case, the advantage

of the unfairness is taken by the lone-wolf TF by offering narrower bid-ask spread, and there is no surplus

left for the exchange. This can also generalize to the situation where Xj is unfair, there are other unfair

exchanges, but trading on them are more expensive than trading on Xj . If Xj is unfair, there are other

unfair exchanges, and trading on them are the same or less expensive than trading on Xj , it is also not

profitable to charge positive trading fee because again this will only increase the cost to trade on it.

2.5 Equilibrium of the Bargaining Game

Now we are ready to derive all the marginal contribution functions that is needed in the bargaining

model.

∆πi,T (G, A) =
1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
=

Π∗
ctn

N
− πLW

N , ∀A ⊆ Gi,T , A ̸= Gi,T ;

∆πi,T (G, Gi,T ) =
1

N
λpubL(s

∗
ctn) =

Π∗
ctn

N
;

∆πj,X(G, A) = 0, ∀A ⊆ Gj,X .
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With these flow profit functions well defined, we have the Nash-in-Nash price in the particular bar-

gaining game we defined in this thesis being

FNash
ij =

bj,X∆πi,T (G, {i, j})− bi,T∆πj,X(G, {i, j})
bi,T + bj,X

=
bj,X

bi,T + bj,X

1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
.

Assuming that the TFs and the Exchanges are facing same risk-free rate, we have bj,X = bi,T ,∀ i, j.

Denoting this Nash-in-Nash price by FNash
j , then

FNash
j =

1

2

1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
.

We go on to check whether the assumptions raised in [6] are satisfied in this specific setting, which

generally are useful when combined in particular ways for existence of an equilibrium in the bargaining

game .

i. The assumption A.GFT (Gains from trade) is satisfied.

∆πi,T (G, {i, j}) + ∆πj,X(G, {i, j}) = 1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
> 0, ∀ {i, j} ∈ G.

ii. For Exchanges, the assumption A.SDCMC (strong conditional decreasing marginal contribution)

is satisfied. And thus by Lemma 3.3 [6], A.WCDMC (weak conditional decreasing marginal con-

tribution) and A.FEAS (feasibility) are also satisfied.

A.SCDMC is satisfied as for all {i, j} ∈ G, B ⊆ G−i,T and A,A′ ⊆ Gi,T \ {i, j},

πj,X(A ∪ B ∪ {i, j})− πj,X(A′ ∪ B) = 0 = ∆πj,X(G, {i, j}.

iii. For TFs, A.WCDMC is not satisfied, and thus by Lemma 3.3 [6], A.SCDMC is not satisfied either.

Fix i, note that for A = {{i, j}, {i, k}} ⊆ Gi,T ,

∆πi,T (G,A) =
1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
,

∆πi,T (G, {i, j}) + ∆πi,T (G, {i, k}) =
2

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
> ∆πi,T (G,A).

iv. For TFs, A.FEAS is satisfied11 if and only if∑
j: σ∗

j>0

FNash
j ⩽ Π∗

ctn

N
−max{0, πLW

N −min
j

FNash
j }. (26)

Proof. ((26)⇒A.FEAS for TFs) For any i, ∀A ⊂ Gi,T , assume (26), then

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ max{0, πLW

N −min
j

FNash
j }.

11 The sign for Nash-in-Nash price in A.FEAS condition for our setting is inverse of the original A.FEAS condition, since

the payment direction is reversed heret.
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That is,

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ 0, and

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ πLW

N −min
j

FNash
j .

Now from the first inequality

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ 0 ⇔ ∆πi,T (G,Gi,T ) ≡

Π∗
ctn

N
− 0 ⩾

∑
{i,j}∈Gi,T

FNash
j ;

and from the second inequality we have

Π∗
ctn

N
− πLW

N ⩾
∑

j: σ∗
j>0

FNash
j −min

j
FNash
j ,

where the right-hand-side is the sum of the largest M − 1 items in {Fj}j∈Gi,T
, and thus

∆πi,T (G,A) ≡ Π∗
ctn

N
− πLW

N ⩾
∑

{i,j}∈A

FNash
j , ∀A ⊂ Gi,T , A ̸= Gi,T .

Combine the two derived inequalities, we have that for any i and any A ⊂ Gi,T

∆πi,T (G,A) ⩾
∑

{i,j}∈A

FNash
j .

(A.FEAS for TFs ⇒ (26)) Fix i. Since Gi,T ⊆ Gi,T , by A.FEAS we have

Π∗
ctn

N
= ∆πi,T (G,Gi,T ) ⩾

∑
{i,j}∈Gi,T

FNash
j =

∑
j: σ∗

j>0

FNash
j .

Also, take j0 = argminj F
Nash
j (this in fact can be any j in our setting), since Gi,T \ {i, j0} ⊆ Gi,T ,

by A.FEAS we have

Π∗
ctn

N
− πLW

N =
1

N
λpub

[
L(s∗ctn)−

N − 2

N − 1
L(s̃N )

]
=∆πi,T (Gi,T ,Gi,T \ {i, j0})

⩾
∑
j ̸=j0

FNash
j

=
∑

j: σ∗
j>0

FNash
j −min

j
FNash
j .

Therefore,

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ 0, and

Π∗
ctn

N
−

∑
j: σ∗

j>0

FNash
j ⩾ πLW

N −min
j

FNash
j ,

and hence (26).

Recall that equilibrium existence result in [6] says that (i) when A.GFT holds, A.FEAS holds for one

side of the market, and A.SCDMC holds for the other side of the market, then “there exists a Nash-

in-Nash limit equilibrium in which all agreements in G immediately form” ([6, theorem 3.4, pp.180]);

and (ii) if A.FEAS does not hold, then “a Nash-in-Nash limit equilibrium in which all agreements in G

immediately form does not exist” ([6, theorem 3.2, pp.180]).
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Then according to the what we have checked above, it can be argued that given the setting of the

Trading Game, there exists a Nash-in-Nash limit equilibrium in which all TFs purchase ESST from all

Exchanges immediately, if and only if (26) holds. Note that (26) is also the sufficient condition for there

to exist an equilibrium of the multi-exchange game in [3, proposition 3.2, pp.23]. Then in the sense of

equilibrium existence condition, the two game settings are equivalent.

Now note that if plugging in the Nash-in-Nash price, the first condition among the two implied by

26 (and thus by A.FEAS) translates into

L(s̃N )

L(s∗ctn)
⩾ M − 2

M

N − 1

N − 2
,

which always holds by definition of L(·) and its decreasing property; the second condition translates

into M−1
2 ⩽ 1 ⇔ M ⩽ 3. The necessary condition of existence of an immediate all-relationship-formed

equilibrium is satisfied only when the number of exchanges is no greater than three. That is, if there

are more than three exchanges in the market, at least under the bargaining game setting, an equilibrium

where all TFs purchase ESST from all Exchanges immediately does not exist.

3 ‘Nash-in-Nash’ Bargaining with Existence of Discrete Ex-

change(s)

With everything else stay the same as the model described above, a discrete exchange is one that takes on

the frequent batch auction (FBA) rules instead of the CLOB rules. The exact description for FBA rules

can be found in [3, Section 5.1.1, pp.48]. The major difference in setting is that in the FBA exchange,

orders are not processed serially (continuously), but in batches (discretely) every small interval. This

interval is small enough to distinguish TFs in slow, fast, and ESST speed categories, but large enough

to ensure that all messages sent at the same time point by fast TFs with ESST of this exchange can be

processed in the same batch. This ensures that when a public jump happens, liquidity provider attempts

to cancel its stale quote while other TFs attempts to snipe, the cancellation can always succeed (jumps

that can be observed by only one TF is not relevant). Therefore, in an exchange with such rules, there

will be no gain from public jump and arbitrage.

With the bargaining approach, the rent devision can be viewed in a more clear-cut manner with the

trading game itself. It then follows naturally that with existence of one or more discrete exchange(s),

the ESST fee, which is the slice of the arbitrage rent pie that exchanges get, will be zero. To show this,

we still need several profit functions for TFs and Exchanges.

Definition 3.1. Let s∗dis(f) be the solution to the following equation

λinv

(s
2
− f

)
− λpriPr

[
J >

s

2
+ f

]
E
[
J − s

2
+ f

∣∣∣J >
s

2
+ f

]
= 0,

and in particular, denote s∗dis(0) by s∗dis.

Proposition 3.2. Consider a situation where there is only one discrete exchange, let this exchange be

Xj0 . Let there be at least one continuous exchange. Then at any time point t, with arbitrary set of rela-
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tionship formed by Xj and the continuous excahgnes, for any vector of market shares σσσ∗ = (σ∗
1 , . . . , σ

∗
M )

where
∑

j σ
∗
j = 1, there exists an equilibrium of the trading game specified as follows:

Pre-game: Xj(’s) simultaneously post(s) per share trading fee f∗
j = 0,∀ j ̸= j0; Xj0 posts per share

trading fee f∗
j0,dis

> 0 such that

s∗dis < s∗dis(f
∗
j0,dis) + 2f∗

j0,dis < sN , (27)

where sN is defined as in 6.

Session 1: 1 unit of liquidity is provided on Xj0 at spread s∗dis(f
∗
j0,dis

) around yt− . There may be

arbitrary units of x offered at arbitrary spread that is out of J ’s support on arbitrary exchange(s).

Session 2:

- When an investor arrives, it immediately sends orders for
σ∗
j∑

j∈arg minh(
sh
2

+fh)
σ∗
j
unit of x to Xj at

marketable price in that exchange, ∀ j such that j ∈ argminh(
sh
2 + fh).

- If J > s
2 + fk happens for some s ⩾ 0 and some k, and is observed by a single Informed Trader,

the Informed Trader immediately sends orders to sell infinite units of x to Xk at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fk), or to buy infinite units of x to Xk at yt−+

s
2 when yt+−yt− ∈ ( s2+fk,∞).

- If J > s
2 + fk happens for some s ⩾ 0 and some k, and is observed by all players, all TFs,

regardless of speed group, immediately send orders to sell infinite units of x to Xk at yt− − s
2 when

yt+−yt− ∈ (−∞,− s
2−fk), or to buy infinite units of x to Xk at yt−+

s
2 when yt+−yt− ∈ ( s2+fk,∞);

all TFs with outstanding orders on any Exchange with ask prices < yt+ −fk or bid prices > yt+ +fk

immediately send cancellation messages for all such orders.

After the above messages are processed, and yt+ observed by all players, they simultaneously send can-

cellation messages for all orders that they have post earlier and still remain on the order book of any

Exchange.

In this equilibrium, the expected profit to Exchanges is

πj0,X(At) = 2f∗
j0,dis × (λinv + λpri) > 0; (28)

πj,X(At) = 0, ∀ j ∈ {1, . . . ,M} \ {j}; (29)

and the profit to TFs is

πi,T (At) = 0, ∀ i ∈ {1, . . . , N}. (30)

We show proof that there exist some f∗
j,dis such that the key inequality (27) for this proposition holds.

Proof. By 3.1, we have that

λinv
s∗dis(0)

2
= λpriL(s

∗
dis(0)),

and that for any f > 0,

λinv

(
s∗dis(f)

2
− f

)
= λpriPr

[
J >

s∗dis(f)

2
+ f

]
E

[
J −

s∗dis(f)

2
+ f

∣∣∣J >
s∗dis(f)

2
+ f

]
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⇒
λinv

2
(s∗dis(f) + 2f) =λpriPr

[
J >

s∗dis(f)

2
+ f

]
E

[
J −

s∗dis(f)

2
− f

∣∣∣J >
s∗dis(f)

2
+ f

]
+ λpriPr

[
J >

s∗dis(f)

2
+ f

]
E

[
2f
∣∣∣J >

s∗dis(f)

2
+ f

]
+ 2λinvf

=λpriL (s∗dis(f) + 2f) + 2

(
λpriPr

[
J >

s∗dis(f)

2
+ f

]
+ λinv

)
f

>λpriL (s∗dis(f) + 2f)

Compare these two equations, by decreasing property of the function L(·), we have that

s∗dis(0) < s∗dis(f) + 2f, ∀ f > 0.

Similarly, since

λinv
sN
2

=

(
λpri +

N − 1

N
λpub

)
L (sN ) > λpriL (sN ) ,

we have

s∗dis(0) < sN .

Now by continuity of the function s∗dis(f) + 2f with respect to f , there exists some f > 0, such that

s∗dis(0) < s∗dis(f) + 2f < sN .

Note that this is the equilibrium for any t such that At = G \ A, ∀A ⊆ Gj,X , and that f∗
dis is not

dependent on At. That is, for Xj0 being the discrete exchange,

∆πj0,X(G,A) = 0, ∀A ⊆ Gj0,X .

and it is more obvious for Xj the continuous exchanges,

∆πj,X(G,A) = 0, ∀A ⊆ Gj,X ;

and for TFs,

∆πi,T (G,A) = 0, ∀ i ∈ {1, . . . , N}, ∀A ⊆ Gi,T

since no TF can get any positive expected profit from any continuous exchange (no liquidity will be taken

from these exchanges) and neither can they get any positive expected profit from the discrete exchange

(by definition 3.1).

Now it is easy to check that A.WCDMC holds for both TFs and Exchanges. For all i ∈ {1, . . . , N},

for all A ⊆ Gi,T , ∑
{i,k}∈A

∆πi,T (G, {i, k}) = 0 = ∆πi,T (G,A);

For all j ∈ {1, . . . ,M}, for all A ⊆ Gj,X∑
{h,j}∈A

∆πj,X(G, {h, j}) = 0 = ∆πj,X(G,A).

Therefore, in the Bargaining Game, there exists an equilibrium where all TFs purchase ESST from

all Exchanges at the Nash-in-Nash price

Fk =
bj,X∆πi,T (G, {i, j})− bi,T∆πj,X(G, {i, j})

bi,T + bj,X
= 0.
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By being effectively a monopoly, the discrete Exchange is able to extract all profit from the private

information arbitrage by charging per share trading fee, which rooted from the bid-ask spread charged

by TFs (the bid-ask spread is still strictly greater than zero as the private jumps continue to exist).

The situation with more than one discrete exchanges will have an equilibrium very similar to the

above, with the per share trading fee post by discrete exchanges also zero, driven by Bertrand competition

among the discrete exchanges, and no party earning positive expected profit. The ESST fee as a result

of the Bargaining Game is obviously still zero.

4 Empirical Validation in Japanese Stock Market

In this section, we validate some of the seven stylized facts documented in [3, Section 4, pp.29] for

Japanese equity market. We first note that it is after January 2010 that millisecond-level HFT has been

made possible on TSE. However, our analysis will not only be focused on the period after that because

we are interested in how these facts hold in different situations. We now point out some important

differences and similarities between the US and Japanese equity market.

First, the Japanese stock market is not as well fragmented as the US stock market. After JASDAQ

being acquired by Osaka Stock Exchange (OSE) in 2010 and the merger of OSE and Tokyo Stock

Exchange (TSE) in 2013, there is effectively four equity exchange groups in Japan. Apart from Japan

Exchange Group (JPX), there are Sapporo Stock Exchange (SSE), Nagoya Stock Exchange (NSE), and

Fukuoka Stock Exchange (FSE). The equity markets that has existed are listed in Table 2, where the

indents show the subsidiary relationships among them (for OSE and JASDAQ, the subsidiary relationship

before OSE acquired JASDAQ is shown).

Second, there is no regulation in the Japanese equity market that ensures satisfaction of A. Accessi-

bility and A. Fungibility. Many companies are only listed on a single exchange and can only be traded

there. To put this in the context of the model, for almost all securities, the number of exchanges where

they can be traded (i.e. M) equals to 1, and for some, M = 2. This means there will not be competition

in the sense described in the model in Japan equity market.

Third, all exchanges use CLOB design for normal operation hours and auction rules for hour before

market open and some other extreme situations. Trading rules in all four exchange groups treat orders

with price priority first, and time priority when there are ties. However, the method of breaking ties

when there are orders made at same time with same price is different from what is specified in the model

(breaking ties randomly). In all four exchange groups, it is specified that when there are simultaneous

orders at the same price, the orders will be put in sequence, grouped by trading firms, according to

the total number of orders placed by the trading firm, from orders by the trading firm which placed

the most orders, to those by trading firms which placed the least orders. If there is still a tie (trading

firms place same number of orders), then orders that are received by the exchange system earlier will be

put further in the queue. And then, counter-party orders will be allocate to these trading firms in that

sequence, one unit at a time, until all counter-party orders are allocated [11, 19, 29, 30, 37]. This rule is

effectively equivalent with the random tie-breaking rule in the model, though. With this allocation rule,
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Table 2. Exchanges and Boards in Japan

Exchange (group) Abbreviated

Japan Exchange Group JPX

1st Section TS1

2nd Section TS2

Mothers TMO

TOKYO PRO Market TKP

JASDAQ Standard JQS

JASDAQ Growth JQG

Fukuoka Stock Exchange FSE

Nagoya Stock Exchange NSE

1st Section NS1

2nd Section NS2

Centrix NCT

Sapporo Stock Exchange SSE

Sapporo Stock Exchange Main Market SSM

Ambitious SSA

Osaka Stock Exchange OSE

1st Section OS1

2nd Section OS2

Hercules Standard OHS

Hercules Growth OHG

NEO OSN

JASDAQ JDQ

TFs, when trying to snipe, will place the largest possible number of orders to get the number-of-order

priority, resulting in all TFs place same number of orders. Then it comes back to the situation where ties

are broken almost randomly for all TFs with the same speed technology. Lastly, the allocation method

ensures that each TF can snipe approximately 1
N of the stale quote with error within ±1 unit, where

N is the total number of TFs. This 1
N of the stale quote is an expectation in the model, but a definite

number under the Japan trading rules. Therefore, the trading rules in Japan equity market is effectively

equivalent with the CLOB design specified in the model.

4.1 Exchange Market Shares in the Whole Market

We will now validate the aggregate part of Stylized Fact #3 (”Exchange Market Shares are Interior and

Relatively Stable, Both Aggregate and Within-Symbol) documented in [3, Section 4.1]. Note that even

in [3], it is argued that this fact is not a result of the model, but a result of the “stationary routing

table strategies”. In Japan, however, there is no accessibility nor fungibility for the strategy to work. It

is interesting to validate them to find out whether the assumptions that are satisfied in US market, for

instance assumptions 2.2, 2.1, and an integrated market are the necessary conditions for those facts to

hold.

We use both cash equity transaction volume and transaction value data in validation of interior and
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relatively stable exchange market shares. The reason is also that because neither assumption Accessibility

nor Fungibility is satisfied in Japan, transaction volumes (or transaction values) by itself could not

represent market shares accurately.

The data are accessed through market statistics published on official websites of exchanges. We use

monthly data for all trading days from 2009, since when all exchanges have historical data on transaction

volume and value [10, 15, 21, 22, 23, 24, 25, 27, 35]. Treatment of the two merger events that happened

during this period is as follows:

1. Due to the merger of JASDAQ, NEO, and Hercules on October 12, 2010, transaction volume and

value on JASDAQ Standard before October 2010 is calculated by summing up those of JASDAQ

and Hercules Standard; transaction volume and value on JASDAQ Growth before October 2010 is

calculated by summing up those of NEO and Hercules Growth.

2. Due to merger of TSE and OSE in 2013 and the actual market integration in July 16, 2013, TSE 1st

section (old) and TSE 2nc section (old) data before July 2013 are regarded equal to the historical

data of the same month of TSE 1st section (new) and TSE 2nd section (new); TSE 1st Section

(new) data before July 2013 are calculated by summing up those of TSE 1st Section (old) and OSE

1st Section, similar to TSE 2nd Section (new) data before July 2013.

A summary of data descriptives can be found in Table 3.

Table 3. Summary of Aggregate Transaction Value and Transaction Volume Data

No. of obs. Mean Median Range SD (% of mean) Skewness Kurtosis

Panel A: Transaction value (mn JPY)

JPX 133 48,012,858 52,105,541 70,593,383 34.345% -0.116 -0.991

FSE 133 1,905 1,320 14,500 107.384% 3.400 14.925

NSE 133 11,877 7,758 100,227 109.901% 4.323 23.588

SSE 133 5,716 1,430 82,622 195.542% 4.346 24.070

TS1 133 44,860,751 47,594,437 63,052,790 33.018% -0.071 -0.951

TS2 133 474,218 415,930 1,453,746 79.070% 0.784 -0.297

TMO 133 1,575,970 1,738,090 4,647,780 72.023% 0.501 -0.312

TKP 79 130 1 2,603 380.937% 4.134 16.617

JQS 133 982,413 861,161 3,315,881 63.603% 0.916 0.856

JQG 133 119,427 99,619 520,982 84.080% 1.374 2.085

FSE 133 1,905 1,320 14,500 107.384% 3.400 14.925

NS1 133 2,990 2,096 21,154 108.185% 3.754 17.095

NS2 133 3,320 2,739 9,637 55.109% 1.669 3.388

NCT 133 5,565 1,787 94,026 220.701% 4.971 28.593

SSM 133 244 187 1,092 71.166% 2.186 6.401

SSA 133 5,471 1,208 81,948 203.426% 4.339 23.975

Total 133 48,032,357 52,118,961 70,610,823 34.356% -0.116 -0.991

Panel B: Transaction volume (’000 shs)

JPX 133 50,344,531 48,204,232 84,426,686 27.514% 1.368 3.648

FSE 133 2,646 2,294 7,998 55.947% 1.802 4.752
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Table 3.(Continued) Summary of Aggregate Transaction Value and Transaction Volume Dat

No. of obs. Mean Median Range SD (% of mean) Skewness Kurtosis

NSE 133 20,014 12,636 126,411 103.333% 3.096 10.719

SSE 133 7,269 2,620 85,279 160.329% 3.488 16.666

TS1 133 44,860,751 47,594,437 63,052,790 33.018% -0.071 -0.951

TS2 133 474,218 415,930 1,453,746 79.070% 0.784 -0.297

TMO 133 1,575,970 1,738,090 4,647,780 72.023% 0.501 -0.312

TKP 79 64 2 1,220 305.573% 4.146 18.503

JQS 133 982,413 861,161 3,315,881 63.603% 0.916 0.856

JQG 133 119,427 99,619 520,982 84.080% 1.374 2.085

FSE 133 1,905 1,320 14,500 107.384% 3.400 14.925

NS1 133 2,990 2,096 21,154 108.185% 3.754 17.095

NS2 133 3,320 2,739 9,637 55.109% 1.669 3.388

NCT 133 5,565 1,787 94,026 220.701% 4.971 28.593

SSM 133 244 187 1,092 71.166% 2.186 6.401

SSA 133 5,471 1,208 81,948 203.426% 4.339 23.975

Total 133 48,032,357 52,118,961 70,610,823 34.356% -0.116 -0.991

Panel C: Market shares by transaction value

JPX 133 99.963% 99.972% 0.175% 0.028% -2.749 9.227

FSE 133 0.004% 0.003% 0.026% 88.093% 3.895 21.156

NSE 133 0.024% 0.019% 0.146% 80.494% 3.900 20.065

SSE 133 0.010% 0.003% 0.106% 169.864% 3.754 18.208

TS1 133 94.038% 93.971% 11.291% 2.946% -0.505 -0.382

TS2 133 0.863% 0.757% 2.090% 61.484% 0.870 -0.156

TMO 133 2.919% 2.821% 7.312% 61.071% 0.899 0.504

TKP 79 0.000% 0.000% 0.005% 383.042% 4.256 18.280

JQS 133 1.919% 1.651% 4.143% 43.975% 1.277 1.288

JQG 133 0.225% 0.199% 0.704% 66.543% 1.184 0.951

FSE 133 0.004% 0.003% 0.026% 88.093% 3.895 21.156

NS1 133 0.007% 0.005% 0.034% 88.416% 2.171 6.178

NS2 133 0.007% 0.006% 0.015% 40.590% 1.260 2.138

NCT 133 0.010% 0.004% 0.138% 186.341% 4.584 24.471

SSM 133 0.001% 0.000% 0.002% 69.234% 2.758 9.964

SSA 133 0.009% 0.002% 0.106% 179.706% 3.736 18.056

Panel D: Market shares by transaction volume

JPX 133 99.939% 99.958% 0.254% 0.047% -2.003 4.526

FSE 133 0.005% 0.005% 0.021% 53.695% 2.702 11.234

NSE 133 0.039% 0.028% 0.230% 87.481% 3.078 11.930

SSE 133 0.017% 0.005% 0.213% 176.466% 3.462 15.066

TS1 133 90.018% 89.628% 20.519% 5.854% -0.318 -0.955

TS2 133 4.110% 3.312% 12.461% 57.622% 1.204 1.635

TMO 133 1.985% 2.095% 5.600% 76.293% 0.494 -0.724

TKP 79 0.000% 0.000% 0.004% 340.706% 5.324 32.270

JQS 133 3.488% 3.326% 6.960% 49.950% 0.311 -0.993

JQG 133 0.338% 0.263% 1.661% 97.160% 1.263 1.787

FSE 133 0.005% 0.005% 0.021% 53.695% 2.702 11.234

NS1 133 0.007% 0.005% 0.029% 74.719% 1.712 3.905
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Table 3.(Continued) Summary of Aggregate Transaction Value and Transaction Volume Dat

No. of obs. Mean Median Range SD (% of mean) Skewness Kurtosis

NS2 133 0.011% 0.010% 0.025% 38.233% 1.311 2.525

NCT 133 0.021% 0.008% 0.231% 157.440% 3.320 14.430

SSM 133 0.002% 0.001% 0.029% 188.914% 6.344 45.691

SSA 133 0.016% 0.001% 0.213% 199.410% 3.429 14.693

For a visualization of the data, see Figure below.

For statistical analysis, we first calculate market shares vector by both transaction volume and trans-

action value data. Let transaction volume on exchange X of the mmth month of year yy be denoted

V olyymm
X , and in relative terms volyymm

X,X . That is, volyymm
X,X =

V olyymm
X∑

X∈X V olyymm
X

× 100%. Similarly denote

the absolute transaction value and relative transaction value on exchange X of the mmth month of year

yy be denoted V alyymm
X and valyymm

X,X . We may calculate different relative transaction data by taking

Xi as different subsets of the set of all markets. For example, vol1809FSE,{JPX, FSE, NSE, SSE} means the

percentage of total cash equity transaction volume on FSE in the total cash equity transaction volume

on all major Japan exchanges in Sep 2018. In this thesis market shares on exchange group level and

exchange level are considered, i.e. for the following X ’s:

X1 = {JPX, FSE, NSE, SSE},

X2 = {TS1, TS2, TMO, TKP, JQS, JQG, FSE, NS1, NS2, NCT, SSM, SSA}.

We then estimate the following trend models with fixed effects.

volyymm
X,X1

=α+ β0t+ β1JPX + β2FSE + β3NSE + β4SSE +

6∑
i=1

γiPi + ϵ;

volyymm
X,X2

=α+ β0t+ β1TS1 + β2TS2 + β3TMO+ β4TKP+ β5JQS + β6JQG+ β7FSE + β8NS1 + β9NS2

+ β10NCT+ β11SSM+

6∑
i=1

γiPi + ϵ;

valyymm
X,X1

=α+ β0t+ β1JPX + β2FSE + β3NSE + β4SSE +

6∑
i=1

γiPi + ϵ;

valyymm
X,X2

=α+ β0t+ β1TS1 + β2TS2 + β3TMO+ β4TKP+ β5JQS + β6JQG+ β7FSE + β8NS1 + β9NS2

+ β10NCT+ β11SSM+

6∑
i=1

γiPi + ϵ,

where the explaining variables with abbreviated exchange names are dummy variables capturing the

fixed effects, Pi’s are dummy variables capturing major merger events, and thus β0 captures the trend

over time without effects from exchanges and merger events. More specifically, P1 equals 1 if t < Oct
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Figure 1. Market Shares by Transaction Volume and Value
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2010, 0 otherwise; P2 equals 1 if t = Oct 2010 , 0 otherwise; P3 equals 1 if Oct 2010 < t < Jan 2012, 0

otherwise; P4 equals 1 if t = Jan 2012 , 0 otherwise ; P5 equals 1 if Jan 2012 < t < Jul 2013, 0 otherwise;

P6 equals 1 if t = Jul 2013 , 0 otherwise.

The results of estimation are presented in Table 4. In the estimated model for transaction volume

market shares on exchange group level (for X1), all three exchange group variables are significant, which

means that the effect of being in different exchange groups is significant in market shares, while none of

the merger events variables is significant. In the estimated model for transaction volume market shares

on exchange group level (for X1), all three exchange group variables are significant, while none of the

merger events variables is significant. In the estimated model for transaction volume market shares on

exchange level (for X2), dummy variables indicating exchanges TS1, TS2, TMO, and JQS are significant,

while none of the merger events variables is significant. In the estimated model for transaction volume

market shares on exchange level (for X2), dummy variables indicating exchanges TS1, TS2, TMO, and

JQS are significant, while none of the merger events variables is significant. Note that these are also the

four largest exchanges in the Japan equity market in terms of transaction value.

It can be concluded from the monthly market share measured by both transaction volume and value

that the market shares are stable. However, they are obviously not interior, but with market tipping.

That is, JPX in the exchange group level, and TSE Section 1 in a single exchange level, is controlling

virtually the whole equity market in Japan.

Therefore, we can say that neither an integrated market where assumptions 2.2 and 2.1 are satisfied,

nor the stationary routing table strategies, is a necessary condition for stable market shares. However,

they may be necessary for interior market shares to form.

Another pronounced result can be observed from the data that deserves further study is that the

integration of TSE and OSE results in a discrete increase in monthly transaction value in the newly

formed TSE Section 1 (compared with the sum of its two predecessors), and a gradual decrease in

transaction volume; which is also true for the newly formed TSE as a whole.

4.2 Exchange Market Shares for Individual Symbols

Now we validate Stylized Fact #3 (”Exchange Market Shares are Interior and Relatively Stable, Both

Aggregate and Within-Symbol) documented in [3, Section 4.1] on individual stock level.

We use cross sectional data of the month February 2020. First, a list of stocks that are listed on

both regional exchanges and JPX are collected from the regional exchanges’ official websites [12, 31, 38].

Then, information of trading volume and value in monthly reports are retrieved for FSE, NSE, and

SSE [12, 32, 38]. SSE does not disclose trading value information. We aggregate for monthly trading

volume and trading value for each individual stock in each Exchange for the month February in 2020.

Then, we access JPX monthly trading volume and trading value information for the corresponding

individual stocks. The market shares of Exchanges for each stock are then calculated. A summary of

data descriptives can be found in Table 5.
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Table 4. Exchange Market Shares Over Time Aggregate

Group MS by Vol Board MS by Vol Group MS by Val Board MS by Val

Intercept
0.0002* 0.0002 9.522e-05* 8.994e-05

(2.094) (0.054) (1.979) (0.056)

JPX
0.9992*** - 0.9995*** -

(2.47e+04) - (4.26e+04) -

FSE
-0.0001*** - -5.816e-05** -

(-2.993) - (-2.482) -

NSE
0.0002*** - 0.0001*** -

(5.227) - (6.194) -

TS1
- 0.9000*** - 0.9403***

- (407.193) - (769.228)

TS2
- 0.0409*** - 0.0085***

- (18.523) - (6.984)

TMO
- 0.0197*** - 0.0291***

- (8.912) - (23.804)

TKP
- -0.0002 - -8.862e-05

- (-0.070) - (-0.072)

JQS
- 0.0347*** - 0.0191***

- (15.708) - (15.625)

JQG
- 0.0032 - 0.0022

- ( 1.461) - (1.764)

FSE
- -0.0001 - -5.288e-05

- (-0.047) - (-0.043)

NS1
- -8.983e-05 - -2.171e-05

- (-0.041) - (-0.018)

NS2
- -4.558e-05 - -1.954e-05

- (-0.021) - ( -0.016)

NCT
- 5.274e-05 - 1.182e-05

- (0.024) - (0.010)

SSM
- -0.0001 - -8.467e-05

- (-0.063) - (-0.069)

P1
2.257e-15 3.458e-15 2.235e-15 3.648e-15

(2.85e-11) (1.38e-12) (4.87e-11) (2.64e-12)

P2
-3.678e-15 1.922e-15 -3.858e-15 1.915e-15

(-2.09e-11) (3.46e-13) (-3.78e-11) (6.23e-13)

P3
-5.378e-16 4.061e-15 -5.169e-16 4.286e-15

(-7.52e-12) (1.8e-12) (-1.25e-11) (3.44e-12)

P4
-3.039e-15 5.163e-15 -2.942e-15 5.371e-15

(-1.76e-11) (9.49e-13) (-2.94e-11) (1.78e-12)

P5
2.426e-15 2.175e-15 2.414e-15 2.272e-15

(4.09e-11) (1.16e-12) (7.03e-11) (2.2e-12)

P6
-1.471e-15 1.728e-15 -1.443e-15 1.846e-15

(-8.69e-12) (3.24e-13) (-1.47e-11) (6.26e-13)

t
-3.95e-16 3.581e-18 -3.958e-16 7.805e-18

(-4.84e-10) (1.39e-13) (-8.38e-10) (5.49e-13)

R2 99.999943% 99.4753% 99.999981% 99.8534%

*: 95% level, **: 97.5% level, ***: 99% level.
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Table 5. Summary of Transaction Value and Transaction Volume Data for Individual Symbols

No. of obs. Mean Median Range SD (% of mean) Skewness Kurtosis

Panel A: Transaction value of repetitively listed stocks (JPY)

Symbol total 351 21,493,881 2,671,400 1,030,492,800 321.509% 10.016 132.927

JPX 351 21,676,661 2,735,600 1,030,470,100 320.014% 9.979 131.921

FSE 87 242 0 4,100 267.336% 4.205 20.355

NSE 226 1,315 0 93,700 540.463% 10.810 132.288

SSE 41 182 0 2,000 236.683% 3.093 10.031

Panel B: Transaction volume of repetitively listed stocks (shs)

Symbol total 351 41,530,724,653 4,202,816,459 884,191,945,981 225.971% 4.270 24.860

JPX 351 41,884,423,857 4,321,505,916 884,114,418,281 224.824% 4.252 24.653

FSE 87 582,985 0 11,214,800 298.646% 4.437 21.690

NSE 227 1,731,426 0 58,903,500 326.458% 6.349 52.036

SSE 0 N.A. N.A. N.A. N.A. N.A. N.A.

The average market shares over symbols of FSE, NSE, and SSE for February 2020 are respectively

0.002%, 0.014%, and 0.001% in trading volume measure, those of FSE and NSE in trading value mea-

sure are 0.002% and 0.013%. Although they are all significantly not zero statistically, they are indeed

economically zero. It can be safely concluded that the market is even more tipped on individual stock

level than on the aggregate level. This is contradictory with the case in US [3, Figure 4.4], where mar-

ket shares are interior on individual symbol level and ranging from 0− 30% for both NYSE-Listed and

non-NYSE-Listed symbols.

The reason may be the fact that although companies listed on both regional exchanges and JPX

in Japan can be traded on both exchanges, the bids and asks on one exchange cannot be accessed on

another. So that for repetitively listed companies, trading them on JPX is always cost friendlier than

trading on regional exchanges. This result in Japan equity market may be a strong evidence that the

assumptions (2.2 and 2.1) are necessary for interior market shares to form.

4.3 Per Share Trading Fees (f)

We go on to validate Stylized Fact #4 (”Average Trading Fees are Economically Small”) and Stylized

Fact #5 (”Money-Pump Constraint Binds”) that are documented in [3, Section 4.2]. The latter is more

of a general fact for all exchanges anywhere. For the former, however, its truth in the US is largely based

on the effect of price competition in an integrated market. If we think that the model and the price

competition can explain the economically small transaction fees in US perfectly, this fact will not hold

in Japan equity market, since there is neither integration nor proper competition in Japan.

Two approaches are used to investigate per share trading fees in Japanese exchanges. First, we refer

to the fee schedule published by exchanges themselves. Only JPX publishes its fee schedule online [26],

and the fee structure can be described in Table 6.

Since the fee structure is quite complicated, it is not obvious enough from the official fee schedule
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Table 6. JPX fee schedule

whether the per share trading fee is economically small or not. So a second approach to per share trading

fee is also used.

We use exchanges’ earning reports to estimate revenues from per share trading fee and ESST for JPX,

OSE (before merger) and NSE. These are the only exchange groups that reports revenue breakdown to

the level of ESST and transaction fees. SSE and FSE do not report their revenue in any form. For

JPX, we use quarterly data from fourth quarter of financial year 2012 (ended March 31, 2013) to the

third quarter of financial year 2019 (ended December 31, 2019); for OSE, we use quarterly data from

first quarter of financial year 2008 (ended June 30, 2008) to the second quarter of financial year 2012

(ended September 30, 2012); for NSE, we use semi-annual data from the second half of financial year

2007 (ended March 31, 2008) to the first half of financial year 2019 (ended September 30, 2019).

JPX breaks down its operating revenue into five categories [17]: Trading Services Revenue, Clearing

Services Revenue, Listing Services Revenue, Information Services Revenue, and Others. The “Trading

Services Revenue” category is further broken down to five subcategories, Transaction Fees, Basic Fees,

Access Fees, Trading System Facilities Usage Fees, and others. The “Others” category includes four

items, usage fees for Arrownet (a network service), usage fees related to co-location services, revenue from

provision of trading system and other services, and revenue from system development and operations,

among which JPX disclose exact number for the first two items in its quarterly earnings reports.

According to the charging basis for trading services revenue (Table 2) by JPX, we regard the whole

Trading Service Revenue category as f in the model, since all fees are charged on general trading

participants. The trading system facility usage fees is the only one that may be in question, yet as it

only takes up less than 10% of the whole category revenue, and the fee is charged on both general users

(for low frequency servers) and high frequency users, categorizing it as part of f will not cause significant

problem. We also regard clearing services revenue as f , as is similarly done in [3, Footnote 63] for CME’s
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clearing revenue. We do not include listing services revenue in the revenue decomposition analysis since

it is not related to trading activities. We take the sum of revenue from Information Services, usage fees

for Arrownet, and usage fees for co-location services as the ESST F in the model.

OSE disclose decomposition of its revenue into four categories, Participant Fees, Listing Fees, Equip-

ment and Information Services Fees, and Others. The first category further consists of Trading Fees,

Clearing Fees, Access Fees, Basic Fees, and others. We take this category as f in the model. The third

category further consists of Market Information Fees, Network Line Fees, Co-location Service Fees, and

Others. We take this category as F in the model. Listing Fees and Others are not taken into account

since they are irrelevant to trading activities.

NSE’s operating revenue is broken down to four categories, [trading participation fee],

[listing related revenue], [information related revenue], and [other

operating revenue]. We take trading participation fee as f , and information related revenue as F in the

model. We do not consider listing related revenue and other operating revenue.

A summary of data descriptives can be found in Table 7.

With these data, we take quarterly revenue from participation fees reported by exchanges as the

total revenue from f (as specified in the last section), divide them by quarterly transaction volume of

the corresponding period to get the effective per share trading fee on a quarterly basis for JPX as a

whole, TSE before merge, and OSE before merge. We do the same thing with NSE on a semiannual

basis. Note that before January 2012, TSE revenue and OSE revenue are summed up and the sum is

regarded as JPX revenue for the corresponding quarter; the same method is used to get transaction

volume. This is for the purpose of better investigation of the effect of merger event on effective trading

fee. Since no exchange group report revenue for the exchanges it operates, analysis on that level cannot

be done. Visualization of effective per share trading fee from the quarter ended December 2008 to that

ended December 2019 can be found in Figure 2.

Figure 2. Effective per share trading fees in four exchanges

Averaging over time, the effective per share trading fee on JPX is JPY0.106 per share; that on TSE

before merge is JPY0.053 per share; OSE before merge, JPY1.756 per share; NSE, JPY3.289 per share.

From the effective per share trading fee data, the following observations can be made.
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Table 7. Summary of Revenue Decomposition Data

No. of obs. Mean Median Range SD (% of mean) Skewness Kurtosis

Panel A: Revenue from per share trading fee (mn JPY)

JPX 44 15,475 16,709 14,211 23.915% -0.124 -0.989

TSE 15 6,977 6,909 2,050 7.684% 0.350 0.615

OSE 15 4,111 3,859 3,325 20.180% 2.354 6.509

NSE 21 267 251 119 13.248% 1.647 1.713

Panel B: Trading volume (mn shs)

JPX 44 151,500 147,585 199,877 25.397% 1.220 3.165

TSE 15 132,716 129,949 60,889 14.913% 0.487 -0.609

OSE 15 4,924 4,696 4,122 25.324% 0.469 -0.811

NSE 21 123 71 434 92.588% 2.409 5.438

Panel C: Effective Trading Fee (JPY / share)

JPX 44 0.106 0.097 0.116 31.562% 1.150 0.155

TSE 15 0.053 0.054 0.023 12.167% -0.001 -0.690

OSE 15 0.889 0.828 1.438 38.699% 2.768 9.145

NSE 21 3.289 3.532 5.277 49.884% -0.198 -1.220

Panel D: Revenue from ESST (mn JPY)

JPX 28 6,156 5,971 2,016 11.123% 0.328 -1.470

OSE 18 4,958 4,890 2,010 9.766% 0.148 0.964

NSE 25 217 227 667 48.220% -3.741 18.634

Panel E: JPX revenue further decomposition (mn JPY)

Trading Participant Fees 28 12,386 11,881 6,473 11.248% 1.812 4.532

Securities settlement 28 5,589 5,653 2,839 12.693% -0.269 -0.493

Information Services 28 4,606 4,478 1,602 11.385% 0.119 -1.334

Arrownet 28 746 774 384 14.312% -0.289 -0.825

Colocation 28 803 785 424 16.219% 0.137 -1.249

1. The larger market share the exchange has, the smaller its effective per share trading fee. In

particular, effective per share trading fee on JPX is significantly smaller than other exchanges.

2. Effective trading fees on all exchanges at any time point between September 2008 to December

2020 are greater than zero.

3. There is no trend over time in effective per share trading fees on OSE or NSE. However, there is a

significant increasing trend in effective per share trading fees in JPX starting from January 2012,

when TSE and OSE merged.

From observation 2, it can be concluded that Stylized Fact #5 is validated in Japan equity market.

As for Stylized Fact #4 [3, Section 4.2] to be validated or invalidated, we compare this revenue from

participation fees to the operational expense of the corresponding exchange for the most recent reported

period to try to argue what is economically small in our context. Similar argument is also used in [3]. By

taking the coverage ratio of revenue from per share trading fee (including settlement fee for JPX) over
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operating expense, we have the coverage ratio for JPX for the three months ended December 2019 being

1.23, the coverage ratio for TSE for the three months ended September 2012 being 0.53, the coverage

ratio for OSE for the three months ended September 2012 being 0.89, and that of NSE for the six months

ended September 2019 being 0.49.

JPX three months OSE three months TSE three months NSE six months

ended Dec-19 ended Sep-12 ended Sep-12 ended Sep-19

Revenue from

per share trading fee

(JPY mn)(A)

17, 851 3, 345 6, 255 240

Operating expense

(JPY mn)(B)
14, 536 3, 758 11, 759 486

A/B 1.23 0.89 0.53 0.49

From these comparisons, the conclusion can be made that per share trading fees in the previous TSE

before merger, OSE, and NSE are economically small, and Sylized Fact #4 (”Average Trading Fees are

Economically Small”) [3, Section 4.2] holds for these three exchange groups.

In the current JPX group, however, although the effective per share trading fee is still smaller than

that in any other exchange, the revenue it earns from per share trading fee is not small in the sense that

it covers 1.23 of its operating expense. That is to say, JPX is significantly profitable with participant fee

revenue alone. This is consistent with the conclusion in the next section.

Moreover, note that the economically small per share trading fees in TSE before merger, OSE before

merger, and NSE are not an effect of price competition as predicted by the model for US equity market.

Since neither assumption 2.2 nor 2.1 is satisfied, there could not be price competition in Japan equity

market. A correlated item is market shares. To take a closer look into the relationship between the

two, we calculate average semiannual market share and average semiannual effective per share trading

fee for JPX (averaging over the period from January 2013 to September 2019, when the exchange group

actually operate as one group), TSE (averaging over the period from March April 2019 to September

2012), OSE(averaging over the period from March April 2019 to September 2012), and NSE (averaging

over the period from March April 2019 to September 2019); after that, we plot the four pairs of data

on a graph. The details data points and the graph are shown in Figure 3. Recall, that market shares

in Japan equity market is not interior as in the US. This negative correlation between market share and

effective per share trading fee of an exchange is an area that deserves more study.

4.4 Exchange-Specific Speed Technology (F )

Now we go on to investigate the validity of stylized fact #6 documented in [3, Section 4.3, pp. 40],

“Exchanges earn significant revenues from data and co-location/connectivity (i.e. ESST)” in Japan

equity market. Note that although the two assumptions 2.2 and 2.1 are not satisfied, this facts only

increase the market power of exchanges over ESST on itself. Therefore, exchanges should still earn

significant revenues from ESST in Japan, and they may even get a fraction that is not bounded by (26).

Data used are the same as what are used in the the second approach in the last section.
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Figure 3. Average market share and average effective trading fee

Average Average effective

market trading fee

share (%) (JPY/share)

JPX 99.95 0.12

TSE 96.25 0.05

OSE 3.72 0.80

NSE 0.04 3.29

A visualization of trading-related revenue decomposition for JPX, NSE, and OSE can be found in

figure 4.

Figure 4. Exchange revenue decomposition

The following observations can be made from the results:

1. Around 70% to 80% of trading-related revenue of JPX comes from f , which is similar to the revenue

decomposition situation of CME [3, footnote 63]. Also similar to CME, JPX is able to earn more

from trading participation fees because of lack of integration and competition in the Japan equity

market. JPX also earn from clearing fees, which adds to the source of revenue it can earn from per

share trading fees.

2. NSE earns 50% to 60% of trading-related revenue from trading participant fees. This may be a

result from the tipping market (JPX owns significant markets share) and lack of market power of
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NSE. However, this percentage is still significantly larger than the percentage of per share trading

fee revenue in other US equity exchanges, such as BATS group, which earns only 31.2% of operating

revenue on transaction fees [3, Figure 4.5].

3. Approximately 50% to 60% of trading-related revenue of OSE came from per share trading fee f .

This is less than JPX but still more than NSE. This is consistent with one of our observations in

the last section that the more market share an exchange has, the more it can earn from per share

trading fee.

From these observations, we can conclude that in a market where there is no accessibility and fun-

gibility, ESST cannot be a large source for revenue for exchanges compared with per share trading

fee.

4.5 Growth of exchange revenue from ESST (F )

Lastly, we investigate the time series property of exchange revenue from ESST. Results of linear regres-

sions of the percentage of revenue from ESST of JPX on time can be found in Table 8. Although the

trends are significant, their magnitudes are economically small. Revenue from ESST has been growing

0.25% per quarter for JPX, 0.21% per six months for NSE, and 0.47% per quarter for OSE before it was

acquired. This is nothing compared with what the US exchanges have been growing at in the Reg NMS

era, ranging from 5.1% to 11.7% annually [3, Section 4.3, pp. 44].

Table 8. Percentage of Exchange Revenue from ESST Overtime

JPX OSE NSE

Intercept
-0.826*** -1.567* -0.426*

(-4.618) (-2.316) (-2.189)

t
2.54E-05*** 4.74E-05** 2.13E-05***

(6.048) (2.829) (4.570)

R2 58.456% 33.339% 47.593%

*: 95% level, **: 97.5% level, ***: 99% level.

Therefore, as an inverse of Stylized Fact #7 (“Exchange revenue from data and co-location/connectivity

has grown significantly in the Reg NMS era”) documented in [3, Section 4.3], revenues from ESST of

exchanges in Japan are not growing as significantly without regulations equivalent to Reg NMS. Together

with Section 4.4, this could serve as an evidence supporting the necessity of an integrated market for a

significant and growing part of revenue to be earned from ESST by exchanges.
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5 Concluding Remarks

The model proposed by [2] and [3] pointed out the built-in arbitrage opportunities in a CLOB market.

The Nash-in-Nash bargaining model offers more understanding of the rent division and the two models

support each other reciprocally. The sufficient conditions for there to exist Nash-in-Nash equilibrium are

equivalent to those for there to exist OBE in the trading game, and the implication on equilibrium ESST

fee paid by TFs to Exchanges given by Nash-in-Nash prices are the same with that by the boundary

solution in the OBE.

The seven stylized facts documented in [3] well captures the competition among exchanges in a

fragmented but integrated market where there are accessibility and fungibility, such as the US equity

market. Nevertheless, the situation in the Japan equity market is quite different. Market shares of

exchanges in Japan is stable over time, and the market is tipping significantly. The per share trading fee

was economically small before merger of OSE and TSE, yet it is not economically small in JPX after the

merger. Exchanges in Japan do not earn significant revenue from technology and information service,

and there is no economically significant upper trend in this part of revenue. The empirical validation of

these stylized facts in Japan, as inverse of what holds in the US, supports the necessity of an integrated

market for (i) the market shares to be interior, (ii) the per share trading fee to be economically small,

and (iii) the part of revenue from exchange specific speed technology to be economically significant and

growing.

One interesting result along the way of deriving the theoretical model is that when there are lone-wolf

TFs and Exchanges, the total arbitrage rent that can be exploited by these two participants diminishes.

How this effect can be enlarged and help eliminating arbitrage and adverse selection in the HFT era can

be further studied.

The more participants considered, the more complex but more complete the picture will be. In

the equity market case, more stakeholders remain to be explored. A most vital one would be the listed

companies, whose stock are really what is being traded on the exchange, and who has the choice of which

exchange to be listed on. To incorporate listed companies into the model will be another interesting topic

for future research.
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