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via classification methods.
ll

https://core.ac.uk/display/430165657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:landi.isotta@gmail.�com
https://doi.org/10.1016/j.patter.2021.100228
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2021.100228&domain=pdf


OPEN ACCESS

ll
Descriptor

reval: A Python package to determine best
clustering solutions with stability-based
relative clustering validation
Isotta Landi,1,4,5,* Veronica Mandelli,1,2 and Michael V. Lombardo1,3
1Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di

Tecnologia, Rovereto, Italy
2Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
3Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
4Lead contact
5Twitter: @IsottaLandi

*Correspondence: landi.isotta@gmail.com

https://doi.org/10.1016/j.patter.2021.100228
THE BIGGER PICTURE reval is a Python package for stability-based relative clustering validation. It works
withmultiple clustering and classification algorithms, and as such, it enables the selection of best clustering
solutions as the ones that replicate, via supervised learning, on unseen subsets of data. It is a tool that pro-
vides measures to evaluate clustering replicability and implements the automation of the labeling process.
reval can be used as a complement or an alternative to internal validation measures, which highly rely on
features inherent to a specific grouping solution, hindering the validation of replicable clusters.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Determining the best partition for a dataset can be a challenging task because of the lack of a priori infor-
mation within an unsupervised learning framework and the absence of a unique clustering validation
approach to evaluate clustering solutions. Here we present reval: a Python package that leverages stabil-
ity-based relative clustering validation methods to select best clustering solutions as the ones that repli-
cate, via supervised learning, on unseen subsets of data. The implementation of relative validation
methods can contribute to the theory of clustering by fostering new approaches for the investigation of
clustering results in different situations and for different data distributions. This work aims at contributing
to this effort by implementing a package that works with multiple clustering and classification algorithms,
hence allowing both the automation of the labeling process and the assessment of the stability of different
clustering mechanisms.
INTRODUCTION

Clustering algorithms identify intrinsic subgroups in a dataset by

arranging together elements that show higher pairwise similarities

relative to other subgroups.1 While their usage is relatively wide-

spread, the lack of a priori information complicates the evaluation

of clustering solutions. Attempts to address this challenge usually

rely on the implementation of internal validation approaches,

which focus on quantities and features inherent to a grouping so-

lution.2 Here we present the reval Python package (pronounced

ˈrevɘl), which implements an approach for stability-based valida-
This is an open access article under the CC BY-N
tion of clustering solutions described by Lange et al.3 that allows

for the identification and evaluation of partitions that best gener-

alize to unseen data and the automation of the labeling process.

In contrast to internal validation, relative validation methods3,4

have the potential to transform cluster analysis into amodel selec-

tion problem and help evaluate the best clustering solution (i.e.,

best number of clusters). The way these methods are conceived

also offers the possibility to determine the extent to which a clus-

tering solution generalizes to unseendata and hence to enable the

replication of the data partition chosen.While a variety of software

packages contain internal cluster validation methods and
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measures, open-source software to easily implement the full po-

tential of relative validation techniques are lacking.

Many methods are available to compute internal validation

measures that help in determining the best number of clus-

ters.5–7 For example, the elbow method5 selects the number

of clusters for which the within-cluster variability decrement is

minimal. Another popular method using internal criteria is the

silhouette-based approach.7 This method maximizes cluster

cohesion and separation; that is, how similar an object is to

other elements of the same cluster compared with elements

of other clusters. Libraries and methods for the automated se-

lection of the best number of clusters are available in both Py-

thon and R. The yellowbrick Python visual analysis and diag-

nostic tool suite8 includes the implementation of the elbow

method to determine the best number of clusters. In R,

NbClust9 is a popular library that compiles 30 different internal

metrics and allows for users to compute all or a subset of met-

rics to be used in combination with a majority vote rule to select

the optimal number of clusters. For relative validation ap-

proaches there are the clValid10 and cstab11 libraries, which

apply stability-based relative validation models. clValid was de-

signed to work with highly correlated high-throughput genomic

data and computes stability measures comparing clustering

solutions based on full data and data with a single column

removed. cstab implements the selection of the best number

of clusters via model-based and model-free clustering insta-

bility12 using a bootstrap approach.

The reval package contributes to this landscape by imple-

menting a stability-based approach that can be easily applied

to different datasets using multiple clustering and classification

algorithms. Built on top of the stability-based algorithm3, reval

applies a classifier trained on the best clustering solution to a

test set, returning classification metrics that help interpret the

generalization performance, guide the clustering process, and

enable labeling replication. This tool can be used with internal

measures to assess the underlying structure of a dataset to

help avoid the risk of overfitting.With respect to clustering errors,

internal and relative indices can exhibit similar behavior, with the

advantage of the former being less computationally expensive.13

However, in the case of complex models and clusters, an

approach based on the minimization of prediction error may be

particularly advantageous because internal indices tend to fail

to correlate well with errors.13

Methods
Stability-based methods return the number of clusters that mini-

mizes the expected distance between clustering solutions ob-

tained for different datasets. Several options are available14 to

(1) generate the datasets (e.g., randomsubsampling of the original

dataset15, or adding randomnoise16); (2) compare clustering solu-

tions (e.g., overlapping subsamples15); and (3) compute clustering

distances (e.g., the consensus index by Vinh and Epps17). The

method proposed by Lange et al.3 has the advantage of trans-

forming the unsupervised setting into a classification problem

and guiding selection through theminimization of prediction error.

First, a dataset is split into training and validation sets and then

independently partitioned into clusters. Second, training set labels

are used within supervised classification methods to learn how to

best predict the labels. Applying the classification model to the
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validation set, the model’s predicted labels are then compared

with the actual clustering labels derived from the validation set.

This procedure is repeated using cross-validation and the optimal

number of clusters is identified corresponding to the maximum

number of clusters thatminimizes prediction error. Prediction per-

formance is defined by the authors as the 0-1 loss in supervised

classification3,14, namely, the normalized Hamming distance.

Nevertheless, other choices are possible; for example, Tibshirani

and Walther4 used prediction strength; that is, the proportion of

observation pairs in the validation set that are assigned to the

same cluster by both the clustering algorithm and the partition

based on the training set centers.

Stability measure

The notion of stability by Lange et al.3 is used to assess solutions

of clustering algorithms based on the rationale that true clusters

are those that can always be identified by a clustering algorithm

when applied to different datasets from the same generating

process. Formally, let Ak be a clustering algorithm with k the

number of clusters, f a classifier, and ðX;YÞ the training set

and clustering labels, i.e., AkðXÞ = Y. After training f on ðX;YÞ,
both the clustering algorithm and trained classifier are applied

to a separate dataset X0. The distance between the two solutions

is the normalized Hamming distance:

dSk
ðfðX0Þ;Y0 Þ=min

s˛Sk

1

n

Xn

i = 1

1fsðfðX0
i ÞÞsY 0

i g (Equation 1)

with Sk the set of all possible permutations of k elements. Super-

vised labels are permuted to overcome the non-uniqueness of

clustering labeling and s is the permutation that minimizes the

solutions dissimilarity. Averaging out the distance between any

pair of partitions X; X0 from Equation 1 we define the stability in-

dex of the clustering algorithm as:

SðAkÞ = EX;X0
�
dSk

ðfðX0Þ;Y0Þ� (Equation 2)

The stability index ranges in ½0;1�, with lower values indicating

more stable and reproducible solutions.3 Because this measure

scales with the number of clusters, the measure suggested

by the authors is the normalized stability Sk , i.e., the stability

fromEquation 2 normalized for the stability of random labelingRk .

Reval algorithm

The algorithm implemented in reval allows the user to (1)

automatically select the number of clusters for a dataset by mini-

mizing validation stability, via repeated cross-validation (see Al-

gorithm 1); and (2) compute classification performance obtained

when generalizing the solution to a held-out dataset (see Algo-

rithm 2). An overview of the framework is reported in Figure 1.

A dataset X is first split into training Xtr and test Xts sets and a

clusteringA and classifier f are selected. Let nfold be the number

of folds for cross-validation and nr the number of repetitions. In

Algorithm 1, we refer to ½nfold� and ½nr � as the sets of indices cor-

responding to fold splits. Moreover, let nrnd be the number of

random labeling iterations, and k the number of clusters in set

K. In Algorithm 1we indicate with X
ij
itr and X

ij
val the internal training

and validation splits of training set Xtr , respectively, for cross-

validation ith fold split at the jth shuffled repetition. These corre-

spond to X and X0 sets introduced in the stability measure sec-

tion. With ðK3½nfold�3½nr �Þ we indicate the Cartesian product of



Algorithm 1. Return number of clusters that minimizes normalized stability

Input: Xtr , A, f, K, nfold, nr , nrnd
Result: k�, Sk�

for ðk; i; jÞ˛ðK3½nfold�3½nr �Þ do
Find clustering solution AkðXij

itrÞ=Y
ij
itr and train f on (X

ij
itr ;Y

ij
itr );

Compute fij ðX
ij
valÞ and AkðXij

valÞ = Y
ij
val;

Select permutation sij˛Sk that yields to minimum dissimilarity dsij
ðfij ðX

ij
valÞ;Yij

valÞ;
for r = 1;.; nrnd do

Train f on (X
ij
itr ;RkðYij

itrÞ);
Compute dsrj

�
frj

�
X
ij
val

�
;Y

ij
val

�
as before;

end

Compute dij = dsij
=Avgnrnd

r =1ðdsrj
Þ

Compute normalized stability Sk = Avgnr
j = 1Avg

nfold
i =1dij ;

end

Return k� s.t. max argmink˛KSk .

Input parameters: training dataset (Xtr ), clustering algorithm (A), classification algorithm (f), set of number of clusters to evaluate

(K), number of cross-validation folds (nfold), number of cross-validation repetitions (nr ), and number of random labeling repetitions

(nrnd). With 3 we indicate the Cartesian product of sets, i.e., the set of all possible ordered combinations of elements in the sets,

which is equivalent to a nested for-loop.
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the sets of number of clusters and repeated cross-validation

splits. The fitted model becomes the one trained on Xitr that re-

turns the maximum number of clusters with minimum stability.

That model can then be used within Algorithm 2 for generaliza-

tion on the test set.

Among clustering methods that work within reval, hierarchical

density-based spatial clustering of applications with noise

(HDBSCAN)18 does not need any assumption on the number of

clusters. Hence, we do not need to iterate over different number

of clusters to select the best solution. Instead, normalized stabil-

ity is computed within the repeated cross-validation loops that

return the same number of clusters.

Technical details

The reval package has 4 core modules and additional functions

that can be found in the utils file.

d relative_validation. This module includes training

and test methods that return misclassification errors ob-

tained by comparing classification labels and clustering
Algorithm 2. Test best solution on unseen data

Input: Xtr , Xts, k
�, Ak�, f

Result: classification accuracy

Find clustering solution Ak� ðXtrÞ=Ytr and train f on (Xtr ;Ytr );

Compute fk� ðXtsÞ and Ak� ðXtsÞ = Yts;

Compute the accuracy (ACC) with permuted clustering labels for

ACC=max
s˛Sk�

Avg
jXts j
i = 1 1ff

Return ACC˛½0; 1�.
Input parameters: training dataset (Xtr ), testing dataset (Xts), best num

algorithm with best number of clusters fixed (Ak� ), and classifier (f).
labels. It also includes the random labeling method, which

allows users to compute the asymptotic misclassifica-

tion rate.

d best_nclust_cv. This module implements repeated

cross-validation and returns the best clustering solution

together with normalized stability scores, obtained from

the average of the misclassification scores divided by the

asymptotic misclassification rate. Repeated cross-valida-

tion leads to unbiased stability estimates and it can also

be performed stratifying the repeated randomized splits

according to a desired variable. To control for the size

imbalance that derives from cross-validation, we initialized

the repeated cross-validation loop to a 132 schema as

default. Users can change this configuration according to

dataset size and available stratifiers, which can be useful

to overcome imbalance issues. The evaluation method ap-

plies the fitted model with the returned number of clusters

to the held-out dataset and returns accuracy (ACC). Other
consistency between training and test sets:

ððXtsÞiÞ=sðYtsÞiÞg

ber of clusters selected with cross-validation (k�), clustering
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Figure 1. reval implementation overview

Repeated cross-validation procedure is included

within the dashed circle and it is repeated for

different numbers of clusters k as indicated by the

orange arrows (Algorithm 1). The clustering algo-

rithm with number of clusters k�, i.e., the maximum

value that minimizes normalized stability, is evalu-

ated on a held-out dataset (Algorithm 2).
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metrics, such asMatthews correlation coefficient (MCC)19,

F1 score, precision, and recall scores, can also be

computed (see utils file).

d param_selection. This module enables hyperpara-

meter tuning to select the best configuration of classi-

fier/clustering (SCParamSelection class) and the pa-

rameters within clustering and classifier themselves

(ParamSelection class). Best parameters are those

that report minimum normalized stability. If the number

of true classes is available, this module also returns the

best solution that correctly identifies the true number of

clusters, if it exists.

d visualization. This module includes the function to

plot cross-validation performance metrics with 95% confi-

dence intervals for a varying number of clustering

solutions. The threshold of random labeling stability can

be displayed to visually investigate model performance.

As suggested by Lange et al.3, we used the Kuhn-Munkres al-

gorithm20,21 to obtain the label permutation that minimizes

misclassification error. However, differently from the work of

Lange et al.3, reval permutes the clustering labels instead of

the classification labels, i.e., the normalized Hamming distance

in Equation 1 becomes:

dSk
ðfðX0Þ;Y0 Þ=min

s˛Sk

1

n

Xn

i = 1

1ffðX0
i ÞssðY 0

i Þg

This approach allows the test set to preserve the partition

structure of the training set, to better investigate results replica-

bility and to aid visual comparison. Figure 2 shows the rationale

behind theneed topermute clustering labelswhen trainingaclas-

sifier within reval. We simulated 3 Gaussian blobs and divided

them into training (N = 20) and test (N = 10) sets. Figure 2A

shows clustering labels for the training set and Figure 2B the clus-

tering labels for the test set. Figure 2C shows what might happen

when training a classifier on the training set labels and then pre-

dicts labels for the test set. Because 2 out of 3 classes show label

discordance, the trained classifier fails to correctly predict the

classes. Nevertheless, if we permute class labels 0 and 1 in the

example, the trained classifier will correctly identify all 3 classes

on the test set returningminimumprediction error and consistent

label ordering ispreserved. Thekuhn_munkres_algorithm()

function can be found in utils file.
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A more thorough description of the code

and its usage can be found at https://reval.

readthedocs.io/en/latest/code_description.

html. revalmainly workswith the scikit-learn

Python library for machine learning.22 In

particular, amongclusteringmethods,users
can select thosewith number of clusters parameter, i.e., k-means,

hierarchical clustering, and spectral clustering, but also density-

basedclusteringHDBSCAN18 from the hdbscan library.Moreover,

any classifier from scikit-learn can be selected.

Algorithm complexity

We report here the complexity analysis of the 2 core methods

included in best_nclust_cv module. In particular, we focus

on best_nclustcv(), which enables the selection of the

best number of clusters via repeated cross-validation, and

evaluate(), which implements the testing of the best solution

on held-out datasets. The best_nclustcv()method includes

sequential calls to train (train()), test (test()), and random

labeling (rndlabels_traineval()) methods from the rela-

tive_validation module, whereas evaluate() sequen-

tially calls the train and test functions.

The complexity of the training method is led by the sum of the

costs of the chosen classification (i.e., OðCÞ) and clustering (i.e.,

OðGÞ) algorithms, which depend on the number of data samples

and features (see Table 1). The complexity of the test()

method mainly depends on OðGÞ in that only prediction is

performed for the classifier. The random labeling algorithm in-

creases OðCÞ by a factor of nrnd (i.e., the number of random la-

beling iterations). The overall complexity to perform cross-vali-

dation and evaluation depends on the number of calls to the

relative validation module functions and their intrinsic cost. To

perform cross-validation and compute normalized stability, we

need to set the following parameters: nC = jKj (i.e., the cardinal-

ity of the set with the different number of clusters to try);

nfold and nr , which correspond to the number of cross-

validation folds and repetitions, respectively; and nrnd. In

conclusion, the cost of best_nclustcv() is equal to

OðnC ,nfold ,nr ,ðOðGÞ +Oðnrnd ,OðCÞÞÞ and the complexity of

evaluate() is OðCÞ+OðGÞ.
We run the methods considered on simulated datasets to

empirically investigate the execution times. Simulations were

run on a MacBook Pro 2020 with a 2.3 GHz Quad-Core Intel

Core i7 processor and 32 GB of RAM. The complexity of clus-

tering algorithms and state-of-the-art classifiers that can be

used with reval can be found in Table 1. Figures 3A and 3B

show the execution times of best_nclustcv() and eval-

uate(), respectively, on a 2-blob dataset of 100 samples and

10 features with different combinations of classifiers and

clustering algorithms. nC is set at 5, nfold and nr are 2 and 10

https://reval.readthedocs.io/en/latest/code_description.html
https://reval.readthedocs.io/en/latest/code_description.html
https://reval.readthedocs.io/en/latest/code_description.html


Table 1. Algorithm complexity

Algorithm Complexity Problem

HDBSCAN OðNlogNÞ clustering

K-means OðkNTÞ clustering

Agglomerative OðkN2Þ clustering

Spectral OðN3Þ clustering

LR OðpNÞ classification

KNN OðpNÞ classification

Support vector machine ½OðpN2Þ;OðpN3Þ� classification

RF OðpN2ntreesÞ classification

N = number of samples; p = number of features

K-means: k = number of clusters; T = number of iterations

Agglomerative: k = number of clusters

RF: ntress = number of trees in the forest

Clustering and classification algorithms available within reval package

from the scikit-learn and hdbscan libraries.
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respectively, and nrnd is equal to 10. Default parameters were

used for all classifiers and clustering algorithms. It is straightfor-

ward to observe that execution times largely depend on the cho-

sen algorithms, with HDBSCAN the least expensive and spectral

clustering the most expensive choice among clustering tech-

niques, irrespective of classifier, and random forest the most

expensive choice among classifiers. Overall, the execution

time of the evaluate() method is reduced compared with

repeated cross-validation. The package implementation also in-

cludes a multiprocessing feature that speeds up computations

for repeated cross-validation but not for the evaluation method

(see Figure S1A), where 7 jobs are simultaneously run. Figure 3C

shows the execution times with varying number of samples and

features when sequentially running best_nclustcv() and

evaluate() with KNN classifier and k-means clustering. We

can observe a moderate increase for low number of samples

(<103) with varying number of features and a steep growth for

103 samples. Corresponding execution times with multipro-

cessing can be observed in Figure S1C.

RESULTS

Technical validation
To investigate reval performance, first we investigate group

detection in simulated non-overlapping Gaussian blobs, and the

handwritten digits dataset from the Modified National Institute of

Standards and Technology (MNIST) digit recognition database

(http://yann.lecun.com/exdb/mnist/). Then, we leverage the

SCParamSelection class to determine the combination of clas-

sifier and clustering algorithms that best identifies the number of

classes for 19 different datasets from the University of California,

Irvine (UCI) Machine Learning repository.23

Blobs dataset
To provide a simple example of how to use reval, we generated 5

isotropic Gaussian blobs for a total of 1,000 samples with 2 fea-

tures. To run the example, refer to Code S1-S6 in the blobs data-

set section of the supplemental material. The dataset was first

split into training and test sets (70=30%). Then we selected

KNN with the number of neighbors equal to 15 and k-means
with Euclidean distance, as suggested by the experiment re-

ported in the algorithm selection section. We then run the stabil-

ity-based algorithm with a 1032 repeated cross-validation

framework, with 10 random labeling repetitions, and the number

of clusters varying from 2 to 6. We evaluated the solution found

on the test set and report ACC andMCC scores asmetrics. Last,

we report the adjusted mutual information (AMI) score to

compare true labels and predicted labels on the test set. AMI

external score measures the similarity of 2 labelings of the

same data, irrespective of label order and ranges from [0, 1],

with a perfect match equal to 1. We also determined the best

number of clusters maximizing and minimizing silhouette and

Davies-Bouldin internal measures, respectively. Davies-Bouldin

index6 measures clusters separation and ‘‘tightness’’ with

Euclidean distance. Lower indices correspond to better solu-

tions. We computed the metrics independently on the training

and test sets and return the best number of clusters found with

k-means.

The normalized stability for varying number of clusters in Fig-

ure 4 shows that the model perfectly identified 5 clusters with

0.0 normalized stability. The comparison between true and

clustering labels can be observed in Figure S3. The ACC and

MCC scores on the test set are equal to 1.0 and the AMI is

equal to 1.0. The maximum silhouette score is 0.83 on both

training and test sets with the correct number of clusters and

AMI scores equal to 1.0. The Davies-Bouldin index results do

not replicate between training and test sets. The index is equal

to 0.23 with 4 clusters on the training set and to 0.23 with 5

clusters on the test set. AMI scores are 0.91 for training and

1.0 for testing.

MNIST dataset
For the real-world dataset example, we considered the hand-

written digits MNIST dataset (http://yann.lecun.com/exdb/

mnist/), which includes 70;000 samples corresponding to

28328 images of digits from 0 to 9.When flattened, each sample

has 784 features. The dataset has 10 classes, with ~7,000 sam-

ples for each class.

First, we split the dataset into training and test sets of

60;000 and 10;000 samples, respectively. Then, we prepro-

cessed the dataset with uniform manifold approximation and

projection (UMAP)24 for dimensionality reduction with 2 com-

ponents. We run HDBSCAN clustering, as suggested in

https://umap-learn.readthedocs.io/en/latest/clustering.html,

with different classifiers and selected the best configuration.

In particular, we considered k-nearest neighbors (KNN) with

the number of neighbors equal to 30, and support vector ma-

chines (SVMs), random forest (RF), logistic regression (LR)

with default parameters from scikit-learn library. The

HDBSCAN algorithm was initialized with minimum samples

equal to 10 and minimum cluster size equal to 200. The rela-

tive clustering validation procedure was run with 10 repeti-

tions of 2-fold cross-validation, and number of random label-

ing iterations equal to 10. Because HDBSCAN does not need

the number of clusters specified a priori, the normalized sta-

bility is computed averaging the misclassification error over

the solutions that return the same number of clusters. We

selected the one that minimizes the normalized stability and

the trained classifier applied to test set is the one trained on
Patterns 2, 100228, April 9, 2021 5
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A B C

Figure 2. Relabeling practice

Clustering labels on the training (A) and test (B) sets. Differences in labeling between training and test sets are displayed in (C). The labeled points on which the

classifier is trained are shown in blue, the labeled points whose classes we want to predict are in black.
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the corresponding cross-validation fold. Because we are not

preselecting the number of clusters, results might differ be-

tween training and test sets.

The best classifier-clustering combination is RF and

HDBSCAN, which correctly identifies 10 clusters on the training

set, with a misclassification error equal to 0:06 ð0:06Þ and AMI

score equal to 0.91 (see Figure 5). On the test set, it identifies

9 clusters with AMI equal to 0.87. When the experiment was

run with internal validation measures, we obtained 10 clusters

in training and 9 clusters during testing, with AMI scores equal

to 0.88 and 0.87, respectively, for both silhouette and Davies-

Bouldin measures. In Figure 6 and by the comparison of training

set AMI scores between reval and internal measures, we observe

that internal measures fail to detect the actual digit classes dur-

ing training, whereas reval with HDBSCAN and RF successfully

identifies them (see Figures 6C and 6D), with AMI score of

0.91. On test set the result is the same among all methods, as
Figure 3. Execution times

Different combinations of classification and clustering algorithms applied to blob

uate() (B); sequential calls to best_nclustcv() and evaluate() (C) with K

features.
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demonstrated by equal AMI scores (see Figure S4). Based on

these results, we can speculate that clustering on a subset of

data (N = 35;000) better detects the digits classes.

It is worth noting that the classifier performance highly depends

on the clustering solution in that it tends to overfit to the training

dataset. To guide the choice of a classifier, users should first

select an appropriate clustering algorithm, then select the classi-

fier that minimizes stability and that reports the best performance

on the held-out dataset. In case of equal or very similar outcomes,

algorithm complexity should guide the classifier selection.

Algorithm selection

We considered 19 datasets from the UCI Machine Learning re-

pository,23 including the test set of the handwritten digits dataset

that can be found in scikit-learn toy datasets (https://scikit-learn.

org/stable/datasets/index.html). In Table 2 we report the dataset

names along with the number of samples, features, and inherent

classes. We applied the relative validation algorithm with
s dataset with 100 samples and 10 features. best_nclustcv() (A); eval-

NN and k-means for blobs dataset with varying combinations of samples and

https://scikit-learn.org/stable/datasets/index.html
https://scikit-learn.org/stable/datasets/index.html


Figure 5. reval performance for MNIST dataset with RF and

HDBSCAN algorithms

Solid line represents the validation normalized stability with 95% confidence

intervals. Dashed line shows training stability.

Figure 4. reval performance for blobs dataset

Solid line represents the validation normalized stability with 95% confidence

intervals. Dashed line shows stability during training.
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different combinations of classifier and clustering algorithms. In

particular, for clustering we selected hierarchical clustering with

Ward’s method and Euclidean distance, k-means clustering with

Euclidean distance, and HDBSCAN with minimum cluster size

equal to 5, and Euclidean distance. Among classifiers, we opted

for KNN with 1 neighbor and Euclidean distance, RF classifier

with 100 estimators, SVM with C= 1 and g = 1
N samples, and LR.

We did not consider spectral clustering because of its computa-

tional cost (see Table 1). To improve the performance, in addition

to raw datasets, we repeatedly run the experiments after prepro-

cessing with (1) standard scaler, which removes the mean and

scales to unit variance; (2) UMAP algorithm24 for dimensionality

reduction; and (3) standard scaler andUMAP. UMAP parameters

are chosen according to those suggested in the documentation

(https://umap-learn.readthedocs.io/en/latest/clustering.html).

We ran the algorithm with 10 replications of 2-fold cross-valida-

tion and 10 random labeling iterations. The number of clusters

ranges from 2 to nðclassesÞ + 2, where nclasses is the number of clas-

ses for each dataset.

Table 3 reports the best solutions selected as those reporting

minimum stability along with the correct number of clusters. If no

experiment identified the correct number of classes, we chose,

among the solutions with minimum stability for each prepro-

cessed dataset, the one with maximum AMI on test set. For

comparison, we computed the silhouette score and Davies-

Bouldin index6 internal measures independently on both training

and test sets with the clustering algorithm selected by the stabil-

ity-based approach and with the same varying number of clus-

ters. We report in Table 3 the best solutions as those that maxi-

mize and minimize those measures, respectively, and AMI

scores to evaluate the similarity of true and cluster labels on

test sets.

We observe that the stability-based approach identified the

correct number of classes in 68% of cases (N = 13). Moreover,

6 out 13 experiments selected k-means clustering and KNN

classifier as the best choice. Of these, only 1 utilized raw data

with no preprocessing, whereas the rest required either UMAP-

preprocessed and/or scaled datasets. Because k-means works

well with center-based spherical clusters and usually cannot find

a good representation if clusters are very elongated or have
complicated shapes, data preprocessing can relax this issue.

From this experiment, it emerged that UMAP can be used as a

preprocessing tool in this sense, in that it unwraps manifolds to

find manifold boundaries. Nevertheless, because each dataset

has its own intrinsic characteristics, preprocessing steps must

be chosen with care to avoid breaking clusters into several erro-

neous small spherical clusters (see example with k-means at

https://umap-learn.readthedocs.io/en/latest/clustering.html). It

has been observed14 that, if the number of clusters k is too large

with respect to the true clusters, the k-means algorithm tends to

be unstable. On the contrary, if k is smaller or equal to the true

number of clusters, the algorithm tends to be stable. Therefore,

it is argued that k-means stability depends on the number of true

clusters in the dataset, which should be on the order of 10 to pro-

vide stable solutions. This seems to hold whenwe look at the UCI

datasets with R10 classes for which k-means is often selected

as the best clustering algorithm, although it returns a smaller

number of clusters with respect to true classes. For this reason,

despite KNN/k-means providing the best algorithm configura-

tion in more than half the experiments, the choice of a classi-

fier/clustering should be done carefully, taking into account the

dataset dimension and the computational cost of the algorithms.

The number of clusters selected with the silhouette score and

Davies-Bouldin index (see Table 3) is equal to that reported by

reval. The exception here was the iris dataset,25 whereby reval

selects 3 clusters during training and 2 during testing with RF

and HDBSCAN, whereas internal measures result in 4- and 2-

cluster solutions. Nevertheless, the validation stability of the

relative approach is equal to 0:33 ð0:19Þ, suggesting that the

partition does not generalize well because the solution is not sta-

ble. If we could only rely on internal measures, we would have

failed to acknowledge the quality of the solution found. Gener-

ally, because 2 out of 3 classes are not linearly separable and

the data are displayed in 2 separate groups25 the iris dataset is

not a good candidate for clustering and only the relative valida-

tion approach can clearly show that.

More generally, when comparing the AMI scores, we have no

ability to say how well the results are actually doing. On the con-

trary, we have a sense of how good the clustering is with relative
Patterns 2, 100228, April 9, 2021 7
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Figure 6. MNIST cluster visualization

Training set UMAP visualization for true labels (A); relative validation labels (B); silhouette score labels (C); Davies-Bouldin index labels (D). For internal measures

we circled the erroneous cluster identified.
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validation through the generalization process. See the example

of the climate dataset, which has a validation normalized stability

of 0:20 ð0:04Þ, indicating poor generalization, and a silhouette

score on test set of 0.49, although both methods provide the

same clustering solution on test set given that AMI score is equal

to �0:005 in both cases.

In conclusion, grid search for classifiers and clustering

methods is easily and effectively implemented with reval and

can be handy to avoid a priori selection of a classifier. Further-

more, the stability-based approach helps evaluate the goodness

of a clustering solution by means of its generalization process.

This information about generalization is absent with internal

measures.

Stability regime to guide cluster selection
Ben-Hur et al.15 presented a stability-based method with data

subsampling and reported on the risk of underestimating/over-

estimating the true number of clusters. Introducing prediction
8 Patterns 2, 100228, April 9, 2021
strength computed via repeated cross-validation, Tibshirani

et al.4 linked unsupervised to supervised learning in an attempt

to overcome the best cluster estimation issue. The reval imple-

mentation moves forward adding the evaluation of the best solu-

tion on unseen data, an approach that is particularly suitable for

datasets with large sample size. While large sample sizes were

less common in the past, dataset size has increased substan-

tially over time and reval can be particularly important and well

suited for modern data science contexts. Solution generaliz-

ability can be leveraged to select the best number of clusters

not only based on validation metrics (e.g., prediction strength

greater than 0:8=0:94) but also on the performance of the solution

applied to a new set of data. In this way, we are able to compare

test set distribution with the one on which the result was based,

hence reinforcing the decision. Selecting the number of clusters

that best generalizes to new data (i.e., investigation of the stabil-

ity regime) holds promise for overcoming the underestimation

issue. To give a better sense of how this works in practice, we



Table 2. Benchmark datasets from the UCI Machine Learning

repository

Dataset Samples Features Classes

Handwritten digits 1,797 64 10

Yeast 1,484 8 10

Banknote 1,372 4 2

Biodegradation 1,055 41 2

Transfusion 748 4 2

Breast cancer Wisconsin (WI) 683 9 2

Urban land cover 675 147 9

Climate 540 18 2

Forest type 523 27 4

Wholesale 440 7 3

Movement 360 90 15

Ionosphere 351 34 2

Liver disorders 345 5 2

Leaf 340 14 30

Ecoli 336 7 8

Glass 214 9 6

Seeds 210 7 3

Parkinsons 195 22 2

Iris 150 4 3
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present a case study in the context of autism research, where

clustering solutions within a stability regime could be further

investigated.

Autism spectrum conditions (ASCs) are characterized by diffi-

culties in social communication alongside heightened restricted

and repetitive behaviors.26 The spectrum of affected individuals

with ASC is highly heterogeneous and this heterogeneity is pre-

sent at multiple levels, from genome to phenome, and can co-

exist with differing levels of severity and comorbidities.27,28

Given the high level of heterogeneity, data-driven clustering

could be a promising approach to isolating different types of au-

tisms. To split ASC into data-driven subtypes, we applied reval

to clinical data obtained from the National Database for Autism

Research (NDAR; https://nda.nih.gov/). NDAR is a database

that includes a heterogeneous collection of de-identified human

subjects’ data for autism research. We focus here on clinical

behavioral data from the Vineland Adaptive Behavior Scales

(VABS).29,30 Within the VABS, there are 3 domain total scores

for communication, living skills, and socialization skills. Using

these 3 domain total scores with UMAP preprocessing, we

trained the stability-based model on 420 subjects (mean age

41:65 ð17:91Þ months, female/male counts 109=311). As for

analysis choices, we ran this analysis with 10033 repeated

cross-validation and 100 iterations of random labeling, with

number of clusters ranging from 2 to 10, using k-means clus-

tering, and a KNN classifier with number of neighbors equal

to 15.

From the performance plot in Figure 7, we find that both a 2-

cluster and 3-cluster solution results in small stabilities (2-cluster

solution (error): 0:027 ð0:004Þ; 3-cluster solution [error]:

0:036 ð0:003Þ) and thus form a stability regime whereby either

solution might be a promising solution to follow up with future

work. Based on the minimization of the normalized stability mea-
sure, the default behavior when using reval would be to select 2

as the best number of clusters. However, upon evaluation of

these solutions on the unseen test set (n = 344 subjects; mean

age 43:12 ð17:04Þ months, female/male counts 90=254), we

find that both solutions reach 94% accuracy, further confirming

the presence of a stability regime whereby more than 1 solution

might be a plausibly good model for follow-up work. The gener-

alization performance alongside visual inspection (see Figure S5)

indicates that the default selection of a 2-cluster solution would

possibly underestimate the true number of clusters.4 Thus,

based on the stability regime present here, we could select 3

as the true number of clusters since the stability differences

are likely negligible and because both 2- and 3-cluster solutions

generalize equally well. In practice, wewould ultimately follow up

with examination of both 2- and 3-cluster solutions and utilize

other datasets to better understand which solution might be

most illuminating for decomposing clinical and biological hetero-

geneity of importance for autism research.

To contrast the reval stability-regime results here with internal

measures, we would have obtained 2-cluster solutions for both

silhouette (scores of 0.41 and 0.42 on training and test respec-

tively) and Davies-Bouldin measures (0.86 on both training and

test sets). If we force the number of clusters to 3, we obtain lower

silhouette scores (i.e., 0.35 in both training and test sets) and

higher Davies-Bouldin indices (i.e., 0.93 and 0.95, respectively).

In this example, internal measures do not reveal a regime of

possible cluster solutions. Given the additional lack of informa-

tion about generalization from internal measures, such a regime

might be easily missed. This example illustrates a real-world

example in data science for how relative validation implemented

with reval may reveal insights regarding regimes of clustering so-

lutions that may be missed with internal validation approaches.

DISCUSSION

In this work, we introduce the reval package for relative clus-

tering validation and describe how it can be utilized, as well

as providing examples for how it performs in simulations and

several real datasets. In many cases, reval successfully iden-

tifies the correct number of clusters and confers several other

advantages over and above other internal validation ap-

proaches. In particular, from the examples reported, it is

straightforward to observe that the numbers of clusters identi-

fied through reval and internal measures usually do not differ,

and that the clustering solutions report the same AMI scores

compared with true labels. Internal measures have the advan-

tage of being less computationally expensive; nevertheless,

they do not inform on the generalization process, nor do they

grant the possibility to generate labels on unseen data. This

happens because cluster labels are obtained from in-sample

measures. On the contrary, reval relies on out-of-sample stabil-

ity of the solutions and it allows estimation of whether the

clustering used is successful in determining partitions. In

conclusion, compared with internal validation measures, reval

is able to report the extent to which different clustering solu-

tions fit to the data at hand and how well those solutions

may generalize or replicate on unseen data.

Moreover, because reval works with multiple clustering algo-

rithms, it can facilitate a more thorough investigation of
Patterns 2, 100228, April 9, 2021 9
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Table 3. Best combinations of classifiers and clustering methods for reval with grid search applied to benchmark datasets from the

UCI Machine Learning repository

Dataset Classes

reval Silhouette Davies-Bouldin

Clusters Best model Preprocessing Stability (error) AMI Clusters AMI Clusters AMI

Handwritten digits 10 10 KNN/k-means UMAP 0.0 0.76 10=10 0.76 10=10 0.76

Yeast 10 7 RF/k-means* scaled + UMAP 0:05 ð0:01Þ 0.25 4=4 0.25 4=4 0.25

Banknote 2 2 SVM/HC scaled + UMAP 0:003 ð0:006Þ 0.93 2=2 0.93 2=2 0.93

Biodegradation 2 2 KNN/k-means Raw 0:03 ð0:006Þ � 0:002 2=2 � 0:002 2=2 � 0:002

Transfusion 2 2 KNN/k-means UMAP 0.0 0.005 2=2 0.005 2=2 0.005

Breast cancer (WI) 2 2 SVM/k-means raw 0:03 ð0:01Þ 0.76 2=2 0.76 2=2 0.76

Urban land cover 9 3 KNN/k-means* scaled + UMAP 0:006 ð0:003Þ 0.45 3=3 0.45 3=3 0.45

Climate 2 2 KNN/k-means scaled + UMAP 0:20 ð0:04Þ � 0:005 2=2 � 0:005 2=2 � 0:005

Forest type 4 4 KNN/HC raw 0:35 ð0:11Þ 0.55 4=4 0.55 4=4 0.55

wholesale 3 3 SVM/k-means UMAP 0:07 ð0:03Þ 0.002 3=3 0.002 3=3 0.002

Movement 15 6 KNN/HC* UMAP 0:05 ð0:02Þ 0.42 6=6 0.42 6=6 0.42

Ionosphere 2 2 SVM/k-means raw 0:01 ð0:009Þ 0.21 2=2 0.21 2=2 0.21

Liver disorders 2 2 KNN/k-means UMAP 0:11 ð0:04Þ 0.03 2=2 0.03 2=2 0.03

Leaf 30 3 RF/k-means* scaled 0:19 ð0:03Þ 0.22 3=3 0.22 3=3 0.22

Ecoli 8 2 KNN/k-means* UMAP 0.0 0.48 2=2 0.48 2=2 0.48

Glass 6 3 KNN/k-means* scaled 0:39 ð0:06Þ 0.35 3=3 0.35 3=3 0.35

Seeds 3 3 SVM/k-means Raw 0:05 ð0:03Þ 0.66 3=3 0.66 3=3 0.66

Parkinsons 2 2 KNN/k-means scaled + UMAP 0:02 ð0:01Þ 0.09 2=2 0.09 2=2 0.09

Iris 3 3=2 (tr/ts) RF/HDBSCAN UMAP 0:33 ð0:19Þ 0.73 4=2 0.73 4=2 0.73

HC, hierarchical clustering; KNN, k-nearest neighbors; RF, random forest; SVM, support vector machine; AMI, adjusted mutual information score;

ACC, accuracy.

Marked with * results that failed in identifying the correct number of clusters. Number of clusters, and stability measures are reported. For comparison,

the number of clusters identified based on internalmeasures is reported. The best clustering algorithms selected are independently applied to train and

test sets, with best solution defined as the one that maximizes or minimizes silhouette and Davies-Bouldin measures, respectively. AMI on test set is

reported for performance evaluation in all cases.
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clustering mechanisms. In fact, although a thorough theoretical

and experimental analysis of stability-based model selection

with k-means clustering has been done3,14,15, the effectiveness

of such an approach needs to be further investigated with

different clustering algorithms. Furthermore, reval can be

included in ensemble learning pipelines31 or integrated in

ensemble clustering frameworks for the selection of the best

clustering solution.32 Last, the ability to identify stability regimes

and evaluate such regimes based on generalization to unseen

data can inform the underestimation issue of the best number

of clusters identified in real-world datasets.

Limitations of the study
A primary caveat or limitation to the approach reval takes is pri-

marily one of data size. reval identifies the best clustering solu-

tion within a cross-validation framework, and hence needs large

sample sizes to preserve cluster distribution between training

and validation sets. Moreover, a separate held-out dataset is

also needed to generalize the solution found. Smaller datasets

may not allow for sufficient splitting within a cross-validation

framework to allow for robust clustering solutions to generalize

in unseen datasets. Finally, reval does not address the possibility

of finding unrealistic data partitions. Because classifiers can

overfit to their training set, a stable solution does not necessarily

imply the true presence of subgroups in the data. Futureworkwill

focus on the implementation of other relative validationmethods,
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e.g., based on prediction strength,4 with the aim to create a

comprehensive library.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

For further information, suggestions, or to contribute to the package, please

reach out to the lead contact, Isotta Landi (landi.isotta@gmail.com,

@IsottaLandi).

Materials availability

This study did not generate any new materials.

Data and code availability

Code and package installation instructions can be found at https://github.

com/IIT-LAND/reval_clustering. Documentation with working examples is at

https://reval.readthedocs.io/en/latest/. Code with manuscript experiments

and simulations can be found in the script ./working_examples/manu-

script_examples.py at https://github.com/IIT-LAND/reval_clustering.

Data used for the experiments and simulations are publicly available. In

particular, the MNIST handwritten digits dataset can be downloaded from

http://yann.lecun.com/exdb/mnist/, whereas the handwritten digits toy data-

set can be found in the scikit-learn library. Datasets from the UCI Machine

Learning repository can be found at https://archive.ics.uci.edu/ml/index.php,

and those used in the algorithm selection section can be created by running

the ./working_examples/datasets/manuscript_builddataset-

s.py script at https://github.com/IIT-LAND/reval_clustering. The VABS data-

set used to present the stability-regime-based clusters selection was ex-

tracted from the NDAR database https://nda.nih.gov/, which can be

accessed upon approval by the NIH Data Access Committee.

mailto:landi.isotta@gmail.com
https://github.com/IIT-LAND/reval_clustering
https://github.com/IIT-LAND/reval_clustering
https://reval.readthedocs.io/en/latest/
https://github.com/IIT-LAND/reval_clustering
http://yann.lecun.com/exdb/mnist/
https://archive.ics.uci.edu/ml/index.php
https://github.com/IIT-LAND/reval_clustering
https://nda.nih.gov/


Figure 7. Stability regime for the NDAR dataset

Random label stability is displayed for performance evaluation. Dashed line

shows training stability. Solid line represents validation normalized stability

with 95% confidence intervals. Arrows point to the stability-regime solutions.
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Computational details

Thepackagewasdeveloped inPython3.8andsimulationswere runonaMacBook

Pro 2020 with a 2.3 GHz Quad-Core Intel Core i7 processor and 32 GB RAM. All

simulationspresented in the technical validation sectionwere runwith reval v0.1.0.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100228.
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