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The RNA landscape of the human placenta in
health and disease

Sungsam Gong® "2, Francesca Gaccioli® "2, Justyna Dopierala® ", Ulla Sovio® 2, Emma Cook® ',

Pieter-Jan Volders® 3, Lennart Martens3, Paul D. W. Kirk® #°, Sylvia Richardson 4
Gordon C. S. Smith® %7 & D. Stephen Charnock-Jones@® 127

The placenta is the interface between mother and fetus and inadequate function contributes
to short and long-term ill-health. The placenta is absent from most large-scale RNA-Seq
datasets. We therefore analyze long and small RNAs (~101 and 20 million reads per sample
respectively) from 302 human placentas, including 94 cases of preeclampsia (PE) and 56
cases of fetal growth restriction (FGR). The placental transcriptome has the seventh lowest
complexity of 50 human tissues: 271 genes account for 50% of all reads. We identify multiple
circular RNAs and validate 6 of these by Sanger sequencing across the back-splice junction.
Using large-scale mass spectrometry datasets, we find strong evidence of peptides produced
by translation of two circular RNAs. We also identify novel piRNAs which are clustered on
Chr1 and Chr14. PE and FGR are associated with multiple and overlapping differences in
mRNA, lincRNA and circRNA but fewer consistent differences in small RNAs. Of the three
protein coding genes differentially expressed in both PE and FGR, one encodes a secreted
protein FSTL3 (follistatin-like 3). Elevated serum levels of FSTL3 in pregnant women are
predictive of subsequent PE and FGR. To aid visualization of our placenta transcriptome data,
we develop a web application (https://www.obgyn.cam.ac.uk/placentome/).
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uring mammalian development, the placenta is the first

organ to form and is responsible for anchoring the embryo

to the uterus and mediating nutrient and gas exchange with
the mother. The placenta sustains the fetus throughout pregnancy
and defects in placentation are at the root of many pregnancy
complications. Yet despite its significance for evolution, develop-
ment, and reproductive health, the placenta is understudied and is
commonly omitted from large-scale “-omic” analyses. For example,
of the 17,382 samples in the Genotype-Tissue Expression (GTEx)
project!, a tissue-wide gene expression study, none are placental.
However, placental dysfunction underlies a large proportion of
maternal and perinatal morbidity and mortality. Worldwide, the
burden of mortality due to maternal and perinatal death is
equivalent to about half the total burden due to cancer?.

RNAs carry out numerous functions in addition to coding for
proteins. For example, they play multiple roles in both the
nucleus and cytoplasm to regulate transcription. They control
nuclear architecture and modulate mRNA stability, translation,
and post-translational modification®*. Therefore, knowing the
repertoire of RNAs present, informs our understanding of
cell and tissue function.

Previous placental transcriptome analyses focused on differ-
ences associated with maternal and fetal conditions®~’. Initial
studies used microarray analyses, followed more recently by
RNA-Seq®-11. However, these studies are limited in terms of the
number of placental biopsies and the depth of sequencing cov-
erage (Supplementary Data 1). In addition, most of the early
RNA-Seq studies used oligo-dT primed cDNA synthesis, which
prevents analysis of non-adenylated RNAs and selected against
small transcripts such as micro-RNA (miRNA) and PIWI-
interacting RNAs (piRNAs).

Here we report high-quality RNA-Seq data and provide a
comprehensive analysis of the human placenta transcriptome. We
isolated total RNA, fractionated by size, and sequenced rRNA-
depleted long and small RNAs from 302 human placentas
(Supplementary Fig. 1). We first characterize the various types of
transcript in the placenta and analyze the transcriptome com-
position and complexity compared with other human tissues. We
then reconstructed the placental transcriptome and report pre-
viously unrecognized coding and non-coding transcripts. We
show there are multiple abundant circular RNAs (circRNAs) and
provide an analysis of dysregulated transcripts in cases of pre-
eclampsia (PE) and fetal growth restriction (FGR). Finally, we
demonstrate that maternal serum levels of a protein, follistatin-
like 3 (FSTL3), encoded by one of the differentially expressed
mRNAs, is predictive of PE and FGR.

Results

High-quality placenta RNA-Seq data. We generated 324 total
RNA-Seq datasets from 302 placental biopsies of the Pregnancy
Outcome Prediction (POP) study cohort!2-14 and obtained a total
of ~33 billion reads (~101 million reads per sample, Supple-
mentary Data 2 and Supplementary Fig. 1). We also generated
328 small RNA-Seq datasets, producing ~6.6 billion reads in total
(~20 million per sample, Supplementary Data 3). We identified
the presence of decidual contamination in three samples that
were excluded from the analysis!® (see methods). To aid dis-
semination and visualization of our placenta transcriptome data,
we developed a web application (https://www.obgyn.cam.ac.uk/
placentome/) where users can browse: (1) the abundance of long,
small and circular transcripts, (2) genes expressed in the placenta
in comparison with 49 somatic tissues (GTEx dataset), (3) pre-
viously unrecognized transcripts, and (4) differentially regulated
transcripts in complicated pregnancies. A screen shot of an
example of this is shown in Supplementary Fig. 2.

Relative abundance and complexity of RNA populations. We
analyzed long (>200nt) and small RNAs and a large majority of
the mapped reads corresponded to messenger RNAs (mRNAs)
and miRNAs, respectively (Fig. 1a-b). We found that the majority
of annotated pseudogenes, small non-coding RNAs (sncRNAs),
long intergenic non-coding RNAs (lincRNAs), and piRNAs were
not expressed or were expressed very weakly (<0.1 RPKM, Read
Per Kilobase of exon model per Million mapped reads). By
contrast, most protein-coding transcripts and mature miRNAs
were present above this threshold. For example, 86, 75, 74, 67% of
pseudogenes, sncRNAs, lincRNAs, and piRNAs, respectively were
either not detected or were detected at <0.1 RPKM, whereas only
25 and 28% of miRNA and protein-coding RNAs were below this
threshold (Fig. 1c and Supplementary Data 4). Within the dif-
ferent RNA classes the populations were skewed (Fig. 1d). For
example, three-quarters (75%) of annotated sncRNAs were
undetectable (i.e, RPKM = 0; Fig. 1c), although 5.2% of reads
were mapped to that RNA biotype (second largest proportion
behind the miRNAs (Fig. 1b)). Similarly, two thirds (65%) of
annotated piRNAs were undetectable in the placenta (i.e., RPKM
=0) but 1.7% were expressed at RPKM > 100. For the miRNAs,
15% were undetectable but 20%, 12 and 6% were expressed at
RPKM > 100, >1000 and >10,000, respectively. The majority
(10,506, 53%) of coding mRNAs were present at 1-100 RPKM.

We ranked transcripts by their abundance and determined
their contribution to the total for that transcript biotype in the
placenta (Fig. le). We found that the percentage of transcripts
required to reach half of the total transcriptome abundance
(TA50) varied substantially depending on the RNA biotypes:
piRNAs 0.2% (n =21), miRNAs 0.5% (n=19), sncRNAs 1.8% (n
=13), lincRNAs 2.3% (n = 46), protein-coding transcripts 2% (n
=295), and pseudogene transcripts 7.5% (n=146). We then
focused on protein-coding mRNAs and compared the placental
TAS50 to other somatic tissues in the GTEx dataset (v8.p2)! as an
indicator of the complexity of this transcript biotype. The
placenta is ranked 7th out of 50 tissues studied, whereas blood
(ranked 1, i.e., the tissue with the least complex pool of protein-
coding transcripts) required only two hemoglobin mRNAs (HBB
and HBA2). The testis and the brain (cerebellum) had the most
complex pool of protein-coding transcripts with 1289 and 1225
annotated mRNAs, respectively, required to reach TA50
(Fig. 1f-g).

Transcripts enriched in the placenta. We used the Tau score
(with some additional filtering conditions, see Methods) to define
the tissue enriched transcripts. We found 1389 such protein-
coding genes expressed in the placenta and the 49 somatic tissues
in the GTEx dataset (Supplementary Fig. 3 and Supplementary
Data 5). There were 71 placenta enriched protein-coding tran-
scripts which is significantly more than expected by chance
(observed/expected 1.48, chi-squared P<2.2x10716), and the
placenta is ranked 4th behind the testis, liver, and skin (671, 143,
and 77 genes respectively). This includes several pregnancy-
related genes, of which CSHI and CSH2 (Chorionic Somato-
mammotropin Hormone 1 and 2, respectively) were the most
abundant, and all the members of the PSG (pregnancy-specific
glycoprotein) family, except PSGI10P (a pseudo-gene). In addi-
tion, several groups of closely related genes also met the criteria to
be defined as placenta enriched, e.g., galectins (LGALSI3, also
known as pregnancy protein 13, PP13), LGALSI4, and LGALSI6),
two members of the melanoma antigen family (MAGEAS8 and
MAGEAI0), three chorionic gonadotropin subunit beta genes
(CGB3, CGB5, and CGBS8), two members of X antigen family
(XAGE2 and XAGE3) and four endogenous retrovirus genes
(ERVW-1, ERVFRD-1, ERVV-1, and ERVV-2). Using the same
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criteria we also identified 1,200 tissue enriched long non-coding
genes, 74 of which were specifically enriched in the placenta. The
placenta is ranked second, (observed/expected 1.54, chi-squared
P<2.2x10716), behind the testis (first), followed by the liver
(third) (Supplementary Fig. 3 and Supplementary Data 6).
Interestingly, we found one of the placenta enriched lincRNAs
was encoded by endogenous retrovirus (ERVH48-1). We
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inspected all the endogenous retrovirus genes and identified two
additional protein-coding endogenous retrovirus genes (ERV3-1
and ERVMER34-1) as placenta enriched using slightly less
stringent criteria (Supplementary Fig. 3 and Supplementary
Data 7). Of note, the mRNAs encoding the major histones are not
adenylated!®!7 and thus are greatly underrepresented in the
GTEx data which was generated using poly-AT selected RNA.
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Fig. 1 Complexity of RNA transcripts in the placenta. After sequencing and alignment to the human reference genome various RNA biotypes were
identified in the placenta. The proportions mapped reads to various types of long (a) and small (b) RNAs are shown. In (a), definitions of RNA types were
from the biotypes of Ensembl as follows: mRNA (protein-coding messenger RNA), lincRNA, pseudogenes (processed pseudogene, unprocessed
pseudogene, transcribed unprocessed pseudogene, transcribed processed pseudogenes, or pseudogenes), Mt rRNA (mitochondrial ribosomal RNA), misc
RNA (non-coding RNA that cannot be classified), others (other remaining biotypes such as antisense, snRNA, snoRNA, processed transcripts). In (b),
‘other exonic’ refers to reads mapped to any exonic regions except miRNA, piRNA, tRNA, and sncRNA and ‘remaining’ refers to mapped reads except
miRNA, piRNA, tRNA, scRNA, and ‘other exonic’. sncRNAs include the following three types of RNAs: snoRNA (small nucleolar RNA), snRNA (small
nuclear RNA), and sRNA (small RNA). RNAs are plotted as the percentage of quantified transcripts against the expression level (¢) and the frequency of
transcripts (density) against expression level (d). In (c-d), the RPKM values have a pseudo-count (0.0001) added to allow plotting on a logarithmic scale.
For the density plot (d), the probability density functions were estimated using kernel density estimation, where the area under the curve equals one. e The
placental transcriptome is represented as the cumulative percentage of various RNA biotypes in the current study. f The total mMRNAs pool is represented
as the cumulative percentage of protein-coding transcripts in 50 tissues, including the placenta. In (e-f), each point represents a transcript (with RPKM >
0.1) and the dashed line represents the TA50, i.e., the percentage of transcripts required to reach half of the total transcript abundance. To reach TA50 in
(), the following numbers of protein-coding RNAs are needed: 2 (blood), 7 (pancreas), 110 (liver), 135 (muscle - skeletal), 191 (esophagus - mucosa), 232
(minor salivary gland), and 271 (placenta). g For each tissue, the bar chart shows the contribution of the most abundant 1% of mRNAs to the total pool of

protein-coding transcripts.

Highly abundant circRNAs and small RNAs. circRNAs is gen-
erated by back-splicing and lacks a poly-adenylated tail. These
can be identified by RNA-Seq using the non-oligo-dT based
methods employed in the present study. Such Ribo-Zero methods
have been described as the “gold-standard” for the detection of
circRNAs!®. Using RNA-Seq data generated from both non-
oligo-dT (discovery datasets) and oligo-dT primed (negative
control) libraries, we found 3304 predicted circRNAs present in at
least 30% of the POP study cohort (POPS30, ie., 289 out of
295 samples) from non-oligo-dT libraries. 25 circRNAs were also
detected in oligo-dT libraries (Supplementary Data 8 and 9) and
we excluded these from the analysis as they were likely to be false
positives. Of the remaining 3279 circRNAs, 169 were detected in
every placental sample. We investigated genes hosting multiple
circRNAs and found that there were 16 genes harboring at least
10 circRNAs, including PAPPA and PAPPA2 which host 33 and
26 circRNAs, respectively (Supplementary Data 10).

We further studied highly expressed small RNAs and
investigated their genomic loci. We found miR-100-5p
(chrl11:122,152,275-122,152,296; reverse-strand) is the most abun-
dant mature miRNA in the placenta, followed by miR-143-3p, miR-
21-5p, and miR-30d-5p. We observed marked skewing of the
population of miRNAs with the 20 most abundant mature miRNAs
(ie, top 1%) accounting for ~75% of the total population of
miRNAs (Fig. 2a and Supplementary Data 11). Furthermore, ten of
these are located within a 66Kb region on chromosome 19
(chr19:53,686,484-53,752,432; forward-strand, Fig. 2b). This
miRNA cluster is known as the chromosome 19 microRNA cluster
(C19MC, chr19:53,641,443-53,780,750) where 46 genes encode 59
mature miRNAs!8. In our data, 33 and 10 mature miRNAs of the
C19MC were within the most abundant 5 and 1% mature miRNAs
(Fig. 2b) and the expression level was negatively correlated with that
of 27 reported target mRNAs based on miRTarbase!® (r=—0.5,
P=23x1073; Supplementary Fig. 4a; Supplementary Data 12).
Gene Ontology (GO) analysis of the 27 binding targets showed that
GO terms associated with DNA binding, protein phosphorylation,
regulation of growth, regulation of the apoptotic process, and
response to cytokine and oxidative stress were significantly
overrepresented (Supplementary Fig. 4b). Another miRNA cluster
has been described in chromosome 14 (C14MC) and it is embedded
between the paternally imprinted DLKI and DIO3 genes. However,
we found that these miRNAs were much less abundant compared
with those from the CI9MC—only 11 miRNAs were among the
most abundant 5% mature miRNAs and none were among the top
1% (Fig. 2c).

For piRNAs (Supplementary Data 13), we identified piR-hsa-
993 (also known as piR-30840, chr5:138,561,046-138,561,073) as

the most abundant piRNA (Fig. 2a), followed by piR-hsa-26681,
piR-hsa-26684, piR-hsa-26685, and piR-hsa-26686 which are all
mitochondrial piRNAs (chrM:12,207-12,237 bp, Fig. 2d). Inter-
estingly, we found two additional piRNA clusters in chromosome
14 (chr14:100,897,922-100,983,942; forward-strand) and chromo-
some 1 (chr1:30,935,742-30,968,195; reverse-strand) with 21 and
7 piRNAs, respectively, which are within the most abundant 1%
of piRNAs (Fig. 2d). The chromosome 14 piRNA cluster is within
the C14MC and it spans across two lincRNAs (AL117190.1 and
MEGS (maternally expressed 8, small nucleolar RNA host gene))
and 10 snoRNAs (small nucleolar RNA) from SNORD113 and
SNORD114 (Fig. 2¢). The region of chromosome 1 with the
piRNA cluster also hosts the protein-coding gene PUMI (Pumilio
RNA binding family member 1).

For sncRNAs (sncRNA; Supplementary Data 14), which
include snoRNA (small nucleolar RNA), snRNA (small nuclear
RNA), and sRNA (small RNA), SNORD104 and SNORD61 are
the two most abundant sncRNAs (Fig. 2a) and both account 15%
of total abundance of sncRNAs. We found two highly abundant
sncRNA clusters in chromosome 11 and 14 where four and six
snoRNAs, respectively, are within the most abundant 1% (Fig. 2a).
The chromosome 11 snoRNA cluster is embedded in the intron
of SNHGI (Small Nucleolar RNA Host Gene 1) and the
chromosome 14 snoRNA cluster is within the C14MC (Fig. 2c)
—the latter was reported to be maternally imprinted.

Novel miRNAs. We analyzed the small RNA-Seq datasets using
miRDeep2 and identified 4,351 novel miRNAs (i.e., not reported
in mirBase). We used two additional tools, sSRNAbench?? and
miRge2.0!, and found 158 and 1,161 novel miRNAs, respectively.
From the miRNAs predicted by miRDeep2, we selected those
supported either by sRNAbench or miRge2.0 for which the
genomic features overlap by at least 30% (see “Methods” for
details). With this approach, we finally selected a total of 141
novel miRNAs (Supplementary Data 15), 45 of which were
supported by miRCarta (v1.1), a database of predicted miRNAs.
Of note, there was little agreement between sRNAbench and
miRge2.0—only one was predicted by both tools (but this one was
not predicted by miRDeep2). Imposing a requirement that the
novel miRNA be present in 30% or 100% of samples reduced the
number to 119 and 9 respectively (Supplementary Figure 5c).
There was a large number of high-depth (i.e, >10x) mapped
reads which did not overlap with miRNAs (both known and
novel), piRNAs or exonic boundaries of currently available gene
annotations (Fig. 1b). However, while these ‘remaining’ reads can
be assembled into 18,511 loci (which we termed ‘novel small
RNA; Supplementary Data 16 and Supplementary Fig. 6) they are
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not uniformly present in the sample set. The number dropped
rapidly to 381 and 24 at sample frequency thresholds of 30% and
100%, respectively (Supplementary Fig. 5¢).

Transcriptome reconstruction and unrecognized transcripts.
We reconstructed the placental transcriptome using 295 total
RNA-Seq datasets from 302 placentas (Supplementary Figure 1).
Using StringTie??, a transcriptome assembly tool, and Ensembl as
a reference transcript annotation, 380,807 placental transcripts
(90,204 loci) were reconstructed, of which 262,030 transcripts
(61,499 loci) were present at least at 0.1 RPKM (Supplementary
Fig. 5). However, the number of potentially novel transcripts (i.e.,
a ‘potentially novel isoform’, ‘within a reference intron’, and
‘unknown intergenic’ transcripts) drops rapidly as the minimum
sample frequency threshold is raised (Supplementary Fig. 5b).
The most striking example is ‘unknown intergenic transcripts’,
none of which were supported by more than one sample and are
unlikely to be functionally relevant. We compared our placental
transcriptome (assembled using Cuffcompare) with three alter-
native meta-assemblers: Gffcompare (https://github.com/gpertea/
gffcompare), StringTie-merge, and TACO?3. The performance of
Cuffcompare?# is very similar to that of Gffcompare and TACO
outperformed StringTie-merge as has been previously described??
(Supplementary Note; Supplementary Fig. 5).

We compared our reconstructed placental transcriptome with
a database of tissue-wide reconstructed transcriptomes based on
the 9,795 RNA-Seq datasets from GTEx! (CHESS?’). Among
transcripts expressed in >90% of the samples and RPKM > 0.1
(i.e., with high confidence), there were 22 and 181 reconstructed
placental transcripts classified as ‘within a reference intron’ and
‘potentially novel isoform’, respectively. The 22 ‘within a
reference intron’ transcripts were all single-exon transcripts of
which 13 transcripts did not overlap with any transcript in the
CHESS database. This suggests they may not be present in the 31
non-placental human tissues used to construct the CHESS
database (Supplementary Data 17). Of the 181 reconstructed
placental transcripts in the ‘potentially novel isoform’ category,
141 completely matched the intron chains annotated in the
CHESS database, suggesting they are also present in other tissues.
However, interestingly, there were 25 transcripts still classified as
‘potentially novel isoform’ (i.e., matched at least one junction),
suggesting they are not recognized in the 31 tissues on which the
CHESS database is built (Supplementary Data 17).

We identified two novel leptin transcript variants present in
>10% of the samples analyzed and both of these had an altered
exon splice site leading to the loss of glutamine at position 49 of
leptin (Supplementary Note; Supplementary Fig. 7, Supplemen-
tary Data 18-19). These transcripts were more commonly found
in placentas from pregnancies complicated by PE. For example,
TCONS_00329506 is present in 41 samples and it is 1.4 times
more frequent in samples from pregnancies affected by PE (56%)
than healthy controls (39%, P =0.0011, chi-squared test).

Placental circRNAs and their possible function. The placenta
contains multiple abundant and common circRNAs. In our study,
3,279 and 679 circRNAs are present in 30% and 90% of the
samples respectively. The majority of back-spliced sites are exonic
(Supplementary Figure 8a), so we determined whether highly
expressed genes, such as PAPPA and PAPPA2, host more
circRNAs. There was a very weak correlation (r = 0.059, P < 8 x
10~4, Supplementary Fig. 8b) between the number of back-
spliced reads (i.e., abundance level of circRNAs) and the abun-
dance (i.e., RPKM) of their host genes. In fact, the relationship
between the ratio (back-splice:linear-splice) and host gene mRNA
abundance is negatively correlated (r= —0.185, P<1.5x 10716,

Supplementary Fig. 8c). This suggests those genes hosting many
circRNAs are not simply highly ranked due to their transcript
abundance and that these circRNAs are not artefacts of the
alignment of spliced-reads.

We compared circRNAs in our placental samples with those
reported in 20 human tissues (described by Maass et al.>® and
circBase?’) and to cancer-based circRNAs (MiOncoCirc?8). We
found 35 circRNAs present in at least 90% of our placental
samples, which were not reported by Maass et al. or in circBase
(Supplementary Fig. 9a). When we compared the POPS90 dataset
with those reported in placental and decidual samples from the
Maass et al.,, there were 563 circRNAs uniquely identified in
POPS90 (Supplementary Fig. 9b). There were 172 and 16
circRNAs in the POPS30 and POPS90 datasets respectively
(Supplementary Fig. 9¢), that were not reported by Maass et al.,
circBase, and MiOncoCirc. Interestingly, PAPPA2 hosted the
most unreported placental circRNAs (Supplementary Data 20).
We experimentally validated six of our predicted circRNAs
including one novel and five previously reported (Fig. 3,
Supplementary Data 21 and Supplementary Fig. 10).

CDRlas (also known as CiRS-7, c¢hrX:140,783,175-
140,784,659) is a circRNA encoded within the antisense strand
of the human cerebellar degeneration related protein 1 (CDRI)
gene and acts as a miRNA sponge which inhibits the actions of
miR-72%30. This circRNA harbors 74 miR-7 seed matches of
which 63 are conserved in at least one other species®?. We found
CDRlas in 173 of the 295 placental RNA datasets (59%) and it
had the highest ratio of circular junction reads to non-circular
reads in the placenta (0.93, Supplementary Data 8). We validated
the presence of this circRNA in our placental samples by RT-
qPCR and confirmed the identity of the back-spliced junction
using Sanger sequencing (Supplementary Fig. 10). We used
miRanda3!, and found that CDR1as harbors 67 candidate target
sites for miR-7-5p, equivalent to 45 seed matches per kilobase
(kb) of CDRIlas (Supplementary Note). This was the greatest
number of matches we found in miRBase?2. Using the same
parameters and our placental data, we sought other circRNAs
harboring multiple target sites for miRNAs. We identified a
circRNA (chrX:7,514,882-7,516,290) that has 16 candidate
miRNA-binding sites (11 seed matches per kb). This circRNA
was detected in 82% of the placental RNA-Seq datasets with a
ratio of circular junction read of 0.64. It shares the same exonic
start position (chrX:7,514,882) as a lincRNA (ENST00000658154)
which is transcribed from the steroid sulfatase (STS) gene locus
(Fig. 3a). We found that the peaks in the RNA-Seq coverage
graph corresponded to the location of back-spice junction
(Supplementary Fig. 11). We validated the back-splicing by RT-
PCR and Sanger sequencing (Fig. 3a and b). This circRNA (we
termed circSTS) is also described in circBase?” (http://www.
circbase.org/cgi-bin/singlerecord.cgi?id=hsa_circ_0140572) and
has been described by Rybak-Wolf et al.33 in the mammalian
brain. circSTS is predicted to have 16 candidate binding sites for
both miR-5584-5p and miR-7113-5p (Fig. 3c), which were rarely
detected in our data (<1 read per sample). These two miRNAs
share a common 5'-6mer sequence, CAGGGA, and this is
complementary to circSTS which is predicted to have a unique
8mer sequence motif TTTCCCTG  (Fig. 3d and e). These
miRNAs have mean predicted binding energies of —19.2 and
—25.6 kCal/Mol respectively and these are similar or stronger
than that for the predicted binding of MiR-7-5p to CiRS-7
(—19.8 kCal/Mol). We sought additional circRNAs containing more
than 10 seed matches per-kb and ranked them based on the number
of target sites. The third ranked circRNA (chr19:39,453,356-
39,453,521) had only three target sites and a circular junction read
to non-circular junction ratio in the placenta of 0.04 (Supplementary
Data 8).
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Fig. 3 circSTS as a putative miRNA sponge and evidence of peptides translated from circRNAs. a The back-spliced positions (indicated in yellow
arrows) are within the 12th exon (thick rectangle) of a lincRNA (ENSTO0000658154) encoded by STS. Back-splicing was assayed with divergent primers
(top) and confirmed by Sanger sequencing (bottom). The first and last 8-bases, colored in blue (5') and red (3') respectively, are flanked by AG/GT
(intronic acceptor/donor sites). b The expected size of the back-spliced PCR product from circSTS (170 bp) was validated by gPCR from seven placental
samples. RT": no reverse transcriptase; NTC: no template control. Source data are provided as a Source Data file. € circSTS (chrX:7,514,882-7,516,290) is
represented as a black open circle with its putative binding sites for miR-5584-5p (blue) and miR-7113-5p (orange). Its relative base positions are marked
for every 100th-base position and 1st, 500th, 1000th, and 1400th positions are numbered. The arrows indicate 5’-to-3’ direction. Sequence motif analyses
of miR-5584-5p and miR-7113-p5 are shown in (d) and (e) respectively, with the corresponding sequence miRNAs shown at the bottom. The size of the
sequence logo represents how well the binding base is conserved across the 16 predicted binding regions represented in (c). f-g Peptidomic evidence for
translation of two circRNAs. The putative peptides are in black and the bases on either side of the BSJ are colored in red (5’) and blue (3). The peptides
were translated across the BSJ (indicated by underlines) of circRNAs. h Mass spectrum corresponding to the peptide sequence of (f). On the x-axis, the
mass/charge ratio of the peptide fragments is shown, with the intensity on the y-axis. Peaks that can be attributed to b and y-ions (i.e., including the N- and
C- termini respectively) of the peptide are indicated with a square and colored in red and blue respectively.
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Novel protein-coding regions have been identified in
translated pseudogenes, ncRNAs, and upstream open reading
frames (ORFs)3%. Since circRNAs have been reported to
harbor coding ORFs3, we also investigated the possibility that
the placental circRNAs could be translated into novel
proteins. We used two publicly available tandem mass
spectrometry datasets from the draft map of the human
proteome34 and the proteome and transcriptome abundance
atlas3, We searched for matches to predicted peptides that
span the back-splice junction of the placental circRNAs (see
“Methods” for detail) and found peptides uniquely matched to
two circRNAs (Fig. 3f-g): (i) chr12:101,396,399-101,405,981
(hsa_circ_0027902) and (ii) chr3:128,806,372-128,807,671
(hsa_circ_0008923). For the peptides shown in Fig. 3f and g
there were three and six peptide-spectrum matches (PSMs),
respectively. In addition, a shorter peptide (GTGLDEA-
MEWWLFLK) that was internal to the peptide shown in
Fig. 3f also matched the circRNA chr12:101,396,399-
101,405,981. This had a higher PSM (n = 26) (Supplementary
Data 22).

Network analysis of miRNA and mRNA co-expression. To
systematically investigate miRNA-mRNA interactions, we per-
formed Weighted Gene Co-expression Network Analysis
(WGCNA)?’, which has previously been used to identify miRNA
and mRNA co-expression networks3®, We identified 22 network
modules of highly correlated transcripts, of which two (module
10, comprising 397 mRNA and 40 miRNA; and module 11,
comprising 77 mRNA and 357 miRNA) were significantly enri-
ched for miRNAs (Fisher’s exact test, Bonferroni-adjusted P <
0.05). Using eigengene network analysis, we found that the
eigengenes for both modules were significantly associated with
FGR, and that module 11 eigengene was also associated with PE
(Fig. 4a and b; see also Supplementary Data 28-74, which shows
that several other module eigengenes are also associated with PE
and/or FGR). GO, Reactome, and WikiPathways enrichment
analyses identified overrepresented terms associated with tube
formation and angiogenesis for module 10 (Fig. 4c); and with the
mitochondria and respiratory chain for module 11 (Fig. 4d).
Module 10 was also enriched for known targets of the miRNAs it
contained (11/397 mRNA, Bonferroni-adjusted P =0.0053).
These targets had overrepresented GO terms associated with cell
surface receptor signaling and regulation of cell communication
(Supplementary Data 28-74).

Correlations between placental mRNAs and serum metabolites.
We recently reported a strong association between the ratio of four
circulating maternal metabolites and FGR3?. We therefore calculated
the Spearman correlations between these four metabolites in the
samples collected at 36 weeks of gestation (WkGA) and the 24,611
transcripts described in this study. We found that 60 transcripts had
correlations with at least one of the four metabolites with Spear-
man’s rho < —0.4 or 20.4 (Supplementary Fig. 12 and Supplemen-
tary Data 23). For 1-(l-enyl-stearoyl)-2-oleoyl-GPC and 1,5-
anhydroglucitol there were very few transcripts for which P,g; < 0.05
(4 and 0 respectively). For 5alpha-androstan-3alpha,17alpha-diol
disulfate and N1,N12-diacetylspermine there were 34 and 54 tran-
scripts respectively. Analysis of the GO terms associated with these
transcripts did not show any significant enrichment.

For completeness we also correlated all 1185 metabolites for
which we have data and the 24,611 transcripts. We identified 213
transcripts and 54 metabolites for which there was at least one
correlation where rho < —0.5 or 20.5. The heatmap showing the
clustering of these is shown in Supplementary Fig. 13 with the
correlations and adjusted P values in Supplementary Data 24-25.

Cluster 3 had multiple highly significant correlations (203, with
an absolute value of r0>0.5 and P< 1.8 x 107%) including a
group of proline-related metabolites (4-hydroxyproline, prolyl-
hydroxyproline, and 4-hydroxyglutamate). There are 22 tran-
scripts with highly significant positive correlations to these
metabolites (P,q; < 0.0001) and 11 of these are annotated with GO
terms. The GO biological process term “renal system vasculature
morphogenesis” (GO:0061438) was enriched (<100 fold, P,g
0.045). Transcripts with strong negative correlations did not show
any enrichment.

Differential expression in complicated pregnancies. Having
observed potentially novel reconstructed transcript isoforms as
well as circRNAs and small RNAs, we investigated transcripts
dysregulated in the placenta samples from pregnancies affected by
PE (n=82) and FGR (n =40) compared to their matched con-
trols (see “Methods™). Using DESeq2 with a P,g; value cut-off
<0.05, we found 4.4% of transcripts differentially regulated in PE,
and 1.5% in FGR (Table 1). Most differentially regulated tran-
scripts were either protein-coding or lincRNAs, but there were
also 43 novel small-RNAs, 12 miRNAs, and 2 circRNAs. Of those,
the circRNA “chr19:53,687,886-53,694,145” was present in all the
RNA-Seq samples and it overlaps with following two miRNA
genes: MIR1283-1 (chr19:53,688,481-53,688,567) and MIR520A
(chr19:53,690,881-53,690,965). This circRNA was validated by
qPCR assay and its back-spliced junction was confirmed by
Sanger sequencing (Supplementary Fig. 10).

Using a conventional P value-based approach, only three
transcripts, all of which were protein-coding (FSTL3, PNCK, and
DIO2) were dysregulated in both PE and FGR. However, to
further investigate the differentially regulated transcripts, we
repeated the comparison using an alternative approach to
calculate the fold change. We bootstrap sampled the data set to
generate 82 and 40 pairs (equal to the number of original PE or
FGR pairs) 10,000 times with replacement (see “Methods” for
details). We ranked transcripts by their average fold change
relative to the controls and selected highly ranked transcripts in
PE and FGR. Finally, we counted how many were shared between
the two conditions. PE and FGR are both heterogeneous
conditions and this approach allows transcripts of interest to be
identified without penalizing those which have greater variability
—i.e., those that might differ between currently unknown
subtypes of the conditions. In addition to protein-coding
transcripts, we found that long non-coding and circRNA
transcripts were dysregulated in PE and FGR (Table 1), which
suggests similarities in the placental dysfunction underlying both
conditions. However, using the same criteria only a few small-
RNA transcripts were shared between the two conditions. We
performed Gene Ontology analysis using the 92 protein-coding
transcripts which changed in the same direction in PE and FGR
(Supplementary Data 26). The majority of overrepresented GO
terms are associated with endocrine regulation, such as hormone
response, transport and secretion, response to reactive oxygen
species and metal ion, and regulation of receptor protein kinase
signaling pathway.

We further analyzed differentially regulated protein-coding
transcripts by sub-dividing FGR cases according to the following
clinical characteristics (defined in detail in the “Methods”
section): (1) FGR infant whose mother experienced any
hypertensive disorder, (2) FGR infant from a normotensive
mother who showed abnormal (low) PAPP-A (Pregnancy
Associated Plasma Protein-A) level, (3) FGR infant showing
abnormal fetal growth velocity from a normotensive mother, (4)
FGR infant from a normotensive mother who showed abnormal
uterine blood flow, and (5) FGR infant from a normotensive
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Fig. 4 Characterization of miRNA-enriched WGCNA network modules 10 and 11. The eigengene summarizing the transcripts in (a) module 10 was
associated with FGR (g-value = 5.8 x 10~°); and (b) module 11 was associated with both FGR (g-value =1.8 x 10~7; 52 cases and 148 controls) and PE
(g-value =1.1x10~3; 88 cases and 148 controls). The g-values were calculated using the 'qvalue’ Bioconductor package to control the local false discovery
rate at the 0.05 level. Significantly overrepresented Gene Ontology (GO, biological process BP; molecular function MF; and cellular component CC),
Reactome (REAC), and WikiPathways (WP) terms are shown for (c) module 10; and (d) module 11. For clarity, only GO terms with a shortest root-to-node
path of length 4 are shown, and at most, the top 10 hits within each sub-ontology are shown. The enrichment analyses were performed using the R
interface to g:Profiler, and adopting the g:SCS correction to control for multiple testing with threshold P = 0.05. All statistical tests were two-sided. Full
results are provided in Supplementary Data 28-74. In (a and b), the boxes show the median and the lower and upper quartiles. The whiskers extend from
the lowest observed point still within 1.5 times IQR (the interquartile range) of the lower quartile, to the highest observed point still within 1.5 times IQR of

the upper quartile. All points beyond the whiskers are plotted as outliers.

mother who showed abnormal umbilical blood flow. We found
most of the dysregulated transcripts were unique to each FGR
sub-category and there were no commonly dysregulated tran-
scripts shared among the five sub-categories based on the P value
approach (Supplementary Fig. 14; Supplementary Data 27).

Of the three transcripts detected as differentially expressed in
both PE and FGR (all categories) using both the P value and fold-
change approaches, only FSTL3 encodes a secreted protein. We
therefore measured circulating FSTL3 in maternal serum
collected at 36 weeks of gestation (case-cohort design, n = 495).
In the random sub-cohort (n=334), the median [IQR]
concentration of FSTL3 at 36 wkGA was 19.4 ng/ml [14.5-25.6].
Multiples of the median (MoM) of the concentrations were
calculated and subsequently corrected for maternal and sample

characteristics (see “Methods”). Corrected maternal FSTL3 levels
>97th percentile (3.11 MoMs) were associated with an increased
risk of PE (OR = 8.1 [95%CI 3.2-20.3]) and FGR (OR = 4.1 [95%
CI 1.4-12.2], Fig. 5a). The proportion of samples with FSTL3
levels >97th percentile was 2.1% in controls, 8.0% in FGR, and
14.7% in PE (Fig. 5b).

Discussion
We have comprehensively analyzed the placental transcriptome
using high coverage RNA-Seq of rRNA-depleted samples (~100
M reads in 302 placental samples). We have also analyzed the
small RNA population in a similar number of samples.

The placental transcriptome is skewed with several transcripts
having very high abundance. Nine transcripts are present at
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Table 1 Differentially regulated placental transcripts in preeclampsia and fetal growth restriction.
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aTanscripts passing following filters: (1) RPM (Reads Per Million mapped reads) >0.2 for non-circRNA; count > 5 for circRNA, (2) present in >10% of the cohort, (3) found in both the FGR and PE cohorts, and (4) genes not on chrY and chrMT.

bP values were adjusted (Ben
CFold changes were obtained

i-Hochberg correction method at false discovery rate (FDR) <5%) based on the original two-sided P values reported from DESeq2.
m bootstrap sampling of cases and controls. The most abundant transcripts were used: the 5000 most abundant protein-coding transcripts were selected from 15,257 transcripts passing the filters described above and the same fraction (i.e.,

5000/15257) was selected from the other transcript types.

dBased on the Fisher's exact test (two-sided).

Lists of differentially regulated transcripts in this table are available at https://www.obgyn.cam.ac.uk/placentome/.
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Fig. 5 Circulating maternal levels of FSTL3 at 36 weeks of gestation and
adverse pregnancy outcome. a The association between elevated serum
FSTL3 (>97th percentile) and PE or FGR (see “Methods” for definitions),
expressed as odds ratios and 95% confidence intervals (95% Cl); and b the
proportion of samples above 97th percentile (95% CI). This analysis is
based on 495 samples (289 controls and 206 cases of which 106 had PE
only, 90 had FGR only and 10 had both PE and FGR). The P values were
calculated using Fisher's exact test (two-sided) based on the dichotomized
percentile matrix. The exact P value between Control and PE is 4.6 x 10—©

(b).

>2000 TPM (Transcript Per Million mapped reads) and seven of
these are placental specific. Many of these encode secreted pro-
teins which are released into the maternal circulation. For
example, CSH1 (Chorionic Somatomammotropin Hormone 1, or
placental lactogen, TPM > 70,000), all the protein-coding mem-
bers of the PSG family, PAPPA, PAPPA2, and the hormones
Kisspeptin and CRH. This preponderance of extremely abundant
transcripts encoding secreted proteins may be a reflection of the
conflict between the maternal and fetal genomes and the diver-
gent priorities of mother and fetus. Mothers can conserve
resources for the growth of later offspring or invest more in the
current pregnancy, in contrast the fetus will maximize its own
growth and development?. An additional consequence of the
high levels of protein translation and secretion is that the pla-
centa, like the pancreas, is susceptible to endoplasmic reticulum
stress and this is implicated in adverse pregnancy outcome?*!~-44,

There is also pronounced skewing in the relative abundance of
the annotated mi- and pi- RNAs. piRNAs primarily function to
protect the genome of germ cells from the mobilization of
transposable elements which are silenced by both transcriptional
and post-transcriptional gene silencing. However, there is grow-
ing interest in their possible function in somatic cells and
cancer®. By definition piRNAs require PIWI family members to
act® and it has been suggested that the piRNA databases contain
a low level of “contaminating” RNAs that are not true piRNAs?%.
A proportion of these RNAs are fragments of other ncRNA,
particularly tRNAs*8. The sequencing of tRNAs requires specia-
lized methods and analyses*>>0 due to their numerous post-
transcriptional modifications, strong secondary structure, and
high copy number. Although some recent studies report quanti-
fication of tRNAs from small RNA-Seq data®!>2, they are poorly
sequenced and generally not reported in papers describing RNA-
Seq data. Nonetheless, this would be an area worthy of future
study. However, fragments from tRNAs can act directly to inhibit
translation and are implicated in multiple diseases>3>%. They have
recently been catalogued and are available in an accessible data-
base (MINTbase®®). We noted that a small number of annotated
piRNAs were extremely abundant in the placenta (8 piRNAs
>20,000 RPM, reads per million mapped reads) and several of
these are encoded by the mitochondrial genome. The most
abundant annotated placental mitochondrial piRNAs (piR-hsa-
26684, piR-hsa-26685, piR-hsa-26686, >36,000 RPM) all overlap
with a mitochondrially encoded tRNA. These are well described
in MINTbase and have been detected in many hundreds of the
samples in the Cancer Genome Atlas datasets (TCGA) with
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abundances of between 100 and 500 RPM. tRNA fragments play a
role in regulating genes in the Wnt signaling pathway in cancer
cells®®. Somatic PTWIL4 (also known as HIWI2) preferentially
binds piRNA-like tRNA-derived fragments®” and as PIWIL4
mRNA is present in the placenta the actions of some of the
piRNA-like RNAs may be mediated by PIWIL4. However, it is
likely that these piRNA-like tRNA fragments have several dif-
ferent mechanisms of action®®>%. As tRNA fragments are released
from the placenta in microvesicles it is possible that they could
also have maternal effects®0.

circRNAs have a variety of functions but these have only been
investigated in detail in a few cases as described in a recent
review®l. The best-characterized function is their action as
miRNA sponges?®30, Using stringent criteria that identify a
known miRNA sponge, we identified an additional circRNA
(cireSTS; chrX:7,514,882-7,516,290) that is a candidate for
functioning as an miRNA sponge. While the frequency and
thermodynamic characteristics of the predicted binding sites
suggest that miR5584-5p and miR-7113-5p function could
be modified by interaction with circSTS these predicted
interactions should be treated with caution. The possible inter-
actions of these miRNAs depend on the complex stoichiometry of
all their possible binding partners. Furthermore, the functional
consequences of miRNA-circRNA interaction remain poorly
understood even in cases where there is compelling evidence for
binding, such as for CDRlas. Recent evidence suggests
that CDR1as might stabilize rather than titrate miR-7-5p% and
that correlations between circRNA and mRNA level,
which might be interpreted as evidence of a functional circRNA
sponge, can be explained by the cellular composition of a
tissue sample®3,

CircRNAs have been reported to harbor coding ORFs3> and we
found strong evidence for translation of these in the placenta.
Other known functions include acting as protein sponges;
forming scaffolds to mediate complex formation between
enzymes and substrates; recruiting proteins to specific locations
(on DNA for example) and enhancing protein function®l.
However, the majority of the placental circRNAs we identified
have no recognizable function. Nonetheless, given that some are
present in almost every sample we analyzed and are more
abundant than the linear transcript containing the same exons
there is considerable scope for the discovery of novel regulatory
mechanisms. Furthermore, circRNAs have been catalogued in
cancer and the authors suggested this was a “valuable resource for
the development of diagnostic or therapeutic targets”28.

PE and FGR can both be manifestations of placental dys-
function and have some shared placental histopathological
abnormalities®4%>. However, there is no clear mechanistic
understanding of why each condition is manifested in isolation or
in combination. A distinction is often made between early- and
late-onset PE and this is attributed to either placental or maternal
factors. However, it seems more likely that it is a matter of degree
and timing of the placental insult and maternal sensitivity with
genetics and the environment influencing each of these#400,
When we used a bootstrapped fold-change analysis to allow for
heterogeneity within the diagnostic groups, we found highly
significant overlaps between the transcripts dysregulated in PE
and FGR for all the classes of long RNAs we investigated.
However, the majority of these were missed using a conventional
P value-based approach. These findings underline the fact that
both conditions may be the end result of multiple different
pathways. The bootstrapping analysis indicates likely overlap in
these pathways but even larger-scale analysis of optimally phe-
notyped samples and/or analysis using other “omic” methods
may be required to understand the common and divergent
pathways leading to these outcomes.

FSTL3 mRNA is present in many tissues and the placental level
is ranked 13th of the 50 tissues examined here. Thus, tissues other
than the placenta will likely contribute to the serum FSTL3.
However, the levels we report in pregnant women at 36 wkGA
(median [IQR] 19.4 ng/ml; [14.5-25.6]) were approximately three
times greater than reported in non-pregnant subjects (6.1 ng/ml,
5.3-7.2)%7. FSTL3 forms high-affinity inhibitory complexes with
TGF-f family members, most notably activin A and myostatin
(also known as GDF8). Administration of lipopolysaccharide (an
activator of the innate immune system) increased the circulating
levels of FSTL3 of non-pregnant subjects approximately
fourfold®®. Interestingly, 15% of women with PE and 8% of
women with FGR had FSTL3 levels in excess of 61.4 ng/ml (97th
percentile, uncorrected value). These observations are consistent
with the hypothesis that PE is associated with maternal systemic
inflammation in a subset of cases*%.

The investigation of possible correlations between circulating
metabolites and placental transcripts indicated that there are
some strong and highly significant relationships. However, only
one subset of transcripts and metabolites showed enrichment of a
GO biological process. This was related to kidney vascular mor-
phogenesis and the two transcripts associated with this term
(NOTCH3 and PDGFRB) together with HIF3A (also present in
the 22 highly correlated transcript set) may play a role in reg-
ulating placental blood vessel growth and/or maintenance. We
have previously reported that elevation of serum level of 4-
hydroxyglutamate is associated with PE3® but the functional
relationships between the correlated metabolites and transcripts
are not known and is an area for further study.

One of the strengths of this study is that we sampled more than
300 well-phenotyped placentas and sequenced to high depth. As
we analyzed strand-specific total (not poly-AT selected) RNA we
were able to characterize a large number of circRNAs in the
placenta. There are several gene clusters on chromosome 19 with
largely or wholly placental-specific expression—the PSG family
and the C19MC. Both these loci are undergoing rapid evolution,
the PSGs appear only to be present in mammals with hemo-
chorial placentation and the CI9MC is restricted to primates®®
and are imprinted with expression only from the paternal allele.
Other genes of key reproductive relevance—the killer immu-
noglobulin receptor (KIR) genes which in part mediate the
interaction between uterine natural killer cells and trophoblast
cells are also clustered on chromosome 19. These two also are
evolving rapidly’?. We identified an additional cluster of cir-
cRNAs on this chromosome although the function of these is
largely unknown. This comprehensive analysis revealed the
marked skewing in the abundance of placental-specific transcripts
encoding secreted proteins and piRNAs. Thus, the human pla-
cental transcriptome has several unique features which may
reflect the diversity and rapid evolution of the placenta.

Methods

Placental samples. All the samples were obtained from the POP study, a pro-
spective cohort study of nulliparous women attending the Rosie Hospital, Cam-
bridge (UK) for their dating ultrasound scan between 14 January 2008 and 31 July
2012. The study has been previously described in detail!>~14, Ethical approval for
the study was given by the Cambridgeshire 2 Research Ethics Committee (reference
number 07/H0308/163) of the NHS Health Research Authority and all participants
provided written informed consent. Cases of PE were defined on the basis of the
2013 ACOG criteria’! and cases of FGR had a customized birth weight <5th
percentile’2. Controls (CTL) were defined as pregnancies resulting in a live-born
infant with a birth weight percentile in the normal range (20-80th percentile’?)
with no evidence of slowing in fetal growth trajectories, and with no evidence of
hypertension at booking and during pregnancy, PE, hemolysis/elevated liver
enzymes/low platelet (HELLP) syndrome, gestational diabetes or diabetes mellitus
type I or type II or other obstetric complications. A total of 302 unique placental
samples were considered in this study, among which there were 94 PE, 56 FGR,
and 155 control samples (three samples were classified as both PE and FGR,
Supplementary Fig. 1).
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RNA extraction and library preparation. Placental biopsies were collected within
30 min of birth and flash frozen in RNAlater (ThermoFisher). For each biopsy,
total placental RNA was extracted from ~5 mg of tissue using the “mirVana
miRNA Isolation Kit” (Ambion) followed by DNase treatment (“DNA-free DNA
Removal Kit”, Ambion). RNA quality was assessed with the Agilent Bioanalyzer
and all the samples with RIN values >7.0 were used in the downstream experi-
ments. Total RNA-libraries were prepared from 300 to 500 ng of total placental
RNA with the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero
Human/Mouse/Rat (Illumina), pooled and sequenced (single-end, 125 bp) using a
Single End V4 cluster kit and Illumina HiSeq2500 and HiSeq4000 instruments.
Small RNA-libraries were prepared from 150 ng of total placental RNA with the
NEBNext Multiplex Small RNA Library Prep Kit for Illumina (New England
Biolabs) and concentrated using the “QIAquick PCR purification kit” (Qiagen).
Paired libraries were combined and size selected using the Pippin Prep and 3%
Agarose Gel Cassette with marker F (Sage Science), pooled, and sequenced (single-
end, 50 bp) using a Single End V4 cluster kit and HiSeq4000 instrument.

Quality control of sequencing data. We generated 324 total RNA-Seq data sets
(single-end 125 bp) from 302 unique placental biopsies from the POP study
cohort!2-14, including 94 PE, 56 FGR, and 155 control samples—three cases of
samples were classified as both PE and FGR (Supplementary Fig. 1). Of the 302
biopsies, 22 were sequenced twice (19 control samples and 3 aforementioned
samples classified as both PE and FGR cases) and the replicates were merged for
transcript quantification. However, for transcriptome reconstruction (explained
later), only one of the replicates was chosen based on the following criteria: recently
sequenced replicates of planned caesarean section (three samples); otherwise
replicates sequenced together with FGR cases (16 samples). Supplementary Data 2
shows the number of raw reads, mapped reads and the mapping statistics. Out of a
total of 302 placental biopsies, three samples were excluded due to the presence of
decidual contamination (Supplementary Fig. 1). Using DESeq2 (v.1.18.1)73, we
calculated Cook’s distance’# to identify gene-count outliers for all 324 RNA-Seq
datasets. We identified seven genes of recurrently highly ranked Cook’s distance (a
large value of Cook’s distance indicates an outlier count) from three samples that
had 20-fold higher transcript levels compared to the median value: insulin-like
growth factor binding protein 1 (IGFBPI), osteomodulin (OMD), prolactin (PRL),
retinol-binding protein 4 (RBP4), KIAA1644, RAR related orphan receptor B
(RORB) and chordin like 1 (CHRDLI). Transcripts from these seven genes are
reported as highly abundant in the decidua’>7. A further sample was excluded as
it showed a low mapping ratio (~50%) in GRCh37.

Total RNA-Seq data processing. For total RNA-Seq datasets, adaptor sequences
and poor-quality bases were trimmed using Trim Galore! (v0.4.0)7, which uses
cutadapt (v1.8.1)78 internally, using the following parameters:

--adaptor AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC --quality 5
--stringency 5.

Quality-assured trimmed reads were mapped to the GRCh38 version of human
genome reference using TopHat2 (v2.0.12)7%, a splice-aware mapper built on top of
Bowtie2 short-read aligner (v2.2.3.0)30. We applied the so-called two-pass (or two-
scan) alignment protocol to rescue unmapped reads from the initial mapping step
which was executed with the following parameters:

--library-type fr-firststrand --max-multihits 10 --prefilter-multihits
--transcriptome-index = "Ensembl.v82.gtf.indexed.directory”.

In the second mapping of TopHat2, previously unmapped reads were re-aligned
toward the exon-intron junctions detected in the first mapping without the guide of
genome reference using the following parameters:

--raw-juncs “sample.wide.merged.junction.bed” --no-novel-junc --library-type fr-
firststrand --max-multihits 10.

30% of the final mapped reads were rescued from the second mapping step
(Supplementary Data 2). For each sample, the initial and second mapped reads
were merged by samtools (v1.2-24-g016c62b)81. We obtained a total of ~33 billion
reads (a median sequencing depth of 101 million reads per sample), of which ~30.8
billion reads (i.e., 92.9% mapping efficiency) were mapped to the GRCh38 version
of the human reference genome sequence (Supplementary Data 2). There was no
bias in the mapping efficiency by different pregnancy outcomes and batches
(Supplementary Fig. 1).

Small RNA-Seq data processing. We also generated 328 small RNA-Seq datasets,
producing ~6.6 billion reads in total, equivalent to a median sequencing depth of
~20 million per sample. The mapping efficiency for small RNAs was 75.7%
(Supplementary Data 3). Firstly, adaptor sequences and poor-quality bases were
trimmed using cutadapt (v1.8.1)78 using the following parameters:

--trim-only --minimum-length = 15 --quality-cutoff = 20 --overlap = 8 -a
NEB3PrimeAdaptor = AGATCGGAAGAGCACACGTCT -g NEB5PrimeAdaptor =
GTTCAGAGTTCTACAGTCCGACGATC.

Quality-assured trimmed short reads were mapped to the GRCh38 version of
the human genome reference sequence using mapper.pl script of miRDeep2
(v2.0.0.7)82, which uses bowtie (v.1.1.2)83 internally, with the following parameters:
-1 -¢ -m -j.

Then the mapped read file (in. arf format) and the processed read file (i.e.,
collapsed FASTA file), together with the known and homologous sequences of
human miRNAs from mirBase (v21)32, were run through miRDeep2.pl script which
is the core part of miRDeep2. Known precursor and mature miRNAs were further
processed from the quantification outputs (in.csv format) of miRDeep2 using the
following custom awk commands:

awk ‘BEGIN{OFS = “\t"}l/7#/{Precursor[$3]+=$2}END{for(p in Precursor)print
p,Precursor[p]}’ and awk ‘BEGIN{OFS = “\t"}//"#/{Mature[$1]4+=32JEND{for(m in
Mature)print m,Mature[m]}’.

Novel miRNA detection. Novel miRNAs were predicted by the same pipeline of
miRDeep2 and their loci were merged if they overlap at least 1 bp using bedtools
with the following command:

bedtools merge -s -c 5,6 -0 mean,distinct

We used two additional miRNA prediction tools, sSRNAbench and miRge2.0
with the following parameters:

java -Xmx12g -jar sSRNAbench.jar input = $FQ_FILE output = $OUTPUT_DIR \

dbPath = $SRNA_DBPATH species = genome microRNA = hsa libs =

$PIRBASE_V1_FASTA \

plotLibs = true predict = true \

minReadLength = 19 maxReadLength = 25 mm = 0 alignType = v minRC =2 p

= $CORE_NUM

miRge2.0 predict -s $FQ_FILE -0 $PROJECT_DIR -sp human -d miRBase \

-lib $MIRGE_LIB -pb $BOWTIE_DIR -ps $SAMTOOLS_DIR \

-pr $RNA_FOLD_DIR -minl 19 -maxl 25 -cpu $CORE_NUM

From the novel miRNAs predicted by miRDeep2, we filtered them out if they were
not supported by sRNAbench or miRge2.0 with at least 30% overlap reciprocally:

bedtools intersect -a SNOVEL_MIRNA_MIRDEEP2.bed \

-b SNOVEL_MIRNA_sRNAbench.bed \

-b SNOVEL_MIRNA_miRge.bed -s -u -wa -f 0.3 -r

piRNA detection. To detect and quantify piRNAs, we scanned the mapping result
files of miRDeep2 and filtered out reads that overlap at least 1 bp with the mature
miRNAs annotated by mirBase (v21). We confirmed that the size of those ‘filtered’
reads (i.e., mapped reads without any overlaps with miRNAs) was peaked at 28
nucleotides, which is very close to the median size of known piRNAs (Supple-
mentary Fig. 6). Those ‘filtered” reads were used for quantification if their genomic
coordinates overlapped with at least 30% of piRNAs defined from piRBase (v1.0)84.
As piRBase v1 was built on a different version of human genome reference (hgl19),
the genomic coordinates were converted to GRCh38 using liftover tool®>, then
parse_mappings.pl script of miRDeep2 was used, followed by a series of chained
commands using awk, sort, and bedtools (v2.20.1)86 as follows:

parse_mappings.pl $ARF_FILE -a 0 -i 3\

|lawk “BEGIN{OFS = “\U}{if($6 = =“MT’){$6 = “M’}; start = $8-1; split($1,

seq,”_x"); print “chr’$6,start,$9,$1,seq[2],$11}" \

|bedtools intersect -a stdin -b $MIRBASE_V21.bed -s -v \

|intersectBed -a $PIRBASE_V1.bed -b stdin -s -wao -f 0.3 \

|awk ‘BEGIN{OFS = “\t"}{if($11 < 1)cnt = Oselse cnt = $11; piRNA[$4]+=cnt}

END{for(p in piRNA)print p,piRNA[p]} \

|sort -k1,1V

sncRNA detection. sncRNAs include the following three types of small RNAs
annotated from Ensembl v82: snoRNA (small nucleolar RNA), snRNA (small
nuclear RNA) and sRNA (small RNA). Firstly, we scanned the mapped read files of
miRDeep2 and filtered out reads that overlap at least 1 bp with any from the
following sources: (1) known precursor and mature miRNAs annotated by mir-
Base, (2) piRNAs annotated from piRBase, and (3) tRNAs annotated from Gencode
v37. Then, we quantified sncRNAs if the remaining reads overlap sncRNA loci at
least 30%. It can be summarized with the following pseudo-code:

parse_mappings.pl $ARF_FILE -a 0 -i 3 \

|lawk “BEGIN{OFS = “\P}{if($6 = =“MT’){$6 = “M’}; start = $8-1; split(S1,

seq,”_x"); print “chr’$6,start,$9,$1,seq[2],$11}" \

|bedtools intersect -a stdin -b $MIRBASE_V21.bed $PIRBASE_V1.bed

$GENCODE_tRNA.bed -s -v \

|intersectBed -a $sncRNA.bed -b stdin -s -wao -f 0.3 \

|awk ‘BEGIN{FS = “\t }{if($14 < 1)cnt = Oselse cnt = $14; split($9,f00,”;”); split

(foo[1],bar, “gene_id “); ensg = substr(bar[2],2,15); ID[ensg]-+=cnt}END{for(id

in ID)print id ID[id]}’

|sort -k1,1V

Novel small-RNA detection. We defined novel small-RNAs based on those high-
depth (i.e., >10x) mapped reads yet remained unannotated from various sources.
To identify novel small-RNA loci, we scanned the same mapped reads files men-
tioned earlier and filtered out reads that overlap with any from the following
sources: (1) known precursor and mature miRNAs annotated by mirBase, (2) novel
miRNAs predicted by miRDeep2, (3) piRNAs annotated from piRBase, and (4) any
exonic regions defined by Ensembl gene model:
parse_mappings.pl $ARF_FILE -a 0 -i 3 \
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|awk ‘BEGIN{OFS = “\t"}{start = $8-1; split($1,seq,”_x”); print “chr’$6,start,$9,

$1,seq[2],$11} \

|bedtools intersect -a stdin -b SMIRBASE_V21.bed $NOVEL_MIRNA.bed

$PIRBASE_V1.bed $SENSEMBL_EXON.bed -s -v \

|sort -k1,1V -k2,2n

The remaining reads were further filtered out if their depth of coverage was
<10x per sample and their distinct loci were identified across all the samples. The
final loci of novel small-RNAs were merged if they overlap at least 1 bp and their
abundances were measured using the original mapped reads. Likewise, reads
overlapping at least 30% of the novel small-RNA loci were used:

parse_mappings.pl $ARF_FILE -a 0 -i 3 \

|awk ‘BEGIN{OFS = “\t”}{start = $8-1; split($1,seq,”_x"); print $6,start,$9,$1,seq

[2],$11}°\

|intersectBed -a $NOVEL_SMALLRNA.bed -b stdin -s -wao -f 0.3 \

|sort -k1,1 -k2,2n -k3,3n -k4,4 -k6,6 \

|groupBy -i stdin -grp 1,2,3,4,6 -c 11 -0 sum \

|awk ‘BEGIN{OFS = “\t"}{if($6 < 1)cnt = Oselse cnt = $6; print $17:"$2”:"$3”:"$5,

cnt)’

Case-control matching for differential expression analysis. To select the PE-
control pairs, we identified 95 PE cases that had a placental sample collected within
30 min of delivery and we used a custom Python script to match the cases to
appropriate controls. Matching was performed as closely as possible on seven
characteristics in the following order of importance: (1) presence of labor, (2)
gestational age, (3) fetal sex, (4) caesarean section, (5) smoking status, (6) maternal
body mass index (BMI) and (7) maternal age. Sequencing failed for 1 pair, and
therefore we had 94 matched pairs at the start of the analysis (Supplemental Fig. 1).
Subsequently, 12 pairs were excluded due to the presence of one or more of the
following issues: (1) “batch effect” during the RNA extraction (3 pairs), (2) decidual
contamination of the tissue biopsies (2 pairs), (3) and/or fetal sex mismatch in the
case-control pair (7 pairs). Samples of batch effect were detected by plotting the
normalized RNA-Seq data on a multidimensional scaling plot (MDS). These
samples clustered separately on the MDS plot and were identified to be from the
same RNA extraction batch. We included 82 PE case-control pairs in the final
differentially expressed gene analysis presented in Table 1. To select the FGR-
control pairs, we identified 58 FGR cases and 415 eligible healthy controls who had
a placental sample collected within 30 min of delivery. Case-control matching was
performed as closely as possible on seven characteristics in the following order of
importance: (1) gestational age, (2) fetal sex, (3) mode of delivery (vaginal, intra-
partum caesarean, or pre-labor caesarean), (4) maternal smoking, (5) placental
collection time, (6) maternal BMI, and (7) maternal age. A script was written in
Stata version 13.1 to perform the matching. We were unable to find an adequate
match for one extremely preterm case and two matched pairs were excluded due to
low RNA quality or low mapped reads. At the start of the analysis we had 55
matched pairs. Subsequently, one pair was excluded due to decidual contamination
and five pairs were excluded due to fetal sex mismatch between the case and the
control sample. From the 49 remaining pairs, we further excluded pairs where the
case also had PE (n = 5), essential hypertension (n = 3) or gestational hypertension
(n=1). We included 40 FGR case-control pairs in the final analysis. Both PE and
FGR case-control matching are summarized in Supplementary Fig. 1. There were
10 control samples used to match both PE and FGR cases.

Sub-categories of FGR cases. Cases of FGR were further sub-categorized
according to the following clinical characteristics: (1) maternal hypertensive dis-
order including PE or essential hypertension or gestational hypertension®’, (2)
abnormal maternal PAPP-A level defined as the lowest decile of the 12-week
PAPPA multiple of the median (MoM) corrected for gestational age and maternal
weight at measurement®$, (3) abnormal fetal growth velocity defined as the lowest
decile of the abdominal circumference growth velocity z score!3 from the 20 wkGA
scan to the last research scan (36 wkGA scan but 28 wkGA scan if 36 wkGA scan
result was missing), (4) abnormal uterine artery Doppler defined as pulsatility
index at 20 wkGA scan in the top decile or bilateral notch in the 20 wkGA scan (see
Sovio et al.13 for detail), and (5) abnormal umbilical artery Doppler defined as
pulsatility index in the last research scan (36 wkGA scan but 28 wkGA scan if 36
wkGA scan result was missing (see Sovio et al.!13 for details).

Transcriptome reconstruction. In addition to the four samples mentioned above,
three samples classified as both PE and FGR were also excluded in transcriptome
reconstruction process. Thus, a total of 295 unique placental biopsies were used
(Supplementary Fig. 1). Nineteen control samples were sequenced twice (i.e.,
replicates) in two different libraries and only one replicate was chosen based on the
following criteria: replicates sequenced recently if the biopsies are from the planned
caesarean section (three samples); otherwise replicates sequenced together with
FGR cases (16 samples). For each placental sample, we reconstructed a tran-
scriptome assembly using StringTie (v.1.2.3)?2 guided by the reference transcript
annotation from Ensembl v828%. To qualify as a valid reconstructed transcript we
applied a threshold of 10 and 5 reads as a minimum base-pair coverage (-c) and
junction coverage (-j), respectively. Then, we assembled a placental transcriptome
from 295 reconstructed transcript files (in GTF formats) using cuffcompare tool of

cufflinks software package (v.2.2.1)2* aided by the same version of the reference
human transcript annotation (Ensembl 82) used at the alignment (TopHat2) and
assembly (StringTie) steps. We used three additional meta-assemblers, gffcompare,
TACO?’ and StringTie (with merge option), and assessed the degree of agreement
with the reference transcript annotation (Ensembl v82) using gffcompare utility
(v.0.10.6; https://github.com/gpertea/gffcompare).

Novel reconstructed placental transcripts. We selected reconstructed transcripts
for further analysis based on the following two conditions: (1) present in at least
10% of the total number of samples (i.e., supported by at least 30 samples out of
295 total samples) and (2) expressed at least 0.1 RPKM. These reconstructed
transcripts were annotated as per the ‘transfrag class codes’ of cuffcompare tool of
cufflinks software package (v.2.2.1)24, from which we considered the following five
codes as putative novel isoforms: (1) potentially novel isoform (code: j), (2) within
a reference intron (code: i), (3) unknown, intergenic transcript (code: u), (4) exon
on the opposite strand (code: x), and (5) generic exonic overlap (code: o). To
identify novel transcripts, we compared our reconstructed transcripts with the
CHESS database (v2.1)%> using gffcompare (https://github.com/gpertea/
gffcompare).

Target mRNAs of highly expressed miRNAs in C19MC. Thirty-three mature
miRNAs present in C19MC were within the most abundant 5% mature miRNAs.
Their binding target mRNAs were selected from miRTarbase (v8.0)!? if they
satisfied the following two conditions: (1) functional mRNA-target interactions
only, and (2) interactions supported by at least three pieces of strong evidence.
There were 34 miRNA-target pairs satisfying aforementioned conditions, consist-
ing of 14 and 27 unique miRNAs and mRNAs, respectively. The correlation
between the expression level of 14 miRNAs and their 27 target mRNAs were
calculated using ‘cor.test’ of R package. Gene Ontology (GO) analysis of the 27
binding targets was conducted using g:Profiler®® (version e101_egd8_p14_baf17f0).

Analysis of miRNA-mRNA interactions. We followed the approach of Liu et al.?,
using WGCNA? to identify miRNA-mRNA co-expression networks. For the
288 samples for which both miRNA and mRNA data were available (88 PE, 52
FGR, and 148 control samples), we concatenated the log,(x + 1)-transformed
RPKM miRNA and mRNA data matrices, and used the ‘WGCNA’ R package to
identify 22 network modules of highly correlated transcripts, plus an additional
“null” module (module 0) comprising transcripts that could not be allocated to any
other module. We performed logistic regression analyses to test for association
between each module eigengene and patient group (PE, FGR, control), using the
‘qvalue’ Bioconductor package to control the local false discovery rate at the 0.05
level. We used Fisher’s exact test to identify modules that contained a greater
number of miRNAs and known miRNA targets than expected by chance, using
Bonferroni correction to address the multiple comparisons problem. GO, Reac-
tome, and WikiPathways term enrichment analyses were performed using the R
interface to g:Profiler, and adopting the g:SCS correction to control for multiple
testing while taking into account the directed acyclic graph structure of the Gene
Ontology.

Identification of circRNAs and their possible miRNA targets. Initially circRNAs
were identified in non-oligo-dT primed or selected RNA-Seq datasets (i.e., rRNA
depleted a “ribo-minus” library; Supplementary Data 8). We then identified cir-
cRNAs in an oligo-dT primed placental RNA-Seq dataset (i.e., poly-A™ library)
from the same cohort (n = 60, Supplementary Data 9). Such RNAs could be
artefactual so we removed all these circRNAs from the list of those found in the
rRNA-depleted libraries. Adaptor-trimmed and quality-assured reads of both
RNA-Seq datasets were mapped to GRCh38 version of human genome reference
using BWA-MEM algorithm of BWA (v0.7.17-r1188)°! with a minimum score to
output (-T) 19. Lane-wise aligned SAM files were combined for each sample and
the merged SAM files were analyzed with CIRI2 (v2.0.6)°2. This is a software tool
for detecting circRNAs that can differentiate back-splice junction (BS]) reads from
non-BS] reads, with its default parameters. We used Ensembl v90 transcript
annotation file to annotate types of genomic positions (e.g., exons, introns, or inter-
genic regions) where the back-spliced junctions are located. We applied a threshold
of minimum sample frequency 30% (i.e., POPS30) to the circRNAs predicted to be
present in the rRNA-depleted dataset, then filtered and removed them (1) if the
back-spliced products spanned multiple genes (e.g., read-through) and (2) further
subtracted those present in at least one sample from the poly-A™ library dataset.
There were 3,304 circRNAs in the POPS30 rRNA-depleted dataset and 217 in the
poly-AT dataset—25 were identified in both datasets and they were excluded from
the analysis. As there is no official nomenclature of circRNAs, we used the fol-
lowing pieces of information to identify a circRNA: chromosome, start position,
and end position (e.g., chrX:140,783,175-140,784,659) where the start and end
position are the splice-acceptor and splice-donor positions, respectively, of BS] sites
predicted by CIRI2. The chromosome coordinates and the number of BSJ of 3452
and 217 circRNAs are shown in Supplementary Data 8 and 9, respectively. We
generated FASTA files of 3399 circRNAs in POPS30 using Biosrings and BSgenome.
Hsapiens.UCSC.hg38 packages of Bioconductor based on the aforementioned
coordinates of circRNA and we predicted their putative miRNA-binding sites using
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miRanda (v3.3a)3! with a “-strict’ option which demands a strict 5’ seed pairing. We
analyzed the sequence motif of miRNA-binding regions using MEME suite of
programs®3.

Identification of translated circRNAs. To identify peptides derived from trans-
lated circRNAs, we searched two publicly available large proteome-wide datasets.
Namely “the draft map of the human proteome” dataset>4, containing deep pro-
teomic profiling of 17 adult tissues, 7 fetal tissues, and 6 purified primary hema-
topoietic cells and the “proteome and transcriptome abundance atlas™3¢ containing
profiles from 29 healthy human tissues. Raw files were obtained from the PRo-
teomics IDEntifications (PRIDE) database®* (projects PXD000561 and
PXD010154) and converted to Mascot generic format (MGF) using the Thermo-
RawFileParser package (version 1.1.8, https://github.com/compomics/
ThermoRawFileParser).

Two approaches were taken to identify peptides from translated circRNAs: (i)
searching for peptides that span the back-splice junction and (ii) searching for
peptides from single-exon circRNAs.

The first approach is based on the three reading-frame translations of RNA
sequences spanning the back-splice junction. Therefore, 99 nucleotides upstream
and downstream of the back-splice junction are translated to a protein sequence in
three reading frames. In the second approach only circRNAs that arise from the
circularization of a single exons are considered. The RNA sequence of the entire
exon was obtained and translated to a protein sequence in three reading frames.

Peptide databases are created as a full in silico trypsin digestion (allowing up to
one missed cleavage) of the protein sequence dataset consisting of all human
protein isoforms in the UniProtKB database®> (UP000005640 proteome, 73,101
protein isoforms), protein sequences in the common Repository of Adventitious
Proteins (cRAP) database (https://www.thegpm.org/crap) and the in silico
translated circRNA sequences. For false discovery rate (FDR) estimation, a decoy
peptide database is constructed by reversing the protein sequences in the target
database followed by full in silico trypsin digestion with one missed cleavage.

Analysis of the tandem mass spectrometry data has been performed using
Tonbot (ionbot (manuscript in preparation; http://compomics.com/ionbot, based
on the work of Silva et al.?), a sequence database search tool based on machine
learning capable of performing rapid open modification and open mutation
searches. Here, Ionbot was run without the open modification and mutation
functionality. Ionbot was used under a beta-tester version supplied by Sven
Degroeve and Lennart Martens (Ghent University, VIB). As part of the Ionbot
pipeline, Percolator” has used to re-score the peptide-spectrum matches. Next, the
peptide-spectrum matches (PSMs) are analyzed according to the “search all,
analyze subset” strategy®®, ensuring correct estimating of the FDR for the peptides
mapping to circRNAs. Thus, only PSMs mapping uniquely to circRNAs (or
circRNA junctions in approach I) and the corresponding decoy sequences are
considered. The FDR was estimated with the target-decoy approach and
calculated as:

#decoy
" Htarget

Positive hits are filtered at the score calculated by percolator corresponding to
the 1% FDR threshold.

After FDR filtering, 55 PSMs corresponding to 5 peptides mapping to circRNA
BSJs and 93 PSMs corresponding to 15 unique peptides derived from single-exon
circRNAs remained. Next, the peptide retention time was used as a mean of
orthogonal validation of the PSMs. Therefore, the observed retention time was
compared to the retention time predicted by DeepLC%? (version 0.1.17). Thousand
high-scoring Uniprot peptides were used for calibration. A 95% confidence interval
on the predicted retention time was calculated from peptides mapping to Uniprot.
While all five peptides mapping to circRNA BSJs had a predicted retention time
within this 95% confidence interval, of the 15 single-exon circRNA peptides, only
six had retention times within the interval, highly indicative of a misidentification.
Upon manual inspection, two out of five peptides mapping to BSJ sequences and
three out of the six peptides mapping to single-exon circRNAs could be derived
from isoforms of Uniprot proteins absent in the search database. Of the three
remaining peptides mapping to the BSJ of circRNAs (GTGLDEAMEWWLFLK,
TSATKGTGLDEAMEWWLFLK, NALKQIWDTAGQER), two maps to the same
circRNA. For the single-exon circRNAs, three peptides with a very low number of
PSMs (<5 PSMs across the entire collection) remain IIELTALR,
LLLPQSVSLIVMR, and GDQKQWEETTR. While it is possible that these are
indeed circRNA derived peptides, this low number of identifications falls well
within the 1% FDR range and should thus be interpreted with extreme caution.

FDR

RT-qPCR and Sanger sequencing. Reverse transcriptase (RT) reactions were
performed on seven samples of human placental RNA isolated as described above
(500 ng/sample), using the “Super Script IV VILO Master Mix” (ThermoFisher
Scientific) following the manufacturer’s instructions. One reaction lacking the
reverse transcriptase enzyme was included to identify any possible amplification of
genomic DNA. Quantitative PCR (qQPCR) analysis was performed on diluted
cDNAs (1:10) using the “Power Up Sybr Green Master Mix” and the QuantStudio
6 instrument (both from ThermoFisher Scientific). The divergent primers
employed in the qPCR assays are described in Supplementary Data 21. In order to

check the amplified product size, the QPCR products (one well of each triplicate)
were run on a 1% agarose gel together with a 1kb ladder. The other two wells of
each qPCR assay were combined, purified using the “QIAquick PCR Purification
Kit” (Qiagen) and Sanger sequenced at the DNA Sequencing Facility of the
Department of Biochemistry (University of Cambridge) using both the forward
and reverse primers described above.

Transcript quantitation and differential expression analysis. For total RNA-Seq
datasets, we measured transcript abundance using two software tools: feature-
Counts (v1.5.1)190 and Salmon (v.0.9.1) in quasi-mapping-mode!?l. The quantifi-
cations were made against two sets of transcriptome definitions: (i) reference-based
transcript annotation (Ensembl v82) and (ii) reconstructed novel placental tran-
scripts present in at least 10% of 295 samples used in the placenta transcriptome
reconstruction. In the case of Salmon, the transcript level abundance was merged at
the gene level. For the qualification of miRNA and piRNA see ‘RNA-Seq data
processing’ section above. We identified differentially expressed genes (shown in
Table 1) using a P value-based approach and a fold change approach. For both
approaches, we used transcripts passing the following filters: (1) RPM > 0.2 for
non-circRNA; count 25 for circRNA, (2) present in >10% of the cohort, (3) found
in both the FGR and PE cohorts, and 4) genes not on chrY and chrMT. For both
the PE and FGR cohorts, we used a multi-factor design to take into account the
case-control pair information (e.g., ~pair + condition) when performing DESeq2
(v.1.18.1). The original P values were obtained from DESeq2 and they were further
adjusted for multiple comparisons using the Benjamini-Hochberg correction
method implemented by p.adjust function of R stats package. Note that for cir-
cRNAs, the number of back-spliced junction reads was used as the input for
DESeq2.

Bootstrapping samples for differential expression analysis. We sampled the
cases and controls to generate the same number of pairs as in the initial data, n =
82 or 40 pairs for PE and FGR respectively. We repeated this 10,000 times with
replacement using the sample function of R base package. We calculated the mean
RPM of the resampled cases and controls. Then we took the ratio of RPM between
cases and controls for each qualified transcript that had passed the aforementioned
filters. Finally, we calculated the bootstrap-generated fold-changes by taking the
mean over 10,000 times. This can be summarized in the following series of
equations:

FCF : Fold — change of geneiat the k — th bootstrapping, where k goes from 1t0 10,000 (1)

FCF = mean RPMF¥(bootstrapped-cases) /mean RPM¥(bootstrapped-controls) ~ (2)

FCi= (ki ECH)/n ®)
=1
n k
log2(FC,) = 10g2(¥) 4)

The magnitude of the fold change can be misleading when the transcript is very
poorly expressed. We therefore used the most abundant transcripts, selecting the
5000 most abundant protein-coding transcripts from 15,257 transcripts passing the
filters described above. We used the same selection ratio (i.e., 5000/15257) for the
other types of transcript. For all qualified transcripts, the bootstrap-generated fold
changes (i.e., 2(FCi)) were ranked in descending order and the top 5% and top 3%
transcripts were selected from the most abundant transcripts. There were 250
transcripts within the top 5% highly ranked protein-coding transcripts (150 in top
3%), where 95 of them were shared between PE and FGR (92 were in same
direction of fold change; 3 were in opposite direction). We performed the Fisher’s
exact test to calculate the significance of the number of top-ranked transcripts
shared by the PE and FGR cohorts. We only considered top-ranked transcripts
which changed in the same direction shared in both conditions using most
abundant transcripts as background number. For example, the significance level of
observing 92 transcripts shared in the PE and FGR samples, given the selection of
250 transcripts (i.e., top 5%) out of 5000 most abundant transcripts for each cohort,
was performed from the following matrix using fisher.test of R package:

92 250—-92
250—92  5214—250—250+92

of 5000 transcripts from each of the PE and FGR samples. The same selection ratio
(i.e., 5000/15257) was applied to other types of transcripts.

). Note, there were 5214 unique transcripts from the union

Identification of transcripts enriched in the placenta. To identify transcripts that
are expressed specifically in the placenta, we compared our data with the 49 somatic
tissues from GTEx (v8.p2)!. To select eligible samples from the GTEx RNA-Seq
datasets, we used a set of filtering conditions similar to our previous study!> with
minor modifications: (a) RNA integrity number (SMRIN) =6, (b) mapping rate
(SMMAPRT) 20.9, (c) exonic mapping rate (SMEXNCRT) 20.75, and (d) =20
qualifying samples per tissue. Five tissues (out of 54) were dropped after applying
aforementioned quality control measures: the kidney (Kidney - Medulla), the fallopian
tube, the cervix endocervix, the cervix ectocervix, and the bladder. Finally, a total of
13,070 samples were selected from the 49 tissues (including two cell lines: cultured
fibroblasts and EBV-transformed lymphocytes). We considered 56,156 genes from the
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gene-level quantification information available from the following file:
GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz (https://storage.
googleapis.com/gtex_analysis_v8/rna_seq_data/GTEx_Analysis_2017-06-
05_v8_RNASeQCv1.1.9_gene_reads.gct.gz). We generated a count matrix of 56,156
genes by 13,270 samples (i.e., 13,070 samples from GTEx and 200 from the placenta
(171 from Ribo-Zero and 29 from the oligo-dT library), then filtered out 259 genes of
the following conditions: (1) the sum of read count across all samples is zero (n =
169), and (2) non-polyadenylated RNAs (e.g., transcripts of major histones) reported
from the study of Yang et al. (n = 90). After this filtering, a total of 55,897 genes were
considered in this study. To adjust differences in the composition of RNA populations
across multiple tissues, we applied the trimmed mean of M-values (TMM)!102
(available from ‘calcNormFactors’ function of edgeR Bioconductor package!®%) to the
count matrix. We then built a matrix of RPKM per tissue using the ‘rpkmByGroup’
function of edgeR package, which reduced the columns (i.e., 13,270 samples) of the
matrix to a size of 52 columns (i.e., 49 tissues from GTEx and 2 placenta datasets
(Ribo Zero and oligo-dT). Transcript abundance measured in RPKM was converted
to TPM using the formula of Pachter!%4. For each gene, we calculated the Tau score (a
tissue-specificity score!?), using TPM values across 50 tissues (49 tissues from GTEx
and the placenta Ribo-Zero dataset) and flagged genes as “tissue enriched” if they
satisfy the following conditions: (i) Tau score!9>106 >0.99, (ii) TPM (query tissue) >1,
(iii) TPM (query tissue) >mean TPM (remaining tissues) * 100, and (iv) ‘protein
coding’ or lincRNA’ as per the gene biotype in Gencode v26 (Ensembl v88). The
same conditions were applied using the placental oligo-dT dataset and the list of
placenta enriched transcripts was compared with those discovered from the placenta
Ribo-Zero dataset. The aforementioned conditions were modified as follows, to
investigate transcripts encoded by endogenous retroviruses in the placenta (Supple-
mentary Data 7): (i) Tau score > 0.9, (ii) TPM in placenta (Ribo-Zero) is >10 times of
the average TPM of the 49 non-placental tissues. As GTEx RNA-Seq datasets are
based on polyA* selected RNA, we manually determined whether the candidate
transcripts were polyadenylated or not using datasets from Yang et al.1”

Size distributions in small RNA-Seq datasets. To count ‘Mapped reads’ in
Supplementary Fig. 6, quality-assured trimmed small RNA-Seq reads were mapped
to the GRCh38 version of human genome reference sequence using mapper.pl
script of miRDeep2 (v2.0.0.7)82, and the mapped reads were parsed by parse_-
mappings.pl script with the following parameters: -a 0 -i 3. Mapped reads of at least
10x coverage were considered:

parse_mappings.pl SARF_FILE -a 0 -i 3 \

|awk ‘BEGIN{OFS=*"}split($1,seq,”_x"); if(seq[2]>=10) print $1,$2,seq[2]}’ \

|sort | uniq

Then, reads from the ‘Mapped reads’ were removed if they overlap with any
mature miRNA regions annotated from mirBase (v21)—their read counts are
shown as “miRNAs”:

parse_mappings.pl $ARF_FILE -a 0 -i 3 \

|awk ‘BEGIN{OFS="“\t"Hif($6=="MT"){$6="M"}; start=$8-1; split($1,
seq,”_x"); if(seq[2]>=10) print “chr’$6,start,$9,$1,seq[2],$11}" \

|bedtools intersect -a stdin -b $SMIRBASE_V21.bed -s -v \

|awk ‘BEGIN{OFS=","}{width=$3-$2; print $4,width,$5}’ | sort|uniq

From the “-miRNAS’, reads were further removed if they overlap with any from
the following sources: (1) known precursor miRNAs annotated by mirBase, (2)
novel miRNAs predicted by miRDeep2, (3) piRNAs annotated from piRBase, and
(4) exonic regions defined by Ensembl gene model. These remaining reads mapped
to ‘unannotated” genomic regions are shown as ““miRNA-piRNA-exon’ and they
are used as the source for ‘novel small-RNA’:

parse_mappings.pl $ARF_FILE -a 0 -i 3 \

|awk ‘BEGIN{OFS="“\t"}if($6=="MT"){$6="M"}; start=$8-1; split($1,
seq,”_x"); if(seq[2]>=10) print “chr’$6,start,$9,$1,seq[2],$11}" \

|bedtools intersect -a stdin -b SMIRBASE_V21.bed SNOVEL_MIRNA.bed
$PIRBASE_V1.bed $ENS_EXON.bed -s -v \

|awk ‘BEGIN{OFS=*"}{width=$3-$2; print $4,width,$5}" | sort | uniq

Maternal serum immunoassays. Circulating FSTL3 was measured in maternal
serum samples collected at 36 wkGA during the POP study. We selected 94 PE
cases, 86 FGR cases, and a random sub-cohort of 334 women (comparison group).
From the random sub-cohort, (i) we excluded 10 women who had a small for
gestational age (SGA) infant but no indicators of FGR, and (ii) re-labeled women
who fulfilled the case status for each analysis (21 cases of PE only, 13 cases of FGR
only and 1 case of both PE and FGR, respectively). In total, 495 samples were
analyzed, including 289 non-cases and 206 cases (106 with PE only, 90 with FGR
only, and 10 with both PE and FGR; therefore 116 PE cases and 100 FGR cases).
FSTL3 was measured using the Human FSTL3 (FLRG) Quantikine ELISA Kit
(R&D Systems, cat # DFLRGO). Multiples of the median (MoM) of the average
concentrations of FSTL3 were calculated, referent to the random sub-cohort of
controls. The MoMs were then corrected for gestational age (GA, weeks) and
maternal weight (WT, kg) at the time of measurement and for sample storage time
(SST, years) at the time of sample processing applying a log-linear regression
procedure to the random sub-cohort. This resulted in the following equation for
the corrected MoMs, which was applied to all samples: corrected MoM =
uncorrected MoM / 10(-2:261734+0.0657065*GA-0.0011209*WT-0.001105*SST) A 97¢h

percentile cut-off of the corrected MoMs was calculated in the random sub-cohort,

and the corrected MoMs in all women were dichotomized according to this cut-off.
The outcomes were assessed in all deliveries subsequent to the 36-week measure-
ment. PE was defined according to the ACOG2013 classification’!. FGR was
defined as delivery of an infant with birth weight <3rd percentile (using fetal sex
and gestational age-adjusted reference standard derived from a UK population!07)
or birth weight <10th percentile plus at least one of the following: (a) top decile of
uterine artery Doppler mean Pulsatility Index (PI) at 20 wkGA, (b) top decile of
umbilical artery Doppler PI at 36 wkGA, (c) lowest decile abdominal circumference
growth velocity from 20 to 36 wkGA, (d) neonatal morbidity, or (e) maternal PE!3.

Correlations between placental mRNAs and serum metabolites. We selected
transcripts as for the other analyses (RPM = 0.2 and present in >10% of the cohort).
We used the circulating metabolite data from the samples collected at 36 wkGA
reported by Sovio et al.3° (metabolite identifiers are provided in Supplementary
Data 24). We removed the data for the metabolites that had a standard deviation of
zero (the drugs—carbamazepine and its metabolites and cimetidine). Transcript
and metabolite data were available from 89 subjects. We calculated the Spearman
correlation between the four metabolites associated with FGR and the 24,611
transcripts using cor (stats package in R 3.6.3). We filtered this data to remove all
metabolites and transcripts for which the values of Spearman’s rho were all >—0.4
and <0.4. Adjusted (Benjamini-Hochberg) P values were calculated using correla-
tion (correlation package v 0.4.0). We performed a similar analysis using all 1,185
metabolites; in this instance we filtered this data to remove all metabolites and
transcripts for which the values of Spearman’s rho were all >—0.5 and <0.5.
Heatmaps were generated using pheatmap (v1.0.12). Transcripts for which the
correlation with the individual metabolites had a P,4; < 0.05 were analyzed for the
over representation of GO terms (Panther v15.0108),

Data availability

All the computational analyses were conducted using the Linux clusters at the University
of Cambridge High Performance Computing Service and the Linux workstations of
School of Biological Science computing. The RNA-Seq datasets generated during the
current study are available in the European genome-phenome archive (EGA, https:/
www.ebi.ac.uk/ega) with the following accession codes: EGAD00001003457,
EGADO00001003507, EGAD00001003508, EGAD00001006304, and EGAD00001004860.
The curated datasets described in the current study can be found at https://www.obgyn.
cam.ac.uk/placentome (ref. 19%). The datasets used in this study are available from
miRbase v21 (https://mirbase.org/pub/mirbase/21), piRBase v1, miRTarBase v8, CHESS
database v2.1 and GTEx v8.p2, PRIDE database with the following two accession codes:
PXD000561 and PXD010154, the common Repository of Adventitious Proteins (cRAP)
database (https://www.thegpm.org/crap) and UniProtKB database with the following
accession code: UP000005640. The data supporting the findings of this study are
available from the corresponding authors upon reasonable request. Source data for the
figures are provided as a Source Data file.

Code availability

Code used in this study is available in the Methods section and at https://github.com/
sung/POPS-Placenta-Transcriptome-2020. Code used to build the website is available at
https://github.com/sung/ShinyPlacentome (ref. 10%).
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