
RESEARCH ARTICLE

Identifying anthropogenic features at Seoke

(Botswana) using pXRF: Expanding the record

of southern African Stone Walled Sites

Stefano BiagettiID
1,2*, Jonas Alcaina-MateosID

1, Abel Ruiz-GiraltID
1, Carla Lancelotti1,3,

Patricia GroenewaldID
4, Jordi Ibañez-Insa5, Shira Gur-Arie1,6, Fred MortonID

7,

Stefania Merlo8

1 CaSEs Research Group, Department of Humanities, Universitat Pompeu Fabra, IMF-CSIC, Barcelona,

Spain, 2 School of Geography, Archaeology and Environmental Studies (GAES), University of the

Witwatersrand, Johannesburg, South Africa, 3 ICREA, Passeig Lluı́s Companys 23, Barcelona, Spain,

4 Department of Archaeology, University of Cape Town, Cape Town, South Africa, 5 Geosciences Barcelona

(GEO3BCN), CSIC, Barcelona, Spain, 6 Department of Maritime Civilizations, University of Haifa, Haifa,

Israel, 7 Department of History, University of Botswana, Gaborone, Botswana, 8 McDonald Institute for

Archaeological Research, University of Cambridge, Cambridge, United Kingdom

* stefano.biagetti@upf.edu

Abstract

Numerous and extensive ‘Stone Walled Sites’ have been identified in southern African Iron

Age landscapes. Appearing from around 1200 CE, and showing considerable variability in

size and form, these settlements are named after the dry-stone wall structures that charac-

terize them. Stone Walled Sites were occupied by various Bantu-speaking agropastoral

communities. In this paper we test the use of pXRF (portable X-ray fluorescence analysis)

to generate a ‘supplementary’ archaeological record where evident stratigraphy is lacking,

survey conditions may be uneven, and excavations limited, due to the overall site size. We

propose herein the application of portable X-ray fluorescence analysis (pXRF) coupled with

multivariate exploratory analysis and geostatistical modelling at Seoke, a southern African

SWS of historical age (18th century CE). The aim of the paper is twofold: to explore the

potential of the application of a low cost, quick, and minimally invasive technique to detect

chemical markers in anthropogenic sediments from a Stone Walled Site, and to propose a

way to analyse the results in order to improve our understanding of the use of space at non-

generalized scales in such sites.

Introduction

Numerous and extensive ‘Stone Walled Sites’ are attested in the whole of southern Africa

between the Orange and the Zambezi rivers (Fig 1). Appearing from around 1200CE, and

showing considerable variability in size and form, these settlements are named after the dry-

stone wall structures that characterize them. Stone Walled Sites (SWS) were occupied by vari-

ous Bantu-speaking agropastoral communities who cultivated crops, hunted, and venerated

cattle as the source of both economic and political wealth [1].
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Archaeologists have long focused on the study of such sites [2–5] whose size and visibility

make them relatively easy to recognise in the landscape, in particular through aerial photo-

graphs [4, 6–8] and, more recently, satellite imagery [9]. Two broad stone walling traditions

have been identified in southern Africa, encompassing a vast area that includes present day

Zimbabwe, Zambia, Mozambique, Botswana and South Africa: these are commonly known as

the Zimbabwe Pattern, which spread in the northern part of southern Africa and is first

attested at Mapungubwe around 1250 CE, and the Central Cattle Pattern (CCP) [1] to which

the site of Seoke can be ascribed. Contrarily to what is believed for the Zimbabwe tradition

where the walling is considered to have been a marker of class differences used for the seclu-

sion of elites’ spaces and ritual practices [1], the stone walls in the CCP tradition were not

exclusive to elite spaces and they helped to separate cattle from people, household from house-

hold, and the entire settlement from its surroundings [1]. The earliest known example of the

CCP pattern, which is spread over the southern part of the region, is Moor Park in Kwa-Zulu

Natal and dates from the thirteenth to the fifteenth century [1]. This early walling is associated

Fig 1. Distribution of Stone Walled sites. Map showing the distribution of stone-wall settlements in the second millennium CE in southern Africa

(adapted from [1]).

https://doi.org/10.1371/journal.pone.0250776.g001
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with Nguni speakers. Sotho-Tswana stone walled sites are associated within later clusters,

called N, V and Z by Maggs [7]. The oldest known walling of this cluster occurs near the hill of

Ntsuanatsatsi in the Free State province of South Africa and dates to around 1500 CE. Ascribed

to the CCP pattern, a series of large-scale Tswana towns in the area between the Pilanesberg/

Magaliesberg and southern Botswana are considered the expression of the extensive move-

ment of Tswana groups from the Highveld into the Kalahari. Developing in the mid-1700s

and reaching their ultimate expressions by the early 19th century, these extensive stone walled

sites—typically associated with late Moloko ceramics—were the capitals of aggregated

Tswana-speaking communities—entire chiefdoms living together in a single town under the

authority of their resident ruler [10–17]. The considerable size of the largest of these towns,

reaching between 10,000 and 20,000, inspired the term ‘mega-sites’ in earlier archaeological lit-

erature [18]. Their density and scale bear testimony to significant changes that were underway

in southern Africa during this period. Notwithstanding the long tradition of research around

the use of space in these settlements [1, 19, 20], based principally on ethnographic evidence

and excavation of limited portions of exemplar sites, SWS of the CCP tradition are difficult to

tackle with traditional approaches beyond a general architectonic assessment. The sites were

often occupied for short periods of time (usually one or two generations) and are characterized

by (i) very thin archaeological deposits, (ii) scarcity of artefacts in most of the deposits and/or

on the surface, and (iii) a large number of stone structures with similar morphology or other

macroscopic physical characteristics, making it impossible to identify their diverse use during

site life, in particular beyond the areas of the cattle enclosures and the main dwellings. Tradi-

tionally, excavations have focused on middens and stock enclosures, the most evident and cul-

turally “rich” deposits, to extract datable artefacts and construct building chronological

sequences. The difficulties in retrieving a broader archaeological record coupled with the rela-

tive late chronology of such sites have prompted the adoption of the so-called ‘Direct Histori-

cal Approach’, a methodology developed in the US during the 1920s-1930s, which argued that

knowledge relating to historical and recent periods is extended back into earlier times. Archae-

ological research on Tswana towns has, since the 1980s, predominantly revolved around the

application of an ethnographically derived normative model, known as the ‘Central Cattle Pat-

tern’, for the interpretation of settlement space and organisation [19–22]. This model explains

the settlement pattern through a structural approach, where cattle are positioned at the centre

of the settlement and there is a distinct division between male and female occupation of space.

Huffman has emphasised that a normative model is useful in order to gain insight in general-

ised aspects of a society and its organisational principles, but that it is not useful for investigat-

ing the details of daily behaviour and dynamics [22]. It is also not concerned with variation

among the group identities since it subsumes subtle differences to extract common underlying

principles. As such “To understand the meaning of variations within the Central Cattle Pat-

tern, it is necessary to construct models at a lower, less general scale.” [22, p.24].

The large number of papers published in the last 30 years testifies to the influence of this

interpretive framework. Yet, many issues have been raised [23–28] related to the application of

‘ethnographic reports’ mostly collected during the colonial period, and by using an ‘ethno-

graphic present’ restricted to some specific societies (Eastern Bantu speaking group [22]).

Complicating the picture is the heterogeneous nature of Tswana societies, which typically

included diverse ethnicities [14, 15]. To this end, an alternative approach to the understanding

of the functional and symbolic use of space at different scales at SWS may focus on the anthro-

pogenic deposits per se. Anthropogenic deposits often represent the main component of

archaeological sites and are a primary source of information on the human activities carried

out in the past. Human occupations may leave evidence in the form of chemical elements in

the archaeological sediments [29]. Since the seminal works of Barba and Ortiz [30] and
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Middleton and Price [31], the study of such elements has increasingly been applied in archae-

ology [32, and references therein] and ethnoarchaeology to identify the chemical signatures of

many human activities (e.g. food preparation and consumption, craft production, livestock

management) [33]. Whilst these approaches have had a limited use in an African context, their

application to study both vertical [34, 35] and horizontal [36–39] anthropic traces has proven

to be successful.

Chemical markers represent an invaluable approach to pin down past and recent activi-

ties at a site, to understand the spatial dynamics of such activities, and to interpret architec-

tural structures in relation to their functions. The potential of this approach resides in that

the chemical elements’ signatures represent the repetitive use of a determined space and that

are little affected by datable events [40]. Under this approach, the focus shifts from the abso-

lute values of the chemical elements to their presence, combination and, especially, the

anomalies created by their deviation from the average of the samples. Consequently, the

anthropogenic signature of spaces is not site-dependent and results are comparable across

widely different geographical and chronological contexts. For instance, major components

of organic occupation waste are Ca, Sr, K, P, Mn and Zn since they are essential nutrients for

all living organisms, and their occurrence can be linked to specific features and activities to

be found at archaeological sites. Recent reviews [32, 41, 42] have identified the significant

relationships between chemical elements and archaeological features, such as burials,

hearths, stock enclosures, middens, houses, metal working areas, and food-processing areas.

As stressed also by Save and colleagues [32], “[‥] geochemistry has experienced an increase

in interest from archaeologists in search of new methods to investigate the internal spatial

organization of sites and/or to determine the specific function of features, structures or

spaces within sites”.

In this paper we present a pilot procedure to generate a ‘supplementary’ archaeological

record where evident stratigraphy is lacking, survey conditions may be uneven and excavations

limited, due to the overall site size. This record is aimed at creating horizontal archaeological

signatures that trace activities not only inside and around the stone enclosed parts of the site,

but of the spaces in between, which have the potential of enriching the understanding of the

dynamic use of space. We propose herein the application of portable X-ray fluorescence analy-

sis (pXRF) in a southern African SWS of historical age (18th century CE) coupled with multi-

variate exploratory analysis based on geostatistical modelling. The aim of the paper is twofold:

to explore the potential of the application of a low cost, quick, and non-destructive technique

to detect chemical markers in anthropogenic sediments from a Stone Walled Site, and to envis-

age a way to analyse the results in order to improve our understanding of the use of space at

non-generalized scales in such sites.

The site of Seoke

The study site of Seoke in southeast Botswana has been the subject of archaeological research

since 2012, within a project aimed at elucidating the dynamics of territorial expansion and

identity construction of the Tswana-speaking group of the Bangwaketse from the late 1700s

[16]. Originating c. 1700–1725 as a breakaway group from the Kwena, by 1780 the followers of

Ngwaketse and his descendants had become a regional power. The Bangwaketse began their

expansion during the rule of Moleta (c.1770-c.1790) when they also rose rapidly to control

present southern Botswana. Through the work carried out by Morton and Merlo [43] that

combined oral traditions, topocadastral information, survey and remote sensing, a number of

archaeological settlements related to the age of Moleta have been recorded, including Seoke.

According to oral histories collected in the 1920s and 1930s, the Ngwaketse capital of Seoke,

PLOS ONE Identifying anthropogenic features at Seoke (Botswana) using pXRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0250776 May 12, 2021 4 / 20

https://doi.org/10.1371/journal.pone.0250776


where Moleta assumed power in c. 1770, was established during the reign of Makaba I followed

by his son Mongala circa early to mid-1700s [44, 45].

The site is located in the freehold farm Woodlands 8JO presently known as “Lobatse

Estates”, immediately northeast of Lobatse town.

The study area is underlain by several geological units that vary in age from Neoarchaean to

Palaeoproterozoic (approximately 2.781 to 2.0 Ga; [46]). The Kanye Formation of the Lobatse

Group, constitutes an intrusive homogenous felsite (which will give rise to highly silicious,

sandy substrates). The intrusive felsites are unconformably overlain by younger (2.65 Ga) sedi-

mentary rocks of the Black Reef Quartzite, represented by a sequence of dolomitic limestone,

chert, minor limestone, ironstone, variably carbonaceous siltstone and shale ([46], Botswana

Geoscience Portal, http://geoscienceportal.geosoft.com/Botswana/Search/). The Upper

Transvaal Supergroup underlies the larger part of the study area, building the prominent topo-

graphic features including the hills to the east of the site. These 1.6 to 2.5 Ga aged metamorphic

and sedimentary rocks collectively consist of inter-bedded reddish quartzite, shale, variably

manganiferous and carbonaceous sandstone with chert, limestone, ironstone, andesitic volca-

nics and breccia ([46], Botswana Geoscience Portal). Geomorphologically, the study area is

characterised by uniquely isolated hills with a maximum height of 350 m. No major rivers cut

the study area, although large areas in the footslope and valley floor regions contain significant

thicknesses of residual soil. The soils of our study area in particular are lithosols [47], and

more specifically arenaceous sediments (i.e. with a sandy texture [48]). The bedrock is near the

surface and weathered. Since the site is not on a steep slope, the dominant pedogenic factors

are likely to be resistant parent material and a dry climate. The site area is characterized by

shallow sands and loams. Soil drainage is fair to good, with a clay content of less than 15%

[47:284]. The most common mineral is quartz (SiO2), although other minerals include feld-

spar, white mica and clay minerals. The mineral composition of wind-blown and alluvial sand

in this region are observed to be dominated by quartz.

A combination of visual identification on GoogleEarth imagery, extensive handheld GPS

survey and verification and detailed DGPS mapping of selected areas between November 2013

and October 2019 have revealed extensive stone walling in the area. The walling consists of

separate but interlinked clusters of varying sizes and concentrations which extend along the

lower slopes and at the foot of the hills, following the V- shaped alluvial plains of the Lobatse

(Peleng) river over an area of 14.5 km2 (Fig 2), making it one of the most extensive CCP tradi-

tion, Late Iron Age, stone walled sites in Botswana and South Africa. Systematic foot survey,

artefact recovery and excavation of 14 trenches of a standard size of 2x2 meters over selected

middens and one iron smelting area have been carried out and are in the process of being pub-

lished, alongside the analysis of the uncovered material remains. One of the main challenges of

the archaeological work conducted at Seoke has been that of maximising information recovery

in order to address the project’s archaeological questions and minimising the time and cost

efforts of engaging an extensive area, particularly difficult to survey due to the presence of

thick and almost impenetrable buffalo grass (Cenchrus ciliaris), which conceals the stone wall-

ing itself (Fig 3), let alone other elements of the landscape under investigation (middens, grain

bins, ceramics, work areas, etc.). Systematic soil sampling and rapid geochemical analysis of

soil offer a complementary and efficient alternative to intensive survey and excavation for

mapping activities across large areas at sites such as the one described here. The method was

applied to a portion of an area identified as the northernmost cluster, which remains the least

affected by grass overgrowth, thanks to the presence of cattle grazing in the area. Systematic

survey and the excavation of four 2x2 m trenches over 3 middens (excavated by level) and one

food preparation area (excavated by context) were also carried out to corroborate the interpre-

tation of the soil chemistry analytical results.

PLOS ONE Identifying anthropogenic features at Seoke (Botswana) using pXRF

PLOS ONE | https://doi.org/10.1371/journal.pone.0250776 May 12, 2021 5 / 20

http://geoscienceportal.geosoft.com/Botswana/Search/
https://doi.org/10.1371/journal.pone.0250776


Fig 2. Map of Seoke SWS. Stone walls in black were surveyed on the ground, stone walls in grey were manually

digitised by S. Merlo from GoogleEarth imagery and not verified on the ground. The position of the control samples

(black triangles) and sampling areas (red squares) are indicated. Sources: contour data and rivers extracted from Aster

DEM by S. Merlo.

https://doi.org/10.1371/journal.pone.0250776.g002
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The site of Seoke is characterized, as other SWS, by a very thin and uneven archaeological

deposit, generated in possibly c.30 years of continued occupation of different intensity

throughout the site. While some middens feature up to 1m of archaeological buried deposit,

the rest of the anthropogenic sediment throughout the site is characterized by an estimated

thickness ranging between 5 and 20 cm (according to the experience of the authors in the

field).

Although both oral historical accounts (which attest to the presence of the Kgwatheng) and

sporadic archaeological surface finds attest to the occupation of this area prior to the arrival of

the Bangwaketse, the stone walling at Seoke can by and large be associated with the Bangwa-

ketse occupation (based on ceramics recovered on the surface in association with the stone

walling). At Seoke, discrete clusters unified by coherent architectural features can be consid-

ered as ‘monophasic’. Their archaeological deposits are buried under a thin layer of sterile sur-

face colluviums. After the abandonment by the Bangwaketse at the end of 1700s, the area

where Seoke is located was intermittently used as cattle grazing land. As such, these deposits

represent a unique opportunity to sample large and simultaneously occupied habitation

surfaces.

The use pXRF for the chemical characterization of anthropogenic

sediments

The use of portable X-ray fluorescence devices (pXRF) is rapidly growing among those inter-

ested in performing fast and low-cost analysis of the chemical composition of sediments, soils,

rocks, and artifacts. In the last decade, archaeologists too have discovered the advantages

offered by handheld devices that can be easily transported to most remote locations. The

Fig 3. View of the site of Seoke, October 2019 Stone Walls at Seoke, southern cluster. Cenchrus ciliaris (buffalo

grass) can reach 1,5 meters in height.

https://doi.org/10.1371/journal.pone.0250776.g003
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non-destructive nature of pXRF and its capacity to provide quick results are obvious benefits

for examining archaeological items that cannot be damaged or are not easily moved. In the

study of ancient artefacts, pXRF has demonstrated its potential on potsherds, metals, lithics,

and cuneiform tablets [e.g., 49–60]. The use of pXRF for archaeological sediments and soils,

has also increased in the very last years. Janovski and colleagues [61] identified the chemical

elements that relate to human activity in Tel Burna (southern Levant), shedding light on the

formation processes of the archaeological deposit. Davis, MacFarlane and Henrickson 2012

[62] and Ginau et al. 2020 [63] focused on the analysis of archaeological profiles to analyze ver-

tical variability in chemical elements in lithostratigraphic sequences and support chronological

reconstruction. Holcomb and Karkansas [64] applied pXRF on resin-impregnated micromor-

phological block samples to complement their geoarchaeological study of the profile of an

Archaic (7th century BC) ritual ash midden from the site of Kalapodi (Greece).

pXRF is also being used for site prospection and for the characterization of activity areas in

different archaeological contexts. Lubos and colleagues [42] compared the performance of

pXRF analysis on soil samples with a wide range of techniques, and found that the current gen-

eration of pXRF is highly suitable for multielement analysis of archaeological sediments.

Hayes and colleagues [65] showed that pXRF analyzer can be used to carry out surface geo-

chemical survey on shallow sites, identifying some features’ fills. Frahm et al. [66] developed a

method to measure P concentration in archaeological sediments and tested the results with

ICP OES technique. Save and colleagues [32] have recently presented the results of large-scale

surveys carried out with pXRF, stressing the effectiveness and high potential of this technique.

Other case studies [e.g. 67–69] demonstrate the variety of application on archaeological sedi-

ment that pXRF is experiencing worldwide. Nevertheless, in spite of its rapidly growing use,

the use of pXRF is not exempt of technical and methodological issues. Generic limitations in

the use of pXRF are mainly related to accuracy, which depends on fewer detectable elements

and lower sensitivity than other techniques, such as petrographic analysis, Neutron Activation

Analysis, Inductively Coupled Plasma (ICP) Mass Spectrometry, ICP Atomic Emission Spec-

troscopy, Atomic Absorption Spectroscopy, Optical Emission Spectroscopy, Thermal Ioniza-

tion Mass Spectrometry, and Stable Isotope Ratio Analysis. Moreover, low-Z elements such as

for example Mg, S and Si, may present errors in detection as the pXRF does not generate a full

vacuum and therefore air interferes with the quantification of such elements [49]. Due to its

novelty as research tool in archaeology, voices for the elaboration of reliable systematic proto-

col to be readily applied by archaeologists have been repeatedly raised [70–73]. Our work pres-

ents a further case study on archaeological sediments and proposes the use of kriging as a

method to map the results.

Materials and methods

The project and the field research were carried out under Government of Botswana research

permit EWT 8/36/4 SSSVI(26), issued by the Ministry of Environment, Wildlife and Tourism,

Gaborone. Three different areas of the northern part of the site were selected in relation to dif-

ferent archaeological features (Fig 4): area A (900 m2) with a circular cattle enclosure (enclo-

sure 1) and two middens, one set north of the enclosure (midden 1) and one west of the

enclosure (midden 2); area B (400 m2), the central area of a cluster of semicircular enclosures,

including a midden (midden 3); and area C (400 m2), with a possible domestic feature (stone

wall 1) with adjacent midden (midden 4) and a circular stone stock enclosure only partially

sampled (enclosure 2). A grid of 2x2m was placed over each area. Ten grams of sediment were

collected every 2 m following the grid, with the exception of a few points where stone walls

were present. We sampled a total of 1500 m2 and collected 477 samples related to the
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archaeological deposit (i.e. within or close to visible stone structures) and 45 control samples.

The last of these consisted of 4 to 5 sample points, located close to each other, distributed over

9 spots, in different parts of the study area (See Fig 2; see also S1 File for raw data). In order to

check the instrument, 15 archaeological and 4 control samples were measured in triplicates:

after checking that the measures were consistent these measures were averaged for the subse-

quent statistical analysis. Each sample was geolocated by means of DGPS and then carried to

the store of the Seoke Project located in the Lobatse Estates (a few kilometers from the archae-

ological site), where pXRF analysis was carried out in a purposely set up field laboratory. Sedi-

ments were sieved, ground, and placed in plastic XRF cups covered by a thin polyester film

and subjected to 120 seconds of analysis each, amounting to about 4 minutes per sample. A

Thermo Niton Gold series pXRF was used, with Cu/Zn mining calibration. In this work we

opted for the analysis of bulk samples rather than in-situ measurements so as to minimise the

risk of skewed results due to irregularities of the sample and because of the extremely high

temperatures at the site that quickly overheated the instrument. Indeed, the high outside tem-

perature, especially at midday presented heating issues even in the sheltered space of the exca-

vation house, and the analyses had to be intermittently stopped in order for the instrument to

cool down. Soil samples were thus collected after a shallow cleansing of the surface consisting

in the removal of c. 5 cm of surface sediment, to intercept the archaeological deposit buried

under a thin layer of colluvium (see previous paragraph).

Chemical variables showing a high percentage (> 40%) of readings below the detection

limit of the instrument were excluded from the analysis, as well as those elements presenting a

Relative Standard Deviation (RSD) higher than 20%. Data were analysed using unweighted

Logratio Analysis (LRA), a multivariate technique developed explicitly for compositional data

and which is equivalent to apply Principal Component Analysis to the transformed Centred

Logratio (CLR) variables [74]. Spatial interpolation of the elemental concentrations was

Fig 4. Map of the sampled areas at Seoke northernmost cluster showing detail of the features recognised during

ground survey. The features discussed in the paper are numbered in a progressive way: enclosure 1 (e1), midden 1

(m1) and midden 2 (m2) in area A; midden 3 (m3) and enclosure 2 (e2) in area B; stone wall 1 (sw1) and midden 4

(m4) in area C.

https://doi.org/10.1371/journal.pone.0250776.g004
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performed by co-Kriging, using the Centred Logratio transformed variables for both structural

analysis and prediction steps (extended with a residual component), and subsequently back

transformed to obtain the actual concentrations (in %). Empirical variograms were computed

using a maximum distance of 20 m between data pairs (with a total of ten lag bins). Based on

the examination of the variograms, we adopted a linear model of coregionalization comprising

three basic structures: a nugget effect, a short range spherical model (range = 7 m), and a large

range exponential model (range = 10 m). The model fitting has been performed by a weighted

least squares approximation, using the iterative algorithm proposed by Goulard and Voltz [75]

and a weighting scheme consisting in the number of data pairs within each lag bin. Elemental

concentrations have been interpolated using the samples of each area separately.

The R code used for analysis together with the datasets can be found in GitHub (https://

github.com/cl379/papers_supl_materials/tree/master/Biagetti2020_Seoke).

Results

Table 1 presents the summary statistics of absolute values of the elements analysed (the full

dataset of the raw readings from the instruments can be found in S1 File).

A first exploration of the data on samples assigned to a category according to their position

in space, revealed the presence of groupings (Fig 5, LRA scores are provided in the S3 File).

Although the variance explained by the first two principal components is not very high (45%),

it can be observed that there is a certain degree of separation between area A and the other two

areas. Within area A, the stock enclosure samples are clearly separated from the rest, with mid-

den 1 samples, and midden 2 samples being different. These last samples tend to overlap with

the midden in area B, whereas the midden samples in area C form a separate group. The

majority of the samples from the enclosure in area C are almost totally unrelated to the enclo-

sure samples of area A. Finally, the samples from the stone structure in Area B seem to be dis-

tributed across all groups. The rest of the samples not directly associated with an activity area

or structure display a high variance across both LRA dimensions. The results of co-Kriging

analysis are shown in Fig 6.

As evidenced by both the co-Kriging (Fig 6) and the LRA (Fig 5), the two enclosures present

enrichments in different components. This result, however, is influenced by the limited num-

ber of samples analysed for the enclosure 2 (n = 4) and their position within the structure, all

very close to the wall. Enclosure 1 is especially enriched in Mn and P and moderately enriched

in S, Si and Cr. Considering the nature of this structure, it is not surprising that P is up to 2.3

Table 1. Summary statistics of the raw values for archaeological and control samples. Correlation coefficients can be found in S2 File.

Al Si P S Cl K Ca Ti Cr Mn Fe Zr

Archaeological Min. 0.097 2.236 0.423 0.052 0.051 0.423 0.327 0.179 0.002 0.027 1.862 0.018

1stQu. 0.143 3.479 0.762 0.088 0.058 0.680 0.497 0.243 0.007 0.069 2.311 0.026

Median 0.161 3.670 0.793 0.094 0.060 0.749 0.627 0.260 0.008 0.083 2.478 0.029

Mean 0.1675 3.678 0.785 0.093 0.061 0.763 0.876 0.259 0.008 0.088 2.482 0.029

3rd Qu. 0.186 3.869 0.815 0.099 0.062 0.828 0.897 0.274 0.009 0.098 2.651 0.032

Max. 0.557 6.242 0.973 0.153 0.233 1.156 8.772 0.326 0.014 0.230 3.154 0.045

Control Min. 0.131 2.770 0.077 0.048 0.044 0.076 0.075 0.034 0.002 0.005 0.385 0.002

1stQu. 0.177 3.645 0.640 0.085 0.060 0.458 0.381 0.236 0.008 0.087 2.383 0.022

Median 0.211 4.023 0.697 0.091 0.062 0.591 0.463 0.261 0.009 0.237 2.736 0.027

Mean 0.754 7.477 0.647 0.164 0.067 0.627 0.999 0.254 0.011 0.457 4.401 0.025

3rd Qu. 0.258 4.366 0.744 0.099 0.065 0.732 0.622 0.276 0.013 0.619 3.469 0.031

Max. 6.928 41.625 0.898 0.825 0.156 1.304 19.914 0.427 0.038 2.166 30.246 0.043

https://doi.org/10.1371/journal.pone.0250776.t001
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times higher than the average of samples. Midden 1 and midden 3 present very similar enrich-

ments, especially relevant for Ca; midden 2 also presents a similar composition though the

enrichment is less marked. Middens 1 and 3 present depleted values of Si whereas Midden 2

and 4 display average values of Si. Stone wall 1 is very different from all the middens and is

characterised mainly by elevated values of Mn and Fe.

The areas between the stone structures present relevant enrichments in specific elements:

• Silicon: relevant enrichments of Si are located in the SE corner of area A (outside the enclo-

sure), and in the southern half of area B, where it features a peculiar “inverted V” shape,

whose apex falls where a grain bin has been recorded, and also throughout area C;

• Chlorine: an enriched spot is located in the northern part of areas A;

• Potassium: this element is very high in area A especially to the W of the middens, as well as

in the NW corner of area B. Some enrichment in midden 3.

• Titanium: this heavy metal presents similar enrichment patterns as K.

• Iron: enriched spots of Fe are found in area A especially to the W of middens, as well as in

the NW corner of area B and, in addition, in the northern part of area C.

• Zirconium: presents high values between the structures of area B.

Samples outside of the three areas (A-C) have been collected from different points in the

site (Fig 2). Fig 7 shows the LRA including these control samples. Individual samples from the

eight areas taken as a control generally group quite closely together, indicating that the

Fig 5. Unweighted Logratio Analysis (LRA) biplot of samples, with 95% confidence ellipses for the feature types (enclosure 2 has been excluded).

https://doi.org/10.1371/journal.pone.0250776.g005
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Fig 6. Co-Kriging map of elemental concentration at Seoke at areas A-C. Values express absolute concentrations

(in %).

https://doi.org/10.1371/journal.pone.0250776.g006
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sampled areas were quite internally homogeneous. Samples SK and SJ were the furthest from

the visible structures, the former located along the river floodplain, and the latter on a small

rocky outcrop, and while SK clusters are set very far from the archaeological samples, SJ points

are positioned right at the edge of the archaeological cloud. Points SL, SP, SQ and SR fall

completely within the archaeological samples cloud: SL, SQ, and SR were collected not far

from visible archaeological structures; SP sample points however, were located in an area that

is supposedly outside the archaeological site. SM and SO, similarly to SJ, cluster at the edge of

the archaeological cloud points. SN -collected on the opposite side of the hills in respect to the

Fig 7. Logratio Analysis (LRA) including the control samples (labeled). Blue dots correspond to the “archaeological” samples.

https://doi.org/10.1371/journal.pone.0250776.g007
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archaeological structures- and SS -collected within site but right on top of rocky outcrops- fall

completely outside the archaeological cloud, as do the slag and rock samples.

Discussion

The pXRF analysis carried out at Seoke has recorded the most diagnostic elements related to

human occupation, including Ca, K, P and Mn. Those elements in particular are associated

with a number of daily activities [32, 41] and hint at past use of space in our site. Looking at

the results of the spatial distribution of the various elements, together with the archaeological

features visible on the surface, hypothetical inferences can be made regarding the use of space

at Seoke.

Phosphorus (P) is rather widespread throughout the three sampled areas, testifying to the

presence of cattle roaming throughout the site. Detection of P by pXRFs has been questioned

[49] although fresh research suggests that recent instruments can quantify P even at low con-

centrations in archaeological soil and sediments [66]. The average value of P in the different

areas analysed (S1 File) is virtually the same (enclosure 1: 0,83; enclosure 2: 0,75; midden 1:

0,77; midden 2: 0,79; midden 3: 0,78; midden 4: 0,79; stone wall 1: 0,76; undetermined: 0,78).

Nevertheless, our geostatistical analysis clearly shows that the stock enclosure in area A (enclo-

sure 1) displays high enrichment of P, along with Mn, S, and Si, highlighting the role of co-Kri-

ging in pinpointing anomalies in the distribution of chemical elements in anthropic deposits

that contribute to the reconstruction of the use of space. Considering the nature of this struc-

ture, it is not surprising that P is up to 2.3 times higher than the average of samples (Fig 6).

Those elements -P in particular- have been correlated in previous studies with animal dung or

enclosures [76, 77]. Regarding enclosure 2, only one sample seems to confirm its use as a live-

stock enclosure (similar to enclosure 1), while the other 3 samples fall within the main cluster

of points (Fig 5). Further samples may clarify the very use of this structure.

Anomalies in the distribution of chemical elements confirm that the areas that were identi-

fied as middens during the foot survey, actually present different chemical signatures from the

surrounding areas. Middens in Tswana settlements have been discussed in a number of papers

and their excavation represents a fundamental approach to the study of past Tswana towns.

Different types of middens have been recognised in Tswana settlements according to their

location, size and use, ranging from kgotla (central court) middens, to communal dumps

(located in front of a series of households and in intervening areas between stone walls) to sin-

gle household discard areas related to a nearby structure and generally located immediately

behind a courtyard wall [78]. Communal middens, located in a visible area, are more likely to

contain ashes and organic materials, which are believed to be a medium for witchcraft in

Bantu ethnography [79, 80], compared to individual household middens, which can be less

easily controlled and are therefore less likely used for such materials. The middens located in

area A and B (midden 1, 2, 3)—most likely communal middens—feature similar enrichments

likely related to the disposal of organic waste, while the midden located in area C behind a wall

(single household midden -midden 4) presents a different chemical signature not strictly con-

nected to organic matter. The enrichment in metals (Zr, Fe, Mn, and Cr) recorded throughout

the whole area C may result from some activity related to metal performed in front of the semi-

circular stone wall. The occurrence of Zirconium in midden 4 in area C has been linked to the

presence of pottery, Zr being a common component of clay. Recent research has correlated

enrichments of Zr to areas of vessel storage [32]. In our area C, the chemical elements recorded

may fit with the hypothesis of an area used as a ‘workshop’ or storage, where metal tools may

have been used for shaping pottery, clearing, breaking wood for fires, trimming plaster (cow

dung and mud) walls, as well as sharpening them on stones.
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Notwithstanding the issues related to the measurement of Si in absence of a vacuum, this

element presents interesting patterns, especially considering that this type of error should be

constant throughout the measures and therefore be of less impact when looking at relative dis-

tributions. Indeed, although the substrate is quite rich in silicon in general, the strong enrich-

ment of this element identified in area C is in spatial connection with the base of a grain bin.

This might indicate that cereals were processed in this area and thus, the silicon enrichment

could be produced by the higher presence int his spot of crop processing leftovers and in par-

ticular, of phytoliths (silica bodies produced by plants which are particularly abundant in

grasses and cereals). If this was the case, activities connected to cereal processing and storage

could therefore be hypothesized in at least two areas in the site of Seoke: the space between the

structures in area C and in area B. In addition, the moderate enrichment of Si visible in the

enclosure 1 (area A) could be interpreted as the signature of phytoliths in livestock faecal

remains [76, 81, 82]. The presence of Chlorine (Cl) in some parts of area A and C, and particu-

larly in a spot set in the northernmost edge of area A, is hardly interpretable in our case and

can be an artefact even though, based on the geology and climate of the area, it is unlikely that

significant Cl can be naturally added to the soil from the bedrock or through water accumula-

tion. Within the three sampled areas (A to C), multielement chemical analysis has therefore

outlined chemical differences in the soil composition throughout the site that (i) confirmed

prior interpretation of archaeological features such as middens and a stock enclosure, (ii) may

have detected activity areas that otherwise are not visible by simple visual inspection of the

site. An example of the latter is represented by a spot visible in the upper left corner of area B,

whose enrichments in Fe, Mn, and Ti hints at some anthropic activity performed there that

requires further sampling to be fully understood.

Control samples collected outside of the three areas (A to C) provide further insights on the

size of the archaeological site and the land use of the whole area. A floodplain used as a grazing

area in present times (control sample SK), presents significantly different signatures (see Fig 7)

from the archaeological site, helping in characterizing the archaeological chemical signal. In a

region where cattle have been traditionally left free to roam (including within archaeological

sites), the contamination of the thin and exposed archaeological layer by animal droppings

through time could have occurred. Control samples were taken far from the site (Fig 2). The

results of the LRA in Fig 7 show how the control samples distribute against the cluster gener-

ated by the samples collected from areas A to C (Fig 7). The spatial distance of the points where

control samples were taken is reflected in the spatial distribution in the LRA (Fig 7). Our study

therefore allows us to distinguish between the site area and non-site area due to the difference

in the distribution of chemical elements, and helps in recognizing the limits of the area occu-

pied in the past, thus outlining the edges of the archaeological site. This is key to identifying the

site area beyond the presence of stone walls. The exceptions are samples SP and SQ that cluster

with the archaeological samples. In this case, further survey and sampling is necessary to ascer-

tain whether SP and SQ represent off-site samples or rather these have been collected from an

area occupied in the past and, so far, not recognized and included in the ‘site’.

Conclusions

The use of non-invasive techniques is opening unprecedented possibilities into the under-

standing of African archaeological sites, without disturbing the cultural heritage with new

excavations [83]. In this study we have explored the potential of pXRF combined with geosta-

tistics to understand the use of space beyond the visible archaeological evidence. Our study has

provided insight on the utilization of space, confirming or shedding light on the possible func-

tions of sampled areas. This research has also pinpointed the existence of other features that
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were not recognized in the field. If applied to larger surfaces, our methodology promises to

expand and support the archaeological interpretation of ancient and historic settlements. The

most promising achievement of our research is that pXRF performs well in Stone Walled Sites

and, although much prospecting is needed, the results herein presented can be critically used

to design surveys and excavations in other Stone Walled Sites, and, more generally, on open

air sites.

The use of pXRF at Stone Walled sites represent a quick and effective way to approach such

a peculiar archaeological record, overcoming the issue of its exceptional thinness. pXRF pro-

vides quick results, since no longer than four minutes per sample is needed, including sieving

and grinding, allowing to analyse relatively large areas in a very short time. The field lab can be

easily set up in the house or shelter and avoid the hassle of transporting large quantities of bulk

sediment to a laboratory elsewhere, sometimes with complicated export permit procedures.

Doubtlessly, our technique needs to be tested in other sites and combined such archaeological

proxies, as phytoliths, organic residues and the characteristics of the visible archaeological evi-

dence (stone walls). In spite of the very young age of the Seoke archaeological deposit, post-

depositional processes might have affected the distribution of chemical elements. Further

taphonomical assessment, coupled with more geoarchaeological investigatigation (e.g. thin

sections from identified features, study of other micro-proxies such as organic residues or phy-

toliths) is certainly required, in order to shed light on possible alterations and disturbances to

the deposit. Generally speaking, the use of pXRF on anthropogenic sediments is still at an early

stage, and further studies are needed to properly refine this procedure.

Supporting information

S1 File. Raw data and summary statistics. This spreadsheet contains 4 tabs for raw data of

pXRF measurements for all samples and summary statistics for archaeological samples, control

samples and samples by group.

(CSV)

S2 File. Correlation coefficients.

(CSV)

S3 File. LRA scores.

(CSV)
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