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Abstract – Total hip arthroplasty (THA) has been quoted as one of the most successful and cost-effective procedures
in Orthopaedics. The last decade has seen an exponential rise in the number of THAs performed globally and a sharp
increase in the percentage of young patients hoping to improve their quality of life and return to physically demanding
activities. Hence, it is imperative to review the various applications of technology in total hip arthroplasty for improv-
ing outcomes. The development of state-of-the-art robotic technology has enabled more reproducible and accurate
acetabular positioning, while long-term data are needed to assess its cost-effectiveness. This opinion piece aims to
outline and present the advances and innovations in total hip arthroplasty, from virtual reality and three-dimensional
printing to patient-specific instrumentation and dual mobility bearings. This illustrates and reflects the debate that will
be at the centre of hip surgery for the next decade.
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Introduction

While the first total hip replacement was developed by
Wiles in 1938 [1], it was not until the 1960s that it gained
immense popularity when Sir John Charnley introduced the
“low-friction arthroplasty”, revolutionising the management of
arthritic joints [2]. Since this first generation arthroplasty utilis-
ing acrylic cement for fixation and high-density polyethylene as
a bearing material, incremental developments in the field have
led the scientific community to quote total hip arthroplasty
(THA) as “the operation of the century” [2]. Attempts to
enhance THA have been directed at reducing failure rate
(owing to wear, loosening and instability), and increasing the
longevity and durability of implants as dictated by the high
activity profile of the modern patient.

Using larger size femoral heads has resulted in increasing the
jump distance and the impingement free range of movement,
while the development of modern bearing couples has played
a key role to offset the increased volumetric wear [3]. Further-
more, dual mobility bearings constitute a reliable treatment
option to enhance hip stability and appear to have been widely
adopted in THA in dysplastic patients and revision THA for
instability [4]. As well as this, a recent cost-effectiveness

analysis, utilising a Markov model in patients undergoing
revision THA has shown that dual mobility implants in patients
under 75 are cost-saving [5]. It has been suggested that the
systematic use of dual mobility cups may induce substantial
cost-savings compared to THA with a fixed bearing, even in
primary THA [6].

In recent years, 3D printing technology has seen an increas-
ing number of applications in total joint arthroplasty. Patient-
specific instrumentation (PSI) uses this technology to create
patient-specific guides, allowing the operating surgeon to
accurately position the implants according to the pre-operative
plan [3]. Moreover, 3D printed metal can replicate the pore size
and elasticity of the trabecular bone, opening numerous avenues
in relation to cementless implants [7].

Achieving accurate implant positioning and restoring native
hip biomechanics are important technical objectives in THA. To
this end, the evolution of surgical technology has led to the
development of computer navigation and robotics, designed to
minimise human error and improve the accuracy of implant
positioning. This state-of-the-art technology generally uses pre-
operative CT scans to delineate each patient’s anatomy and pre-
sents the opportunity to the surgeon to plan and execute optimal
sizing and positioning of the acetabular implant to achieve the
desired centre of rotation, inclination, anteversion, femoral off-
set, and leg-length correction while preserving hip stability [8].*Corresponding author: andreasfontalis@gmail.com
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The European Hip Society was delighted to partner with
SICOT in order to present its Webinar on robotics and other
technologies that enhance total hip arthroplasty (THA). The
following four excerpts summarize four presentations from
thought leaders on the subject and illustrate the very real
international dialogue and debate that will be at the centre of
hip surgery for the next decade.

What can technology offer to THA
in the future? – Jean-Alain Epinette

Technology has really fascinating applications, especially in
the field of orthopaedic surgery. However, one might ask if
these technological innovations really help us enhance THA
and how this compares to the cutting-edge practice nowadays.
Furthermore, the question arises of who will benefit from these
technological breakthroughs: the surgeon, trainees, or the
patient who should be at the centre of our attention?

This is why the question posed during a recent SICOT-EHS
webinar seemed quite relevant: Why technological advances,
such as robotics or other innovations, are needed in THA in
the future? In the following, section we will focus on three
innovations made possible by recent technological advances:
virtual reality, 3D printing with additive technology, and
prosthetic surgery assisted by robotics.

Virtual reality and surgical education

Since the 17th century of Rembrandt, the training of future
surgeons traditionally involved dissection work on cadavers [9].
This practice requires special conditions, it is expensive,
occasionally difficult to set up, and entails the potential risk
of exposing trainers and trainees to infections [10].

Virtual reality makes it possible to replicate the exact
sensation of being in the operating room, thanks to “virtual”
surgical simulation requiring only special glasses and a pair
of controllers connected to a laptop computer. This simulation
gives the opportunity for an unlimited number of practice hours
and can be accessed from anyplace, allowing the learning and
consolidation of surgical techniques and manoeuvres [11]. Thus
reducing potential execution errors [12], while enabling the
continuous evaluation of operators [12]. Moreover, several
operators can simultaneously “operate” remotely on the same
surgical site by coordinating their actions.

Overall, virtual reality opens up numerous avenues in total
joint arthroplasty [13], not solely limited to technical skill
acquisition [14]. This innovative technology can be used to trial
new surgical approaches, as well as familiarise them with new
instruments.

There has been growing interest in delineating the strategies
behind sensorimotor learning and skill acquisition in virtual
reality. The most widely acknowledged model of skill
acquisition proposed by Fitts and Posner [15], revolves around
three sequential stages, namely cognitive, associative, and
autonomous.

The first stage is characterised by establishing the task
goals and recognising the process to achieve them. During this
stage, a significant proportion of movements are performed

consciously, are slow and inefficient. Once the learner reaches
the associative stage, attention is paid to relating performance
and results, with some movements becoming more reliable
and fluid. This stage may also involve exploring the minutiae
of a sequence of actions and segmentation of the skill. Finally,
the last “autonomous” stage focuses on improving speed,
dexterity, and range of motion; facilitating the transition to an
automated routine where little cognitive activity is required [16].

Virtual reality could also play a significant role in tackling
the steep learning curve and technically demanding steps in
arthroplasty. The first step involves segmenting a procedure
into achievable, smaller tasks and validating the learning curve.
Consequently, a proficiency-based approach can be employed,
where inexperienced surgeons can progress in a stepwise
manner only if proficiency benchmarks are accomplished [17].

There is a growing body of evidence supporting the role of
virtual reality in Orthopaedic training. A recent review, encom-
passing 18 primary studies, concluded that VR resulted in mea-
surable improvements and “real-world” benefits in knee and
shoulder arthroscopic procedures; however, evidence support-
ing its utilisation in arthroplasty was lacking [18]. Furthermore,
cost-efficacy studies are warranted to evaluate whether the addi-
tional cost of simulators is justifiable.

Contribution of 3D printing and additive

manufacturing in orthopaedics

3D printing is rightfully considered nowadays an industrial
revolution. We have become accustomed to “subtractive”
manufacturing of implants: whereby, from a mold obtained
by forging, the final implant design is obtained by manual or
automated retouching of metal subtraction to achieve the
desired features [19].

We can now speak of real “additive technology” called
“powder” technology, mostly describing the layer-by-layer
deposition of metal; or adding another substrate, “additive”
manufacturing by gradually melting metal particles on the
substrate [20].

Applications in orthopaedics are still limited, mainly
because of the time required for the processing of these
consecutive layers to obtain an implant of the desired quality,
and the cost related to large-scale manufacturing. Current appli-
cations in Orthopaedics include custom-made devices, such as
prototypes or case-specific implants and medical equipment
manufactured in small quantities [19].

In orthopaedics, for example, PSI (patient-specific instru-
mentation) for knee prostheses [21], or single-use instruments
for specific indications, especially in maxillofacial surgery, or
prototypes intended for the evaluation of new implants, can
be produced to obtain functional models directly from computer
plans. A major application constitutes the addition of metal to
complex structures such as porous surfaces according to the
predefined plan [22], reproducing in total cohesion with the
substrate the 3D structure of the cortical bone [7]. This has a
widespread application in cementless implantation of cups
and cementless tibial endplates of knee prostheses [23, 24].
Furthermore, this technology enables to reproduce identical
complex bone structures such as custom-made implants for
major bone loss used in tumour surgery [19].
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It is therefore an extremely promising technology for the
future, despite the current limitations owing to the significant
cost associated with the technical requirements of prosthetic
surgery. Further considerations embrace the regulatory require-
ments for validation of 3D manufactured implants and the time
needed for large-scale production.

Robotic Total Hip Arthroplasty

Early results of robotic THA and plans with new

technology – Fares S Haddad

Robotic-assisted hip arthroplasty is something that has been
attempted in the past, but which must be considered afresh as
new technologies have afforded an enhanced planning and user
experience and will likely deliver much better results than
previous iterations [25].

One of the concerns when analysing any form of computer-
assisted or robotic surgery is that there is a danger that all
systems and all techniques are lumped together [26]. This must
be resisted. There is now fierce competition in the marketplace
for robotic-assisted surgery and all systems must generate their
own evidence-based and data and must be considered individ-
ually [27]. In the same vein, robotics is different from
navigation and therefore must be evaluated with an open mind-
set [26]. Navigation often led to better accuracy of implant
delivery in arthroplasty surgery, particularly in the knee, but
without altering outcomes [28]. Modern robotics offers a great
deal more and may ultimately allow us the precision as well as
accuracy and the ability to deliver the patient-specific functional
plan that is needed for each patient [29].

Robots also have different functional modes. Some are
autonomous whereas others are active-constrained and are
effectively surgical slaves with the surgeon in control. The
current most widely used system for hip arthroplasty is the
Mako system – this is an active-constrained system where a
3D plan based on CT scanning is delivered to the surgeon
who can then optimise the proposed procedure on that basis.
The bone is then registered intraoperatively allowing accurate
bony preparation using robotic arm-assisted reamers and great
precision of implant delivery [30]. The goal is to progress from
low accuracy and low precision, which is the current standard
with manual techniques, towards high accuracy and high preci-
sion which is what is needed in order to deliver patient-specific
plans [31]. This journey also requires a clear understanding of
what we are trying to deliver for each patient and one of the
innovations moving forward is that planning for robotic THA
will allow an understanding of spinopelvic parameters, and
intraoperative analysis of potential impingement [32], be that
bone-on-bone or implant-on-bone and will allow us to minimise
that.

The workflow for robotic THA started with a CT scan
which is segmented and from which a is acquired [33]. The
surgical exposure is standard, but arrays are attached to both
the femur and the pelvis in order to allow registration. The bone
is then prepared with robotic arm guidance and computer
assistance and the components are inserted accurately to allow
reproduction of length, offset, and centre of rotation [30].

This makes the role of the surgeon critical in that the robotic
arm delivers a surgeon-led plan. This fits easily into the
workflow of the experienced surgeon and will help with both
standard and complex cases, but will also mean that there is
an ideal opportunity to collect a wealth of data generated
through every step of that journey from the CT all the way
through planning and then changes to the plan and then final
execution leading to the ultimate outcome for the patient
[33]. One day soon, we will be able to use artificial intelligence
and machine learning to help deliver better plans for surgeons
who perhaps do a lower volume of surgery [25, 34].

There are really good quality data, both cadaveric and
clinical to suggest that robotic arm assistance leads to more
reproducible acetabular positioning [35] and improves out-
comes even for the high-volume surgeon [36]. It overcomes
problems such as high BMI and seems superior to other
technologies. We have previously published our pilot data
[8, 37–40] and are now in the closing stages of collecting our
randomised clinical trial data in comparing robotic versus
non-robotic surgery [41, 42]. The potential for this technology
is immense. The positioning obtained is accurate and repro-
ducible and centre of rotation [30], combined anteversion offset
and leg length are really critical metrics [8, 36]. Getting these
right will inevitably help most surgeons optimise their hip
arthroplasty pathway.

The thinking and 3D planning and execution of robotic
technology have also helped us to understand our future goals.
We must understand the functional hip position for each patient
in order to be able to deliver individualised THA [29].
Ultimately in so doing and by reducing complications, readmis-
sion and revision rates, and improving patient satisfaction [43],
robotic-arm assisted surgery will be seen as a cost-effective
measure [33, 44] and an integral part of the surgical armamen-
tarium [34].

Past and present of robotics in THA – Luigi Zagra

Navigation and robotics had not played a major role in
routine THA surgery in the past. Previous reports showed no
significant differences in cup inclination, anteversion, or inci-
dence of postoperative dislocation, while operative time was
at least 20 min longer [45]. More recently, robotic-arm assisted
surgery has been developed as a promising technique to improve
accuracy in cup placement with minimal intra-operative
complications; however, whether radiographic improvements
translate into clinical benefits for patients remains unproven as
yet. Disadvantages that may limit the routine use, including
higher costs and longer surgical time. A few years ago, it was
stated that routine use did not appear justified in clinical practice
outside selected high volume and experienced centres, or for
research purposes [46].

However, THA practice is changing. An increasing number
of young patients pursue arthroplasty surgery, thanks to the
high success rate and satisfaction with modern THA [47].
This patient cohort is less forgiving in the long term to “less
than perfect” implant positioning due to the risks of wear,
impingement, and instability. Restoration of perfect hip biome-
chanics is crucial not only for implant survival but for clinical
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performance too. It has been shown that modern robotics
improve accuracy in achieving the planned acetabular cup posi-
tioning and reduce outliers in restoring the planned centre of hip
rotation [8]. However, these achievements are not yet translated
into differences in early functional outcomes, correction of leg
length discrepancy, or postoperative complications. Moreover,
there are still several limitations of robotic THA: installation
costs, additional radiation exposure, learning curve, and the
compatibility of the robotic systems with a limited number of
implants [48]. While there is growing evidence that robotic-
assisted UKA may improve clinical outcomes and implant
survivorship [31, 37, 49], recent reviews and meta-analyses
encompassing patients undergoing robotic-assisted THA reach
a similar previous conclusion [50–54]. Whether semi-active
or fully-active robotic systems are effective in improving post-
operative pain, quality of life, and satisfaction following THA is
unclear; thus further research is needed to determine if better
outcomes and improved implant longevity could justify
increased costs. High-quality studies are required.

Cost-effectiveness and future

perspectives – Luigi Zagra

Some studies have shown that robotic UKA may be cost
effective [55] compared to conventional surgery when patient
age and number of cases are taken into account (more than
94 annually) and failure rates are less than 1.2% at 2 years
[44]. It has been difficult to replicate this in robotic THA. When
the potential outcomes of THA were categorized into the tran-
sition states (infection, dislocation, no major complications, or
revision) microsimulations indicated that robotic arm-assisted
THA was cost-effective in 99.4% of cases and may be more
cost-effective than manual THA when considering direct
medical costs from a payer’s perspective in the United States
system [56]. In the English National Health Service at current
prices, computer- and robot-assisted THA will likely need to
lead to improvements in PROMS in addition to a reduction
in the risk revision [57]. Cost-effectiveness is yet to be demon-
strated in the European market and needs further large volume
studies.

There are other “innovations” that also need future indepen-
dent high-level studies to study their cost-effectiveness.
Custom-made 3D printed implants, mainly acetabular compo-
nents, are gaining popularity despite only having short-term
results and high costs. A study from Belgium has shown that
the new aMace 3D-printed implant has the potential to deliver
excellent value for money when used in revision arthroplasty of
Paprosky type 3B acetabular defects in comparison to custom
three-flanged acetabular components [58].

Another expanding field of technological development is
telemedicine. It has been suggested that telerehabilitation in
the THA population incurred similar costs and yielded similar
effects to traditional in-person care while significantly reducing
the time burden for patients and carers [59].

Technology and innovation have made THA one of the
most successful surgical procedures. For this reason, the
margins for improvements may now be limited or restricted
to more difficult cases. The “golden rules” of introducing
new implants presented by Malchau in 1995 still apply with

minor adaptations: stepwise validation, RCT in selected centres,
multicentre studies, monitoring for at least 10 years [60].

Cost-effectiveness of robotics and other technologies in
THA needs to be proven in long-term independent clinical
studies, while the use is becoming a routine in some places.
We agree with Burnham et al. that “technological advances
in orthopaedic surgery can be extremely costly. As initial costs
may be offset by long-term cost savings, and significant
improvement in patient outcomes may outweigh the added cost,
orthopaedic surgeons must work diligently to determine the
value added by these new technologies” [61].

Finally, according to the ethical codes of EFORT,
“there should be an end to the haphazard way in which new
surgical techniques and products are introduced. Patients may
be attracted by the latest trend before it has been properly tried
and evaluated. The history of Orthopaedics is littered
with widely different procedures which have proved of little
value” [62]. New technologies are promising, but careful cost-
effectiveness evaluation by independent clinicians is always
mandatory.

Does robotic surgery offer a better quality

of life for patients? – Jean-Alain Epinette

The two main types of robots currently available are the
so-called “shared control”, semi-active robots where the
surgeon performs the surgical act, based on the 3D plan gener-
ated by the computer to guide the manipulation of instruments
[63]. This is the case with the MAKO (Stryker), NAVIO
(Smith), and ROSA (Zimmer-Biomet) robotic systems. In a
second group of “fully active” robotic systems, the robotic
device executes the pre-planned surgical resections. An
example of this “controlled supervision” system is the THINK
surgical TSolution-One� (Robodoc) [64].

These expensive devices require a major infrastructure
modification in the operating room but have proven their effi-
cacy in terms of precision of implant placement [30, 65], with
control of both the bone cuts and respect of the surrounding
ligamentous structures [39, 40].

Is there any real proof of an improvement in the quality of
life compared to conventional surgery? It can be argued that
optimal implant positioning according to the pre-operative
planning can also be obtained by navigation, while other bene-
fits such as the shorter duration of the procedure or the reduced
length of hospital stay [37] can also be achieved with outpatient
arthroplasty or minimally invasive surgery.

Several publications in the literature, such as the random-
ized study of Olivier et al. [66], evaluating the results of robotic
versus conventional surgery have not confirmed any significant
benefits in terms of survival, functional outcomes, or quality of
life at 10 years of clinical follow-up. The same applies to
another 10-year meta-analysis covering 1098 cases from six
studies, which found no superiority in long-term survival and
revision rate between computer-assisted and conventional
techniques [67].

The answer to the question “Will we be operated by robots
tomorrow?”, Is certainly “no” at least not in the near future.
Despite the precision of the radiological results is indisputable
[48, 68], significant improvement of the quality of life is far
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from proven, and cannot yet justify the significant costs of
this robotic assistive technology for our prosthetic procedures.
The dependence on computer technology is also becoming
questionable: Who actually operates, the surgeon or the
engineer?

Robotic surgery is still in its infancy and in my view, it does
not render immense benefit to an experienced surgeon; however,
it remains a major asset for the understanding of the complex
needs in arthroplasty surgery for both surgeons in training and
surgeons unfamiliar with a particular technique. Finally, the
robot simply follows the engineer’s planning instructions: if
practice dictates an identical, “academic” positioning of
implants in all patients, its interest will remain limited. On the
other hand, the inevitable evolution towards an adapted “person-
alized” surgery [69], tailored to each patient’s anatomy, will lead
to a shift in practice, and in this context, the robot will fully have
its place and will be here to stay.

In conclusion, I have included three orthopaedic innovative
technologies for (1) better means of educating through “virtual
reality”, (2) easier or more efficient means of creating new
devices via 3D printing using additive technology, and (3) a
better understanding and execution of our operations with
robotic assistance. Technological progress in Orthopaedics
supports our surgical journey so far and is likely to be even
more advantageous in the future. Notwithstanding, it should
be borne in mind that the “state of the art” technology in med-
icine will always require a very skilled pair of hands to use it.

Direct Anterior Approach – Martin Thaler

Although the direct anterior approach (DAA) has been used
since the first half of the 20th century for hip arthroplasty, it has
become increasingly popular among hip arthroplasty surgeons
in the last two decades [70–72]. The DAA was first described
by Carl Hueter [70]. Smith-Petersen provided the first
description of the DAA in the English-speaking literature
[72], and modified the DAA for hip arthroplasty [71]. Other
early contributors were Light and Keggi [73] and the Judets
from France [74].

The approach is usually performed in the supine position.
The skin incision is made two fingerbreadths distal and lateral
to the anterior superior iliac spine, in order to avoid lesions of
the lateral femoral cutaneous nerve. After incising the fascia of
the tensor fasciae lata (TFL), the intermuscular plane between
sartorius and TFL is exposed. Within this interval, the ascend-
ing branches of the lateral femoral circumflex artery are
encountered and coagulated with electrocautery. After exposing
the capsule, an anterior capsulectomy can be performed. The
retractors are placed lateral and medial around the femoral neck
and at the anterior aspect of the acetabulum. Then the neck cut
is performed, the femoral head removed, and the acetabulum
can be approached [75].

After final cup implantation, a bone hook is placed in the
femoral canal to elevate the femur, and a femoral retractor is
placed beneath the greater trochanter. The femur can be easily
approached by adduction, hyperextension, and external rotation
of the operated leg. Double offset broach handles for the femur,
curved cup impactors, and femoral implants without a shoulder
are recommended for the approach [76].

A recent AAHKS (American Academy of Hip and Knee
Surgeons) survey has demonstrated that more than 50% of all
surveyed surgeons use the DAA as their standard approach
for primary total hip arthroplasty (THA) [77], demonstrating
an increasing utilisation of the DAA in the United States up
from 12% in 2010 to 50% in 2019 [78, 79]. However, the
survey showed that almost 80% of surgeons who use the
DAA as their standard approach for primary THA prefer
the posterior approach in a revision setting [77]. A recent
survey among members of the European Hip Society revealed
that approximately 20% of the participating surgeons reported
DAA is their standard approach for primary THA [80]. It can
be concluded that the DAA has become a standard approach
for primary THA. However, the increasing numbers of THA
procedures conducted using DAA raise questions regarding
the feasibility of revision THA surgery through the same
approach. Although revision THA through the DAA interval
is undoubtedly technically challenging, recent publications have
shown that revision procedures through the DAA interval are
safe and reliable [81], when conducted by experienced surgeons
in DAA [82–85].

Complications and safety of the Direct Anterior

Approach

Despite the popularity DAA has gained in recent years, the
most effective surgical approach has been contentions and
several studies have aimed to evaluate safety outcomes.
Numerous reports have shown that DAA is characterised by a
steep learning curve [86, 87], with early reports unveiling poorer
outcomes in surgeons with lesser than 100 cases experience
[88]. Furthermore, a significant amount of evidence suggests
that DAA is associated with longer operative time [86].
However, there is significant variability in the literature, while
it has been reported that operating time improves with more
cases, representing the DAA learning curve [86]. Early studies
reported increased blood loss and a higher incidence of early
complications and intraoperative femoral fractures [89, 90] with
the use of DAA. Notwithstanding, more recent cohort studies
[91] and systematic reviews have failed to establish an associa-
tion [92, 93], therefore drawing any conclusions based on the
existing literature is challenging.

It has also been reported the DAA carries a lower risk of
dislocation [94], while early postoperative functional results
for the first six weeks appear to be superior compared to other
approaches [86].

Overall, the DAA appears to have a steep learning curve
and comparable complication rates, while it is associated with
faster recovery in the early postoperative period.

Implants in THA – Martin Thaler

Large femoral heads

Larger femoral heads have increasingly been used in THA
during the past decade, as they increase the range of hip move-
ment before impingement and consequently reduce dislocation
rates [95]. Thirty-two millimeter and 36 mm are the most
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commonly used femoral head sizes, as reported by several
arthroplasty registries [96–98]. One postulated disadvantage
of larger heads might be corrosion at the taper-trunnion junction
potentially resulting in groin pain and influencing the longevity
of THA [99]. Depending on the articulating materials, 32 mm
and 36 mm heads seem to be superior regarding dislocation rate
and implant survival. Until recently, no long-term reports have
been published confirming the safety of a femoral head larger
than 36 mm.

Dual mobility cups

Dual mobility cups have been used in France for decades,
but the use of this device was not widespread. During the last
10–15 years, the popularity and use of dual mobility outside
France have increased significantly [100, 101]. Dual mobility
cups provide a greater range of motion, a greater head-to-neck
ratio, and a greater jump distance, resulting in a lower risk of
instability [102, 103]. Dual-mobility cups decrease the rate of
dislocation in primary and revision THA [104]. Concerns with
dual-mobility cups include increased wear and intra-prosthetic
dislocation [105]. Dual mobility is an excellent option in
patients at risk of instability after primary or revision THA
[106] (Table 1).

In addition, despite extensive testing and certification
processes before launching new THA implants, some poten-
tially unknown adverse effects can only become evident in
long-term follow-up.

Conclusion

Total hip arthroplasty is a safe procedure, with large effect
size, resulting in substantial improvements for patients at rela-
tively little cost. However, there has been a significant rise in
the number of THAs performed around the world, with a sharp
increase in the percentage of younger patients undergoing
THA. This population is more demanding, often anticipating
returning to sports, hence achieving the best functional out-
comes is vital. This shift in the population pursuing THA,
alongside the advances and innovations in the field, showcase
that substantial improvements can still be made.

Virtual reality opens up new horizons in total hip arthro-
plasty, offering better education to the next generation of hip
arthroplasty surgeons. Furthermore, it can facilitate the trial of
new approaches and instrumentation. Three-dimensional print-
ing opens up numerous avenues, however, applications in total
hip arthroplasty are still limited owing primarily to time and
financial constraints. 3D printing is a promising technology
that can be used for manufacturing prototypes, case-specific
implants, and patient-specific instrumentation. Robotic tech-
nology and computer-assisted surgery have demonstrated

superiority in the radiographic positioning of implants, notwith-
standing there is a paucity of long-term data corroborating
improvements in quality of life.

The use of DAA continues to increase globally and there is
an emerging trend to become the standard approach in the
USA. Thirty-two mm head is still most commonly used,
however, there appears to be a tendency towards larger heads
and dual mobility articulation. As well as this, the use of intra-
operative imaging in THA has been underestimated. There is
mounting evidence that it can prove really useful in restoring
the femoral offset and leg length, especially in selected patient
cohorts such as in patients with lumbar spine fusion.

Early results have shown that robotic arm assistance results
in accurate and reproducible implant positioning, while
combined anteversion and centre of rotation are really critical
metrics. Understanding the functional hip position and pelvic
alignment is key to minimise impingement and facilitate the
transition to “individualised THA” in the future.

Robotic technology also presents the immense potential to
capture a wealth of data starting from the CT and progressing
to the plan and final execution of implant positioning. Using
big data coupled with machine learning and artificial intelli-
gence will allow us to tailor our approach and better understand
the steps needed to achieve personalised medicine. Machine
learning and AI can also streamline our surgical plan and help
disseminate beyond the experts and high-volume arthroplasty
surgeons.

Finally, cost-effectiveness of robotics and other technolo-
gies need to be supported by long-term independent data before
becoming a new standard of care.
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