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Abstract

The Fermi surface is a geometric concept that codifies the momenta of all electrons at the

Fermi level. It is these electrons that underpin most physical properties of metals, and have

made quantum oscillations, the experimental manifestation of the Fermi surface, a hallmark

signature of metals. In this thesis we have studied systems that are distinctly non-Fermi liquid,

and discovered that, contrary to this canon, quantum oscillations occur even in the absence

of a Fermi liquid. We present the high magnetic field studies of two classes of correlated

electron systems. We survey the striking quantum oscillations in the magnetisation of SmB6

and YbB12, two strongly-correlated Kondo insulators. We also present magnetic and transport

measurements of underdoped YBa2Cu3O6+x, a high-temperature superconductor, that prompt

us to reinterpret the quantum oscillations previously associated with the non-superconducting

normal state.

The surprising observation of quantum oscillations in the magnetisation of Kondo insulating

SmB6, but unaccompanied by oscillations in the electrical resistance, has attracted much

attention. Here, we detail magnetic torque measurements that establish the intrinsic, bulk

nature of the quantum oscillations, and reveal a moderate angular dependence of the oscillation

frequencies, characteristic of a bulk, three-dimensional Fermi surface. We identify a finite linear

specific heat coefficient down to the lowest temperatures, a distinguishing feature between

metals and insulators. We demonstrate that the measured finite linear specific heat coefficient

is in good agreement with the density of states at the Fermi level estimated from quantum

oscillations. The unconventional nature of the ground state of SmB6 is further evidenced by a

non-zero thermal conductivity that is enhanced in a magnetic field. Through an extensive suite

of characterisation techniques we confirm the high purity of our single crystals, with material



properties consistent with an impurity concentration of less than 0.05%, and therefore further

establishing the intrinsic character of the observed quantum oscillations.

In the search for other non-Fermi liquids that are host to a Fermi surface, we identify

YbB12 as the second Kondo insulator that exhibits intrinsic, bulk quantum oscillations. We

present a detailed study of the de Haas–van Alphen oscillations, corresponding to a heavy

semimetal Fermi surface. Our results show many similarities with the ground state of SmB6,

including the large absolute size of the quantum oscillations and a finite linear specific heat

coefficient, but also some key differences, namely the heavy effective masses and the proximity

to a magnetic-field-induced or applied-pressure-induced insulator-metal transition.

The observation of quantum oscillations in underdoped YBa2Cu3O6+x refocused efforts

to understand the pseudogap ground state of cuprate superconductors. Distinct from the large

hole orbits of the Fermi liquid-like overdoped regime, the pseudogap regime was found to

be characterised by a small electron pocket and the absence of antinodal states. A proposal

associated the quantum oscillations with a conventional metallic state that emerges at a magnetic

field of ≈ 20 T, however magnetic and thermal measurements have been at odds with the

destruction of the superconducting order parameter at such modest magnetic fields. We employ

high-magnetic fields to explore the region characterised by quantum oscillations, in search for

the origin of the missing antinodal states in underdoped YBa2Cu3O6+x, and the true extent of

superconductivity. We find that the measured quantum oscillations display a signature sawtooth

waveform, that rule out vestigial residual density of states, and instead point towards a complete

gapping of the antinodal regions. We present current-dependent transport measurements

performed in DC magnetic fields, down to millikelvin temperatures, that reveal the high-field

superconducting state to be characterised by non-ohmic signatures associated with a quantum

vortex matter state. In contrast to previous proposals, the quantum oscillations are found to

occur well within this gapped vortex phase, as established by their co-existence with zero

resistivity and hysteretic torque magnetisation, that are found to persist to magnetic fields

beyond 45 T.

viii



Table of contents

1 Introduction 1

2 Relevant theoretical aspects 9

2.1 The Doniach model and Kondo insulators . . . . . . . . . . . . . . . . . . . 9

2.2 Quantum oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The specific heat and thermal conductivity within the Sommerfeld model . . 18

3 Measurement techniques in high magnetic fields 23

3.1 Four-point electrical transport measurements . . . . . . . . . . . . . . . . . . 24

3.2 Contactless transport measurements . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Capacitive torque measurements . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Fermi surface in the absence of a Fermi liquid in SmB6 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 The Kondo insulating state of SmB6 . . . . . . . . . . . . . . . . . . . . . . 35

4.3 De Haas–van Alphen oscillations in SmB6 . . . . . . . . . . . . . . . . . . . 39

4.4 Thermodynamic signatures of a Fermi surface in a band insulator . . . . . . . 46

4.5 Intrinsic character of bulk quantum oscillations in SmB6 . . . . . . . . . . . 53

4.6 Theoretical proposals for a Fermi surface in an insulator . . . . . . . . . . . 65

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Quantum oscillations in Kondo insulating YbB12 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Table of contents

5.2 Key properties of YbB12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Quantum oscillations in the magnetic torque of YbB12 . . . . . . . . . . . . 73

5.4 A Fermi surface mirroring a heavy semimetal . . . . . . . . . . . . . . . . . 77

5.5 Evolution in onset of quantum oscillations as a clue to the Fermi surface origin 80

6 Superconductivity and quantum oscillations in YBa2Cu3O6.55 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Previous explorations of the Brillouin zone of underdoped YBa2Cu3O6+x . . 83

6.3 Isolated nodal Fermi surface in YBa2Cu3O6.55 . . . . . . . . . . . . . . . . . 88

6.4 Magnetic field resilient low-temperature superconductivity . . . . . . . . . . 96

6.5 Superconductivity and non-ohmic resistivity . . . . . . . . . . . . . . . . . . 103

6.6 Superconductivity, the pseudogap, and quantum oscillations . . . . . . . . . 116

7 Conclusion 123

7.1 Bulk Fermi surfaces in Kondo insulators . . . . . . . . . . . . . . . . . . . . 123

7.2 Quantum oscillations and the vortex matter state of underdoped YBa2Cu3O6+x 126

References 129

x



Chapter 1

Introduction

Condensed matter physics has had many triumphs over the course of its history, ranging

from theoretical discoveries that preceded congruent developments in high energy physics

(e.g. the Anderson-Higgs mechanism [1]), to experimental achievements that became the

foundation of entire industries [2]. Its success is undoubtedly related to its potential to be

a playground for phase phenomena, with different materials essentially governed by their

own modified laws of physics, whether through modified interaction strengths or quasiparticle

masses. Experiments can take advantage of this through the careful tuning of material properties

by changing parameters such as doping, applied pressure, magnetic field, or temperature, thus

enabling the study of the evolution between different phases. This pliability is coupled with

the important role held by emergence, the notion that addresses why an ensemble is often

found to behave dramatically differently than what would be expected from its constituents.

An example pertinent to the work presented here is that of impurities which usually act to

reduce crystalline order, but under certain conditions, they lead to unexpected behaviour.

Such a behaviour is demonstrated by the Kondo effect, where magnetic impurities in metals

transform the material into a strongly correlated insulator. Another unexpected behaviour

manifests in type-II superconductors, where disorder works to pin vortices, therefore making

the superconducting vortex solid phase more resilient.

Many of the advancements in condensed matter physics have been driven by experiments.

We only have to go as far as the examples from above: the discovery of both Kondo insulators [3]
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Introduction

and high-Tc superconductors [4] came as surprises at the time and presaged any theoretical

predictions. Choosing a future direction for research is often a contest between problem solution

and problem formulation. It is impossible to judge if efforts dedicated to pushing the boundaries

for already existing tools (e.g. improving measurement sensitivity, building a record-breaking

magnet) or to the development of entirely new tools will prove to be more influential. It is just

as crucial to acknowledge that major breakthroughs often appear as a challenge to prevailing

scientific orthodoxy, and can deter researchers from pursuing them further. Lev Landau, in

his paper where the idea of Landau quantisation originates from [5], predicted oscillations

in magnetisation as the magnetic field is varied, however deemed it to be experimentally

unobservable, and therefore the idea of quantum oscillations was dismissed. A similar story

unfolds about the discovery of unconventional superconductivity. A superconducting transition

was first found in magnetic UBe13 [6], four years before similar reports for CeCu2Si2 [7], but

the result was considered an artefact caused by filamentary superconductivity. We have the

advantage of hindsight, but it is still unfortunate that with the potential upside of these early

results, there was not enough impetus for further inspection.

In this thesis we focus on strongly correlated electron systems. The physical properties of

most metals and semiconductors are well-understood using Fermi liquid theory. Challenge

lies in materials that don’t fall in this category, namely materials that exhibit instabilities of

the Fermi liquid or even the breakdown of Fermi-liquid behaviour, rendering the conventional

quasiparticle picture ineffective. Certainly, this area of condensed matter physics has many

unsolved questions; here we attempt to tackle some of them.

It is fundamentally understood that in metals the charge-carrying electrons flow freely,

while in insulators they are stuck in place, resisting forces exerted by an electric or magnetic

field. This dichotomy is further demonstrated by their respective band structures, with the

electrons in a metal having energy states available to them right above the highest occupied

energy state, whereas electrons in an insulator are separated from the lowest lying empty energy

state by a charge gap (see Fig. 1.1). This also means that there exists a Fermi surface for metals

(the locus in momentum space defined by the electrons at the Fermi level), but no such Fermi

surface can be defined for insulators.
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Fig. 1.1 The band structure of a metal showing a half-filled valance band. The states at the
Fermi level (EF) form a locus in momentum-space, leading to a large, three-dimensional Fermi
surface, a hallmark signature of metals. This is contrasted with the band structure of an insulator,
which has no states at the Fermi level, and therefore no Fermi surface. Adapted from Ref. [8].

SmB6 is the earliest known example of a Kondo insulator [3], a material that becomes an

insulator at low temperatures due to collective hybridisation between localised f - and itinerant

d-electrons (see Fig. 1.2). This is why it was so surprising when quantum oscillation were first

observed in SmB6 [9, 10]. Quantum oscillations have been the hallmark signature of metals

ever since they were first observed in copper, and according to the conventional theory of

quantum oscillations, their observation in SmB6 would require that the charge carriers form

cyclotron orbits covering distances of the order of 100 nm. How could this be possible in a

highly resistive insulator, where, under an applied electric current, charge carriers traverse no

further than 10−4 nm before scattering? Ref. [9] associated the quantum oscillations with a

topological surface state, a unit cell thick surface layer that is host to conduction electrons,

whereas Ref. [10] found evidence that the oscillations are coming from the bulk of the material,
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Fig. 1.2 The gapped band structure of Kondo insulators at low temperature and the metal-like
band structure at room temperature. The band structure undergoes a hybridisation below
the Kondo temperature TK. This transformation manifests in a dramatic change in physical
properties, including the development of a charge gap, an exponential increase in resistivity,
and localized magnetic moments forming Kondo singlets.

a vastly different scenario. In this thesis we present results that reinforce the interpretation

that quantum oscillations in SmB6 originate from the insulating bulk, and identify YbB12

as the second Kondo insulator that is host to quantum oscillations [11, 12]. These materials

present a remarkable experimental opportunity to measure something that challenges former

scientific thinking. The observed dual metallic-insulating behaviour in the case of both materials

constitutes a startling repudiation of known theories of insulators, contradicting the premise

that Fermi surfaces are a signature of Fermi liquids alone [13].

The discovery of high-temperature cuprate superconductors in 1986 [4] was truly a break-

through. It was the refutation of the long-held view that superconductivity was limited to

temperatures below 40 K. It established the family of copper-oxides as a new class of super-

conductors, even though previously they would have been considered some of the least likely

candidates due to their antiferromagnetic parent state and bad conduction properties. The dis-

covery kickstarted a very exciting period of research, however many questions about the nature

of superconductivity in these materials still remain. In this thesis we focus on YBa2Cu3O6+x, ar-

guably the most studied superconductor (and deservedly coined ’superconductor for grownups’).

It was the first truly high-Tc superconductor with a critical temperature above the boiling point

of liquid nitrogen [14], and the first cuprate to show quantum oscillations [15].
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Some of the most important questions pertain to its magnetic phase diagram. The magnetic

field–temperature phase diagram of conventional type-II superconductors is well-understood

(Fig. 1.3a). At low magnetic fields and temperatures, they exist in the Meissner phase, which is

characterised by perfect phase coherence, and therefore long-range order, and the complete

expulsion of any applied magnetic field. For magnetic fields > Hc1 flux lines penetrate the

material, leading to a ’crystalline’ vortex lattice, with vortices arranged in a triangular Abrikosov

lattice. The extent of this phase is marked by the Hc2 line, where the superconducting order

parameter disappears, giving way to the normal state. We highlight the natural analogy between

the superconducting phases and the magnetic phases we are familiar with from undergraduate-

level physics [16]. In this analogy the Meissner phase with its uniform phase corresponds to

ferromagnetic order, whereas the vortex lattice has a periodic phase coherence that makes it

analogous to antiferromagnetic order.

In the case of high-Tc superconductors the shorter coherence lengths ξ and the greater

relevance of thermal fluctuations lead to a more intricate phase diagram (Fig. 1.3b). The

region of the phase diagram with a superconducting order parameter is now shared by the

vortex lattice and the vortex fluid phases. The transition between the two is the vortex melting

transition, where the vortices become mobile, destroying phase coherence and long-range

order, and leading to finite resistivity. This makes the vortex fluid phase analogous to the

paramagnetic phase. Huse, Fisher, and Fisher proposed the existence of a vortex glass phase

within the vortex lattice region with strong fluctuations [16]. Disorder is expected to disrupt the

’crystalline’ lattice, precipitating in randomly located frozen vortices. The name was inspired

by the similarities with the magnetic spin glass phase. Huse, Fisher, and Fisher also pointed

out the notable field resilience of the vortex lattice phase in high-Tc superconductors, as Hc2

is expected to scale with ξ−2, and the small coherence lengths characterising the high-Tc

superconductors indicate upper critical fields in excess of 100 T [16].

A recent body of work argued for an unusually small Hc2 of ≈ 20 T for underdoped

YBa2Cu3O6+x, with the vortex lattice phase terminating at the same magnetic field [18], and

associated the observed quantum oscillation with the normal state. The resulting phase diagram

is consistent with neither the type-II or high-Tc picture. In this thesis we investigate these claims
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Fig. 1.3 (a) The schematic magnetic field (H) – temperature (T ) phase diagram of a conventional
type-II superconductor, showing a sharp phase transition between the vortex lattice and normal
phases. (b) The magnetic phase diagram of a type-II superconductor with strong thermal
fluctuations (such as high-Tc superconductors) based on the model by Fisher, Fisher, and Huse
(FFH) [17]. The phase diagram is characterised by a field-resilient vortex lattice phase, and a
phase-incoherent vortex liquid phase, with the crossover from the vortex lattice phase occuring
near the mean-field Hc2 transition, but rendered washed out. Adapted from Ref. [17].

by exploring the phase diagram through electrical transport and magnetic torque measurements.

We access the previously unexplored regime of millikelvin temperatures and high magnetic

fields, unaffected by eddy currents present in pulsed magnetic fields. Our results reveal a

field-resilient vortex lattice phase and a phase diagram consistent with the high-Tc picture. The

refutation of the normal state description brings back to the fore one of the cardinal questions

of the field: what is the low-temperature ground state of the underdoped cuprates? To this end

we present high-resolution quantum oscillation measurements as a result of improved sample

quality and measurement sensitivity, and identify a single nodal Fermi surface pocket that

reflects the pseudogap. The suite of experimental results we present highlights the relevance of

a superconducting order parameter even at high magnetic fields, and prompts us to interpret the

low temperature ground state outside the context of Fermi liquid theory.

The outline of this dissertation is as follows: Chapter 2 discusses relevant theoretical

concepts. Chapter 3 describes the experimental details of the high magnetic field measurements

discussed in subsequent chapters. Chapter 4 presents quantum oscillation measurements of
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the strongly correlated insulator SmB6, together with thermal measurements and material

quality tests. Chapter 5 discusses the discovery of quantum oscillations in a second Kondo

insulator, YbB12. Chapter 6 presents electrical transport and magnetic torque measurements

of underdoped YBa2Cu3O6+x, that aid the reinterpretation of its magnetic phase diagram, and

underline many of the still outstanding questions pertaining to its ground state. Chapter 7

summarises the conclusions drawn from the work presented here, and outlines future research

ideas.
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Chapter 2

Relevant theoretical aspects

2.1 The Doniach model and Kondo insulators

Looking at the history of the field, we find that the first experimental evidence of the low-

temperature insulating state in SmB6 [3], and therefore the first example of a Kondo insulator,

came before the term heavy fermion was coined [7], and still before the Kondo lattice picture

was developed [19]. Breaking from the historic narrative, here we introduce these theoretical

concepts first. The Kondo effect, proposed by Jun Kondo in 1962 [20], describes the interaction

of a magnetic ion embedded in a non-magnetic metallic host with its conduction electrons.

There is a coupling between the two spins, quantified by the Hamiltonian

H =−JSSSiii ·SSSeee

where J is the coupling term between the spin of the magnetic ion SSSiii and the spin of the

electron SSSeee. It is energetically favourable for the system to minimize the energy resulting from

the interaction by screening the spin of the magnetic impurity, leading to the formation of a

non-magnetic Kondo singlet. It yields a characteristic energy scale defined by the coupling

term J and the density of states of the conduction electrons at the Fermi energy g(EF), given by

kBTK ∝
1

g(EF)
e−

1
Jg(EF)

9



Relevant theoretical aspects

The Kondo temperature TK emerges as the characteristic temperature below which Kondo

singlets are formed. Originally, the Kondo effect was invoked to explain the resistance minima

observed at low temperatures in dilute magnetic alloys [21].

Many materials can be described as a dense lattice of magnetic ions, for which one can

expand the Kondo effect to serve as the basis of the Kondo lattice effect, by assuming a magnetic

impurity at every lattice site. A competing long-range exchange interaction exists between

localized magnetic impurities, called the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange

interaction, innate to atoms with highly localized f -electrons. Here the spins of the f -shells are

shielded by the conduction electrons, so only an indirect exchange is possible by inducing a

spin polarisation in the conduction electrons that is then felt by a different magnetic ion. This

couples them over long distances, leading to long range magnetic order and the emergence of

the energy scale

kBTRKKY ∝ J2g(EF)

characterised by TRKKY .

We see that both energy scales are dependent on the coupling term J and the density of

states g(EF). For different J, different interactions will be dominant. The RKKY interaction

favours magnetic order, while the Kondo interaction will try to compensate for magnetic spins.

This interplay leads to the Doniach phase diagram (Fig. 2.1). As J increases, a long range

magnetic order appears (non-zero Néel temperature TN), however it reaches a maximum as the

Kondo interaction becomes more relevant. When the two effects are equal and opposite for Jc,

the system reaches a quantum critical point (QCP), where the two ground states are degenerate.

By further increasing J, we tune away from this point. Ultimately, heavy-fermion properties

are realised in the intermediate region, when a hopping term between sites is introduced, that

leads to mobile heavy quasiparticles.

To show that the origin of heavy fermions lies in the Kondo effect, we return to Jun Kondo’s

original paper [21], where he predicted a logarithmic term in the scattering cross-section,

that would diverge as the electronic energy approaches the Fermi energy. Soon Henry Suhl

recognised [23], that the singularity is replaced by a resonance in the electronic scattering

amplitude centred at the Fermi energy, now called the Abrikosov-Suhl or Kondo resonance.

10



2.1 The Doniach model and Kondo insulators

Fig. 2.1 The Doniach phase diagram demonstrates the evolution of the Kondo and RKKY
energy scales with respect to the coupling term J, and its effect on the magnetic transition
temperature TN . As the energy scales become comparable, magnetism is suppressed and the
system reaches a quantum critical point at Jc. It is this intermediate region where strong
correlations and heavy-fermion physics are expected (from Ref. [22]).

This introduces a peak in the density of states for the conduction electrons below the Kondo

temperature TK , which is what enhances both the effective mass and the specific heat coefficient,

the characteristic properties of heavy-fermions at low temperatures.

When lowering the temperature below TK the screening of local moments by the Kondo

effect is amplified, leading to phase coherence between scattering sites, and resulting in a drop

in the electrical conductivity and the magnetic susceptibility. Many heavy-fermion systems

develop superconductivity at low temperatures. However, in the special case of a half-filled

Kondo lattice, there is no hopping term and no mobile quasiparticles, and instead, phase

coherence leads to an increase in resistivity corresponding to a charge gap of order TK . Thus,

we establish that Kondo insulators are a special class of heavy fermions. We also find that such

insulating behaviour is sensitive to disorder, as small amounts of impurities can lead to either

hole or electron doping that reintroduces mobile quasiparticles.

11



Relevant theoretical aspects

2.2 Quantum oscillations

The measurement of the Fermi surface is vital for understanding the electronic structure of

metals, as it is the electrons near the Fermi level that have the biggest influence on electronic,

and therefore most physical properties. Out of complementary techniques, quantum oscillation

measurements provide the highest k-space resolution for characterising Fermi surfaces. Further

strengths are that all crystallographic directions can be accessed with equally high resolution,

and that the dataset required for the characterisation of a Fermi surface also allows numerous

other quantities of the sample to be extracted (i.e. effective mass, mean free path, etc.). The

limiting factor is usually sample quality, with impurities that lead to damping, making the

quantum oscillation signal difficult to resolve even at the highest magnetic fields and extremely

low temperatures. With so many great primers on the theory of quantum oscillations [13, 24, 25],

here we omit a derivation of the theory and present a brief overview of the results that we apply

in later chapters of this thesis.

The basic phenomenon behind quantum oscillations is that in the presence of a magnetic

field B, the electrons form cyclotron orbits, each with quantized energy levels, known as Landau

levels, separated by ∆E = ℏωc. These orbits can be thought of as concentric tubes in k-space

(Fig. 2.2). ωc is proportional to the magnetic field B, so by increasing B, the tubes move through

the Fermi surface one by one, resulting in oscillatory changes in the chemical potential Ω,

periodic in 1/B. Importantly, the frequency F is related to the cross-sectional area Ak of the

Fermi surface perpendicular to B via the Onsager relation,

Ak = 2πeF/ℏ

All slices of the Fermi surface give rise to oscillations of varying phase and frequency, however

slices that do not correspond to extremal areas cancel out due their varying phase, leading to a

small number of oscillatory frequencies as a function of inverse magnetic field that manifest in

the chemical potential. Measuring these frequencies for different field orientations allows one

to uncover the entire Fermi surface.

12



2.2 Quantum oscillations

Fig. 2.2 The Landau level tubes in k-space inside a spherical Fermi surface, that pop through the
Fermi level as the magnetic field increases, leading to the oscillatory behavior in the chemical
potential and derived quantities with respect to magnetic field (from Ref. [13]).

The same oscillatory changes appear in derived quantities of the chemical potential. Quan-

tum oscillations in magnetic torque τ or magnetisation M are called the de Haas–van Alphen

effect, and quantum oscillations in resistivity ρ are called the Shubnikov–de Haas effect,

both described by the Lifshitz–Kosevich (LK) equation (see Refs. [13, 24] for an extensive

treatment). The formula in its most digestible form is

M, ρ ∝ ∑
F

D ·RTRDRS · sin(2πF/B+φ)

where F is the oscillation frequency corresponding to an extremal cross-section area of the

Fermi surface, B is the applied magnetic field, φ is the phase, RTRDRS are different phase

smearing terms that attenuate the oscillations, and D is the prefactor, which is dependent on

what physical quantity is measured and whether the Fermi surface is three-dimensional and

two-dimensional.

Theoretical amplitude of de Haas–van Alphen oscillations

Imperative for the comparison of the measured amplitude of quantum oscillations to the

theoretical estimate from the Lifshitz–Kosevich theory is the value of the prefactor D. Here, we

13



Relevant theoretical aspects

Ak

k||

B

θ

Fig. 2.3 The extremal cross-sectional area Ak and the Fermi wavevector along the applied field
direction k∥ in the case of an ellipsoidal Fermi surface.

discuss what the prefactor is in the case of de Haas–van Alphen oscillations in magnetisation

originating from a three-dimensional and a two-dimensional Fermi surface.

The theoretical amplitude for a three-dimensional Fermi surface as defined by the prefactor

is (derived in Chapter 2 of Ref. [13])

D3D = f (r)
8me

m∗

(
kF

kBZ

)3√ B
8F

Here, me is the free electron mass, m∗ is the effective mass, kF is the Fermi wavevector,

kBZ = 2π/au.c. is the size of the Brillouin zone, au.c. is the lattice constant, F is the quantum

oscillation frequency, and f (r) is the anisotropy term defined as

f (r) =

√
2π

|A′′
k |

=

√√√√ 2π∣∣∣(∂ 2Ak)/(∂k2
∥)
∣∣∣

Here, k∥ is the Fermi wavevector along the applied field direction, and Ak is the extremal cross-

sectional area of the Fermi surface perpendicular to the applied magnetic field (see Fig. 2.3).

A′′
k is the curvature factor that accounts for the number of states that contribute to the extremal

orbit. For an ellipsoidal Fermi surface, which we consider in later chapters, it can be shown that

the curvature factor is given by A′′
k = 2Ak/k2

∥ [13]. Our expression for D3D gives the amplitude

of the quantum oscillatory magnetisation in units of Bohr magnetons µB per unit cell.
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2.2 Quantum oscillations

The theoretical amplitude for a two-dimensional Fermi surface is a bit more straight-forward.

It is given by the carrier density per unit surface area n, normalised by the effective mass of the

quasiparticles m∗ (based on Appendix 7 of Ref. [13])

D2D = na2
u.c.

2me

πm∗

where n = 2πk2
F/(2π)2, accounting for a factor of 2 for spin degeneracy. The expression

becomes

D2D =
4me

m∗

(
kF

kBZ

)2

where kBZ is the size of the Brillouin zone, and kF is the Fermi wavevector. Again, the expres-

sion is for the quantum oscillatory magnetisation in units of Bohr magnetons µB per unit cell.

The envelope of the quantum oscillations for various physical quantities

The field dependence of the prefactor D varies for different physical quantities, which leads

to different envelopes for the quantum oscillations as a function of magnetic field. The field

dependence is particularly important when fitting to the measured quantum oscillations with

the Lifshitz–Kosevich equation, which is often done to obtain different quantities such as the

impurity damping factor. In the previous section we established that for a three-dimensional

Fermi surface the envelope of quantum oscillations in magnetisation has a field dependence

of B1/2. Below, we summarise the field dependence of the envelope for the most common

physical quantities.

τ = |MMM| |BBB| ∝ B3/2

M =−gradBΩ, ρ ∝ B1/2

χ =
dM
dB

∝ B−3/2
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Relevant theoretical aspects

For a two-dimensional Fermi surface, the powers would be reduced by a further 1/2.

Phase smearing terms

One must account for the effects of finite temperature, sample purity, and electron spin,

which all lead to the attenuation of the quantum oscillation amplitude.

For finite temperature, the density of states around the chemical potential is broadened by

the Fermi–Dirac distribution, which in turn leads to phase smearing given by

RT =
X

sinhX
, X =

2π2kBT m∗

eℏB

where T is the temperature, m∗ is the effective mass and B is the applied magnetic field. Due

to this factor, quantum oscillation measurements are best resolved at low temperatures. This

dependence on the temperature can also be used to its advantage by taking measurements

at different temperatures, and fitting to the temperature dependence to obtain a value for the

effective mass m∗.

As previously mentioned, one of the biggest obstacles for quantum oscillation measurements

is sample quality. Meaningful measurements can only be carried out for high purity crystals.

This difficulty arises from quasiparticles that decay before completing a cyclotron orbit, and

leads to the attenuation of the quantum oscillation signal via the phase smearing term

RD = exp
(
−B0

B

)

Here B0 is the damping factor (also denoted as Γ′ in Chapter 6), which is related to the mean

free path l as given by

l =
πℏkF

eB0

where kF is the Fermi wavevector. Higher quality samples have longer mean free paths, and

therefore a lower B0, which leads to less attenuation. High magnetic fields are necessary to

minimise the attenuation by the term RD.
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2.2 Quantum oscillations

Lastly, we consider Zeeman splitting, which also has an attenuating effect on the amplitude

of quantum oscillations. It is equivalent to introducing a phase shift between the oscillations

corresponding to spin-up quasiparticles and spin-down quasiparticles. The term is given by

RS = cos
(

πgms

2me

)

where g is the spin-splitting factor, ms is the spin effective mass (renormalised by elec-

tron–electron interactions only). In contrast, the effective mass m∗ obtained from the finite

temperature term is renormalised by both electron–electron and electron–phonon interactions.

For certain orbits the spin-splitting term can lead to the vanishing of the amplitude along

particular field orientations, called spin-zeros. Identifying such angles can be used to determine

the value of the spin-splitting factor g.

We note that in the zero-temperature, infinite-field limit these phase smearing terms satu-

rate to unity. The Lifshitz–Kosevich equation has also been expanded to include other phase

smearing terms, due to effects such as superconductivity [26], field inhomogeneity or mosaic

crystal structure [13].

Harmonics

In an attempt to keep things simple, the equations above only account for the fundamen-

tal frequency F . In practice, harmonics of fundamental frequencies are also often seen for

high-quality samples and low temperatures. When accounting for all harmonics, the Lif-

shitz–Kosevich equation becomes a sum over the harmonic number p for each fundamental

frequency F

τ, ρ ∝ ∑
F

∑
p

Dp ·RT,pRD,pRS,p · sin(2π pF/B+φp)

with the phase smearing terms

RT,p =
X

sinhX
, X = p

2π2kBT m∗

eℏB
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RD,p = exp
(
−p

B0

B

)

RS,p = cos
(

p
πgms

2me

)
We note two things. We find that the phase φp varies with harmonic number, and that the

attenuation caused by phase smearing terms increase with p. An analysis of the Fermi surface

based on resolving different harmonics is possible for two-dimensional Fermi surfaces at

high enough magnetic fields (with 10-20 Landau levels still occupied). In this special case,

instead of being constant, the chemical potential becomes pinned to the highest occupied

Landau level, and oscillates with the magnetic field [27]. In the zero-temperature limit this

leads to discontinuous jumps in the chemical potential as the highest occupied Landau level

empties out, and jumps to the next highest occupied filled Landau level. The result is the

sharp sawtooth oscillation of the chemical potential with field. It corresponds to the phases

φp to be the same for all harmonics, leading to the same forward sawtooth waveform in the

magnetisation. The presence of any open Fermi surface sheets, however, will lead to a more

complicated dependence of the phase and the amplitude on the harmonic number, and alter

this waveform [27]. This pronounced effect of the presence of any one-dimensional density

of states on the quantum oscillations waveform can be used to quantify the size of any open

sheets relative to the two-dimensional Fermi surface.

2.3 The specific heat and thermal conductivity within the

Sommerfeld model

The Sommerfeld model was one of the early triumphs of condensed matter physics, providing a

self-contained framework to interpret the physical properties of metals [8]. It was the first theory

to treat electrons as fermions, by extending the kinetic Drude model through the application of

the exclusion principle. It is also known as the free electron model, as it ignores all interactions

between constituent particles.
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2.3 The specific heat and thermal conductivity within the Sommerfeld model

The Sommerfeld model recognised the contribution of electrons near the Fermi level to the

specific heat, which finally explained the measured low-temperature behaviour of the specific

heat that could not be accounted for just by phonons. The expression for the specific heat at

low temperatures within the Sommerfeld model became

Cp = γT +βT 3

Here, the first term is the electronic term, with γ being the linear specific heat coefficient, which

is given by

γ =
π2k2

B
3

g(EF) (2.1)

where g(EF) is the quasiparticle density of states at the Fermi energy. In the simplest case, it

can be shown that at T = 0 K the density of states becomes g(EF) = 3N/2kBTF , where N is

the total number of states and TF is the Fermi temperature [8]. Hence, we have for the linear

specific heat coefficient

γ =
π2

2
kBN

1
TF

(2.2)

For the coefficient of the phonon term we have

β =
12π4

5
NkB

Θ3
D

where ΘD is the Debye temperature, the characteristic temperature where phonon mode degrees

of freedom become full, and Vu.c. is the unit cell volume. Fitting with the expression for Cp to

measurements can be used to estimate the value of γ and ΘD.

The thermal conductivity is directly related to the specific heat via

κ =
1
3

Cv ⟨v⟩d

where ⟨v⟩ is the average thermal velocity, and d is the scattering length. For high purity samples

phonons become boundary-limited at low temperatures, and the scattering length is given by the

average sample dimension. For a sample with thickness t and width w, it is usually estimated
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using d =
√

4tw/π . For non-boundary limited electrons, the mean free path can be estimated

from the Fermi velocity vF and the scattering rate τ via l = vFτ , and using TF = m∗v2
F/2kB.

With γ given by Eq. 2.2 the electronic part of the thermal conductivity becomes

κel. =
π2k2

BNl
3m∗vF

T

where we set the average thermal velocity to vF . Hence, by measuring the linear coefficient of

the thermal conductivity one can estimate the mean free path of the heat-carrying quasiparticles.

The sound velocity, which can be determined from alternative measurements, is used for the

average thermal velocity of phonons, and is given by

vs =
2kB

h
ΘD

(
π

6n

)1/3

where h is the Planck constant, and n is the number density, given by n = a−3
u.c. for a cubic

crystal. By relating the sound velocity to the Debye temperature, we obtain an expression of

the phonon term of the thermal conductivity just in terms of ΘD and the temperature

κph. =
8
5

π
4
(

π

6

)1/3 k2
Bd

ha2
u.c.

T 3

Θ2
D

This has the advantage that the Debye temperature can be obtained from measurements of

the thermal conductivity that display a clear T 3. Alternatively, for datasets displaying a more

complicated behaviour, the value of ΘD inferred from specific heat can be used to estimate the

phonon contribution to the thermal conductivity, which then can be subtracted away.

The Sommerfeld model allows for a quantitative comparison between the measured specific

heat and the measured Fermi surface. Eq. 2.1 demonstrated the relationship between the linear

specific heat coefficient γ and the density of states at the Fermi energy g(EF)

g(EF) =
3γ

π2k2
B
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2.3 The specific heat and thermal conductivity within the Sommerfeld model

The quasiparticle density of states can also be expressed as an integral over the Fermi surface S

with quasiparticle velocity v∗

g(EF) =
1

4π3ℏ

∫
S

dS
|v∗|

This can be calculated analytically for simpler Fermi surface shapes, such as ellipsoids. The

relevant calculation for prolate ellipsoids was presented in Ref. [28], and for general ellipsoids

in Ref. [29]. For a known Fermi surface, which in the case of an ellipsoidal Fermi surface

amounts to determining the size of the semi-principal axes and the effective mass, the density

of states can be calculated, and within the free electron model would be expected to agree with

the measured electronic term of the specific heat.
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Chapter 3

Measurement techniques in high magnetic

fields

This chapter describes the most important measurement techniques employed during my PhD in

our Cambridge lab, and also at high magnetic field labs in Tallahassee, Los Alamos, Toulouse,

Wuhan, and Tokyo. The availability of central high magnetic field facilities has been a great

boost for the study of phase phenomena and fermiology, making new regimes of the phase

diagram accessible, and allowing the measurement of quantum oscillations in materials that

proved to be a challenge at lower fields. As we demonstrated in Chapter 2, the amplitude

of quantum oscillations rapidly increases with increasing magnetic field, and even an extra

tesla could make the difference between observing quantum oscillations and measuring just

noise. High magnetic fields also come with their own limitations. They require measurement

techniques that are suitable for the small bore sizes (between 30 and 50 mm for DC magnets,

and ≈ 10 mm for pulsed magnets). Vibrational noise becomes significant at high magnetic

fields, and especially so at the peak fields of pulsed magnets. For pulsed fields, measurement

techniques also have to adapt to the short duration of the pulses. Pulsed magnets can reach 60 T

in 10 ms. For comparison, the maximum sweep rate of DC magnets is typically ≈ 0.03 T/s.

Extra care needs to be taken for isothermal measurements, as the thermometers are usually

not calibrated to the highest fields, and unwanted heating can lead to a temperature change

that only becomes apparent at the end of a field sweep. Temperature sweeps can be especially
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Measurement techniques in high magnetic fields

challenging due to the time constraints during a magnet time, and therefore rehearsal sweeps at

zero magnetic field are necessary to avoid wasting precious magnet time. Here we detail three

measurement techniques that we have successfully employed at high magnetic fields.

3.1 Four-point electrical transport measurements

Four-point transport measurements are conceptually the most straightforward technique for

measuring electrical resistivity. Four highly conductive wires, usually made out of gold or

silver, are attached to the sample with silver paste or silver epoxy. The pair further apart is

used to send an electric current through the sample, while the inner pair is used to measure

the potential difference. This way we can measure the resistance, which can be converted into

resistivity for known sample dimensions.

Realising this technique at higher magnetic fields requires a bit more finesse when preparing

the samples, and the optimisation of the measurement setup. Long samples with minimal

thickness (< 50 µm) are preferred to maximise the signal, especially for highly conductive

samples like the cuprates at low temperatures. One should aim for low contact resistances

(a few Ω), so current flowing through them does not lead to Joule heating, and to minimise

their capacitive inductance that would make measurements difficult at the kHz frequencies

employed in pulsed field measurements. One must ensure the wires are held firmly to the

sample as the forces on the sample and wires can move them, and thus degrade the quality of

the contact mid-sweep. During contacting we arrange the wires to minimise any current loops,

which would lead to induced voltages as the magnetic field is varied. This is most difficult for

the current wires, as those contacts are the furthest away, but can be reduced to close to zero

for the Hall contacts if one lead is taken under the sample (see Fig. 3.1). Crosstalk between

samples is reduced by keeping corresponding wirings away from each other. A spectrum

analyser is usually employed to assess crosstalk for each channel when using DC magnets,

whereas for pulsed field measurements one would inspect the Fourier Transform of the raw

signal to see if any unwanted frequency peaks appear. Further difficulties arise when measuring

superconductors in pulsed magnets. The suppression of the zero-resistivity superconducting
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3.1 Four-point electrical transport measurements

Fig. 3.1 (a) Schematic diagram of the wiring of a YBa2Cu3O6+x sample with deposited gold
contacts showing the arrangement of the different current and voltage wires. Ixx refers to the
current contact pairs, Vxx refers to the longitudinal voltage contact pairs, and Vxy refers to the
Hall contact pairs. (b) Photo of two samples prepared for high magnetic field measurements
following the same arrangement.

state and the generated Eddy currents results in significant heat dissipation in a very short

amount of time, preventing the attainment of isothermal conditions. This effect (and any other

heating) manifests in the absence of an overlap between the data measured during the up-sweep

and the down-sweep parts of the magnetic field pulse. To minimise this effect, smaller samples

and longer pulse lengths are necessary.

For measurements in DC magnets we employed NF Corporation SA-400F3 pre-amplifiers,

in conjunction with Stanford Research Systems SR865 lock-ins, and Keithley 6221 current

sources. A typical applied current was 1 mA with a frequency of a few hundred Hz. Under

ideal conditions typical peak-to-peak noise was ≈ 10 nV, which would convert to a noise in the

measured resistance of 0.01 mΩ for a current of 1 mA. For measurements in pulsed magnets we

employed Stanford Research Systems SR560 pre-amplifiers with their in-built filters, or passive

filters (with a fixed band pass frequency) produced by the Cavendish Electronics Workshop

in combination with NF Corporation SA-400F3 pre-amplifiers. We used various National

Instruments DAQs for applying a current and measuring the voltage. A typical applied current

was 10 mA with a frequency between 10 and 100 kHz to avoid the frequency range dominated
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Measurement techniques in high magnetic fields

by vibrational noise (< 5 kHz). Under ideal conditions typical peak-to-peak noise was ≈ 1 µV,

which would convert to a noise in the measured resistivity of 0.1 mΩ for a current of 10 mA.

3.2 Contactless transport measurements

A complementary technique is provided by the contactless resistivity method, which has become

an established method for measuring phase transitions and Shubnikov–de Haas oscillations

at high magnetic fields [30–32]. It does not provide an absolute measure of the resistivity,

but accommodates similarly small samples as the 4-point method, without the tricky contact

making. Furthermore, it only takes up two connections on the measurement probe for each

sample, which is often a constraint on the narrow probes used in high field labs.

Here, the sample is placed on an inductor coil, which is connected to a resonant LC tank

circuit. The effective inductance of the inductor coil the sample sits on is sensitive to the change

in the physical properties of the material (including the sheet resistance and the magnetic

susceptibility). Based on the equation for the resonant frequency f of an LC-circuit

f =
1

2π
√

LC

this change in the effective inductance of the inductor coil alters the resonant frequency of the

circuit. It is the resonant frequency that is measured by the proximity detector oscillator (PDO)

circuit and the radio-frequency processing stage (Fig. 3.2a). The name comes from the PDO

chip, which is used to compensate for the losses in the LC circuit by operating it in the negative

effective resistance regime, therefore maintaining a lossless LC circuit [30]. It follows the

same principles as an earlier technique based on tunnel diode oscillators (TDO). The latter is

considered to have better stability, but relies on frail and expensive diodes, and has a narrower

range of operating parameters. TDO circuits also operate at higher frequencies (up to GHz

frequencies as opposed to ≈ 30 MHz in the case of PDO circuits), where RF effects become

relevant. Another important advantage of the PDO technique is its higher operating power,

which means that the resonant circuit can couple to the sample from further away, allowing it

to be placed outside the cryostat. This way the circuit is under more stable conditions, as it is
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3.2 Contactless transport measurements

Fig. 3.2 (a) The circuit diagram for the contactless resistivity setup. The sample is mounted on
an inductor coil, which is connected to the PDO LC circuit and the radio-frequency processing
stage. Adapted from Ref. [30]. (b) A sample coil showing the copper wire arranged in a tightly
wound spiral and a counter-wound circle, onto which the sample is glued.

not exposed to large changes in temperature and magnetic field, and can be adjusted without

warming up the measurement probe.

For the PDO chip we employed an integrated circuit component from STMicroelectronics

(TDA0161), which is used in metal detector circuits. From the PDO chip the signal goes

through a sequence of frequency mixers and band pass filters. The goal is to mix the signal

frequency to the band pass frequency of the filter, and have any noise away from this frequency

filtered out. The sample coil is made out of AWG 50 enamelled copper wire. It is wound by

hand on a rotary table into a spiral. One applies very thin GE varnish after every quarter of

a turn to stop it from unwinding. The number of turns is defined by the size of the sample,

which has to cover the entire coil. This normally means 5-6 turns, which is followed by a

counter-wound circle, with an area matched to the total cross-sectional area of each ’ring’ of

the spiral. This acts to cancel any induced voltages generated in a pulsed magnetic field. See

Fig. 3.2b for an example. The sample is then pressed down on the coil and secured with GE

varnish.

The PDO circuit is made in a way to oscillate even without a load by shorting pins 2 and 4

(see Fig. 3.2a). The amplitude of the oscillations is usually reduced once the circuit is connected
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Measurement techniques in high magnetic fields

to the measurement probe, that leads to losses. Coupling to the sample can be improved by

tuning the PDO resonant circuit we have outside the cryostat. Varying the coupling between

the internal coil (L1) and the secondary coil (L2) by adding/removing turns from the latter can

increase the oscillation amplitude of the LC-circuit. When adjusting the effective inductance of

the circuit one should also maintain the resonant frequency within the optimal range of 25 MHz

to 40 MHz. This is achieved by choosing the appropriate capacitor in place of C2 once L2 is

changed (see Fig. 3.2a). Under ideal conditions the peak-to-peak noise was ≈ 50 Hz in pulsed

fields, and ≈ 5 Hz in DC fields. This represents higher sensitivity when compared to four-point

transport measurements. We also found the PDO technique to be less affected by vibrational

noise, and to be more robust to thermal cycling, unlike four-point measurements that tend to

suffer from contact degrading.

3.3 Capacitive torque measurements

An equally important avenue for the measurement of quantum oscillations is the measurement of

the magnetisation, which can reveal de Haas–van Alphen oscillations. In the studies presented

in later chapters we measured the magnetic torque τ , which is related to the magnetic moment

m via

τ = |m×B|

where B is the applied magnetic field. Thus, measuring the magnetic torque can be used to

determine the component of the magnetic moment that is perpendicular to the applied magnetic

field. We used a torque magnetisation technique by means of a capacitive torque cantilever

setup. Similar setups have been used for the detection of de Haas–van Alphen oscillations with

great success since 1973 [33].

A schematic diagram of our torque magnetometer is shown in Fig. 3.3a. The sample is

mounted on a T-shaped cantilever made out of nonmagnetic BeCu, which is anchored down

at its end, similar to a diving board. Depending on the size of the sample and its magnetic

moment we would use a cantilever with a thickness of 20 to 35 µm. The cantilever shown in

Fig. 3.3b has an arm length of L = 3.8 mm, whilst its head has an area of 5.5×2.5 mm2. This
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3.3 Capacitive torque measurements

Fig. 3.3 (a) A schematic drawing of the torque cantilever setup, showing the sample mounted
on a flexible BeCu cantilever, which hangs above a fixed BeCu plate below it, forming the
two plates of a capacitor. Adapted from Ref. [34]. (b) A photo showing the top view of
the cantilever setup, with a small sample mounted under the teflon tape. The ruler markings
correspond to 1 mm.

area overlaps with a fixed BeCu plate underneath it, completing a capacitor formed by the two

parallel plates. For a typical separation of 100 µm between them the capacitance is around

1 pF. A lead is attached to each plate using Gore miniature coax cables. The principle of the

measurement technique is that sweeping the applied magnetic field changes the magnetic torque

of the sample. This manifests in a deflection of the cantilever, which changes the separation

between the cantilever and the bottom plate, therefore changing the capacitance, which we

measure with a capacitance bridge. To allow for angular studies we would use measurement

probes with a rotating stage. Once the magnetometer setup is prepared, but before the probe

is put into the cryostat, it is important to check the full rotational range to ensure there is

sufficient slack for the cables, that the cantilever does not touch the bottom plate, and that

the capacitance reading behaves as expected as a function of angle. A change of 0.1 pF is

possible between extremal positions just from the weight of the cantilever and the sample.

Monitoring the capacitance reading during a slow cooldown is just as crucial, as the capacitance

will change with temperature, and we want to avoid the cantilever pulling too much towards

the bottom plate, which would increase the likelihood that they would touch at high magnetic
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fields. The torque cantilever setup can be calibrated to enable the conversion of the measured

change in capacitance to absolute units of magnetic torque. The necessary parameters are the

dimensions of the cantilever and its spring constant. The latter can be estimated from various

methods: measuring the deflection for known weights, calculating it from material properties,

and measuring the displacement under a magnetic field gradient (Faraday balance technique).

For our measurements we employed two kinds of capacitance bridges: the Andeen-

Hagerling (AH) 2700A digital capacitance bridge, and the General Radio (GR) 1616 analogue

capacitance bridge. The AH digital bridge is a self-contained instrument for measuring the ca-

pacitance in absolute units (<10 pF). It applies a maximum voltage of 15 V across the capacitor

plates. The GR analogue bridge is similar to a Wheatstone bridge, but instead of measuring

resistance, it measures capacitance. One can balance its reference capacitance, adjusted by

the mechanical dials, to match it with the capacitance of the magnetometer setup. This leads

to a voltage output of zero. As the cantilever deflects, it changes the capacitance value of the

magnetometer, giving rise to a voltage output from the GR bridge, which is proportional to

the difference between the reference capacitance and magnetometer capacitance. We would

measure this voltage via a Stanford Research Systems SR865 lock-in. To power the capacitance

bridge, we initially employed General Radio voltage sources, but they proved unreliable, with

the output voltage drifting in amplitude and frequency. We achieved better performance using

Stanford Research Systems DS360 low distortion function generators (maximum voltage output

of 20 V), which we amplified to 100 V through a transformer built by the Cavendish Electronics

Workshop.

Important for the fine-tuning of the setup are the elimination of any ground loops, and the

careful choice of the frequency of each measurement channel. For this task we would use a

spectrum analyser to pick the frequencies and constantly monitor the noise in the measured

data. With this setup the optimal peak-to-peak noise was around ≈ 10−7 pF, which is at least

an order of magnitude better than the noise performance with the AH digital capacitance bridge.

Using the GR analogue bridge in conjunction with the lock-in also provides better control of

the averaging and filtering of the data, and as a result yields more data points per unit time. To
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3.3 Capacitive torque measurements

estimate the noise level in units of torque we use the equation

τ = Lkδ = Lkd0
∆C
C

where L is the cantilever arm length, k is the spring constant, δ is the deflection, d0 is the

separation between capacitor plates, ∆C is the noise in units of capacitance, and C is the

capacitance of the plates without deflection. For the typical values of L = 3.8 mm, k = 28 N/m,

d0 = 0.1 mm, and C = 1 pF we get a noise level in units of magnetic torque of ≈ 10−12 Nm,

which matches the noise level of similar designs [35]. In principle, the sensitivity can be

further increased by choosing a thinner cantilever, which would have a smaller spring constant.

However, a balance needs to be found between the magnetic moment of the sample and the

cantilever thickness to avoid the non-linear deflection of the cantilever at high magnetic fields.

Increasing the area of the capacitor plates, or reducing the separation between them can also

improve the sensitivity, as it would make the capacitance of the magnetometer bigger. Here, the

constraints are the limited space for the magnetometer, and the difficulty of achieving perfectly

parallel capacitor plates that would allow for a smaller separation.
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Chapter 4

Fermi surface in the absence of a Fermi

liquid in SmB6

4.1 Introduction

SmB6 is the earliest known example of a Kondo insulator, a material with metallic properties

near room temperature, that change dramatically due to the emergence of a charge gap at low

temperature. In the germinal study by Menth et al. [3] this was evidenced by the exponential

increase in electrical resistivity, but the charge gap also manifests in specific heat [36], nuclear

magnetic resonance [37], point-contact spectroscopy [38], reflectivity [39], and electron tun-

nelling measurements [40]. Despite the low-temperature insulating state attested by the host

of experimental probes, there remained an asterisk next to SmB6 due to two low temperature

properties atypical of insulators: a robust finite resistivity plateau evidenced in most existing

literature on SmB6 (persisting for different growth methods, residual resistivity ratios, and

sample qualities [3, 41, 42]), and a finite linear specific heat coefficient [43] larger than that of

metallic LaB6 [36]. With the unfolding experimental and theoretical progress on topological

insulators, the finite resistivity plateau in SmB6 made the material a promising candidate to

be a topological Kondo insulator [44]. The resulting experimental search established metallic

surface conduction in the material [45, 46], but direct tests of its purported topological nature

proved to be less conclusive. One of the first such studies presented quantum oscillations in

33



Fermi surface in the absence of a Fermi liquid in SmB6

( b )

��

d i r e c t  g a p

h y b r i d i z e d
    b a n d

i n d i r e c t  
   g a p

En
erg

y
k  =  0

S m  4 f - b a n d  

B  c o n d u c t i o n  
     b a n d

h y b r i d i z e d
    b a n d

X

( a )

B

S m

Fig. 4.1 (a) The unit cell of SmB6 adapted from Ref. [47]. (b) Schematic picture of the band
structure showing the hybridisation between the samarium 4 f -bands and 5d-bands leading to a
small indirect gap at low temperatures.

magnetisation, a measure of the bulk, unaccompanied by quantum oscillations in resistivity, the

physical property governed by surface conduction, but the study still interpreted the oscillations

to originate from a two-dimensional Fermi surface from topological surface states [9]. In

contrast, our group reported high-frequency de Haas–van Alphen oscillations and associated

them with a large three-dimensional Fermi surface from the insulating bulk [10].

In this chapter we will pick up the thread here. We will discuss the relevant physical

properties of SmB6 that make it the only Kondo insulating rare-earth hexaboride. We will then

present our quantum oscillation measurements, building on earlier work [10], and establish the

three-dimensional bulk nature of the quantum oscillations, which, together with the measured

thermodynamic signatures, point towards a bulk Fermi surface in the absence of a Fermi

liquid. Next, I discuss the range of measurements we performed to evaluate sample quality, and

therefore establish the intrinsic character of the observed quantum oscillations, and conclude

with a brief overview of relevant theoretical proposals.
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4.2 The Kondo insulating state of SmB6

The single crystals of SmB6 employed in our studies were grown by the Warwick group, using

the floating zone growth technique detailed in Ref. [48] and the flux growth technique, and

by the Kiev group, using the floating zone growth technique. Certain measurements revealed

differences between single crystals grown by the two different techniques, with results overall

indicative of the lesser quality of flux-grown single crystals. We will discuss these differences

later in this chapter.

SmB6 shares the same crystal structure with other rare-earth hexaborides, generally referred

to as CaB6 structure, which is a simple cubic structure with the rare-earth atom at the centre of

the unit cell and boron octahedral cages in the corners (see Fig. 4.1a).

Even before the identification of the low-temperature insulating state in SmB6, it was

discovered to be one of the earliest known examples of a mixed valence compound [49].

Normally, the samarium ions would be in the Sm2+ state, which corresponds to an electron

configuration of 4 f 6, however in SmB6 more than half of the samarium ions exist in the Sm3+

state, corresponding to 4 f 55d1, with an average valence of 2.64 that reduces modestly to

2.55 at low temperatures [50]. Mixed valency is also exhibited by other f -electron Kondo

insulators [51]. Gap formation is caused by the interaction between 4 f electrons, that act as

localised magnetic moments at room temperature, and the sea of conduction electrons from the

broad 5d-band, which, upon lowering the temperature, couple to form Kondo singlets and lead

to a nonmagnetic state characterised by a charge gap due to the hybridisation of the two bands

(see Fig. 4.1b). The Kondo insulating state precludes any magnetic order, but high-pressure

experiments revealed that the insulating state can be suppressed by pressures of around 10 GPa,

leading to magnetic ordering [52]. Interestingly, the insulating state has proved to be robust

against even the highest accessible magnetic fields, with the charge gap surviving up to an

applied magnetic field of at least 90 T [53].

Fig. 4.2a shows the measured resistivity as a function of temperature for pristine floating

zone-grown single crystals of SmB6 and LaB6, both grown by the Warwick group using

similar growth conditions. We find the resistivity of SmB6 to increase by five orders of

magnitude upon cooling, with any further increase curtailed by the low-temperature surface

35



Fermi surface in the absence of a Fermi liquid in SmB6

1 0 1 0 01 0 - 6
1 0 - 5
1 0 - 4
1 0 - 3
1 0 - 2
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5

1 1 01

1 0

1 0 0
0 . 0 0 . 1 0 . 2 0 . 3 0 . 4
0
5

1 0

  L a B 6
( m e t a l )

b
� (

mΩ
⋅cm

)

T  ( K )

a

          S m B 6
( K o n d o  i n s u l a t o r )

C p
/T 

(m
J·m

ol-1 ·K-2 )
T  ( K )

          S m B 6
( K o n d o  i n s u l a t o r )

  L a B 6
( m e t a l )

S m B 6

f l u x

ln(
�)

1 / T  ( 1 / K )

f l o a t i n g
z o n e

Fig. 4.2 (a) The resistivity ρ as a function of temperature for two rare-earth hexaborides, Kondo
insulating SmB6 and metallic LaB6. SmB6 shows an activated behaviour due to the Kondo
gap forming at ≈ 30 K and leads to insulating behaviour at low temperatures. LaB6 shows
metallic behaviour with a decreasing resistivity with decreasing temperature (the noise in the
data below 20 K is due to reaching the measurement limit). The inset shows the Arrhenius plot
for the floating zone-grown single crystal from the main panel and a flux-grown single crystal
for comparison, with linear fits marked by the dashed lines used to extract the activation gap.
(b) While the electrical transport measurements show a nine order of magnitude difference in
the low temperature resistivity between the two materials, the measured specific heat reveals a
comparable finite specific heat divided by temperature Cp/T for the two materials, characteristic
of metals (data for LaB6 adapted from [54]).

conduction channel. The jury is still out for a conclusive description of this residual conductivity

in SmB6, and whether the surface states are topological [55]. The presence of the low-

temperature resistivity plateau is found to be robust in SmB6, featuring in most existing

literature, although it has been shown to be affected by samarium vacancies, that push the

plateau lower in temperature [56], and magnetic impurities, that lead to a lower resistivity [57]

and a positive magnetoresistance [58] (as opposed to a negative magnetoresistance expected

for the Kondo effect). Hence, a large value of the resistivity at low temperature and a clear

plateau below 4 K are desirable for high-quality samples. Whilst the inverse residual resistivity

ratio, iRRR= ρ(2 K)/ρ(300 K), is often used to gauge sample quality, we found that the iRRR

normalised by sample thickness t, iRRR/t, is more appropriate due to the value of the low-
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temperature plateau being independent of sample thickness. For our best floating zone-grown

single crystals we found iRRR/t ≈ 400 (for t in µm), whereas for our best flux-grown single

crystals we found iRRR/t ≈ 200.

With such a large change in resistivity with temperature, it is important to ask if it means both

good metallic properties at high temperature and good insulating properties at low temperature.

Based on the measured resistivity values we identify SmB6 to be a resistive metal at room

temperature and a semiconductor at low temperature. In all reports on SmB6 the resistivity at

300 K is found to be at least 10−6 Ωm, which is considered fairly resistive, most likely due

to Kondo scattering, and makes it comparable to nichrome, a metal often used as resistance

wire. For the samples with the highest iRRR [59], the low-temperature resistivity is found

to be between 10−1 and 10−0 Ωm, which makes it comparable to germanium at 10 K, a

semiconductor with a gap of 10 meV [60]. In comparison, the room temperature resistivity

of LaB6, ≈ 10−7 Ωm, corresponds to a fairly good metal, a value similar to that of tin and

platinum. Upon cooling we see the resistivity of our single crystal of LaB6 drop by at least a

factor of 500, which is comparable to the highest RRR found in the literature [61], a testament

of the high-quality of the samples grown by the Warwick group. Such a low value of the

low-temperature resistivity makes LaB6 comparable to copper [16]. The inset of Fig. 4.2a

shows the Arrhenius plot of the same floating zone-grown single crystal as the one shown in

the main panel with iRRR/t = 400, and of a flux-grown single crystal with iRRR/t = 170. We

infer an activation gap of 5 meV and 3 meV, respectively. This is representative of most samples

with the activation gap of flux-grown samples usually smaller than that of floating zone-grown

samples. Similar gap values were observed by nuclear magnetic resonance (NMR) [37, 62],

electron spin resonance [63], and reflectivity [39].

Whilst the electrical transport measurements show a drastic nine order of magnitude

difference in the low-temperature resistivity between Kondo insulating SmB6 and metallic

LaB6, the low-temperature specific heat of the two materials look surprisingly similar. They

resemble the specific heat of a metal, exhibiting a finite linear specific heat coefficient, and

therefore a finite density of states at the Fermi energy (see Fig. 4.2b). For SmB6 we find

γ ≈ 4 mJ·mol−1·K−2 and for LaB6 γ ≈ 2 mJ·mol−1·K−2. At even lower temperatures the
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Fig. 4.3 The measured molar susceptibility of a floating zone-grown SmB6 single crystal as
a function of temperature with an applied magnetic field of 0.5 T shows an activation type
dependence at higher temperatures. The dashed red line denotes the spin gap fit with a spin gap
value of ∆ = 6 meV.

specific heat divided by temperature of SmB6 shows an increase, yet another feature that

has evaded explanation, although some similarities can be drawn with the specific heat of

heavy fermion systems [64, 65], that also show an enhancement of the specific heat at low

temperature, thought to be due to the increase of γ with decreasing temperature. Recent studies

have extended the list of experimental results unexpected for an insulator: NMR has found

a constant NMR relaxation rate divided by temperature [66], and terahertz spectroscopy has

revealed sizeable bulk conductivity at higher frequencies [67], both indicative of bulk states

within the charge gap.

Fig. 4.3 shows the temperature dependence of the molar susceptibility of a floating zone-

grown SmB6 single crystal. Fitting to the activation type dependence at higher temperatures we

obtain a spin gap value of ∆ = 6 meV, which is comparable to the activation gap inferred from

electrical transport measurements. The low-temperature behaviour is likely due to magnetic

impurities, although intra-gap magnetic excitations were also suggested in the past [68]. The

value of the low-temperature molar susceptibility, χm = 2 ·10−3 emu/mol in cgs units (which

coverts to a molar susceptibility in SI units of χm = 3 · 10−8 m3/mol), is comparable to

the value found by other studies [48, 68]. It is worth noting here, that the Sommerfeld-

Wilson ratio, a dimensionless quantity that is of order 1 for Fermi liquids, and even for most
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heavy fermions [69], comes out as RW ≈ 200 (using the susceptibility and linear specific heat

coefficient values found above, and a Landé g-factor of 1), reinforcing the strong correlations

that are at play in SmB6.

The de Gennes relation, the scaling of the magnetic ordering temperature with the de

Gennes factor (dG= (gJ −1)2J(J+1), where gJ is the Landé g-factor, and J is the total orbital

angular momentum) is often a great utility to understand how the ground states evolve for

entire families of compounds (i.e. RENi2B2C [70] and RE3Pt23Si11 [71] families). Whilst

the relationship does not hold that accurately for the rare-earth hexaboride series, we still

find their properties to be strongly influenced by the number of f -electrons, leading to an

increasing magnetic ordering temperature with increasing moment. LaB6 has no f -electrons,

so no magnetic ordering, and a well-understood band structure [72], whereas CeB6, PrB6, and

NdB6 have antiferromagnetic metallic ground states with increasing transition temperatures.

EuB6 is a ferromagnetic semimetal, probably due to the rare-earth ions being divalent. In

another Universe it would also be interesting to see what is the low-temperature ground

state of PmB6. Interestingly, CeB6, which has the same J as SmB6, shows an increasing

resistivity with decreasing temperature above the transition temperature, with an inferred gap

of ≈ 0.2 meV [73], but the RKKY interaction overcomes the Kondo interaction to induce a

transition to antiferromagnetism below 2 K. The diverse properties exhibited by the rare-earth

hexaborides underscore the many interactions that are at play, which in the case of SmB6, the

cuckoo’s egg among the magnetically ordered hexaborides, combine to form a non-magnetic

correlated insulator with all its anomalous properties.

4.3 De Haas–van Alphen oscillations in SmB6

Our first report on the striking observation of de Haas–van Alphen oscillations in SmB6 [10]

kick-started the search for a description of a Fermi surface in the absence of a Fermi liquid, that

is also supported by complimentary measurements. This motivated our subsequent study [29],

which presented quantum oscillation measurements that reinforce the three-dimensional bulk

character of the observed Fermi surface through the investigation of the angular dependence
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Fig. 4.4 The measured de Haas–van Alphen oscillations in a floating zone-grown SmB6 single
crystal using the capacitive torque technique. θ marks the direction of the applied magnetic field
relative to crystallographic axes. We see several oscillation frequencies as big in amplitude as
the paramagnetic background. The inset shows a zoomed-in view of the high field oscillations
revealing fast oscillations corresponding to large Fermi surface sections.

and absolute amplitude of the oscillations, and presented measurements of the specific heat,

oscillatory entropy and thermal conductivity with signatures in support of bulk low-energy

excitations. In the next two sections we revisit our measurements performed on high-quality

floating zone-grown single crystals, and present a comprehensive discussion of the measured

quantum oscillations and thermodynamic signatures.

Fig. 4.4 shows an example of the measured quantum oscillations in the magnetic torque of a

floating zone-grown single crystal of SmB6 before any background subtraction. The oscillation

pattern suggests the presence of multiple oscillation frequencies, with the inset of the figure

showing evident rapid oscillations for the higher field ranges. The rapid oscillation frequencies,

corresponding to large Fermi surface sections, and the large oscillation amplitude, as large

as the paramagnetic torque background, are already evocative of some of the discussions to

follow.

We plot the measured quantum oscillation frequencies for a floating zone-grown sample as a

function of angle for field sweeps performed in the [001]-[111]-[110] rotation plane (Fig. 4.5a).

We compare this to the quantum oscillation frequencies observed for metallic LaB6 and PrB6

(Fig. 4.5b and c [74]). We recognise frequency branches over the entire frequency range in the

angular dependence of SmB6, that also exist for the metallic hexaborides. Their Fermi surface
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Fig. 4.5 The angular dependence of the quantum oscillation frequencies in the [001]-[111]-
[110] rotation plane of floating zone-grown (a) SmB6, (b) LaB6 [74], and (c) PrB6 [74]. We
see very similar features in SmB6 as were observed for the metallic hexaborides, and best
described by a three-dimensional ellipsoidal Fermi surface model [75, 76]. The model describes
three large prolate ellipsoidal electron pockets along the ⟨100⟩ directions, corresponding to
the red frequencies marked as α , and twelve smaller ellipsoidal electron pockets along the
⟨110⟩ directions, acting as necks between the large α ellipsoids, corresponding to the purple
frequencies marked as ρ . Fits with this model to the α and ρ frequencies are shown for each of
the materials, with the resulting Fermi surface pockets shown in the images below.

is described by an ellipsoidal Fermi surface model [75, 76], that comprises of three large prolate

ellipsoidal electron pockets along the ⟨100⟩ directions (shown in red in the Fermi surface

images below the panels), and twelve smaller ellipsoidal electron pockets along the ⟨110⟩

directions, acting as connecting necks between the large α ellipsoids (shown in purple in the

images below the panels). We find that this model can fully account for the angular dependence

observed for SmB6. We identify the frequencies shown in red as the large α ellipsoids, forming

two frequency branches in the 8 to 11 kT frequency range spanning the entire angular range,

and crossing at [111], this resembles the angular dependence of the metallic hexaborides. These

large pockets constitute to more than 90% of the Fermi surface sections of the ellipsoidal
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Compound Sheet Fmin (T) m∗ (me) ak0 (nm−1) b/a c/a γ

SmB6
α 7750(90) 0.70(4) 4.85(3) 1 1.35(2) 3.0(5)

ρ 314(14) 0.18(1) 2.15(9) 0.47(3) 0.44(3) 1.1(4)

LaB6 [73, 77, 28]
α 7890 0.64 4.89(3) 1 1.27 2.6

ρ 4 0.05 0.07 4.5 2.1 0.1

PrB6 [73]
α 8400 1.95 5.05 1 1.2 7.8

ρ 431 0.68 0.69 5 2.8 2.1

ρ ′ 97 0.28 0.54 1 2.44 0.1

Table 4.1 A comparison of the parameters obtained from fitting to the measured angular
dependence of the oscillation frequencies (Fig. 4.5) that are used to estimate the contribution of
each Fermi surface sheet to the linear specific heat coefficient γ , a measure of the quasiparticle
density of states and to be compared with the value obtained from the heat capacity. The
parameters are the measured oscillation frequency corresponding to the smallest cross-section
of the Fermi surface sheet Fmin, the corresponding effective mass m∗, and the ratios of the
semi-principal axes of the modeled ellipsoidal Fermi surface sheets denoted by a, b and c. γ

has units of mJ·mol−1·K−2.

Fermi surface of metallic hexaborides. Interestingly, the Fermi energy contours imaged by

ARPES, with large pockets centred at the X points, are quite reminiscent of the α pockets of

the three-dimensional ellipsoidal Fermi surface model [78]. The frequencies corresponding to

the small ρ ellipsoids are shown in purple, forming four branches. The angular dependence of

the ρ pockets is the same across the three materials, whilst their size seem to vary due to subtle

differences in the geometry of the α pockets. The angular dependence of the cross-section of

an ellipsoid can be described by closed-form functions [29, 13], which we use to fit to the α

and ρ frequencies of each material, with the resulting fits shown by the red and purple fit lines.

Table 4.1 lists the different parameters obtained from the fits, including the eccentricities of

the different ellipsoidal pockets. Other commonalities across the three materials include the ε

and γ frequencies shown in orange and blue, which correspond to hole orbits enclosed by four

touching α ellipsoids at special angles (centred at the Γ and M points respectively) [74], and

the λ and ξ frequencies shown in dark green and magenta, crossing at the same angle for all

three materials, corresponding to figure-eight orbits formed by two neighbouring α ellipsoids

and reaching across two Brillouin zones [79].

42



4.3 De Haas–van Alphen oscillations in SmB6

In the case of PrB6, we also identify a lower frequency branch marked as ρ ′. Previous

proposals for this frequency branch included the existence of two necks (ρ and ρ ′) [80], and

splitting of the ρ pocket into an up-spin and down-spin pocket [74]. A similar splitting of the

Fermi surface was expected for CeB6, but has not been observed, and would also disagree with

the measured specific heat coefficient [28]. We find that fitting to the ρ ′ frequencies assuming

a second set of neck ellipsoids along the ⟨110⟩ directions does not work well, but instead find

a good fit assuming small ellipsoids orientated along the ⟨111⟩ directions. Such pockets also

appear in band structure calculations for PrB6, which reside at the R points, the corners of the

Brillouin zone [72]. We note that the lowest frequency oscillations of ≈ 50 T in SmB6, that

appear along certain angles [10, 81], but do not conclusively form a Fermi surface pocket, and

therefore are not shown in the angular dependence figures, could correspond to tiny pockets

residing in the corners of the Brillouin zone, similar to PrB6.

It is important to consider the possibility of magnetic breakdown due to the high magnetic

fields involved. There are different scenarios to consider. One theory paper proposed a magnetic

breakthrough scenario through the Kondo gap [82] (similar to the proposal in Ref. [83]), that

would lead to orbits enclosing areas similar to the Fermi surface areas found for the metallic

hexaborides, and claim could be observable for the magnetic fields we employed. Another sce-

nario is the magnetic breakdown between interconnecting sheets among the ellipsoids, similar

to what was proposed initially for LaB6 [75]. They reported the observation of frequencies

they assigned to breakdown orbits from magnetic fields as low as 4.3 T (which we see down to

≈3.2 T in our Warwick-grown samples). In later reports [76, 74], however, these frequencies

were recognised as orbits expected for the three-dimensional ellipsoidal Fermi surface model.

If magnetic breakdown is possible at such low fields for the metallic hexaborides, then some

of the observed SmB6 frequencies could also be due to breakdown orbit. Importantly, they

would not be very different from the frequencies we already observe, a majority of which are

already assigned to correspond to sheets expected for the three-dimensional ellipsoidal Fermi

surface model. What we can exclude with certainty is the third scenario, namely that all the

high-frequency oscillations are caused by magnetic breakdown of the small ρ pockets. We use

Blount’s criterion [84] to estimate at what magnetic field magnetic breakdown effects would
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Fig. 4.6 The temperature dependence of the quantum oscillation amplitude of the measured
frequencies in a floating zone-grown SmB6 single crystal measured at an angle ≈[110]. The
quantum oscillation amplitude values were obtained from Fourier transforms using a magnetic
field window of 21 T to 40 T. We use the Lifshitz–Kosevich equation to fit the observed
temperature dependences (shown as lines) to extract the effective mass m∗ of each frequency for
a temperature range of 1 K to 30 K. We see a divergence from the Lifshitz–Kosevich behaviour
below 1 K for several frequencies, most clearly seen for the F = 330 T frequency.

become relevant:

Hbreakdown =
πℏ
e

(
k3

g

a+b

)1/2

Here 1/a and 1/b are the radii of curvature of the two closest Fermi surface sections (neigh-

bouring ρ ellipsoids) and kg is their separation in reciprocal space. We have a separation

of one quarter of the Brillouin zone between neighbouring ρ pockets, kg ≈ 3.8 nm−1, and a
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Fig. 4.7 Comparison of the effective masses as a function of quantum oscillation frequency (a)
for SmB6 measured along [110], and (b) for LaB6 measured along different field directions
based on Refs. [74, 73, 76, 77, 75, 85]. For both materials the effective mass scales with
frequency down to 1 kT, as expected for Fermi surface pockets that originate from the same
band. (c) The quantum oscillation amplitude of the 10.6 kT frequency as a function of
temperature between 550 mK and 30 K, showing a prominent low-temperature upturn below
1 K. The dashed red line represents the Lifshitz–Kosevich fit to the temperature region with
effective mass m∗/me = 0.7 that fits the amplitude as a function of temperature for T ⪆ 1 K.
For temperatures below 1 K a Lifshitz–Kosevich fit with effective mass m∗/me = 1.8 was
performed (orange dashed line). The inset shows the 10.6 kT frequency amplitude A(T )
with respect to A0, the amplitude at the lowest measured temperature, as a function of X ′2,
where X ′ = 2π2kBT me/eℏµ0H0, the temperature damping coefficient in the Lifshitz–Kosevich
formula, as expected for the Fermi Dirac statistical distribution [13]. The increase in amplitude
at low temperatures is linear in X ′2 (shown by orange dashed line). A similar deviation from the
Lifshitz-Kosevich temperature dependence is also observed for other frequencies, as reported
in Refs. [10, 29] and shown in Fig. 4.6.

radius of curvature 1/a = 1/b ≈ 1 nm−1, taken from Table 4.1. This gives a giant magnetic

breakdown field of ≈ 10000 T, well above the magnetic fields where we observe high-frequency

oscillations.

In Fig. 4.6 we plot the temperature dependence of the quantum oscillation amplitude for

different oscillation frequencies of SmB6. We perform Lifshitz–Kosevich fits to find their

respective effective masses. For the lowest temperatures we also see a divergence from the

Lifshitz–Kosevich behaviour for several frequencies. Above 1 K the Lifshitz–Kosevich fits

yield effective masses between 0.2 and 0.9 electron masses, increasing with the size of the

pocket. We plot this relationship for SmB6 in Fig. 4.7a, and similarly for LaB6 in Fig. 4.7b.

For both materials we find a linear relationship between the measured effective mass and
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the oscillation frequency down to 1 kT, so all frequencies but the ones originating from the

neck-like ρ pockets. The significance of the relationship m∗ ∝ F is that all these frequencies

must originate from the same band, as ℏ2k2/2m∗ = constant. This has been established for

LaB6 before [73], the metallic hexaboride with the best-understood band structure, and the fact

that it also applies to SmB6 provides further support for the validity of the ellipsoidal Fermi

surface model in its case.

4.4 Thermodynamic signatures of a Fermi surface in a band

insulator

Based on the data presented so far we have found that SmB6 behaves as a bulk insulator when

an electric current is applied, but is host to quantum oscillations, a tell-tale signature of a metal,

when we look at the magnetic torque. Starting with an Ansatz of quasiparticles, that give rise

to magnetic quantum oscillations, but do not take part in charge transport, we are motivated to

explore thermodynamic measurements, where such quasiparticles are expected to show up. The

thermodynamic measurements presented in this section were performed by collaborators on the

same samples or samples from the same batch of crystals as the ones employed in the magnetic

torque measurements. Specific heat measurements were performed by the Takano group at the

University of Florida, and the Yamashita group at Osaka University, and thermal conductivity

measurements were performed by the Sutherland group at the University of Cambridge, and

the Hill group at the University of Waterloo.

We first look at specific heat measurements. The finite linear specific heat, normally

associated with free electrons, was one of the original curiosities about SmB6 [43], and has

remained a puzzle ever since. Measurements on our floating zone-grown single crystals

also show a finite linear specific heat term, with a linear specific heat coefficient γ of ≈

4(1) mJ·mol−1·K−2 (Fig. 4.8a). Similarly to other rare-earth hexaborides, the phonon spectrum

of SmB6 is fairly complicated, and the high temperature part of the measured specific heat

is not fitted well with just one phonon term. It likely requires both an Einstein term and a

Debye term, as was shown for LaB6 [89], but these terms do not contribute much below 10 K.
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Fig. 4.8 (a) The measured specific heat Cp of a floating zone-grown SmB6 single crystal at
zero applied magnetic field, revealing a finite heat capacity divided by temperature at low
temperatures, unexpected for an insulator, with a steep increase below 100 mK. The inset shows
the specific heat divided by temperature at a magnetic field of 18 T. The linear contribution of
the specific heat retains the same finite value at high magnetic fields. (b) The specific heat of
an organic insulating spin liquid showing a similar finite linear specific heat coefficient at low
temperatures [86]. (c) Thermal conductivity κ divided by temperature of a floating zone-grown
SmB6 single crystal at 0 T and 12 T. The phonon term κph./T (red dotted line) accounts for
most of the 0 T thermal conductivity, however a nearly fourfold enhancement of the thermal
conductivity is seen at 12 T at the lowest measured temperatures. (d) Thermal conductivity κ

divided by temperature of the same organic insulating spin liquid [87]. EtMe3Sb[Pd(dmit)2]2
exhibits a finite linear thermal conductivity, which resembles the thermal conductivity of SmB6
measured at 12 T. (e) The thermal conductivity as a function of magnetic field of SmB6,
showing a significant increase with magnetic field for the same floating zone-grown single
crystal. (f) Very similar behaviour was observed for EtMe3Sb[Pd(dmit)2]2 [87, 88].

We see a clear upturn at low temperatures that becomes even more dramatic below 100 mK.

This might pertain to the anomalous temperature dependence of the quantum oscillations at

similarly low temperatures [10, 29] (see also Fig. 4.7). The inset of Fig. 4.8a shows the specific

heat measured in an applied magnetic field of 18 T overlaid on the zero field data. We find the

overall behaviour unchanged with a similar upturn at low temperatures, and a finite specific

heat with the coefficient γ comparable to the zero field value. This result is in accordance
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Fermi surface in the absence of a Fermi liquid in SmB6

with a mostly field-independent charge gap as demonstrated by pulsed field electrical transport

measurements [53].

The linear specific heat coefficient γ provides a measure of the quasiparticle density of

states at the Fermi level, which in turn is set by the geometry of the Fermi surface. Hence,

it allows for a quantitative comparison between a thermodynamic quantity and quantum

oscillation measurements. We presented the relevant equations in Chapter 2, with the param-

eters of the Fermi surface geometry and the resulting estimate of γ for each Fermi surface

sheet summarised in Table 4.1. Accounting for the three large α and the twelve smaller ρ

ellipsoids, we get an estimate of ≈ 4.1(6) mJ·mol−1·K−2, which is in agreement with the

estimate from the measured linear specific heat coefficient. A similarly good agreement

has been demonstrated in the case of the metallic hexaborides LaB6, with γ measured to be

2.6 mJ·mol−1·K−2, and the Fermi surface estimate being 2.7 mJ·mol−1·K−2 (Table 4.1), and

CeB6, with γ measured to be 120 mJ·mol−1·K−2 at 12.7 T [90], and the Fermi surface estimate

being 113 mJ·mol−1·K−2 [28]. This much higher value of γ is due to the very high effective

masses of CeB6. There are no low temperature specific heat data to compare with for PrB6,

but from quantum oscillation measurements we estimate γ to be ≈ 10 mJ·mol−1·K−2. The fact

that the value of γ in SmB6 remains unchanged upon the application of high magnetic fields

(inset of Fig. 4.8a) suggests a field-independent character of the Fermi surface, in line with

our findings (e.g. field-independent effective masses and no Fermi surface reconstruction with

magnetic field).

Fig. 4.8c shows the thermal conductivity κ of a floating zone-grown SmB6 single crystal

at 0 T and 12 T. We plot the thermal conductivity κ divided by temperature as a function of

the square of the temperature to highlight a clear T 3 dependence associated with phonons. We

find that the phonon term κph./T (red dotted line, see Chapter 2 for formula, using sample

dimensions of t = 0.43 mm, w = 0.23 mm, and a Debye temperature of θD = 373 K) accounts

for most of the 0 T thermal conductivity, leading us to conclude that the thermal conductivity

in zero field is boundary-limited. Surprisingly, a nearly fourfold enhancement of the thermal

conductivity is seen at 12 T at the lowest measured temperatures, which cannot be accounted

for by phonons, and extrapolates to a finite linear term normally associated with heat-carrying
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Fig. 4.9 (a) The electrical resistivity ρ as a function of temperature of a floating zone-grown
single crystal measured at zero applied magnetic field (green) and 12 T (purple) below tem-
peratures of 1 K, showing a small decrease in resistivity with applied magnetic field. (b) The
thermal conductivity κ divided by temperature as a function of the square of the temperature of
the same single crystal at 0 T and 12 T. Whilst the zero field data is mostly accounted for by
the phonon contribution, we see a large enhancement of the thermal conductivity with applied
magnetic field. (c) Comparison of the enhancement in the low-temperature thermal conductivity
between 12 T and 0 T (blue triangles), with that expected from the enhancement in the surface
electrical conductivity based on the Wiedemann–Franz law (red line). The enhancement in the
low-temperature thermal conductivity is found to be almost four orders of magnitude larger, in
clear violation of the Wiedemann–Franz law.

quasiparticles. This is contrary to the results presented in Ref. [91], where they found a

non-boundary-limited phonon contribution in zero magnetic field, that becomes boundary-

limited in a magnetic field, and a significantly smaller enhancement with field. Their observed

behaviour is explained through some kind of a magnetic scattering process at zero field,

that would get quenched in a magnetic field. However, our results show boundary-limited

behaviour at 0 T, therefore any such magnetic scattering processes are absent from our samples,

possibly due to their higher quality. We also note that no magnons have been observed

by either muon spin resonance [92] or neutron scattering measurements [93]. In Fig. 4.8e

we plot the measured thermal conductivity as a function of applied magnetic field, which

reveals a large enhancement with field. Interestingly the overall behaviour of the measured

specific heat and thermal conductivity of SmB6 is very similar to that of the Mott insulating

organic system EtMe3Sb[Pd(dmit)2]2, which has been associated with novel spinon low-energy

excitations [87, 88]. Whilst no quantum oscillations have been measured for this material,

likely due to high scattering rates, evidence for neutral quasiparticles has been provided by the

measured finite specific heat (shown in Fig. 4.8b), the finite linear temperature dependence of
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Fermi surface in the absence of a Fermi liquid in SmB6

the thermal conductivity (Fig. 4.8d), and its enhancement with applied magnetic field (Fig. 4.8f).

We note that the field enhancement of the thermal conductivity in SmB6 is even more dramatic

than in EtMe3Sb[Pd(dmit)2]2.

Our thermal conductivity results are very much unexpected for an insulator, and encourage

further measurements to help complete the picture. It would be interesting to see whether the

relative orientation of the applied magnetic field and heat current would change the observed

behaviour, and whether we could detect any anisotropy in the thermal conductivity of our

samples, as suggested by Ref. [91]. It would also be interesting to see the effects of roughening

the sample surface, and whether it would change the low temperature phonon behaviour.

Another question is whether the field enhancement is sample dependent, or if it could also be

observed for samples with shorter mean free path (a smaller phonon peak near 10 K). No field

enhancement was observed for a flux-grown sample with an iRRR of 5000 [94].

The large field enhancement we observe in the thermal conductivity raises the question

whether a similar change is manifested in the electrical resistivity, which is dominated by surface

conduction at low temperatures. Here, however, we find a discrepancy between the electrical

resistivity and the field enhanced thermal conductivity, in violation of the Wiedemann–Franz

law. Whilst the change in resistivity upon the application of a large magnetic field is a small

fraction of the total value (Fig. 4.9a), we see a large increase in the thermal conductivity

(Fig. 4.9b). Applying the Wiedemann–Franz law, and multiplying the electrical conductivity by

the Lorenz number we find that the enhancement of the electrical conductivity is four orders

of magnitude smaller than what would be expected from the enhancement of the thermal

conductivity divided by temperature.

Continuing with a picture of neutral quasiparticles that undergo Landau quantisation to

produce quantum oscillations and also carry heat in thermal transport, a natural question

becomes whether they are governed by the same scattering rate or mean free path. We estimate

the mean free path from the damping term of the quantum oscillations, as derived in Chapter 2

l =
πℏkF

eB0
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4.4 Thermodynamic signatures of a Fermi surface in a band insulator

where kF =
√

2eF/ℏ= 5.8 ·109 m−1 is the Fermi wave vector for the 11 kT frequency, and

B0 is the corresponding damping factor found to be ≈ 200 T for floating zone-grown samples,

giving a mean free path of l ≈ 50 nm in the magnetic field range 35 T ≤ B ≤ 45 T. We

compare this to the estimate of the mean free path from thermal conductivity based on the

Sommerfeld model (see Chapter 2)

l =
κ

T
ℏ

3k2
Bk2

F
(4.1)

where kF is the Fermi wave vector for the 11 kT frequency, and the linear coefficient of the

thermal conductivity κ/T = 0.04 W·m−1·K−2 at 12 T from Fig. 4.8c, giving a mean free path

of l ≈ 2 nm. An alternative estimate of the mean free path from thermal conductivity is based

on a formula for a non-Fermi-liquid scenario with no well-defined quasiparticles [95]. It was

also used by Ref. [96] to calculate the thermal conductivity of an organic system assuming a

spinon Fermi surface with gapless excitations. For our floating zone-grown sample we have

l =
κ

T
ℏkFa3

k2
B

(4.2)

where kF is the Fermi wave vector for the 11 kT frequency, and κ/T = 0.04 W·m−1·K−2 at

12 T from Fig. 4.8c, giving a mean free path of l ≈ 9 nm. Likely, the mean free path estimates

from the thermal conductivity come out smaller due to the the lower magnetic fields at which

the thermal conductivity was measured, but we still get results comparable within an order of

magnitude. For comparison, the estimate for the mean free path based on the low temperature

value of the electrical conductivity would be ≈ 10−6 nm. This is based on the Drude theory

relating the electron mobility to the scattering rate, giving the formula

l = σ
m∗vF

ne2 (4.3)

where the electrical conductivity σ is 0.8 S/m, n = a−3
u.c., and the Fermi velocity vF is given by

vF = ℏkF/m∗, where kF is the wavevector of the 11 kT oscillations, and m∗ is the corresponding

effective mass.
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Fig. 4.10 Schematic phase diagram adapted from theoretical simulations [97], showing a region
of the phase diagram with a finite charge gap but an already collapsed neutral excitation gap.
We propose that SmB6 is located at the edge of this region, with material differences between
different samples that position them on either side of this boundary. The lattice density has
been demonstrated to be a tuning parameter by applied pressure measurements [98–100], that
can be used to collapse both gaps.

The observed thermodynamic signatures are very much contrary to the electrical proper-

ties of SmB6, with a finite linear specific heat term, a field-enhanced thermal conductivity, a

violation of the Wiedemann–Franz law, and an unexpectedly high mean free path, whereas

quantitative comparison between thermodynamic and quantum oscillation measurements show

several commonalities. This suggests that the same quasiparticles are responsible for the

observed thermodynamic signatures and the quantum oscillations, but they do not take part in

charge transport. The formation a theoretical model of such quasiparticles is made tricky by

gauge invariance linking the Coulomb and Lorentz forces, but encouragingly, recent progress

has been made by several theories on novel itinerant low-energy excitations that could give

rise to quantum oscillations [101–105], invoking magnetic excitons [106], spinons [107–113],

composite excitons [114] and Majorana fermions [115–119]. We note the sensitivity of some

of the observed metallic signatures to the growth method [29]. We propose that the Kondo ex-
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4.5 Intrinsic character of bulk quantum oscillations in SmB6

change coupling changes with the lattice density, and can tune SmB6 from a Kondo insulator to

a material that still retains a charge gap but is host to neutral low-energy excitations (Fig. 4.10).

4.5 Intrinsic character of bulk quantum oscillations in SmB6

The observation of quantum oscillations in SmB6 has lead to a flurry of investigations to

establish a theoretical basis for the existence of a Fermi surface in a correlated insulator,

something that has only been associated with metals before. Whilst most proposals centre

around some form of novel itinerant low-energy excitations, a few proposals include disorder-

induced in-gap state quantum oscillations [120], and proposals of quantum oscillations that

originate from impurity inclusions [121, 122]. The variable sample quality across studies, partly

due to different growth methods, has indeed caused difficulties when interpreting conflicting

results. Disparity from the measured properties of stoichiometric SmB6 has been demonstrated

for samples with the presence of magnetic rare-earth impurities like Gd, Dy and Eu [57, 123–

128], non-magnetic rare-earth impurities like La and Yb [57, 125–129], and metallic impurities

like Al and C [41, 56, 121]. Particular care should be taken with the selection of flux-grown

samples due to the use of extrinsic flux, that could lead to inclusions, which have been shown

to yield associated quantum oscillations in other systems (e.g. UBe13 [130, 131], CaB6 [132]).

On the other hand, the floating zone growth technique is particularly effective in the case of

materials with challenging phase diagrams such as incongruently melting compounds and

compounds bounded by eutectic phase boundaries [133], like in the case of SmB6. It is known

to yield single crystals of excellent quality [48, 134], as their quality is determined by the purity

of the starting samarium and boron powder, unlike other growth methods that can involve other

starting elements, like aluminium-flux growth. Therefore, to be able to make the strongest case

for the intrinsic nature of the quantum oscillations we observe, we limit the current section

to measurements on single crystals grown by the floating zone technique only. We ascertain

the extremely low impurity content that characterises our single crystals through a range of

measurements used to evaluate sample quality of SmB6 single crystals, and through direct

comparisons with other studies. This section is based on our work presented in Ref. [135].
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ppm Range Elements

<limit of detection (100)

Al, As, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Eu, Fe, Hf, Hg,

Ho, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, , Ni, Os, Pb,

Pt, Rb, Re, Ru, Sc, Si, Sn, Sr, Ti, Tm, V, Yb, Zn, Zr

<limit of detection (400) Ag, Er, Ga, Nd, Se

100-1000 Te, Y

1000-10000

10000 or >1%at B, Sm

Table 4.2 The results of the inductively coupled plasma optical emission spectrometry (ICP-
OES) on our pristine floating zone-grown SmB6 single crystal showing the limits of the impurity
concentration of different elements. ICP-OES was performed by Exeter Analytical UK Ltd.,
where ≈ 50 mg of single crystals were digested in a nitric acid matrix using microwaves and
introduced to the spectrometer with internal standards to aid precision.

The first measurement we consider is inductively coupled plasma optical emission spec-

trometry (ICP-OES), which is an elemental analysis technique, where a single crystal needs to

be fully decomposed to its constituent elements, and transformed into ions when introduced to

the inductively coupled plasma. These ions can then be quantified with a mass spectrometer

coupled to the instrument. This technique represents a direct way of performing elemental

determination of the bulk volume of the sample. The results for one of our floating zone-grown

single crystals is shown in Table 4.2, establishing that the concentration of all impurities are

below the detection limit of the instrument (including aluminium and gadolinium inclusions),

but tellurium and yttrium, which show a concentration above the detection limit, but still below

0.1%at.

We revisit our thermal conductivity measurements, and use them as a tool of comparison

with samples from previous studies. We look at the high temperature phonon peak that

appears in the regime where the mean free path goes from temperature-dependent (due to

the decreasing number of phonons with decreasing temperature) to temperature-independent

(instead determined by geometrical effects such as defects). This leads to a peak in thermal

conductivity, with the peak height dependent on the low-temperature mean free path, and
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Fig. 4.11 The thermal conductivity κ as a function of temperature for a floating zone-grown
SmB6 single crystal grown by the Warwick group (black circles [48, 29]), compared to the
thermal conductivity measured for floating zone-grown samples from previous studies (red
diamonds [136], green squares [137], blue circles [91]). The size of the peak is found to be
largest for the floating zone-grown crystal from the same batch of crystals as the ones employed
in our quantum oscillation measurements, indicating high sample quality.

therefore acts as a gauge for sample quality. Fig. 4.11 compares the phonon peak observed for

our floating zone-grown sample to that of samples from other studies [91, 136, 137]. We find

the peak height of our single crystal to be several times larger than of other samples, confirming

that it has the longest mean free path. Interestingly, the smallest peak is observed for the flux-

grown sample from the study that argued for the non-boundary limited character of the thermal

conductivity in zero applied magnetic field [91]. We find that to characterise the true underlying

low-temperature state via the thermal conductivity, one requires the highest quality samples,

that in turn demonstrate clear boundary-limited behaviour at low temperatures [29]. Results on

EtMe3Sb[Pd(dmit)2]2 lend credence to this [138], finding that only high-quality samples with

longer mean free paths show a finite residual linear term in the thermal conductivity, attributed

to itinerant gapless excitations.

Ref. [123] presents a study of SmB6 samples with variable impurity content, and quantifies

the relationship between magnetic impurities and observed material properties. We repeat the

measurements on our pristine floating zone-grown single crystals to determine their sample

quality in relation to the samples presented in Ref. [123] and elsewhere. We quantify the
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Fig. 4.12 (a) Measured electrical resistivity as a function of temperature normalised to 300 K.
The inverse residual resistivity ratio of our samples reach a value of the order 105, higher than
the isotopic floating zone-grown sample with minimal rare-earth impurities from Ref. [123],
and samples grown by other growth methods (flux-grown [94], induction melting [139], layer
evaporation [43]). The inset shows the resistivity on a linear scale. (b) Measured magnetisation
of Gd-doped SmB6 samples from Ref. [123] (dashed lines in purple and cyan), showing a
non-linear magnetisation due to magnetic impurities. In contrast, the measured magnetisation
of undoped floating zone-grown single crystals (magenta line, grown by the Warwick group [48,
29], orange dashed line, isotopic sample from Ref. [123]) show a linear paramagnetic behaviour
as expected for impurity-free SmB6. We estimate the magnetic impurity concentration of our
sample by fitting with the Langevin function [123], finding it to be 0.04%at. (c) Measured
specific heat capacity of SmB6 for our floating zone-grown single crystals (blue [135] and
magenta lines [48, 29]), an isotopic floating zone-grown sample (orange dashed line [123])
and flux-grown Gd-doped samples (green and cyan dashed lines [123]). The lowest finite heat
capacity divided by temperature is observed for our floating zone-grown sample, which reaches
a minimum of 3 mJ·mol−1·K−2, comparable to the value found for isotopically enriched
SmB6 [125, 134]. The inset shows the specific heat capacity up to 80 K of a single crystal of
SmB6 from the same growth batch as the one studied in Ref. [29].

magnetic impurity content of our samples by performing low-temperature magnetisation

measurements as a function of magnetic field (Fig. 4.12b). For an impurity-free sample we

expect a linear paramagnetic response. For any magnetic impurities this would be distorted

according to the Langevin function [140]. Hence, fitting with this function provides a way

to estimate the magnetic impurity concentration. For our sample (pink line) we see a linear
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response with a deviation from linearity consistent with a magnetic impurity concentration

level of less than 0.05%, which is comparable to what was observed for the highest quality

isotopic sample in Ref. [123] (orange dashed line). Off-stoichiometric samples have also

shown an increase in the linear specific heat coefficient γ , with values of 8 mJ·mol−1·K−2

and higher, whereas the lowest value is realised for isotopically enriched samples that have

the lowest concentration of impurities and vacancies as identified by other measurement

techniques [123, 126]. In Fig. 4.12c we plot the measured specific heat of our samples as

a function of temperature against those presented in Ref. [123]. The γ values we find for

our floating zone-grown single crystals are very low at ≈ 3 mJ·mol−1·K−2 for one sample

(blue line) and ≈ 4 mJ·mol−1·K−2 for a second sample (orange line), suggesting a minimal

vacancy content and putting them in their own class with the isotopically enriched sample

of Ref. [126]. For a fourth test of sample quality of SmB6 samples, we look at electrical

resistivity. Fig. 4.12a shows the electrical resistivity as a function of temperature for one of

our floating zone-grown single crystals compared to the electrical resistivity measured for

the isotopic floating zone-grown sample from Ref. [123], and for samples grown by other

growth methods or with magnetic impurities [43, 94, 123, 139]. The inverse residual resistivity

ratio of our sample is 150000, whilst the isotopic sample from Ref. [123] reaches a value of

60000. The two floating zone-grown samples show iRRRs higher than for all other growth

methods, indicating a high insulating bulk contribution at low temperatures, and the absence of

any metallic inclusions that would act to reduce the maximum resistivity reached. Thus, we

have found that our floating zone-grown single crystals satisfy or outperform quality checks

employed by previous studies [41, 91, 94, 123], establishing their extremely low impurity

content. As anticipated for floating zone-grown single crystals, we confirm that there are no

measurable traces of magnetic or metallic impurities present, making comparisons with studies

on samples with embedded impurities [41, 56, 121] ill-suited.

Whilst the material quality checks we have presented decidedly rule out the presence of any

aluminium in our samples to within 0.01%at, we wish to go further with our discussion and

present an exhaustive analysis of the observed quantum oscillations to preclude any suggestions

that the observed quantum oscillations in our floating zone-grown single crystals could be
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caused by aluminium [121]. For this we performed magnetic torque measurements employing

the same experimental technique on floating zone-grown SmB6, LaB6 and aluminium.

We examine the amplitude of the measured quantum oscillations to confirm their bulk

nature in SmB6 and LaB6, and present a comparison of the complete angular dependences of

the three materials to highlight the dissimilarities between SmB6 and aluminium, and in turn

reinforce the similarities between SmB6 and LaB6. Fig. 4.13 shows the observed quantum

oscillations using the capacitive torque technique in the three materials, with corresponding

Fourier transforms showing the frequency spectra. For SmB6 the strongest frequency at low

fields is 500 T, with faster frequencies, which are associated with larger Dingle temperatures,

appearing with increasing field. The highest frequency is 15 kT, which appears above 30 T. We

find a similar overall behaviour of the quantum oscillations for LaB6 (Fig. 4.13d-f), a broad

range of oscillation frequencies, with the high frequencies of 8 kT and 10 kT appearing at

lower fields due to a lower Dingle temperature as compared to SmB6. In contrast, the measured

quantum oscillations of aluminium (Fig. 4.13g-i) are dominated by oscillation frequencies

less than 1 kT. We also observe a rich harmonic content, which leads to square-wave shaped

oscillations at higher magnetic fields, as opposed to SmB6, which exhibits sinusoidal oscillations

up to 40 T.

Our measurements of the magnetic torque in SmB6 reveal oscillations with amplitudes

comparable to the size of the paramagnetic torque background (Fig. 4.4), which indicates a

bulk origin for the oscillations, as opposed to an origin from just a minute fraction of the

sample [9]. We provide further evidence for this observation by comparing the absolute size of

the measured quantum oscillations and the theoretical amplitude of bulk de Haas–van Alphen

oscillations. We convert the measured capacitive torque to absolute units of magnetic moment

by using the spring constant of the cantilever as detailed in Ref. [29]. We have cantilever length

L = 3.8 mm, distance between cantilever and fixed Cu plate d0 = 0.1 mm, spring constant

k = 30 N ·m−1, unit cell volume Vu.c. = a3
u.c. = 0.07 nm3, and crystal volume s3 = 0.49 mm3.

We thus convert the measured torque magnetisation in terms of capacitance (C) to an absolute

58



4.5 Intrinsic character of bulk quantum oscillations in SmB6

2 0 2 5 3 0 3 5 4 0
- 4
- 2
0
2
4

0 5 0 0 1 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5

5 1 0 2 0 4 0 6 0
0 . 0

0 . 1

S m B 6

a
T  =  0 . 4  K
�  =  1 3 °

Ca
pa

cita
nc

e
   (

×1
0-4  pF

)

B  ( T ) cb
1 5  T  <  B  <  4 0  T

FF
T a

mp
litu

de
(ar

b. 
un

its)

F r e q u e n c y  ( T )

3 1  T  <  B  <  4 0  T

F r e q u e n c y  ( k T )

2 4 6 8
- 5
0
5

0 1 0 2 0 3 0
0

2

4

5 1 0 2 0 4 0 6 0
0

2

4

L a B 6

d
T  =  2  K
�  =  6 °

Ca
pa

cita
nc

e
   (

×1
0-2  pF

)

B  ( T ) fe
0 . 5  T  <  B  <  9  T

FF
T a

mp
litu

de
(ar

b. 
un

its)

F r e q u e n c y  ( T )

6  T  <  B  <  9  T

F r e q u e n c y  ( k T )

4 6 8 1 0 1 2 1 4
0
2
4
6

0 5 0 0 1 0 0 0
0

1

2

5 1 0 2 0 4 0 6 0
0

1

2

dH
vA

 sig
na

l.
(ar

b. 
un

its)

B  ( T )

T  =  2  K
�  =  8 6 °

A l u m i n i u m

i

g

h
4  T  <  B  <  9  T

FF
T a

mp
litu

de
(ar

b. 
un

its)

F r e q u e n c y  ( T )

1 3 . 9  T  <  B  <  1 4  T

F r e q u e n c y  ( k T )

Fig. 4.13 (a) Measured oscillations in the magnetic torque of SmB6 as a function of magnetic
field for a floating zone-grown crystal. (b-c) Fourier transforms of the measured magnetic
torque as a function of inverse magnetic field, revealing a multitude of quantum oscillation
frequencies ranging from 300 T to 15 kT. A higher magnetic field window is used to reveal the
high-frequency oscillations corresponding to the α , λ and ξ branches identified in Fig. 4.5a. (d)
Measured oscillations in the magnetic torque of LaB6 as a function of magnetic field exhibiting
both low- and high-frequency oscillations similar to SmB6. (e-f) Fourier transforms of the
measured magnetic torque as a function of inverse magnetic field, revealing multiple quantum
oscillation frequencies up to 10 T corresponding to the ρ branches, and between 8 and 10 kT
corresponding to the α branches (see Fig. 4.5b). (g) Measured oscillations in the magnetic
torque of aluminium as a function of magnetic field. (h-i) Fourier transforms of the measured
magnetic torque as a function of inverse magnetic field, revealing multiple frequency peaks
up to 500 T, and a very high-frequency peak of 40 kT, when taking a narrow field window,
corresponding to the ψ branch (see Fig. 4.16c)).
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magnetic moment ps in units of Bohr magnetons per unit cell by the expression

∆ps[3D] = 0.175 TpF−1 ∆C
B

µB per unit cell. (4.4)

The measured quantum oscillatory magnetic moment converted to absolute units for a typical

magnetic field sweep is shown in Fig. 4.14b. We estimate the theoretical amplitude of the

intrinsic quantum oscillatory magnetic moment perpendicular to the applied magnetic field

in units of Bohr magnetons per unit cell for a three-dimensional Fermi surface using the

Lifshitz–Kosevich formula as detailed in Chapter 2

ps[3D] = D3D ·RTRDRS · sin(2πF/B+φ) · sinθM (4.5)

where sin(2πF/B+φ) is the oscillatory term, θM is the angle between the magnetic field B and

the total magnetic moment, and RT, RD, and RS are damping terms due to finite temperature,

impurity scattering, and spin-splitting. The exponential damping term RD is expressed as

RD = exp(−B0/B), with damping factor B0 for each frequency. D3D is the infinite field, zero

spin-splitting amplitude given by

D3D = f (r)
8me

m∗

(
kF

kBZ

)3√ B
8F

(4.6)

where f (r) is the anisotropy term, m∗ is the effective mass, kF is the Fermi wavevector,

kBZ = 2π/au.c., and F is the oscillation frequency. For the F = 452 T frequency oscillations

shown in Fig. 4.14a, we have m∗ = 0.18me, B0 = 60 T, a degeneracy of two and f (r) = 0.5

based on the ellipsoidal model we fit with in Fig. 4.5a, and we estimate RS = 0.5-1, sinθM = 0.1-

1. The resulting estimate for the theoretical amplitude is ≈ 10−3–10−2 µB· T per unit cell at

B = 30 T, whilst the measured amplitude is ≈ 10−3 µB· T per unit cell, showing consistency

between the theoretical estimate and the measured size of the oscillations assuming a bulk

origin.

Crucially, for an origin of quantum oscillations from impurity inclusions we would expect

the measured amplitude of the oscillations to be much smaller than the theoretical estimate.
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Fig. 4.14 (a) Measured quantum oscillations in the magnetic torque of SmB6 as a function
of magnetic field for a floating zone-grown crystal. The amplitude of the oscillations is
comparable to the paramagnetic torque background, before any background subtraction. (b)
De Haas–van Alphen oscillations in absolute units of magnetic moment corresponding to
the F = 452 T oscillations. The dashed lines represent the magnetic field dependence of
the quantum oscillation amplitude from the impurity scattering (Dingle) damping term for a
damping factor B0 of 60 T.

ICP measurements determined the concentration of aluminium impurities to be less than 10−4,

and therefore we would expect a discrepancy by at least four orders of magnitude, which

we do not see. Similarly, a comparison with a two-dimensional Fermi surface model yields

a measured value that is at least four orders of magnitude larger than the two-dimensional

theoretical estimate as given by the formula (see Chapter 2)

ps[2D] = D2D ·RTRDRS · sin(2πF/B+φ) · sinθM (4.7)

with

D2D =
4me

m∗

(
kF

kBZ

)2

(4.8)

The peak amplitude of the quantum oscillations is found to have a theoretical maximum value of

≈ 10−1 µB per surface unit cell in the infinite field limit prior to including any damping terms,

which would reduce the theoretically predicted value to ≈ 10−3 µB per surface unit cell at 30 T.

In contrast, we estimate the magnetic moment per surface unit cell for the measured quantum

oscillations were they to arise from the surface, by multiplying by the ratio of the total number
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of unit cells to the number of unit cells on the surface, which is ≈ 106. The measured amplitude

of the quantum oscillations therefore corresponds to a magnetic moment per surface unit cell

of ≈ 103 µB· T per surface unit cell at 30 T, at least four orders of magnitude larger than the

two-dimensional theoretical estimate. This rules out the scenario of oscillations originating

from surface states. The same comparison for the high frequencies is hindered by the imprecise

estimate of a much higher damping factor due to only accessing high Landau levels, and would

require much higher magnetic fields. We find similarly large bulk oscillations for LaB6 in

correspondence with the Lifshitz–Kosevich theory [29], as expected for a metal.

We take a second look at the angular dependence of floating zone-grown SmB6. This

time we plot it on a linear frequency scale that highlights any differences in frequency when

comparing similar frequency branches, and we also show a magnified view of the ρ branches to

compare to that of LaB6, and the branches with comparable frequencies observed for aluminium.

We focus on the [001]-[111]-[110] rotation plane to avoid the overlap of higher ρ branches

with harmonics that are present more densely in the [110]-[001] rotation plane. Earlier, we

have discussed the similarities with the observed angular dependence for LaB6, including the

existence of the α branches in both materials that correspond to the main Fermi surface sheets,

and the ε , λ , and ξ branches that only appear for the same specific angular ranges (seen again

clearly for both materials in Fig. 4.15). It was these similarities with the metallic hexaborides

that led us to conclude that the angular dependence of SmB6 is best described by the same

three-dimensional ellipsoidal Fermi surface model [10, 29]. We note the difference in the size

and eccentricities of the ρ pockets, but these have been shown above to be highly variable

across the hexaborides, very much dependent on the geometry of the main α ellipsoids, that

constitute over 90% of the Fermi surface.

In contrast, comparison with the angular dependence of aluminium (Fig. 4.16) highlights

many differences. The most prominent oscillations in our magnetic torque measurements of

aluminium (Fig. 4.13g) correspond to the γ branches, originating from necklace-like Fermi

surface sheets [142]. These elongated sheets lead to rapidly increasing frequencies as a function

of angle, that diverge along the [111] and [001] directions, in direct contrast with the ρ

frequencies found in SmB6 that show a moderate angular dependence. The higher frequency
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Fig. 4.15 Angular dependence of the quantum oscillation frequencies in the [001]-[111]-[110]
rotation plane measured for (a-b) floating zone-grown SmB6, and (c-d) LaB6 [76, 74], both in
good agreement with the angular dependence of a three-dimensional ellipsoidal Fermi surface
characteristic of metallic hexaborides. (a) and (c) show the similarity of the higher frequency
branches, particularly the main α branches, whilst (b) and (d) compare the lower frequency ρ

branches, together with an illustration of the corresponding Fermi surface pockets.

range (2 kT to 15 kT), above the γ aluminium frequencies, is populated by many branches

that span the entire angular range in the case of SmB6, but there are no comparable frequency

branches in aluminium. To find the second main frequency branch for aluminium, we have to

consider an even higher frequency range (40 kT to 100 kT), corresponding to a large second-
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Fig. 4.16 Comparison of the measured angular dependence of the quantum oscillation fre-
quencies in the [001]-[111]-[110] rotation plane of (a-b) floating zone-grown SmB6 , and (c-d)
aluminium. The comparison of the high-frequency branches in (a) and (c) shows a multitude of
branches between 2 kT and 15 kT spanning the entire angular range for SmB6, but none for
aluminium, which has a prominent high-frequency branch above 40 kT (circles are measured
by this study, diamonds are from Ref. [141]). (b) ρ branches found for SmB6 have a moderate
angular dependence corresponding to a Fermi surface of twelve ellipsoids along <110>, as
shown in the illustration. (d) The γ branches found in this study for aluminium show a diverging
behaviour, consistent with previous measurements (show by brown circles) [142, 143], with
frequencies as high as 1600 T, corresponding to a necklace-like Fermi surface of elongated arms
as shown in the illustration (taken from Ref. [144]). Solid lines follow Ashcroft’s model [144]
and are from Ref. [142].
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zone Fermi surface, that in turn has no parallels in SmB6. We note the similar frequencies

in the 300−400 T range for the two materials. This coincidence could be a consequence of

Luttinger’s theorem, as SmB6 and aluminium both have the same number of valence electrons,

and cubic unit cells with comparable lattice constants (a = 4.13 Å for SmB6, and a = 4.05 Å

for aluminium). With these differences in mind, future measurements of SmB6 should focus

on measuring the [001]-[111]-[110] rotation plane (unlike the studies in Refs. [121, 145] that

measured the other rotation plane), and collecting a complete data set to identify the flat angular

dependence in the case of the four branches of the ρ frequencies, and doing a rigorous search

for the high-frequency branches (6−15 kT) using slow magnetic field sweeps at the highest

attainable fields, the experimental manifestations of the three-dimensional ellipsoidal Fermi

surface.

Lower quality samples with measurable impurities have prompted studies that provide

extrinsic explanations [121, 122], but here we have reinforced the commonality of the Fermi

surface sections between SmB6 and metallic hexaborides, and presented material studies of our

floating zone-grown samples that clearly reflect the properties of SmB6 without contributions

from Al. Therefore, we conclude that any quantum oscillations observed in floating zone-grown

SmB6 have to be intrinsic and cannot be explained to originate from aluminium.

4.6 Theoretical proposals for a Fermi surface in an insulator

The weight of evidence challenges the classical understanding of quantum oscillations being

exclusive to Fermi liquids, and requires new theoretical ideas that could explain the paradigm

of a Fermi surface associated with a non-Fermi liquid. The chief experimental signatures to be

addressed by a comprehensive theoretical model for SmB6 include the exclusive observation

of quantum oscillations in magnetic torque, but not in resistivity, and the manifestly periodic

oscillations in inverse magnetic field, indicative of a Fermi surface, the finite value of the

specific heat divided by temperature, and the finite value of the thermal conductivity divided

by temperature in a magnetic field. Whilst a complete review of the many theoretical propos-

als [82, 83, 101–122, 146–161] is outside the scope of this work, we briefly discuss how these
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experimental signatures are addressed by some of the emerging theoretical frameworks. The

studies under review almost universally predict periodic in inverse magnetic field oscillations

with a few exceptions. Ref. [162] lacks an explanation of the observed oscillations, whilst two

other studies predict unusual field dependences − Ref. [110] finds that the spinons from the

spinon Fermi surface are coupled to an internal orbital magnetic field, and Ref. [83] finds the

quantum oscillation frequency varying with the gap size, which are difficult to consolidate with

our results. Contrary to our observations, some studies also predict large Shubnikov–de Haas

(SdH) oscillations in resistivity [9, 94, 146, 148], whilst some predict Shubnikov–de Haas os-

cillations, but find that they might be too small to be measurable [120, 153, 158]. SmB6 seems

to differ from YbB12 in this case, where for the latter the observed resistivity oscillations [12]

could be explained by the proximity of a metal-insulator transition around a magnetic field of

48 T [163], whereas for SmB6 resistivity oscillations have not been observed, and the charge

gap remains open up to at least 90 T [53]. The advantage of theories of neutral quasiparticles

is that they provide a natural answer to the absence of Shubnikov–de Haas oscillations [101–

119, 123]. More recent theories also address the observed metal-like specific heat and thermal

transport results [106, 114, 117–119, 149, 159, 161], however estimates of the Fermi surface

and the effective masses have been less concrete. On the other hand, theories that invoke a

non-neutral Fermi surface have made more headway in this direction. They make the explicit

prediction that the observed quantum oscillation frequencies are set by the unhybridised Fermi

surface, akin to the Fermi surface of metallic hexaborides [82, 120, 146, 147, 155, 159, 158].

Finally, as new theoretical proposals struggle to address all the metal-like properties of SmB6,

another avenue could be that of Ref. [159] that proposes SmB6 to be a failed metal with a

few insulating properties at low temperatures, rather than an insulator with many metallic

properties.

4.7 Conclusions

We have presented recent progress on Kondo insulating SmB6, revealing a multitude of exper-

imental signatures that are unexpected for an insulator including bulk quantum oscillations
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in magnetic torque, a sizeable linear specific heat coefficient, and the enhancement of the

thermal conductivity in an applied magnetic field. Together, these experimental signatures are

demonstrative of a Fermi surface unexpected for a bulk insulator. Whilst both extrinsic and

intrinsic explanations have been brought forward, here we have reinforced that an intrinsic

explanation must be sought as demonstrated by the central points of this work. As theoretical

frameworks that could explain the entire suite of experimental signatures are still emerging, an

obvious question is if there are other non-Fermi liquid systems that are host to a Fermi surface.

Other Kondo insulators are obvious candidates, and motivated our work on a closely related

Kondo insulator, YbB12, which is the topic of the next chapter.
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Chapter 5

Quantum oscillations in Kondo insulating

YbB12

5.1 Introduction

With the discovery of a Fermi surface in Kondo insulating SmB6 and the pursuit to establish

a theoretical framework behind it, the search for other insulators that are host to a Fermi

surface became just as pertinent. YbB12, another rare-earth boride Kondo insulator with many

commonalities with SmB6, became one of the earliest candidates, and soon was confirmed

to show quantum oscillations in its insulating state [11]. In this chapter we will present our

measurements of YbB12, the first observation of quantum oscillations in this material, and

discuss whether the multitude of shared material properties with SmB6 also extend to a common

Fermi surface origin.

In the same year as the discovery of an unusual insulating state at low temperatures in

SmB6 [3], there were early reports of YbB12 also showing a dramatic increase in resistivity with

decreasing temperature, but conclusive results were hindered by the presence of YbB6 phases

in these crystals [164]. Early studies on single phase YbB12 were limited to polycrystalline

samples [165–167], with the first floating zone-grown, and therefore high-quality single crystals

of YbB12, reported much later [168].
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Fig. 5.1 Schematic picture of the band structure of the Kondo insulator YbB12 showing the
hybridisation that develops at low temperatures, leading to a Kondo gap between the boron
conduction and ytterbium f-electron bands.

The main commonalities between the two Kondo systems include a cubic crystal structure

with a boron cage around the rare-earth atoms [166], an activated resistivity behaviour at low

temperatures typical of Kondo insulators [168], comparable activation gap sizes in the meV

range [166], and finite linear heat capacity otherwise associated with metals [169]. Whilst both

systems are referred to as f -electron Kondo insulators, in the case of SmB6 the hybridisation

happens between the 5d and 4 f samarium electrons, and in the case of YbB12 it is boron

conduction bands hybridising with 4 f ytterbium electrons (Fig. 5.1). Just as importantly, the

Sm ion in SmB6 is considered mixed-valent with a valence of +2.6 [50], whereas the Yb ion in

YbB12 is +2.9 [168, 170, 171], which still qualifies it as mixed-valent, but one might expect it

to lead to more similarities with its metallic rare-earth dodecaboride neighbours, like LuB12

and TmB12, than with SmB6.

The low-temperature resistivity plateau, persisting in all literature on SmB6, has made

the material a curious case for decades, eventually motivating proposals of the existence of

topological surface states [44]. The resistivity plateau, however, proved to be less universal

for samples of YbB12, and was absent in all samples until very recently [12]. As experimental
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indications for surface states in SmB6 emerged [45, 46, 57, 78, 172], with the most compelling

signatures shown by transport properties [45, 46, 57], YbB12 entered the conversation as

another potential candidate for a topological Kondo insulator [173] due to its similar properties.

Whilst a breadth of 2D-like transport signatures have been identified in the case of SmB6,

providing a roadmap of fundamental checks for other candidate materials, no such reports

have appeared for YbB12. Experimental reports of 2D-like states have been limited to one

ARPES study, but with limited energy resolution [174]. With the discovery of a Fermi surface

in the insulating state of SmB6, YbB12 was soon identified as another candidate material, with

quantum oscillations measured soon after by our group [11], followed by further studies by a

second group [12, 175]. This development was made possible by the availability of high-quality

single crystals, sensitive measurement techniques at high magnetic fields, and the aspiration for

such measurements after the SmB6 results.

5.2 Key properties of YbB12

We studied single crystals of YbB12 grown by the Warwick group using the floating zone-growth

technique. Resistivity measurements are again the first port of call for sample characterisation.

The samples used for our measurements had an inverse residual resistivity ratio (iRRR) of

≈ 500 [11] (Fig. 5.2a). The best sample in the literature has an iRRR of 100000 [12], which is

from the first batch of samples to also show a low-temperature plateau. Comparing resistivity

values, our samples are similarly metallic at room temperature, but do not reach as high

resistivity values in the Kondo insulating state. Interestingly, studying the same high iRRR

samples, Ref. [175] finds comparable iRRR divided by sample thickness (iRRR/t) values

(≈ 250) for their best samples, whereas their sample from a different growth batch, which

shows much weaker quantum oscillations, has an iRRR/t half that value, suggesting that

iRRR/t could also be a relevant measure of sample quality in the case of YbB12, similar

to SmB6 (see Chapter 4). Fitting to the resistivity, we find an activation gap of ≈ 5 meV

for our samples [11]. This is comparable to the energy gap derived from the specific heat

(70 K, equivalent to 6 meV) [176], whilst photoemission found a 10 meV direct, and 100 meV
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Fig. 5.2 (a) Resistivity as a function of temperature of a floating zone-grown YbB12 sample
in a magnetic field of 0 T (blue curve) and 14 T (green curve). The hybridisation-induced
insulating behaviour is evident from the exponential increase in resistivity upon lowering of the
temperature. The activation gap is found to be ∆≈ 5 meV at 0 T [11]. (b) The measured specific
heat of YbB12 at different magnetic fields, revealing a finite specific heat divided by temperature,
similar to what has been observed for SmB6 [10, 29, 134, 178], normally associated with the
contribution from electronic states. The inset shows the low temperature tail of the specific
heat capacity divided by temperature, with the lines in light colours corresponding to fits based
on an electronic and a Schottky specific heat term.

indirect gap [177]. In addition to resistivity, further sample screening was carried out by using

a Laue diffractometer to screen out any samples that are not of a singular domain, and by

susceptibility measurements to screen out samples with magnetic impurities, that lead to a

non-linear magnetisation response with applied magnetic field at low temperatures.

We find a suppression of the resistivity with magnetic field at low temperatures (Fig. 5.2a),

in stark contrast to SmB6. Applying pulsed magnetic fields, Ref. [179] found a total suppression

of the charge gap in YbB12 with an insulator-metal transition at 46 T for a field direction along

[001], and a transition at 55 T along [111] and [110]. Recent electrical transport measurements

in pulsed magnetic fields [12] saw the resistivity drop by four orders of magnitude from its zero

magnetic field value to a value of 0.3 mΩ·cm above 45 T, which is comparable to the zero-field
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resistivity at around 40 K, slightly below the characteristic temperature set by the gap size from

resistivity and heat capacity measurements.

Fig. 5.2b shows the measured specific heat divided by temperature as a function of tem-

perature in zero magnetic field and magnetic fields up to 14 T. At zero field a finite specific

heat divided by temperature is revealed, unexpected for an insulator, and very similar to SmB6

(Fig. 4.2). It was demonstrated in Chapter 4 in the case of SmB6 that the value of the finite

specific heat divided by temperature γ is sample dependent, with the lowest value realised in the

highest quality samples. It is unclear if a similar variance in γ with sample quality also applies

to YbB12. We find that the local minimum of the specific heat divided by temperature C/T at

T ≈ 10 K to be slightly enhanced with magnetic field, potentially indicating a suppression of

insulating behaviour with magnetic field. At the same time the low temperature upturn in zero

magnetic field gets suppressed with increasing field, suggesting a magnetic impurity origin. We

fit to the low temperature tail of the specific heat by assuming a finite specific heat divided by

temperature contribution γ and a two-level Schottky contribution CSc/T . The inset to Fig. 5.2b

shows the resulting fits with the peak of the Schottky anomaly pushed higher in temperature

with increasing magnetic field, corresponding to an increase in the Schottky energy gap from

a value of 10 K at 0 T to 23 K at 14 T. We find a γ of 22 mJ·mol−1·K−2 at 0 T, increasing

to 23 mJ·mol−1·K−2 at 14 T. This is comparable to the value found by Ref. [169], but larger

than the γ = 4 mJ·mol−1·K−2 found for the samples exhibiting a low-temperature resistivity

plateau [175]. The latter study is limited to magnetic fields of 12 T and lower, so it is possible

that the linear specific heat coefficient might reach a higher value in the overlapping region

between quantum oscillations and the insulating state. Indeed, a strong magnetic field depen-

dence is expected based on Ref. [163], which found a dramatic increase in γ with magnetic

field, going from 5 mJ·mol−1·K−2 at 0 T to reaching a value of 60 mJ·mol−1·K−2 at 49 T.

5.3 Quantum oscillations in the magnetic torque of YbB12

The compendium of shared physical properties, together with a few particular differences

between the two materials, made for an interesting case as to whether quantum oscillations
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Fig. 5.3 (a) Measured magnetic torque of a YbB12 crystal with the magnetic field applied
13◦ away from the [001] crystal direction in the [001]-[111]-[110] rotation plane, showing a
non-polynomial background torque due to the proximity of the insulator-metal transition, with
de Haas–van Alphen oscillations superimposed (each oscillation peak is marked by arrows).
(b) The de Haas–van Alphen oscillations after subtracting out the background, revealing clear
oscillations down to 26 T.

could also be observed in YbB12. We carried out torque magnetometry measurements on

floating zone-grown single crystals in DC high magnetic fields as described in Chapter 3. We

find de Haas–van Alphen oscillations superimposed on a large torque background (Fig. 5.3a),

that becomes non-polynomial towards higher fields due to the proximity of the insulator-metal

transition. After subtraction we see a clear oscillation pattern down to lower fields (Fig. 5.3b).

Fourier transform reveals two main frequency peaks of ≈ 300 T and ≈ 700 T (Fig. 5.4a).

Plotting the temperature dependence of the amplitude of the oscillations and fitting with the

Lifshitz–Kosevich equation yields an effective mass of m∗/me = 3(1) for the lower frequency,

and m∗/me = 7(2) for the higher frequency (Fig. 5.4b). Such heavy effective masses are

unexpected for YbB12, as both SmB6 [10, 29], the closest Kondo insulator analogue, and

LuB12 [11, 180, 181], a metallic dodecaboride, have large Fermi surfaces with light effective

masses, and instead suggests the existence of a heavy Fermi surface consisting of small pockets.

Based on our measurements [11] and those of Ref. [12] the onset field of the oscillations

appears to be angle dependent, with sizable oscillations visible from as low in magnetic field
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Fig. 5.4 (a) The Fourier transform of the measured magnetic torque near the [001] direction for
a magnetic field window of 35 T and 45 T, revealing two oscillation frequencies at 300 T and
700 T. (b) The Lifshitz–Kosevich plot corresponding to each oscillation frequency, revealing
heavy effective masses for both frequencies. The lines represent fits with the Lifshitz–Kosevich
model.

as 37 T near the [001] direction, but pushed higher in field with increasing angle, with no

oscillations visible below 45 T for angles past θ = 60◦ (in the [001]-[111]-[110] rotation plane).

Whilst we have identified two main oscillation frequencies, we are not able to construct an

angular dependence plot, as we are limited in magnetic field at higher angles. The angular

dependence of the onset field of the oscillations appears to be tracking the insulator-metal

transition as a function of angle [179], but preceding it by ≈ 10 T, revealing a region in the

phase diagram where quantum oscillations and the Kondo charge gap both prevail.

We next turn to the absolute amplitude of the oscillations. Due to the precise descriptive

power of the Lifshitz–Kosevich equation, comparison of the measured amplitude of the torque

oscillations to its theoretical value can give important insight into the origin of the oscillations

(see similar discussion for SmB6 in Chapter 4). Fig. 5.5 shows the magnetic torque in absolute

units of µB per unit cell as a function of inverse magnetic field for YbB12. The dashed

envelopes represent the best fit for the exponential damping term due to impurity scattering

(RD = exp(−B0/B)). Based on Chapter 2, we estimate the theoretical amplitude of the intrinsic

quantum oscillatory magnetic moment, taking into account the angular anisotropy term, Dingle

and spin-splitting damping factors, taken to be between 1 − 4 × 10−4 µB per unit cell at
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Fig. 5.5 The magnetic torque in absolute units of µB per unit cell as a function of inverse
magnetic field for YbB12. The dashed lines are the envelope of the quantum oscillations from
the exponential damping due to impurity scattering (RD = exp(−B0/B)), for a damping factor
B0 of ≈ 100 T. We find good order of magnitude agreement with the theoretical value predicted
by the Lifshitz–Kosevich equation.

F/B = 6.9 (B = 43.5 T) for YbB12. These values are in good order of magnitude agreement

with the measured amplitude in Fig. 5.5, indicating that the oscillations observed arise from the

bulk volume of the sample, rather than from impurity domains, or from surface states, both

of which could only correspond to tiny volume fractions of the sample, and therefore would

lead to orders of magnitude disagreement between theory and measurement. We note a marked

increase in amplitude in this figure when approaching the insulator-metal transition. This again

suggests an insulating bulk origin for the observed oscillations, rather than impurities or surface

states, as such an enhancement due to the bulk becoming metallic would not be expected for

an already conductive channel in the material. The case for two-dimensional surface states in

YbB12 is made even weaker by the lack of electrical transport evidence for such states, and in

the case of our samples the lack of a low temperature plateau in resistivity.

Since our publication on de Haas–van Alphen oscillations in YbB12 [11], Ref. [12] has

reported Shubnikov–de Haas oscillations below the insulator-metal transition in the resistivity
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of YbB12. From theoretical considerations, Shubnikov–de Haas oscillations should have higher

sensitivity to potential conductive surface states than torque magnetisation measurements.

However, the Shubnikov–de Haas oscillations in Ref. [12] are associated with the bulk insulating

state on the basis of the flat angular dependence of the oscillation frequency, whereas the de

Haas–van Alphen oscillations are associated with surface states based on limited angular

dependence data. The report does not provide any further arguments why the bulk-sensitive

torque magnetisation measurements would pick up oscillations from surface states, whereas

transport measurements sensitive to conductive surface states pick up bulk oscillations, and

the distinction appears to be only made to address the discrepancy between the oscillation

frequencies identified by the two measurement techniques. Likely, further measurements are

needed, which could consolidate whether the techniques see the same Fermi surface or two

different ones.

5.4 A Fermi surface mirroring a heavy semimetal

We explore the origin of the unique heavy Fermi surface in YbB12 and contrast it with the light

conduction electron Fermi surfaces found for Kondo insulating SmB6 [29, 34] and the metallic

dodecaboride analogue of YbB12, LuB12 [11, 180, 181]. The application of band structure

calculations to obtain the full picture for strongly correlated systems is often tricky, but can still

give valuable intuition about the system.

Early band structure calculations struggled to capture the most crucial properties of YbB12

(either finding no band gap [182], or no mixed valency [183]). Techniques that are more

suited for semiconductors and insulators, and usually give more accurate band gap values, have

fared much better. Ref. [173] using the Gutzwiller approximation arrived at a valence of +2.9,

and Ref. [11] (the calculation we will discuss presently), using the modified Becke-Johnson

potential, finds a valence of +2.8 (Fig. 5.7a), close to experimentally observed values [168,

170, 171]. These band structure calculations reproduce the Kondo gap originating from the

hybridisation between flat ytterbium f -bands and boron conduction bands. But how could there

be a Fermi surface when there is no quasiparticle weight at the Fermi level?
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Fig. 5.6 (a) Band structure calculation of metallic LuB12 from -15 eV to 15 eV. Green bands
refer to the lutetium f -electron bands, orange bands are lutetium d-electron bands, while boron
bands are in purple. (b) The Fermi surface sheets of LuB12. (c) Magnetic torque measured at
1.8 K in LuB12 along the [110] symmetry direction with quantum oscillations originating from
several frequencies. (d) The temperature dependence of the quantum oscillation frequency
Fourier peaks. The inset shows the size of the peak of the main 4.2 kT frequency as a function
of temperature. Using a Lifshitz–Kosevich fit (dashed line in inset) we find the effective masses
m∗/me to be 0.4, 0.5, and 0.5 for the frequencies 2.9 kT, 3.0 kT, and 4.2 kT, comparable to the
expectation from band structure calculations. Such large frequencies and the corresponding
light effective masses are unlike those found in YbB12. Adapted from Ref. [11], with band
structure calculations performed by Michelle D. Johannes.

For SmB6, the important clue was the identification of a large Fermi surface of light

masses, similar to the conduction electron Fermi surface of metallic hexaborides, particularly

LaB6 and PrB6 [10]. This suggests a scenario where the hybridisation ceases, and allows

quasiparticles to reside in the decoupled conduction bands. We explore whether a similar

inference could be reached from the measured Fermi surface of YbB12, by comparing it to

the conduction Fermi surface of metallic dodecaborides, in this case LuB12. Band structure

calculation for LuB12 shown in Fig. 5.6a reveals light boron bands crossing the Fermi level,

with the lutetium d-bands and f -bands located well away from the Fermi level, in agreement
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Fig. 5.7 (a) Band structure calculation of YbB12 from -15 eV to 15 eV, and for a narrower
range near the Fermi energy EF in (b). Green bands refer to the ytterbium f -electron bands,
and orange bands are ytterbium d-electron bands, while boron bands are in purple. (c) The
calculated electron Fermi surface for a small negative energy shift of the conduction bands,
and the corresponding angular dependence of the quantum oscillation frequencies in the [001]-
[111]-[110] rotation plane. (d) The calculated hole Fermi surface for a positive energy shift
of the valence bands, and the corresponding angular dependence of the quantum oscillation
frequencies in the same rotation plane. For both calculations we find small Fermi surface
pockets with heavy masses (≈ 6 electron masses for the electron pockets, and ≈ 9 electron
masses for the hole pockets). (e) The first Brillouin zone of a face-centred cubic unit cell
marking the special reciprocal lattice positions. Adapted from Ref. [11], with band structure
calculations performed by Michelle D. Johannes.

with earlier calculations [180, 183, 184]. We find big Fermi pockets, as shown in Fig. 5.6b,

with low effective masses. We also carried out torque magnetisation measurements on single

crystals of LuB12 to see if quantum oscillation measurements on LuB12 single crystals grown

by the same group as our YbB12 single crystals would reproduce this result. We identified

quantum oscillation frequencies in the kT range with effective masses of around 0.5 bare

electron masses (Fig. 5.6c-d), in good agreement with the band structure calculations and
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earlier quantum oscillation measurements [180, 181]. No commonalities are found with the

small, heavy pockets identified by our YbB12 measurements. The analogy of a conduction

electron Fermi surface that shows good resemblance to the measured Fermi surface of SmB6

does not give the right Fermi surface for YbB12, and we thus need to consider other scenarios.

We next consider what would be the resulting Fermi surface with a relative shift of the

energy levels near the Fermi level. This could potentially be a Zeeman splitting, which could

be brought about by the applied magnetic field. These bands are flat due to the localised

f -electrons, and are expected to yield heavy effective masses. Fig. 5.7c shows the resulting

Fermi surface consisting of twelve small ellipsoidal electron pockets for a small negative shift

of the conduction bands, and Fig. 5.7d shows the resulting Fermi surface of eight peanut-shaped

hole pockets for a small positive shift of the valence bands. For both calculations we find small

Fermi surface pockets with heavy masses of around ≈ 6−9 electron masses. This represents

an effective scenario to yield a Fermi surface comparable to a heavy fermion semimetal picture

with both electron and hole pockets.

5.5 Evolution in onset of quantum oscillations as a clue to

the Fermi surface origin

Thermodynamic signatures in both YbB12 and SmB6 suggest it is novel quasiparticles, which

only couple to a magnetic field, that give rise to the observed Fermi surfaces. Yet, we find two

very different Fermi surfaces, indicating that the two Kondo insulators represent two different

avenues for realising this novel state. Uniquely for YbB12, the applied magnetic field seems to

be an important tuning parameter. The sensitivity to an applied magnetic field is manifested in

the intrinsic quantum oscillations whose onset tracks the insulator-metal transition as a function

of angle. We find a region in the phase diagram with strong intrinsic quantum oscillations that

overlaps with the insulating phase. Its extent reaches lower magnetic fields along angles where

the applied field is more potent at weakening the insulating state.

The tuning power of the magnetic field on YbB12 is further demonstrated by Fig. 5.8a,

that shows the band gap as a function of applied magnetic field for YbB12. We note that

80



5.5 Evolution in onset of quantum oscillations as a clue to the Fermi surface origin

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 00
1
2
3
4
5
6

0 5 1 0 1 5 2 00
1
2
3
4
5
6i n s u l a t o r m e t a l

 Z .  X i a n g  e t  a l .
 K .  S u g i y a m a  e t  a l .

∆ b
an

d g
ap

 (m
eV

)

B  ( T )

a

Y b B 1 2

i n s u l a t o r m e t a l

J .  D e r r  e t  a l .

∆ a
ctiv

ati
on

 (m
eV

)

p  ( G P a )

b

S m B 6

Fig. 5.8 (a) The hybridisation gap or band gap ∆bg of YbB12 as a function of magnetic field
applied along the [001] direction [12, 166]. The dashed line is a guide to the eye. YbB12
undergoes an insulator-to-metal transition at a magnetic field of ≈ 46 T [12, 166, 179]. (b)
The activation gap ∆ of SmB6 as a function of applied pressure for a floating zone-grown
sample [52]. The dashed line is a guide to the eye. SmB6 undergoes an insulator-to-metal
transition at an applied pressure of ≈ 10 GPa. We note that the Arrhenius fit can lead to
different gap energies depending on the temperature range used, and care should be taken when
gap values are compared between different reports. In (a) garnet triangles mark the band gap
energies for a range of 5 K to 12 K [166], while orange squares are band gap energies for range
of 4 K to 12 K [12], making the comparison between them apt. In (b), a temperature range of
10 K to 300 K is used.

in the case of YbB12 the literature more commonly quotes the band gap or hybridisation

energy [12, 166, 175], which is twice the value of the activation gap that appears in the

Arrhenius equation, 1/ρ ∝ exp(−∆/kBT ). In the case of SmB6, the energy value quoted is

usually the activation energy ∆, as it appears in the formula. In Fig. 5.8a we see the band gap

of YbB12 reduce from 5 meV at zero field to ≈ 1 meV before an insulator-metal transition

at ≈ 46 T. We contrast this to the effect of applied pressure on SmB6. Fig. 5.8b shows the

activation gap of SmB6, which reduces as a function of applied pressure, with the insulating

gap terminating at ≈ 10 GPa. In effect, we find the same phase diagram for SmB6 and YbB12,

but for different tuning parameters, namely SmB6 is metallised with applied pressure, and

YbB12 is metallised with applied magnetic field. Interestingly, we see no transition to a metallic

phase with pressure for YbB12 up to 160 GPa [185], and no transition with magnetic field for

SmB6 up at at least 90 T [53].
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The observed conduction electron Fermi surface in SmB6 has been postulated to exist

due to the system’s proximity to a metallic phase, with a still finite charge gap but a closed

gap for neutral quasiparticles, and a delicate dependence on the applied pressure or chemical

pressure of the sample [29]. We highlight a similar scenario for YbB12, where the proximity to

a metallic phase exists in the magnetic phase diagram, and field tuning leads to a Fermi surface

mirroring that of a heavy semimetal. Whilst the character of the Fermi surface is different

from that of SmB6, we identify a closely related origin from novel quasiparticles as ascertained

by the thermodynamic signatures, and a finite band gap up to the insulator-metal transition.

However, many aspects of our results are still unclear. We are still missing a complete angular

dependence of the oscillation frequencies. Further measurements are also needed to discern

whether the Shubnikov–de Haas and de Haas–van Alphen oscillations could be consolidated,

and to see what happens to the Fermi surface at the insulator-metal transition. These future

investigations could aid theoretical efforts to explain the heavy Fermi surface in YbB12, and

whether a common theoretical framework could also describe SmB6.
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Chapter 6

Superconductivity and quantum

oscillations in YBa2Cu3O6.55

6.1 Introduction

In this chapter, we study the nature of quantum oscillations within the high magnetic field

pseudogap ground state. We find that quantum oscillations appear within a high magnetic

field regime that in fact conceals a robust zero resistivity superconducting state with a large

antinodal pairing gap. We identify these quantum oscillations (also presented in Ref. [186]) to

arise from gapless nodal regions of the Brillouin zone, while the antinodal regions are strongly

gapped, resembling the anisotropic pseudogap state at high temperatures [187, 188]. We thus

return to the question of how quantum oscillations are to be interpreted within a non-Fermi

liquid picture [189].

6.2 Previous explorations of the Brillouin zone of underdoped

YBa2Cu3O6+x

Spectroscopic techniques were first to examine the electronic structure of the cuprates. They

found large Fermi-liquid-like hole pockets for overdoped Bi2Sr2CaCu2O8+x, but surprisingly
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Tc

Hc2

Fig. 6.1 (a) The orthorhombic unit cell of YBa2Cu3O6+x with two CuO2 planes and one CuO
chain per unit cell. Doping increases the oxygen content in the chains, in turn transferring holes
to the superconducting CuO2 planes. Adapted from Ref. [190]. (b) A schematic phase diagram
of the cuprate superconductors as a function of doping highlighting the many orders that are
at play. In this Chapter we focus on the high magnetic field ground state of the underdoped
pseudogap regime that is host to quantum oscillations, as shown by an extension of the phase
diagram along a third axis corresponding to applied magnetic field in the schematic.

found no evidence for a coherent Fermi surface in underdoped samples, and instead identified

disconnected Fermi arcs located in the nodal regions [191, 192]. Spectroscopic measurements

on YBa2Cu3O6+x proved to be more difficult, as the surface of cleaved samples self-dope to

a very high oxygen content. Doping-dependent measurements were only realised by surface

doping with with potassium, which revealed Fermi arcs similar to those observed for other

cuprates (see Fig. 6.2a) [193]. The Fermi arcs highlight the nodal-antinodal dichotomy that

characterises the pseudogap phase of the phase diagram. The pseudogap has a maximum in the

antinodal regions of the Brillouin zone, but goes to zero at the nodes, presaging the analogous

momentum-dependence of the superconducting gap below Tc. Oxygen doping seems to weaken

the pseudogap, with the size of the ungapped Fermi arcs increasing with doping and leading to

the closed Fermi surface observed on the overdoped side [194].

Quantum oscillations were observed for overdoped Tl2Ba2CuO6+x, finding a large hole

pocket [196], following the canon established by spectroscopic measurements. What came as a

surprise was when quantum oscillations were discovered in underdoped YBa2Cu3O6+x [15],

the side of the phase diagram without a coherent Fermi surface. Quantum oscillation mea-
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Fig. 6.2 The Fermi surface observed by ARPES for T < Tc (a) in underdoped YBa2Cu3O6+x
(p = 0.11, achieved by surface doping) [193], revealing a partially gapped Brillouin zone with
nodal Fermi arcs, and (b) in overdoped Tl2Ba2CuO6+x (p = 0.25) [195], revealing large hole
pockets.

surements revealed a small electron pocket, much smaller than the hole pockets found for

the overdoped side (see Fig. 6.3). The same pocket was identified by magnetic torque [189]

electrical transport [15], specific heat [197], thermal conductivity [18] and thermoelectricity

measurements [198]. The oscillations were confirmed to originate from well-defined quasiparti-

cles obeying Fermi-Dirac statistics [199]. A close connection with charge order was suggested

by the comparable range of dopings where quantum oscillations were observed (hole dopings

between p = 0.08 and 0.15 [31, 200]), and the range of dopings with charge density wave

correlations (hole dopings between p = 0.08 and 0.16 [201]). Whilst the frequency of the

oscillations was found to only modestly increase with doping, a much stronger dependence

on doping was found for the effective mass, which diverges when approaching hole dopings

p = 0.08 and 0.18 [31, 200]. The effective mass has a minimal value near p = 0.11, which

coincides with the doping that has the lowest onset field of quantum oscillations.

One of the central questions became how Fermi arcs could be related to the coherent

Fermi surface observed by quantum oscillations. Proposals identified the role of translational

symmetry breaking in Fermi surface reconstruction schemes that could yield the observed
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Fig. 6.3 The strikingly different quantum oscillation frequencies seen for underdoped and
overdoped cuprates. Measurements on overdoped Tl2Ba2CuO6+x (p ≈ 0.26) [196] find a large
hole pocket centred at the corners of the Brillouin zone (green cylinder), in accordance with
ARPES results. Surprisingly, quantum oscillations in underdoped YBa2Cu3O6+x (p = 0.11)
reveal an electron pocket thirty times smaller (red diamond), which cannot be trivially reconciled
with the disjointed Fermi arcs seen by ARPES. Adapted from Ref. [202].

electron pockets [203]. Experimental progress through detailed quantum oscillation mea-

surements [204] confirmed that the measured Fermi surface originates from reconstruction

by ordering wavevectors, that match the incommensurate wavevectors measured by X-ray

[205, 206]. The Fermi surface geometry inferred from quantum oscillation measurements is

compatible with a charge superlattice model that places the electron pocket near the nodal

regions, answering another important question, the location of the pocket. A similar small

electron pocket with staggered twofold warping was identified for YBa2Cu4O8 [207], the stoi-

chiometric analogue of YBa2Cu3O6+x. Curiously, YBa2Cu4O8 does not show charge density

wave correlations in zero magnetic field [205], suggesting that the magnetic field plays an

important role in enhancing charge order. Quantum oscillations in the pseudogap regime have

only been observed for one other hole-doped cuprate, HgBa2CuO4+x [32]. It has a simpler,

tetragonal unit cell, with only one CuO2 plane and no CuO chains. A similarly small electron

86



6.2 Previous explorations of the Brillouin zone of underdoped YBa2Cu3O6+x

Γ

(0,0)

(-π/a,-π/b)

(π/a,π/b)

kx

ky

Antinodal
region

Electron
pocket

Hole
pocket

Qx

Qy

Γ

(0,0)

(-π/a,-π/b)

(π/a,π/b)

kx

ky

Qx

Qy

Γ

(0,0)

(-π/a,-π/b)

(π/a,π/b)

kx

ky

Γ

(0,0)

(-π/a,-π/b)

(π/a,π/b)

kx

ky

Electron
pocket

Open
sheet

S
ce

na
rio

 1
:

S
ce

na
rio

 2
:

B = 0 T B > 0 T

a

c d

b

Fig. 6.4 Possible scenarios of the Fermi surface in underdoped YBa2Cu3O6+x. The crucial
difference concerns whether the Fermi arcs observed by ARPES are part of a larger Fermi
surface, but the antinodal parts are not observed due to fluctuations (scenario 1), or the Fermi
arcs are sharply defined objects with the complete gapping of the rest of the Brillouin zone
(scenario 2). High magnetic field measurements are expected to reveal distinguishing features,
as the Fermi surface in scenario 1 reconstructs into an electron pocket accompanied by two
hole pockets and open Fermi surface sheets [209], whereas in scenario 2 it reconstructs into a
single isolated nodal electron pocket. Proposed reconstruction schemes include biaxial [210]
and uniaxial charge order [211, 212].

pocket was observed, but without any side-frequencies, and therefore no bilayer splitting, and

was interpreted in terms of reconstruction by a biaxial charge density wave. In contrast, the

nature of the charge order leading to the Fermi surface reconstruction in YBa2Cu3O6+x and the

role of magnetic field remain open questions, with spectroscopic evidence for both biaxial and

uniaxial charge density wave [208].
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It is important to examine the nature of the pseudogap, and in turn its role on the observed

Fermi surface. We distinguish between two scenarios. In one scenario the absence of antinodal

quasiparticles measured at elevated temperatures arises due to thermal or classical fluctuations,

and the Fermi arcs are constituents of a large hole pocket (Fig. 6.4a). In an alternative scenario

the Fermi arcs are isolated features of the Brillouin zone with a complete gapping of antinodal

quasiparticles (Fig. 6.4c). The former scenario is consistent with the pseudogap due to thermal

or classical fluctuations, whereas the latter scenario would require an additional order parameter

associated with the pseudogap [103, 213–216]. This also has implications on the Fermi surface

that evolves under the effect of charge density wave order in high magnetic fields, particularly

on the number of sections present in the Fermi surface. In the first scenario the nodal electron

pocket is joined by two smaller hole pockets and open sheets near the antinodes (Fig. 6.4b),

whereas in the second scenario the Fermi surface consists solely of an isolated nodal electron

pocket (Fig. 6.4d). In the next section we present recent quantum oscillations measurements

that probe the momentum space to establish which scenario manifests in high magnetic fields.

6.3 Isolated nodal Fermi surface in YBa2Cu3O6.55

We distinguish between the two scenarios based on whether their respective signatures manifest

in the measured quantum oscillations. One of the main constituents of the Fermi surface

predicted by the first scenario are the small hole pockets. They would be expected to pro-

duce a second oscillation frequency, a fraction of the main frequency, and to appear in both

de Haas–van Alphen and Shubnikov–de Haas oscillations. Ref. [217] presented c-axis resis-

tivity data that indicated an F ≈ 90 T oscillation frequency, that they could trace over 1.5

oscillation periods, and associated it with the small antinodal hole pockets. If they exist, these

pockets should also lead to oscillations in the de Haas–van Alphen effect, with an amplitude

that is comparable to that of the main frequency based on Lifshitz–Kosevich theory [13, 186].

However, in all de Haas–van Alphen studies so far [204, 218], and in our own measurements

also, there has been no evidence for such a frequency. A possible explanation for the absence

of this frequency in de Haas–van Alphen measurements could be quantum interference [219],
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6.3 Isolated nodal Fermi surface in YBa2Cu3O6.55

which leads to a slow frequency, that does not correspond to any Fermi pockets, to appear solely

in the Shubnikov–de Haas effect. A conclusive investigation of this frequency is made difficult

by the high onset field of the quantum oscillations. This limits the number of oscillation periods

that would occur between 20 T and 100 T to three, and makes it challenging to establish the

periodicity of any minor oscillating features.

The Fermi surface predicted by the first scenario also comprises open sheets located in the

antinodal regions. Whilst open sheets do not yield quantum oscillations, they are expected

to alter the waveform of quantum oscillations produced by closed pockets. The shape of

the waveform varies with the relative contribution from open sheets, as demonstrated by

high magnetic field measurements of organic superconductors [220, 27]. Conversely, the

absence of open sheets also leads to a particular waveform, giving us a quantitative method of

assessing whether open sheets are present and contributing to the measured oscillations. Such

studies on YBa2Cu3O6+x have been challenging, but here we present high-resolution quantum

oscillation measurements on YBa2Cu3O6.55 (hole doping of p = 0.108) as a result of improved

sample quality and measurement sensitivity. This is demonstrated by a comparison to quantum

oscillations measured on a previous generation of samples (Fig. 6.5a). We find the damping due

to impurities for our present samples to be significantly lower than for the previous generation

of samples, as demonstrated by the Fourier transform of the measured oscillations. We resolve

five Fourier harmonics and a corresponding lower rate of exponential decay (shown by the

dashed lines in Fig. 6.5b, quantified by the damping factor Γ′, see Chapter 2), as opposed to

only three Fourier harmonics resolved for the previous generation of samples and a higher rate

of decay. We make a comparison of the amplitude of the quantum oscillations by rescaling

them to match in the infinite magnetic field limit (F/B → 0) using the extrapolation made in

Fig. 6.5b. The Dingle damping factor of our present samples is found to be Γ′ = 83 T, which is

significantly lower than that of the previous generation of samples (Γ′ = 140 T [204]).

For most measurement angles the quantum oscillations feature a beat pattern caused by

additional frequencies that appear due to interlayer coupling and magnetic breakdown [204].

We avoid the complications this would cause with the waveform analysis by performing

measurements with the magnetic field applied at θ = 36◦ with respect to the crystalline c-axis,
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Fig. 6.6 Quantum oscillations observed for underdoped YBa2Cu3O6.55 (hole doping of
p = 0.108) at T = 1.5 K in (a) contactless resistivity, and (b) magnetic torque in pulsed
magnetic fields. The oscillations exhibit a prominent beat pattern for small angles, necessitat-
ing measurements at angles near 36◦, where there is only a single oscillation frequency, and
therefore no beat pattern.

the angle where the waveform consists of only a single frequency as established by previous

angle-resolved measurements [204]. Fig. 6.6a shows contactless resistivity measurements
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Fig. 6.7 The Fourier transforms of the field sweeps shown in Fig. 6.6. The second frequency
peak near 1.2 kT corresponds to the second harmonic of the main frequency, with further
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exponential amplitude damping with increasing harmonic index, whilst in panels (c) and (d)
they represent numerical simulations, which we also plot in Fig. 6.8.

performed at θ = 0◦ and 35◦ with sizeable quantum oscillations with and without a beat pattern,

and Fig. 6.6b shows comparable quantum oscillations measured in torque magnetisation at

θ = 0◦ and 36◦. Even before background subtraction the oscillations appear asymmetric,

caused by the rich harmonic content. We determine the sign of the quantum oscillations by

measuring the sign of the magnetic hysteresis caused by vortex pinning during the up- and

down-sweeps of the magnetic field. Fig. 6.7 shows the corresponding Fourier transforms for

the oscillation periods at the highest magnetic fields, where the harmonics are best resolved.

In Chapter 2 we discussed the Lifshitz–Kosevich theory, that described quantum oscillations

produced by an ideal two-dimensional Fermi surface with zero reservoir density of states at the
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Superconductivity and quantum oscillations in YBa2Cu3O6.55

Fermi level (i.e. no open sheets, or additional sections of Fermi surface that are excessively

damped). The chemical potential is constant and all the harmonics have the same sign, and

contribute in a way that the de Haas–van Alphen waveform is a perfect forward-leaning sawtooth

wave when all phase smearing terms saturate to unity (T = 0 K, zero impurity damping and

no spin-splitting). With phase smearing the higher harmonics are exponentially suppressed,

resulting in a sinusoidal waveform. The presence of one-dimensional open sheets, however,

has been shown to lead to an altered waveform at high magnetic fields, where the chemical

potential becomes pinned to the highest occupied Landau level and therefore oscillates with

the magnetic field [27]. The relative amplitude and the sign of each harmonic component

becomes dependent on the open sheets’ contribution to the density of states at the Fermi level

(the reservoir density of states denoted ζres), which leads to the waveform of the oscillations

to becoming more backward-leaning with increasing reservoir density of states ζres. In the

limit of only open sheets contributing to the density of states the waveform becomes a perfect

inverted sawtooth [27]. Here, we analyse the shape of the observed quantum oscillations in

both magnetisation and contactless resistivity. We determine the relative size and sign of

each harmonic to quantify the size of the reservoir density of states ζres with respect to the

two-dimensional Fermi surface density of states ζ2D,0.

In Fig. 6.8a we plot three periods of the measured quantum oscillations in magnetisation

(first derivative of the chemical potential µ), and in magnetic susceptibility and contactless

resistivity (second derivative of µ with respect to applied magnetic field). We find that the

waveform shows striking similarities to the quantum oscillation waveform observed for GaAs,

an ideal two-dimensional electron gas with zero reservoir density of states (Fig. 6.8c). The

important features that are displayed by both materials are the forward-leaning sawtooth

waveform in magnetisation, and the inverted U-shaped waveform in the magnetic susceptibility

and contactless resistivity. We find a good match with a model simulation for a complete

absence of reservoir density of states (black line). The simulations predict the amplitude of

the harmonics to decay exponentially with harmonic number (upper panel of Fig. 6.8b) and to

have the same sign as the main frequency (lower panel of Fig. 6.8b), mirroring the results for

GaAs (Fig. 6.8d). We find the same behaviour for YBa2Cu3O6.55, with the resistive oscillations
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Fig. 6.8 Comparison of the shape of the quantum oscillation waveform of YBa2Cu3O6.55
and GaAs [221], a two-dimensional electron gas with zero reservoir density of states. (a)
The observed oscillations in magnetisation (red), magnetic susceptibility (red) and contactless
resistivity (blue) overlayed with simulated quantum oscillations (black), reveal forward-leaning
sawtooth oscillations, similar to what has been observed for GaAs. Corresponding Fourier
transform of (b) YBa2Cu3O6.55, and (d) GaAs showing the exponential decay of successive
harmonics. The lower panels show the logarithm of the Fourier transform amplitude multiplied
by the sign of each Fourier transform peak as inferred from their phase. The forward-leaning
sawtooth waveform and linear decrease of the logarithmic amplitude of successive harmonics
in both materials are consistent with the expectation for an isolated two-dimensional Fermi
surface with no background reservoir density of states.

revealing four harmonics and the magnetic oscillations revealing three harmonics, with the

amplitudes of the harmonics falling on an exponential curve.

Next, we explore the key signatures of quantum oscillations for materials with one-

dimensional open sheets. Fig. 6.9 shows the de Haas–van Alphen oscillations of YBa2Cu3O6.55
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Fig. 6.9 Comparing the de Haas–van Alphen oscillations observed for (a-d) YBa2Cu3O6.55
(ζres/ζ2D,0 ≈ 0) to (e-h) that of an organic metal with reservoir density of states comparable in
size to the main two-dimensional Fermi surface density of states (ζres/ζ2D,0 = 0.4) [27, 222],
and (i-l) an organic metal with a very large reservoir density of states (ζres/ζ2D,0 = 5) [220].
The waveforms display noticeable differences, arising from the amplitude and sign of the
harmonics that are dependent on the size of the reservoir density of states (see panels (d), (h)
and (l)).

with forward-leaning oscillations, contrasted with α-(BEDT-TTF)2KHg(NCS)4, an organic

metal with reservoir density of states comparable in size to the main two-dimensional Fermi

surface density of states (ζres/ζ2D,0 = 0.4) [27, 222], and β ′′-(BEDT-TTF)2SF5CH2CF2SO3,

an organic metal with a very large reservoir density of states (ζres/ζ2D,0 = 5) [220]. For the

latter, the quantum oscillations in magnetisation display a clear inverted sawtooth waveform,
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6.3 Isolated nodal Fermi surface in YBa2Cu3O6.55

with the derivative displaying a U-shaped waveform, the opposite of what we observed for

YBa2Cu3O6.55. We find the amplitude of the harmonics to decay exponentially with harmonic

number (upper panel of Fig. 6.8b) and to have an alternating sign with increasing harmonic

number. For α-(BEDT-TTF)2KHg(NCS)4 (ζres/ζ2D,0 = 0.4), we find forward-leaning saw-

tooth oscillations in the magnetisation (theory predicts the waveform to become inverted for

ζres/ζ2D,0 > 1 [27]), and the derivative to display flat top peaks, which are caused by the

negligible third harmonic, and lower harmonics that have opposite signs to the main harmonic.

For a quantitative analysis on whether the quantum oscillations of YBa2Cu3O6.55 have any

contributions from a reservoir density of states, we treat the reservoir size as a variable and

look for the simulated waveform that gives the best agreement with the measured waveform.

We plot the simulated amplitude of each harmonic relative to the amplitude of the fundamental

frequency as a function of reservoir size (marked by solid lines in Fig. 6.10). We make

a comparison to the measured relative amplitudes of the harmonics, which are marked by

horizontal dotted lines. The best agreement is determined based on where they cross the

simulated lines. By aggregating all the harmonics we determine that the best agreement is for a

reservoir size of ζres/ζ2D,0 = 0.01±0.03. This is a robust conclusion based on the results of

two measurement techniques, and quantum oscillations with and without a beat pattern.

Thus, we confirm the absence of reservoir density of states at the Fermi level in YBa2Cu3O6.55

with an upper bound of 0.03×ζ2D,0. This is demonstrated by the forward-leaning sawtooth

waveform resembling that of GaAs, the exponential decrease of successive harmonic ampli-

tudes, and the quantitative comparison with simulations. Combined with the missing slower

frequency oscillations in the de Haas–van Alphen effect [186], that would be expected for the

antinodal hole pockets, we confirm that the Fermi surface is comprised of a single isolated

Fermi surface pocket, as put forward by the second scenario. This is consistent with the low

value of the finite linear specific heat coefficient [197], and the lack of any quasiparticle spectral

weight in the antinodal regions as found by spectroscopy measurements [223]. Our results

constrain future models of the pseudogap phase to those characterised by sharply truncated

Fermi arcs with a hard antinodal gap.
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Fig. 6.10 The relative amplitude of the harmonics to the amplitude of the fundamental frequency
as a function of the size of the reservoir density of states, simulated for magnetic susceptibility
(panel (a)) and resistivity (panels (b) and (c)), as shown by solid curves. The measured relative
amplitude of the harmonics are marked by dashed horizontal lines. The best agreement with
the simulations is determined based on where they cross the simulated lines (marked by black
squares). The arithmetic mean of the harmonics results in the size of the reservoir density of
states ζres to be 1% of the main Fermi surface density of states ζ2D,0 with a standard error of
3%.

6.4 Magnetic field resilient low-temperature superconduc-

tivity

Intriguingly, the similarities that we find between the pseudogap state and the nodal Fermi

surface are at odds with the previously held view, that the quantum oscillations are the property

of a conventional metallic state. This would require the superconducting order parameter to
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Fig. 6.11 Magnetic field sweeps of the in-plane electrical resistivity of YBa2Cu3O6.55 (hole
doping p = 0.108, panels (a-d)) and YBa2Cu3O6.75 (hole doping p = 0.132, panels (e-h)) for
different temperatures and measurement currents. We denote the onset field of finite electrical
resistivity µ0Hr as the field above which the measured resistivity reaches 10−3 mΩcm. A
measurement current of I = 1 mA converts to a current density of j ≈ 5 Acm−2. We see
a current-dependence of the resistivity that becomes more striking at lower temperatures,
specifically the fanning of the resistivity curves and the increase of µ0Hr as a function of
applied current. We see the persistence of superconductivity up to the highest magnetic fields at
the lowest temperatures (panels (a) and (e)). (i-j) Temperature sweeps of the in-plane electrical
resistivity for different applied magnetic fields and measurement currents, revealing narrow
transition widths for all applied magnetic fields and measurement currents.

be destroyed by a magnetic field of 20 T, as purported by pulsed field electrical transport

experiments [18]. However, with these studies being limited to temperatures above 4 K,

and conducted in rapidly changing pulsed magnetic fields that generate large eddy currents

(of the order of ≈ 103 Acm−2), it prompts us for a closer inspection of the true extent of

superconductivity.
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Fig. 6.12 The onset field of finite electrical resistivity µ0Hr as a function of measurement
current density for two dopings at three different temperatures. With decreasing temperature,
the current-dependence becomes more significant, with no saturation seen for the current ranges
we employed.

We employed DC fields up to 45 T and a wide range of measurement currents (spanning

three orders of magnitude, with j = 0.05−25 Acm−2). We studied two dopings, YBa2Cu3O6.55

(hole doping p = 0.108) and YBa2Cu3O6.75 (hole doping p = 0.132), which Ref. [18] found

to enter the normal state at 24 T and 30 T, respectively. We performed magnetic field sweeps

at fixed temperatures, which we repeated for several measurement currents, allowing us to

identify the onset magnetic field of finite resistivity µ0Hr as a function of both temperature and

measurement current. Fig. 6.11a-h shows such magnetic field sweeps performed at different

temperatures and measurement currents for YBa2Cu3O6.55 and YBa2Cu3O6.75. We find an

increasing current-dependence with decreasing temperature, with temperatures below 4 K

showing marked non-ohmic I-V dependence. Surprisingly, we also find the onset magnetic field

of finite resistivity µ0Hr to become current-dependent at low temperatures, with µ0Hr(T =

0.44 K) for YBa2Cu3O6.55 varying by more than 10 T with measurement current (Fig. 6.11b).

Even more importantly, when using low measurement currents (30 µA and below) we find no

suppression of superconductivity up to 45 T at T = 0.04 K in the case of YBa2Cu3O6.55, and at
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Fig. 6.13 Magnetic susceptibility measurements (zero field cooled) at an applied magnetic
field of 0.2 mT applied along the c-axis on the same crystals we employed for the electrical
transport measurements, revealing sharp transition widths, at least five times narrower than
observed for the previous generation of samples, indicative of high sample quality.

T = 0.44 K in the case of YBa2Cu3O6.75, in direct contrast with pulsed field measurements [18].

In Fig. 6.12 we plot µ0Hr as a function of current for different temperatures. The increase in

the onset field with decreasing current becomes more significant at lower temperatures. This

figure also shows the expected increase of µ0Hr with doping. It displays no saturation in the

value of µ0Hr for the measurement currents employed.

We find no evidence for surface or filamentary superconductivity, with sharp superconduct-

ing transitions in the temperature sweeps measured at different magnetic fields and measurement

currents (Fig. 6.11i-j). Homogeneity of the measured samples is also evidenced by the narrow

transition widths found by SQUID magnetic susceptibility measurements performed at low

magnetic fields (Fig. 6.13). We find the transition width to be five times narrower than for the

previous generation of samples with comparable doping.

A plot of the measured values of the onset field µ0Hr as a function of temperature for differ-

ent currents is shown in Fig. 6.14. The magnetic phase diagram revealed by our measurements

shows a sharp upturn in µ0Hr below 15 K, and corresponds to a low-temperature magnetic field

resilient superconducting phase, that remains unsuppressed up to at least 45 T. A similar upturn
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Fig. 6.14 The magnetic phase diagram of (a) YBa2Cu3O6.55 and (b) YBa2Cu3O6.75 based on
electrical transport measurements performed in DC magnetic fields. We find that supercon-
ductivity persists up to the highest magnetic fields upon applying low measurement currents.
The insets show a magnified view of the low-temperature region, with the irreversibility field
values µ0Hirr obtained from magnetic torque measurements of YBa2Cu3O6.55 (see Fig. 6.15),
displaying a facsimile of the phase boundary formed by the finite resistive onset field µ0Hr.

in the onset field of finite resistivity was observed for Tl2Ba2CuO6+x (p ≈0.26) [225], another

cuprate that exhibits quantum oscillations [196]. In the same study, they also found magnetic

torque hysteresis due to vortex pinning up to at least 20 T in pulsed magnetic fields, even though

Tc is only 10 K for this doping. Magnetic torque is a measurement technique that is sensitive

to bulk superconductivity, for this reason we use it as a complementary technique to confirm

the true extent of superconductivity in the magnetic phase diagram. Fig. 6.15a-b show up and

down sweeps of the magnetic torque for YBa2Cu3O6.55 at different temperatures. We see a

hysteretic behaviour caused by vortex pinning, that extends to increasing magnetic fields with

decreasing temperature, with hysteresis persisting up to at least 45 T at 0.04 K, in agreement

with our electrical transport result. We denote the irresistibility field, the extent of the torque

hysteresis in magnetic field, µ0Hirr, and compare it to the onset field µ0Hr determined by
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Fig. 6.15 (a-b) Capacitive torque magnetisation measurements of YBa2Cu3O6.55 when the
magnetic field is swept up and down at 0.04 K (panel (a)), and at higher temperatures (panel
(b)), revealing the characteristic superconducting hysteresis caused by bulk vortex pinning.
The field where the hysteresis terminates marks the irreversibility field µ0Hirr, with its extent
at the lowest temperature surpassing 45 T. This agrees with our inference based on electrical
transport measurements of magnetic field resilient bulk superconductivity in YBa2Cu3O6.55 and
YBa2Cu3O6.75. (c) The critical current density identified by electrical transport measurements
(from Fig. 6.11), and the critical current density obtained from the absolute size of the torque
hysteresis seen in magnetic torque measurements performed on the same sample. We see a
good order of magnitude agreement. The conversion of the absolute size of the torque hysteresis
is based on the Bean model [224].

electrical transport measurements, as shown in the inset to Fig. 6.14a. We find that µ0Hirr is in

good agreement with µ0Hr, tracing the extent of the low current onset field up to the highest

magnetic fields, and thus confirming the existence of a low-temperature magnetic field resilient

superconducting phase by a second measurement technique.

When the magnetic field is swept up/down, vortices leave/enter the sample through its

boundary. This causes a non-uniform flux density profile, and therefore a torque hysteresis, and

can be translated into a lossless critical current that is created to balance out the forces pinning

vortices to defects. It leads to a negative magnetisation when the magnetic field is swept up,

and a positive magnetisation when it is swept down. This is the basic behaviour proposed

by the Bean model of the critical state and applies to the bulk of the sample [224]. With this

in mind, we consider how the critical current from the Bean model compares to the applied
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current we identify from electrical transport measurements that causes vortex depinning and

therefore finite resistance. The Bean critical current is proportional to the absolute size of the

magnetic hysteresis, which we convert into a critical current density. The prefactors vary with

sample geometry, but for a slab the critical current can be approximated to be [226]

jc = 6
∆M
πr

where ∆M is the size of the hysteresis loop in magnetisation (in units of A/m), and r is

the effective sample radius. We plot the critical current obtained this way as a function of

magnetic field in Fig. 6.15c, together with the critical current identified by electrical transport

measurements. We find a good order of magnitude agreement, which represents further

confirmation that our electrical transport measurements probe bulk behaviour.

In light of our findings that superconductivity survives up to at least 45 T in underdoped

YBa2Cu3O6+x, confirmed by both electrical transport and magnetic torque measurements, we

consider past measurements that explored the magnetic phase diagram of YBa2Cu3O6+x. Our

measurements performed in DC magnetic fields, down to millikelvin temperatures and for a

wide range of measurement currents supersede electrical transport measurements performed

in pulsed magnetic fields [18], which argued to show a transition in modest magnetic fields

to a normal metallic, and would have made these materials surprisingly conventional. Other

measurements that argued for the suppression of superconductivity and the emergence of

the normal state at modest magnetic fields include thermal transport and specific heat mea-

surements. A closer inspection of the thermal transport results [18] reveals that the features

identified are unlike the features associated with the suppression of superconductivity in type-II

superconductors and Fermi-liquid-like Tl-2201 [227]. For these the residual linear term of

the thermal conductivity is found to go from a large finite value above Hc2, the magnetic field

where it saturates, to zero or small non-zero value at 0 T, corresponding to a robust transition

that can be tracked across the entire measured field range. There are no measurements for

YBa2Cu3O6+x that are low enough in temperature to determine the magnetic field dependence

of the residual linear term of the thermal conductivity. Instead, Ref. [18] considered the thermal
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6.5 Superconductivity and non-ohmic resistivity

conductivity as a function of magnetic field. They proposed that the boundary between the

normal state and the vortex state is indicated by a small step-like feature in the magnetic field

dependence of the thermal conductivity, a drop less than 9% in value [18]. The same step-like

feature was observed by Ref. [218], but associated it with charge order due to its temperature-

independent position in magnetic field, that intersects the vortex boundary at a modest magnetic

field, reminiscent of charge order signatures identified by NMR [228], X-ray [229], and differ-

ential susceptibility [218]. The anomaly observed in specific heat [230, 231] shows a similar

temperature-independent behaviour above 7 K, with an upturn at low temperatures, that termi-

nates at 24 T. This is much too low to be associated with the onset field µ0Hr and irresistibility

field µ0Hirr values found by our electrical transport and magnetic torque measurements, and

its temperature-independent behaviour for T > 7 K makes a charge order origin more likely.

At the same time, evidence for the vortex state extending to much higher magnetic fields

than ≈ 20 T, in line with our results presented in this section, has been provided by previous

magnetic torque measurements [189, 218], Nernst effect measurements [232], and specific

heat measurements, that found the linear specific heat coefficient to increase continually as the

square of the magnetic field up to at least 45 T [197].

6.5 Superconductivity and non-ohmic resistivity

We examine the possible foundations of the observed superconducting state with its amplified

sensitivity to the measurement current. In the low temperature–high magnetic field regime

YBa2Cu3O6.55 displays a non-linear voltage-current dependence (see Fig. 6.16), with a strongly

field-dependent onset field of finite electrical resistivity µ0Hr (see Fig. 6.12). This behaviour is

unusual and cannot be described by a conventional vortex melting transition between a vortex

solid and a vortex liquid phase. Here we discuss theories that provide interpretations for a

non-linear voltage-current dependence in the context of a superconducting phase transition.

For conventional type-II superconductors the boundary between true superconductivity

(with zero resistivity) and finite resistivity is defined by the first order phase transition between

the vortex solid phase and normal phase. Life is not so simple in the case of high-Tc type-II
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superconductors, where thermal fluctuations lead to an altered phase diagram with no well-

defined Hc2 transition line to the normal phase, and the boundary between superconductivity

and finite resistivity is shifted to the boundary between the vortex solid and vortex liquid

phases. For real materials one also has to consider disorder, which acts against the long-

range order of the vortex solid. Finding a description of the vortex solid phase with true

superconductivity (with zero resistivity) becomes challenging when disorder and the resulting

vortex pinning are incorporated. For a long time the oft-cited model for vortex motion was the

Kim-Anderson flux creep model [233], which incorporates pinning, but neglects interactions

between vortices. It fails to be a complete description, however, as it finds that the resistivity is

described by an Arrhenius equation, with zero resistivity only at T = 0 K, which would limit

true superconductivity to just the Meissner phase.

A model that integrates thermal fluctuations, disorder and interactions between vortices and

with pinning sites was provided by Fisher, Fisher, and Huse (FFH) [16, 17]. They describe a

phase of immobile vortices frozen in a random pattern, which is the superconducting analogue

of the magnetic spin glass phase. This equilibrium is reached through the competition between

thermal fluctuations and the interactions between vortices and with disorder. The vortices do

not form a vortex lattice, but still maintain phase-correlated long-range order. The evolution

from vortex liquid to vortex glass is described via a critical scaling behaviour, predicting a

continuous phase transition with a divergent characteristic length scale, in this case the phase-

correlation length of the electron pair wavefunction. This represents a compelling parallel with

our experimental observation of a phase boundary that evolves with the measurement current.

The question becomes whether it could also account for the observed non-ohmic transport

behaviour, and mark the boundary of the true, zero resistivity superconducting phase.

We consider the analytical description of the vortex glass phase provided by the FFH model.

In contrast with the Kim-Anderson model, the scaling behaviour of the correlation length leads

to the vanishing of the linear resistivity at a finite temperature, the critical temperature Tg as

ρlin. ∝ (T −Tg)
s (6.1)
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Fig. 6.16 (a) Magnetic field sweeps of the in-plane electrical resistivity of YBa2Cu3O6.55 (hole
doping p = 0.108) at T = 0.44 K for different measurement currents. We take cuts at fixed
magnetic field values to obtain the I-V curve for different T and B. (b) As an example we plot
the voltage-current dependence for T = 0.44 K and µ0H = 42 T, which reveals a non-ohmic
behaviour.

(where ρlin. is the linear resistivity defined as ρlin. = dE/d j| j→0). Another important result

of the FFH model is that the energy cost of vortex loop creation goes as U ∝ j−µ , where j is

the current density, which leads to a power-law relation with the same exponent µ describing

current decay. An even more pertinent result of the current-dependent U is a current-dependent

nonlinear resistivity (ρnonl. = E/ j). We obtain this by considering the Boltzmann probability

of vortex loop creation due to spontaneous thermal fluctuations, given by exp[-U/kBT ], which

in turn is proportional to the dissipation rate and therefore also to the nonlinear resistivity [16].

Hence, according to the FFH model, the voltage-current dependence in the vortex glass phase

is given by

V ∝ j exp[−( jT/ j)µ ] (6.2)

where jT is a characteristic current density with the temperature dependence jT ∝ (1/T )1/µ ,

and 0 ≤ µ ≤ 1, with µ = 1 in the Meissner phase. We note that according to this equation any

finite current leads to dissipation, even in the Meissner phase. In principle, this also makes
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it hard to define a critical current jc, as the onset of dissipation is more gradual, although

experimental tests of this behaviour are difficult due to the resistivity vanishing exponentially

with current density j.

Extensive theoretical work was also done by Giamarchi et al., developing a description of

the statics. In their phase diagram they distinguish a low magnetic field quasi-ordered vortex

lattice phase (Bragg glass phase) and a high magnetic field disordered vortex glass phase [234].

Whilst their theory does not portray the dynamics, through dimensional considerations they

arrive at the same voltage-current dependence as FFH [235]. An experimental test for the

Bragg glass phase that their theory offers is the power-law decay of the crystalline order as a

function of magnetic field. Such a signature was later found by neutron diffraction for the BCS

superconductor (K,Ba)BiO3 [236].

Another theoretical treatment of a transition to finite resistivity, that has been applied to

the cuprates before [237–240], is provided by the Berezinskii–Kosterlitz–Thouless (BKT)

model. While the BKT model is only for two-dimensional systems, and YBCO has a sizeable

coupling in the out-of-plane direction, the form of the BKT transition appears to be relevant to

YBCO. The BKT transition is understood in the context of vortex generation through unbinding

of vortex-antivortex pairs, with the vortex generation having a power law correlation with

temperature. We note some further limitations, namely that it does not take disorder into

account, and most of its results only apply in the zero current limit. These makes the FFH

theory the more appropriate theory for the cuprates. It is still useful to apply the results of the

BKT theory to our data, so that we can draw comparisons with earlier papers on the cuprates

employing BKT, and enables us to explore the connections between the two theories.

For a BKT transition the j → 0 limit a non-linear voltage-current dependence is found [241]

to be of the form

V ∝ jα(T ) (6.3)

with the exponent α(T ) decreasing with increasing temperature, reaching a value of 3 at the

BKT transition at TBKT, and then dropping to a value of 1 for higher temperatures. TBKT

corresponds to the critical temperature where the correlation length is meant to diverge to

infinity [242], similar to the FFH model, but its connection to α(T ) = 3 is only empirical. The
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Fig. 6.17 Schematic voltage-current dependence of a superconductor in the mixed state
with each line corresponding to different isotherms. The high-current, high-voltage regime is
characterised by linear I-V due to superfluid breakdown. For lower voltages we see two regimes
emerge. At low temperatures and intermediate currents the I-V curves show negative curvature
that are well-described by Fisher-Fisher-Huse (FFH) scaling of the form V ∝ j exp[−( jT/ j)µ ],
and at higher temperatures and low currents the I-V curves show positive curvature, with an
initially steeper than linear dependence, and a linear I-V tail at the lowest currents. The two
regimes are separated by the dashed line that corresponds to a phase transition at a characteristic
temperature Tg, where V ∝ jα(T ) (with α(TBKT) = 3 in the case of the BKT model). The critical
region refers to regions in the critical state with j = jc. Adapted from Ref. [246].

linear resistivity obtained from the correlation length is [243–245]

ρ ∝ exp[−z
√

b/(T/TBKT −1)] (6.4)

where z is a critical exponent related to α(TBKT) and b is a fitting parameter. This equation

predicts zero resistivity below the characteristic temperature due to the divergent correlation

length, in a similar fashion to Eq. 6.1. We note that the BKT model does not take disorder into

account.

As a first port of call, we employ the FFH model to interpret our transport measurements,

as it offers the most complete description of the voltage-current dependence in the mixed state.
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A schematic of the log-log voltage-current dependence for different isotherms is shown in

Fig. 6.17. Tg marks the characteristic temperature below which true superconductivity (with

zero resistivity) is predicted to appear. We highlight several I-V regimes. For all isotherms,

high currents lead to superfluid breakdown, and therefore linear I-V (top-right region). As the

temperature is lowered the I-V curves become steeper, which corresponds to an increase in the

exponent µ in the FFH I-V equation (Eq. 6.2). For temperatures above Tg the curves retain a

positive curvature due to the ohmic region at low voltages (bottom-left region), which could be

explained by plastic barriers as detailed for thermally assisted flux flow [246], or by finite-size

effects as lower currents probe larger length scales (which can become comparable to the large

penetration depth of cuprates [242]). For temperatures below Tg the curves show a negative

curvature for all currents, with the voltage becoming exponentially small with decreasing

current.

The criterion for identifying the critical temperature from the voltage-current dependence is

not yet conclusively established. One proposed criterion is of the concavity of the I-V curves,

with the characteristic temperature defined for the isotherm where the curvature of the I-V

curves goes from positive to negative [242]. This is an obvious definition, as it seeks the

temperature for which exponential decay of the voltage is realised, unhampered by flux flow or

finite-size effects. This also makes it difficult to apply with certainty, as it requires high voltage

resolution.

Here, we propose a criterion that applies the FFH equation V ∝ j exp[−( jT/ j)µ ] to deter-

mine the characteristic temperature for a set of I-V isotherms. Fig. 6.18 shows such sets of

isotherms for YBa2Cu3O6.55 (hole doping of p = 0.108), measured at very high magnetic fields

and low temperatures. Previous I-V measurements were limited to a magnetic field of 6 T or

lower [247]. At 45 T most of the isotherms show linear I-V with a non-ohmic dependence

seen only for 0.04 K. As we go lower in field we see an increased fanning of the isotherms,

with non-ohmic isotherms constituting the majority. We do not see any signatures of finite-size

effects. We fit to these isotherms using the FFH equation (fits shown in the insets by solid lines)

to determine the exponent µ as a function of temperature at different magnetic fields. We plot

the results in Fig. 6.18f. We define the characteristic temperature TFFH as the temperature when
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Fig. 6.18 Fitting with the FFH model. (a-e) Non-ohmic voltage-current dependence of
YBa2Cu3O6.55 (hole doping of p= 0.108) at five different magnetic fields between temperatures
of 0.04 and 20 K. We see an increase in the gradient of the logarithmic I-V curves with
decreasing temperature at all magnetic fields, with the behaviour becoming more dramatic at
lower magnetic fields. We perform fits as shown in the insets based on the FFH model [16],
which describes the non-ohmic voltage-current dependence to follow V ∝ j exp[−( jT/ j)µ ],
where j is the current density, and jT and µ are fitting parameters. (f) The exponent µ as a
function of temperature for different magnetic fields. We define the characteristic temperature
TFFH as the temperature when µ = 1.

µ = 1. We note that we find µ to be greater than 1 for the lowest temperature curves, even

though the FFH model limits µ ≤ 1, with µ = 1 in the Meissner phase. We clearly find that our

lower temperature isotherms decay even more dramatically than as is expected in the Meissner

phase, but it is not clear how this could be interpreted within the frameworks of the theory. We

identify studies performed at low magnetic fields on YBa2Cu3O6+x thin films [248] and LBCO

single crystals [240] that also have isotherms with µ greater than one.

There is also a criterion associated with the BKT theory with TBKT defined as the temper-

ature where the exponent α(TBKT) = 3. Theoretically, α should jump from a value of 1 to
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Fig. 6.19 Fitting with the BKT model. (a-e) Non-ohmic voltage-current dependence of
YBa2Cu3O6.55 (hole doping of p= 0.108) at five different magnetic fields between temperatures
of 0.04 and 20 K. We see an increase in the I-V curve gradients with decreasing temperature,
that corresponds to an increase in the exponent α in the power law equation V ∝ Iα(T ). (f)
The exponent α as a function of temperature for different magnetic fields. The characteristic
temperature TBKT is defined such that α(TBKT) = 3.

3 at TBKT, coinciding with a jump in the superconducting electron density, but most experi-

ments previously found broad transitions [242, 244, 245, 249–251, 240, 252–254], making

their acceptance as being BKT transitions not universal [249, 250]. It is important to stress

here that the BKT power law only applies in the j → 0 limit, and therefore broadening of the

transition is expected for finite current densities. This can be seen in Fig. 6.17, showing that the

increase in gradient with decreasing temperature is more gradual for higher voltages. It raises

an important point, in that the BKT power law can only be fitted to a small section of each I-V

curve, and the analysis again benefits from datasets with high voltage resolution. However, it

is has been raised that the presence of finite-size effects could distort the true characteristic
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Fig. 6.20 The characteristic temperatures TBKT and TFFH (highlighted by the dashed line)
obtained from the voltage-current dependence presented in Figs. 6.19, 6.18 and 6.21, overlayed
with the onset field of finite electrical resistivity (red outline). We find good correspondence
between the characteristic temperatures obtained from the BKT and FFH analyses.

temperature [242, 249], and therefore it might be better to fit to the steepest part of the curve,

as opposed to the lowest current section, even if it leads to a broader transition.

To put our results in context, we fit with the BKT power law on the same dataset (Fig. 6.19)

as the FFH equation. We find the exponent α for the steepest part of each I-V curve (which

also corresponds to the lowest currents), and plot it as a function of temperature for each

magnetic field in Fig. 6.19f. We find that α increases sharply with decreasing temperature,

reaching a value of 3 and higher for most magnetic fields. We use this plot to find the value

of TBKT (where α = 3) for each field value. We plot these together with the values found

for TFFH on the same phase diagram (see Fig. 6.20). We find a good agreement between

the two characteristic temperatures, with a sharp upturn with increasing magnetic field at
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Fig. 6.21 (a) The voltage-current dependence of YBa2Cu3O6.55 as a function of temperature
at an applied magnetic field of 14 T. (b-d) The same voltage-current isotherms after scaling
collapses using dynamic scaling [17, 249, 242] for various T ∗ values. The insets show tem-
perature sweeps of the resistivity (I = 1 mA) with gradient fitting to determine b, one of the
scaling parameters. The third scaling parameter z is chosen so that the best collapse is achieved.
A good collapse is found for all three T ∗ values, resulting in different z values.

low temperature, similar to the onset field of finite electrical resistivity, but lying within the

boundary defined by I = 10 µA. Our analyses of the voltage-current dependence demonstrates

the existence of a true superconducting phase (with zero resistivity) that persists up to at least

45 T in YBa2Cu3O6.55.

With the agreement we identify between the characteristic temperatures, it becomes interest-

ing to explore the connections between the BKT and FFH models. Ref. [242] showed that the
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6.5 Superconductivity and non-ohmic resistivity

two theories are analytically incompatible; namely, the BKT model results in an exponent that

is only a function of temperature (α(T )), whereas the FFH model finds that it is also a function

of current (α( j,T )). This point is also demonstrated by experiments, as the FFH equation

is able to describe the voltage-current dependence for a wide range of currents and voltages,

whereas the BKT power law only applies to a limited regime. A more obvious connection is

present in the dynamic scaling analysis [17, 242, 249], which has been applied to investigate

critical transitions of superconductors, superfluids and Josephson junction arrays [249]. It relies

on results of the FFH theory, which relate a specific ratio of the current and voltage to the

correlation length ξ for all I-V curves. It is the BKT correlation length which is then substituted

in, combining the results of the two theories. The final relation [249]

I
T

(
I
V

)1/z

=
Iξ/T

χ
1/z
± (Iξ/T )

(6.5)

where χ+(−)(x) is the scaling function for temperatures above (below) the critical temperature

T ∗, allows us to plot I1+1/z/TV 1/z vs. Iξ/T . This relation should make all isotherms lie on

the same curve for suitable values of T ∗ and z (related to the critical exponent α(T ∗)). The

dynamic scaling analysis has been an alternative to the BKT power law fit for finding T ∗ and z,

as it should hold for finite currents, and not just in the j → 0 limit [242, 249].

We perform the dynamic scaling analysis for a set of I-V curves at 14 T, a magnetic field at

which we also measured temperature sweeps. Using the BKT analysis, we find TBKT = 6.6 K

(Fig. 6.21a). With this value we fit to the temperature sweep of the resistivity (I = 1 mA) using

the BKT temperature dependence (Eq. 6.4, with the fit shown in the inset of Fig. 6.21b) to find

a value for b as a function of z, which are two of the inputs for the scaling analysis. The other

variable is T ∗, which we set to 6.6 K in the first instance, and we vary z until we arrive at the

best collapse for all the isotherms. Finally, for a characteristic temperature of 6.6 K we find

z = 6. The success of this scaling analysis indicates the applicability of one of the main results

of the FFH theory to describe the observed non-ohmic voltage-current dependence.

Extensive discussion exists in the literature about the value of z [242, 249]. The expectation

for a 2D system is z = 2, but measurements on the cuprates yielded values of around 5-
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6 [245, 249], which would be characteristic of a 3D system. Our value for z is in line with these

results. Ref. [242] argued that dynamic scaling is too flexible, and can produce a good collapse

for a range of values of T ∗ and z. We find this to be true if one allows TBKT to be variable

when performing the analysis. We find good collapses for our data when setting T ∗ = 3 K and

z = 20 (Fig. 6.21c), and also for T ∗ = 7 K and z = 2 (Fig. 6.21d). However, we believe this is

not proof that dynamic scaling is too flexible, but rather highlights that the analysis should be

applied for known values of T ∗, obtained by other methods, such as the criteria we detailed

above.

Lastly, we examine the applicability of the expressions for the linear resistivity as obtained

by the FFH and BKT theories (Eqs. 6.1 and 6.4 detailed earlier). Both expressions are

derived from the correlation length that is predicted to diverge at the characteristic temperature,

and in turn results in zero linear resistivity below the transition. In an ideal scenario, we

could apply these expressions of the measured resistivity in the zero current limit, however

experimentally we are limited to finite currents. We perform our analysis on the temperature

sweep performed at 14 T and a measurement current of I = 5 mA, as it tracks the transition

in resistivity over 6 orders of magnitude. Fig. 6.22a shows the fit with the FFH equation,

following the analysis presented in Ref. [247] (and was cited as an experimental validation

of their theory in Huse, Fisher, & Fisher [16]). We find that the fit describes the measured

resistivity near the characteristic temperature well. We find an exponent of s = 7.3, comparable

to s = 6.5 found in Ref. [247], and would correspond to z = 4.7. This is somewhat lower than

our dynamical scaling result, and is likely due to the finite current. For lower currents we would

expect a steeper transition, and therefore a larger exponent. Fig. 6.22b shows the fit with the

BKT equation. We find good agreement with the measured curve over five orders of magnitude

in resistivity. The characteristic temperatures we obtain from the two fits are somewhat lower

(Tg = 6.3 K and TBKT = 6.0 K) than we found from the I-V dependence (TBKT = 6.6 K). This is

again likely to be due to the finite current. Importantly, we find that the results of both the FFH

and BKT theories provide an appropriate description of the measured temperature dependence

of the resistivity, predicting the exponential decay near the characteristic temperature, and the

vanishing of the resistivity. This is in addition to their applicability to the measured voltage-
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Fig. 6.22 The measured resistivity (I = 5 mA) as a function of temperature (orange line),
compared to the predicted resistivity (a) by the FFH model [16, 247] (dashed lines), (b) and
the BKT model [242]. We find good agreement in both cases, and characteristic temperatures
comparable to that was identified from the voltage-current dependence.

current dependence. We note that the Kim-Anderson model, that predicts zero resistivity only

at zero temperature, fails to describe our data.

The theories considered here are limited to classical fluctuations, but for a complete

description theoretical frameworks that account for quantum fluctuations should be sought.

One such theory is presented by Ref. [255], proposing the emergence of a new kind of vortex

phase at high magnetic fields (dubbed supersolid quantum vortex crystal or gauge glass phase),

which would be expected to be bounded by a vortex glass transition. Its relevance to our system

is further indicated by the intermediate value of the predicted supersolid crossover field, which

we estimate to be Bx ≈ 15 T (using an anisotropy of γ ≈ 1/20 [256, 257]).

In this section we set out to determine the extent of true superconductivity (with zero

resistivity). With our investigation of the measured I-V curves, we were able to identify a line

of characteristic temperatures, which is current-independent, and satisfies the criteria for zero

resistivity superconductivity as set out by Fisher, Fisher, and Huse’s theory for vortex matter.

Whilst a complete theoretical understanding of the ground state of underdoped cuprates is still
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out of reach, the complex state we find does negate any conventional Fermi liquid picture.

Our measurements reveal exciting new findings that shed light on the pseudogap ground state,

including a high-field superconducting region of the phase diagram, where the effects of vortex

dynamics and fluctuations are enhanced, and is also host to quantum oscillations.

6.6 Superconductivity, the pseudogap, and quantum oscilla-

tions

We focus our attention on the unexpected aspect of our results that quantum oscillations are

found to occur well within the superconducting regime. This could not be more apparent than

in our magnetic torque measurements, that show a bulk hysteresis due to vortex pinning up

to at least 45 T, with quantum oscillations visible on top of the hysteretic torque background

(Fig. 6.23a). Our resistivity measurements revealed a phase boundary at low temperatures

and high magnetic fields, where the vortex liquid state terminates and leads to a state with

pinned vortices. We call this state, in the high-magnetic field/low-temperature limit that has

not been accessed before, the quantum vortex matter state [258]. This is to highlight the

relevance of quantum fluctuations to this state, which was pointed out by Ref. [17]. We present

measurements of quantum oscillations on either side of this phase boundary (Fig. 6.23b).

We find the amplitude of the quantum oscillations to be the same in both regimes (T = 0.04

and 1.0 K), with no additional damping in the pinned vortex state (quantum vortex matter

state), contrary to what is predicted by models of spatially uniform superconductivity. We

also find quantum oscillations in the electrical resistivity on applying larger currents that lead

to vortex dissipation, occurring for the same field range where lower currents lead to zero

resistivity (Fig. 6.23c). Indeed, we find Shubnikov–de Haas oscillations are also exhibited

in our contactless resistivity measurements, persisting down to at least 20 T (Fig. 6.23b),

the same magnetic field where de Haas–van Alphen oscillations emerge (Fig. 6.23d). These

results confirm that the observed quantum oscillations are a fundamental feature of the high

magnetic field/low-temperature regime, and are found to coexist with superconductivity. Our

results are contrary to the previously held view that quantum oscillations are a property of the
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normal state, and necessitate a new description within the framework of the superconducting

vortex state. The unconventional nature of the quantum oscillations is further highlighted

when we consider that the typical condition for quantum oscillations to be viable in a type-II

superconductor is that ℏωc/∆ ≳ 1 [26] (where ωc = eµ0H/m∗ is the cyclotron frequency, and

∆ is the superconducting gap). With ∆ = 20− 30 meV [259–262], m∗ = 1.6 me [203], and

µ0H = 20 T, the lowest field with quantum oscillations, we find the ratio to be 0.05− 0.08,

much smaller than unity. In other words, what we find is that for such a large superconducting

gap in YBa2Cu3O6.55 the quantum oscillations appear at an inexplicably low magnetic field.

We look for clues of a new description by considering the absolute size of the measured

quantum oscillations, and whether any deviations from the Lifshitz–Kosevich theory are

revealed. First, we show that the amplitude of the de Haas–van Alphen oscillations is consistent

with the assumption that the entire bulk of the sample contributes to the observed quantum

oscillations. We do this by performing the conversion of the quantum oscillations’ amplitude

into absolute units and then compare to the Lifshitz–Kosevich estimate, similar to the analysis

we applied in the case of SmB6 and YbB12 in earlier chapters. The inset to Fig. 6.24 shows

the measured magnetic torque in units of capacitance. The magnitude of the magnetic torque

is given by τ = |m× µ0H| ≡ mµ0H sinθ , where m ≡ |m| is the magnitude of the magnetic

moment, µ0H = |µ0H| is the magnitude of the magnetic field and θ ≈ 9◦ is the angle of

inclination relative to the c-axis. Such an inclination away from the c-axis leads to an increase

in Hirr of only 1%, as Hirr transforms as Hirr(θ) = Hirr(θ = 0◦)/cosθ for small angles. We

convert the measured capacitive torque to absolute units of magnetic moment per unit cell

by using the spring constant of the cantilever as detailed in Ref. [29]. We have cantilever

length L = 3.8 mm, distance between cantilever and fixed Cu plate d0 = 0.1 mm, spring

constant k = 5 N ·m−1, unit cell volume Vu.c. = 0.383 ·0.387 ·1.174 nm3, and crystal volume

s3 = 0.15 mm3. Thus, we convert the measured torque magnetisation in terms of capacitance

(C) to an absolute magnetic moment m⊥ in units of Bohr magnetons per unit cell by the

expression:

∆m⊥ = 0.24 TpF−1 ∆C
µ0 H

µB per unit cell. (6.6)

The measured quantum oscillatory magnetic moment in absolute units is shown in Fig. 6.24.
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Fig. 6.23 Bulk superconductivity as established by bulk torque hysteresis (Fig. 6.15) and
synonymous zero electrical resistivity up to the highest magnetic fields (Fig. 6.11), is found
to coexist with quantum oscillations observed in both magnetic torque and electrical resis-
tivity down to magnetic fields as low as 20 T. (a) Torque hysteresis persisting up to at least
45 T, with concurrent de Haas–van Alphen oscillations visible on top of the background. (b)
De Haas–van Alphen oscillations observable from magnetic fields as low as 20 T, both below
the vortex liquid–vortex solid transition (T = 0.04 K), and above (T = 1.0 K). No additional
damping is observed inside the quantum vortex matter state. (c) The electrical resistivity for
different measurement currents reveals Shubnikov–de Haas oscillations in the same region of
magnetic fields, where zero electrical resistivity is observed for smaller measurement currents
that do not cause vortex dissipation. (d) Shubnikov–de Haas oscillations were also observed in
contactless resistivity from magnetic fields as low as 20 T. At a temperature of 1.7 K the onset
magnetic field of finite resistivity was found to be 34 T.

We estimate the theoretical amplitude of the intrinsic quantum oscillatory magnetic moment

using the formula for a two-dimensional Fermi surface as detailed in Chapter 2:

D2D =
4me

m∗

(
kF

kBZ

)2

sinθ , (6.7)
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Fig. 6.24 De Haas–van Alphen oscillations in absolute units of magnetic moment (µB per
unit cell) corresponding to the F = 546 T oscillations in YBa2Cu3O6.55. The shaded region
represents the theoretical Lifshitz–Kosevich estimate of the magnetic moment corresponding
to the measured oscillations assuming a bulk origin, showing a good order-of-magnitude
agreement with the absolute amplitude of the measured quantum oscillations.

where kBZ = 2π/au.c., au.c. is the lattice constant, kF is the Fermi wavevector, m∗ is the effective

mass, and θ is the angle between the applied magnetic field and the c-axis of the sample. We

also take into account the impurity damping term RD = exp(−B0/B), where B0 is the damping

factor. The resulting estimate for the theoretical amplitude, using the values m∗ = 1.6me,

kF = 1.29 ·109 m−1, θ = 9◦, B0 = 130 T, is shown by the shaded envelope in Fig. 6.24. With

these results, we find a good order of magnitude agreement between the absolute amplitude

of quantum oscillations and the theoretical Lifshitz-Kosevich expectation, indicating the bulk

nature of the observed quantum oscillations. We also note that quantum oscillations have

been observed up to 100 T [263, 204], with no dramatic enhancement in quantum oscillation

amplitude as a function of magnetic field, which suggests that the regime accessed by DC fields

extends as high as 100 T, with no evidence for a transition into a conventional metallic normal

state.

Next, we look for any deviation from the Lifshitz–Kosevich theory. We consider our

measurements performed at θ = 36◦, where the quantum oscillations are composed of a single
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Fig. 6.25 (a) De Haas–van Alphen oscillations inferred from torque magnetisation measure-
ments performed in pulsed magnetic fields at a field orientation with a single oscillation
frequency and no beat pattern. The red line denotes the measured oscillations, whereas the
black represents a fit to the 50 to 60 T field range. We see that the measured oscillations are
damped more than expected based on the Lifshitz–Kosevich fit. (b) The plot of the peak-to-peak
amplitude of the oscillations as a function of inverse magnetic field. The black line denotes the
expected damping for a damping factor of Γ′ = 83 T, but we find the measured amplitude to
increasingly deviate from the expected damping with decreasing magnetic field.

frequency. We fit with the Lifshitz–Kosevich equation (see Chapter 2) using a damping factor

of Γ′ = 83 T (shown by the black line in Fig. 6.25a). There is a good agreement in the

higher magnetic field range, but there appears to be additional damping below 50 T, where the

amplitude of the measured quantum oscillations is smaller than that of the fit. We highlight

this additional damping by plotting the peak-to-peak amplitude as a function of the inverse

magnetic field together with the damping expected for a damping factor of Γ′ = 83 T. By 30 T

the additional attenuation of the amplitude would correspond to an increase in the damping

factor of ≈ 70 T. This behaviour is reminiscent of quantum oscillations that were observed

deep in the vortex state of various type-II superconductors, that exhibit extra attenuation, but no

change in the frequency of the oscillations [26]. For some of the materials quantum oscillations

were observed down to magnetic fields as low as 20% of the upper critical field µ0Hc2 [264–

266]. The central idea of microscopic theories applied to vortex state quantum oscillations

in more conventional superconductors is relating the attenuation of quantum oscillations to

the superconducting gap, which opens up at the upper critical field µ0Hc2 and grows with
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6.6 Superconductivity, the pseudogap, and quantum oscillations

decreasing magnetic field [26, 264]. With anisotropic superconducting gaps, this also provides

an explanation for why frequencies originating from different parts of the Brillouin zone

characterised by different gap sizes can exhibit varying amounts of attenuation [265, 266].

Models that have been shown to effectively describe the measured attenuation inside the

vortex state include the Maki [267], Miyake [268], and Yasui-Kita [269] models, with the

main difference in their predicted form of the magnetic field dependence of the attenuation.

They have also been used to estimate the superconducting gap [264–266, 269]. Without any

experimental indication of µ0Hc2 it is uncertain what would be the right description and if any

of these theories could be be applied to YBa2Cu3O6+x.

Nevertheless, we explore what the ratio ℏωc/∆ is for type-II superconductors that exhibit

quantum oscillations in the vortex state. A summary of the ratios and values used for these

estimates is shown in Table 6.1 for ten different superconductors and YBa2Cu3O6.55. Note

that the superconducting gap values are much smaller for the type-II superconductors than for

YBa2Cu3O6.55, which also coincides with quantum oscillations observed at relatively modest

magnetic fields in these materials. For most of them we find the ratio ℏωc/∆ to be ≈ 0.5,

which is not that much lower than the criterion of ≥ 1 for conventional quantum oscillations.

The exceptions are the unconventional superconductors: YBa2Cu3O6.55, the organic layered

superconductor κ-(BEDT-TTF)2Cu(NCS)2 and the two heavy-fermion uranium systems, with

the corresponding ratios found to be significantly smaller than unity. Thus, a strong link

between the anisotropic Fermi surface of YBa2Cu3O6.55 and the anisotropic gapping of its

Brillouin zone is indicated, which again highlights the influence of the pseudogap on the ground

state. With strong gapping in the antinodal regions, quantum oscillations originating from any

corresponding Fermi surface sheets are not expected to survive into the vortex state, whereas

the nodal region is found to be characterised by no gapping, which allows quantum oscillations

to persist deep into the vortex state. Our findings suggest theoretical descriptions that can yield

a partially gapped Fermi surface and lines of gapless excitations. Pertinent theories involve the

interplay of superconductivity and charge order, such as biaxial charge density wave [203] or

pair density wave [216, 270, 271]. The pair density wave description has also been proposed to
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Superconductivity and quantum oscillations in YBa2Cu3O6.55

yield a steep slope of the superconducting magnetic field–temperature phase boundary [272],

as observed in our experiments.

Compound Tc (K) µ0H50% (T) µ0Hc2 (T) m∗ (me) ∆ (meV) ℏωc/∆

NbSe2 [264, 273] 7.2 2.3 8.0 0.61 1.2 0.4

V3Si [264, 274, 275] 17 17.2 18.5 1.3 2.6 0.6

Nb3Sn [274, 275] 18.3 14.4 19.7 1.1 3.2 0.5

YNi2B2C [265, 276] 15.6 3.9 8.8 0.35 2.7 0.5

LuNi2B2C [266, 277] 16.5 3.6 7.5 0.3 2.2 0.6

MgB2 [278] 38.5 9.0 9.6 0.46 2.5 0.9

CeRu2 [279, 280] 6.2 3.6 5.2 0.55 1.3 0.6

UPd2Al3 [281–283] 2 3.6 3.8 5.7 0.24 0.3

URu2Si2 (ab-plane) [284–286] 1.5 7.2 10.4 9.5 0.7 0.13

URu2Si2 (c-axis) [284–286] 1.5 2.8 2.9 13 0.3 0.08

κ-(BEDT-TTF) [287–289] 10.4 4.5 6.0 3.5 3 0.05

YBa2Cu3O6.55 [203, 259–262] 61 20∗ > 100 T 1.6 20−30 0.05−0.08

Table 6.1 Different parameters for superconductors that display quantum oscillations in the
superconducting regime, including the critical temperature Tc, magnetic field where supercon-
ducting damping reduces the quantum oscillation amplitude by half µ0H50%, the upper critical
field µ0Hc2, the effective mass m∗, and the superconducting gap ∆ at zero magnetic field. These
values are used to determine the ratio of the Landau level spacing to the superconducting gap.
For all materials, with the exception of NbSe2 and MgB2, the quantum oscillations were mea-
sured for the field orientation with the lowest upper critical field. In the case of YBa2Cu3O6.55
∗ represents the lowest magnetic field value at which oscillations are observed, giving an upper
bound estimate for the Landau level to superconducting gap ratio. The absence of any dramatic
enhancement of the quantum oscillation amplitude up to 100 T indicates an upper critical field
beyond what has been experimentally accessible.
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Chapter 7

Conclusion

This thesis studied the magnetic, electrical and thermal properties of Kondo insulators SmB6 and

YbB12 and high-Tc superconductor YBa2Cu3O6+x in high magnetic fields. We demonstrated

that both classes of materials display quantum oscillations in the absence of a Fermi liquid

state, going against the long-held association of quantum oscillations exclusively with metals.

Previous descriptions proved to be ineffective in accounting for the breadth of experimental

results we presented, highlighting the need for new theoretical paradigms, some of which we

indicated. In this chapter, we review these results, and suggest directions for future work.

7.1 Bulk Fermi surfaces in Kondo insulators

Quantum oscillations have been the hallmark signature of metals ever since they were observed

in copper, which is why the discovery of a Fermi surface in Kondo insulating SmB6 [10] was so

puzzling. The quantum oscillations in SmB6 revealed frequencies ranging up to 15 kT with light

effective masses, similar to what has been observed for metallic hexaborides [74] and indicative

of a large ellipsoidal Fermi surface (see Fig. 7.1) [10]. There were proposals that the quantum

oscillations could be from topological surface states [9], or have an extrinsic origin [121]. The

quantum oscillation measurements presented here, however, represent strong evidence for their

bulk origin. Through careful experimental control and calibration, in addition to comparative

measurements of metallic LaB6, we established that the absolute size of the oscillations in
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Fig. 7.1 The metal-like Fermi surface inferred from quantum oscillation measurements of
SmB6.

SmB6 is the same as for metallic LaB6, and in good agreement with the Lifshitz–Kosevich

model. This result is in direct conflict with what would be expected if only the surface or

conducting patches of the material contributed. Equally important, we performed a study of

the dependence on magnetic field tilt angle, which revealed a flat angular dependence of the

quantum oscillation frequencies, and therefore the Fermi surface cross-sections, establishing

the bulk three-dimensional nature of the Fermi surface. Our thermal measurements further

demonstrated experimental signatures unexpected for an insulator, including a sizeable linear

specific heat coefficient, and the enhancement of the thermal conductivity in an applied magnetic

field. The agreement between the density of states at the Fermi energy inferred from specific

heat and quantum oscillations measurements, and the comparable mean free path identified in

the case of thermal transport and the oscillatory cyclotron orbits suggest a common origin for

the quantum oscillations and the low temperature thermal properties. Lastly, we presented an

extensive suite of measurements to evaluate the sample quality of our single crystals, confirming

their high purity, with material properties consistent with an impurity concentration of less

than 0.05%, and therefore further establishing the intrinsic character of the observed quantum

oscillations.

Just as significant has been the discovery of quantum oscillations in YbB12 [11], another

Kondo insulator. The observation of bulk quantum oscillations in a second material, as revealed

by our results, has set the foundation for a new class of correlated insulators that exhibit quantum
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Fig. 7.2 The heavy semimetal Fermi surface inferred from quantum oscillation measurements
of YbB12.

oscillations. We highlighted the many similarities between YbB12 and SmB6. Interestingly, the

quantum oscillations revealed heavy effective masses, and a small Fermi surface unlike that of

SmB6 or metallic dodecaborides (see Fig. 7.2). The heavy semimetal Fermi surface, indicated

by the comparison of our measurements with band structure calculations, and the proximity

to an insulator-metal transition in magnetic field represent some key differences compared to

SmB6.

Many questions still remain. For YbB12 we presented a Fermi surface model based on

a shifted Fermi level, which yields small Fermi pockets and high effective masses, but the

complete angular dependence of the quantum oscillations is still to be measured, which

is required to confirm the shape of the Fermi pockets. Also to be determined is whether

the de Haas–van Alphen and Shubnikov–de Haas results could be consolidated around the

same Fermi surface model. Another question pertains whether quantum oscillations could be

measured above the insulator-metal transition. This should be possible in pulsed magnetic

fields that go above 45 T. In contrast with YbB12, the relevant tuning parameter for SmB6

is pressure. We highlight the potential of pressure studies in exploring the Fermi surface as

the material is tuned across the insulator-metal transition. Still, one the most pertinent tasks

remains high magnetic field studies of other families of insulators. Identifying further materials

that exhibit quantum oscillations would aid theoretical efforts to develop a model to capture
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the unconventional ground state of this new class of correlated insulators that exhibit quantum

oscillations.

7.2 Quantum oscillations and the vortex matter state of un-

derdoped YBa2Cu3O6+x

The high-Tc cuprates represent a completely new class of superconductors, that differ greatly

from conventional BCS superconductors. In this thesis we investigated the high magnetic field

pseudogap ground state of the underdoped cuprates, which, distinct from the Fermi liquid-like

overdoped regime, is characterised by a small electron pocket. We accessed the previously

unexplored regime of millikelvin temperatures and DC high magnetic fields, unaffected by

eddy currents present in pulsed magnetic fields. Remarkably, upon applying low measurement

currents we found superconductivity to persist beyond the highest available static magnetic

fields. Through the extensive study of the current-voltage dependence, we identified a low

temperature–high magnetic field quantum vortex phase, characterised by true zero resistivity

superconductivity, bounded by a critical transition, that extends up to at least 45 T. We found

this to be in accord with the extent of vortex pinning hysteresis identified by magnetic torque

measurements. Our findings, therefore, revealed a new phase diagram for the underdoped

cuprates (Fig. 7.3c), that extends the previously proposed extent of superconductivity to much

higher fields, encompassing the regime of quantum oscillations previously associated with the

normal state (Fig. 7.3a).

We presented quantum oscillations with substantially higher resolution than previous

measurements, enabling a harmonic analysis of the waveform of the quantum oscillations, that

confirmed the absence of any reservoir density of states. The measured signatures conform with

a Fermi surface picture consisting of only a single isolated nodal electron pocket, indicating

that the anisotropy of the pseudogap phase survives down to low temperatures. In the same

region of the phase diagram we found vanishing electrical resistivity, magnetic hysteresis,

and non-ohmic electrical transport characteristics. These further confirmed the coexistence of

quantum oscillations with superconductivity, indicating the need for a description outside the
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Fig. 7.3 Contrasting different magnetic field–temperature phase diagrams for underdoped
YBa2Cu3O6+x. Adapted from Ref. [246]. (a) Phase diagram for a BCS-like type-II super-
conductor [18]. In the Meissner phase all flux lines are expelled from the sample, whereas
the Shubnikov phase is characterised by field penetration of the sample that leads to pinned
vortices. The superconducting order parameter is destroyed above modest magnetic fields, and
the metallic normal phase can be accessed down to the lowest temperatures. (b) Phase diagram
for a strongly interacting superconductor [232], that is also host to a broad vortex liquid phase
of finite resistivity due to vortex dissipation. (c) Phase diagram of a superconductor with strong
fluctuations, that is host to a quantum vortex matter phase exhibiting resilient superconductivity
at low temperatures and high magnetic fields, in agreement with our results on underdoped
YBa2Cu3O6+x, with quantum oscillations persisting well into the superconducting regime.

scope of conventional band theory, but something that incorporates both the pseudogap and

superconductivity and addresses the nodal-antinodal dichotomy. Theories that consider the

interplay of superconducting pairing and density wave order parameters seem to be of particular

relevance, such as the recently proposed pair density wave (PDW) models [216, 270, 271].

Plenty of open questions remain for experimentalists. Some are likely to be addressed by

future measurements, but others seem more challenging. One of the more elusive questions

concerns the upper critical field and the extent of the vortex matter state. It is likely that it does

not manifest in a clear first-order phase transition, and could prove to be just as ambiguous

as the extent of superconducting pairing above Tc. Assuming this crossover region lies at

a magnetic field that will become accessible by future magnets, a central task would be to
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see whether the small Fermi surface pocket survives, or whether it reconstructs into a large

hole-like Fermi surface similar to overdoped Tl2Ba2CuO6+δ . Our measurements revealed

field-resilient superconductivity and strong non-ohmic current-voltage dependence. It is unclear

if these signatures are universal across the phase diagram, or limited to just the charge-ordered

underdopings. It would also be worthwhile to perform high-sensitivity I-V measurements at

low magnetic fields near Tc to see how the behaviour differs from the low temperature–high

field regime. Both of these proposal are feasible with current experimental setups. Another

important avenue for future experiments would be to look for quantum oscillations in the

vortex state of other dopings. With YBa2Cu3O6.55 we demonstrated that quantum oscillations

are observable down to 20 T for a material with a significantly higher upper critical field.

Dopings closer to optimal doping or overdoped could be investigated. The vortex state’s

resilience to magnetic field appears to increase considerably with oxygen doping [18, 81], but

the superconducting gap size, which plays the more crucial role in determining the viability of

vortex matter quantum oscillations, only increases modestly with oxygen doping [259]. It is

just as pertinent to investigate the Fermi surface without CDW in the more underdoped region

of the phase diagram. Important questions concern whether these dopings also feature a Fermi

surface that reflects the pseudogap, and if they still show quantum oscillations. Much of the

progress in the field of high-Tc superconductivity has been driven by experiments, and realising

these proposals could bring us closer to a better understanding of the underlying physics.
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[80] Ōnuki, Y., Nishihara, M., Sato, M., and Komatsubara, T. Fermi surface and cyclotron
mass of PrB6, Journal of Magnetism and Magnetic Materials 52(1-4), 317–319 (1985).

[81] Hsu, Y.-T. Unconventional Fermi surface in insulating SmB6 and superconducting
YBa2Cu3O6+x probed by high magnetic fields (Doctoral thesis). University of Cambridge,
(2018).

[82] Riseborough, P. S. and Fisk, Z. Critical examination of quantum oscillations in SmB6,
Phys. Rev. B 96, 195122 (2017).

[83] Knolle, J. and Cooper, N. R. Quantum Oscillations without a Fermi Surface and the
Anomalous de Haas–van Alphen Effect, Phys. Rev. Lett. 115(14), 146401 (2015).

[84] Blount, E. Bloch electrons in a magnetic field, Physical Review 126(5), 1636 (1962).

[85] Suzuki, T., Goto, T., Sakatsume, S., Tamaki, A., Kunii, S., Kasuya, T., and Fujimura, T.
Acoustic de Haas-van Alphen Effect of CeB6 and LaB6, Japanese Journal of Applied
Physics 26(S3-1), 511 (1987).

[86] Yamashita, S., Yamamoto, T., Nakazawa, Y., Tamura, M., and Kato, R. Gapless spin
liquid of an organic triangular compound evidenced by thermodynamic measurements,
Nature communications 2, 275 (2011).

[87] Yamashita, M., Nakata, N., Senshu, Y., Nagata, M., Yamamoto, H. M., Kato, R.,
Shibauchi, T., and Matsuda, Y. Highly mobile gapless excitations in a two-dimensional
candidate quantum spin liquid, Science 328(5983), 1246–1248 (2010).

[88] Yamashita, M., Shibauchi, T., and Matsuda, Y. Thermal-Transport Studies on Two-
Dimensional Quantum Spin Liquids, ChemPhysChem 13(1), 74–78 (2012).

[89] Anisimov, M., Bogach, A., Glushkov, V., Demishev, S., Samarin, N., Gavrilkin, S.,
Mitsen, K., Shitsevalova, N., Levchenko, A., Filippov, V., et al. Defect mode in LaB6,
Acta Phys Pol A 126(1), 350–1 (2014).

135



References

[90] Müller, T., Joss, W., Van Ruitenbeek, J., Welp, U., Wyder, P., and Fisk, Z. Magnetic
field dependence of the many-body enhancement on the Fermi surface of CeB6, Journal
of Magnetism and Magnetic Materials 76, 35–36 (1988).

[91] Boulanger, M.-E., Laliberté, F., Dion, M., Badoux, S., Doiron-Leyraud, N., Phelan,
W. A., Koohpayeh, S. M., Fuhrman, W. T., Chamorro, J. R., McQueen, T. M., Wang,
X. F., Nakajima, Y., Metz, T., Paglione, J., and Taillefer, L. Field-dependent heat
transport in the Kondo insulator SmB6: Phonons scattered by magnetic impurities, Phys.
Rev. B 97, 245141 (2018).

[92] Biswas, P. K., Salman, Z., Neupert, T., Morenzoni, E., Pomjakushina, E., von Rohr,
F., Conder, K., Balakrishnan, G., Hatnean, M. C., Lees, M. R., Paul, D. M., Schilling,
A., Baines, C., Luetkens, H., Khasanov, R., and Amato, A. Low-temperature magnetic
fluctuations in the Kondo insulator SmB6, Phys. Rev. B 89, 161107 (2014).

[93] Fuhrman, W. T., Leiner, J., Nikolić, P., Granroth, G. E., Stone, M. B., Lumsden, M. D.,
DeBeer-Schmitt, L., Alekseev, P. A., Mignot, J.-M., Koohpayeh, S. M., Cottingham,
P., Phelan, W. A., Schoop, L., McQueen, T. M., and Broholm, C. Interaction Driven
Subgap Spin Exciton in the Kondo Insulator SmB6, Phys. Rev. Lett. 114, 036401 (2015).

[94] Xu, Y., Cui, S., Dong, J., Zhao, D., Wu, T., Chen, X., Sun, K., Yao, H., and Li, S. Bulk
Fermi surface of charge-neutral excitations in SmB6 or not: a heat-transport study, Phys.
Rev. Lett. 116(24), 246403 (2016).

[95] Nave, C. P. and Lee, P. A. Transport properties of a spinon Fermi surface coupled to a
U(1) gauge field, Phys. Rev. B 76(23), 235124 (2007).

[96] Yamashita, M., Nakata, N., Kasahara, Y., Sasaki, T., Yoneyama, N., Kobayashi, N.,
Fujimoto, S., Shibauchi, T., and Matsuda, Y. Thermal-transport measurements in a
quantum spin-liquid state of the frustrated triangular magnet κ-(BEDT-TTF)2Cu2 (CN)3,
Nature Physics 5(1), 44–47 (2009).

[97] Capponi, S. and Assaad, F. Spin and charge dynamics of the ferromagnetic and antiferro-
magnetic two-dimensional half-filled Kondo lattice model, Phys. Rev. B 63(15), 155114
(2001).

[98] Cooley, J., Aronson, M., Fisk, Z., and Canfield, P. High pressure insulator-metal
transition in SmB6, Physica B: Condensed Matter 199–200, 486 – 488 (1994).

[99] Gabáni, S., Bauer, E., Berger, S., Flachbart, K., Paderno, Y., Paul, C., Pavlík, V., and
Shitsevalova, N. Pressure-induced Fermi-liquid behavior in the Kondo insulator SmB6:
Possible transition through a quantum critical point, Phys. Rev. B 67, 172406 (2003).

[100] Barla, A., Derr, J., Sanchez, J., Salce, B., Lapertot, G., Doyle, B., Rüffer, R., Lengsdorf,
R., Abd-Elmeguid, M., and Flouquet, J. High-pressure ground state of SmB6: electronic
conduction and long range magnetic order, Phys. Rev. Lett. 94(16), 166401 (2005).

136



References

[101] Pixley, J., Yu, R., Paschen, S., and Si, Q. Global Phase Diagram and Momentum Distribu-
tion of Single-Particle Excitations in Kondo insulators, arXiv preprint arXiv:1509.02907
(2015).

[102] Kagan, Y., Kikion, K., and Prokof’ev, N. Heavy fermions in the Kondo lattice as neutral
quasiparticles, Physica B: Condensed Matter 182(3), 201–208 (1992).

[103] Senthil, T., Sachdev, S., and Vojta, M. Fractionalized Fermi Liquids, Phys. Rev. Lett. 90,
216403 (2003).

[104] Senthil, T., Vojta, M., and Sachdev, S. Weak magnetism and non-fermi liquids near
heavy-fermion critical points, Phys. Rev. B 69, 035111 (2004).

[105] Coleman, P., Marston, J. B., and Schofield, A. J. Transport anomalies in a simplified
model for a heavy-electron quantum critical point, Phys. Rev. B 72, 245111 (2005).

[106] Knolle, J. and Cooper, N. R. Excitons in topological Kondo insulators-theory of thermo-
dynamic and transport anomalies in SmB6, Phys. Rev. Lett. 118, 096604 (2017).

[107] Anderson, P. Breaking the log-jam in many-body physics: Fermi surfaces without Fermi
liquids, Physica Scripta T42, 11–16 (1992).

[108] Grover, T., Trivedi, N., Senthil, T., and Lee, P. A. Weak Mott insulators on the triangular
lattice: possibility of a gapless nematic quantum spin liquid, Phys. Rev. B 81(24), 245121
(2010).

[109] Lee, S.-S. and Lee, P. A. U(1) gauge theory of the Hubbard model: Spin liquid states
and possible application to κ-(BEDT- TTF)2Cu2(CN)3, Phys. Rev. Lett. 95(3), 036403
(2005).

[110] Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea:
Possible application to κ-(ET)2Cu2(CN)3, Phys. Rev. B 73, 155115 (2006).

[111] Katsura, H., Nagaosa, N., and Lee, P. A. Theory of the thermal Hall effect in quantum
magnets, Phys. Rev. Lett. 104(6), 066403 (2010).

[112] Mross, D. F. and Senthil, T. Charge Friedel oscillations in a Mott insulator, Phys. Rev. B
84, 041102 (2011).

[113] Sodemann, I., Chowdhury, D., and Senthil, T. Quantum oscillations in insulators with
neutral Fermi surfaces, Phys. Rev. B 97, 045152 (2018).

[114] Chowdhury, D., Sodemann, I., and Senthil, T. Mixed-valence insulators with neutral
Fermi surfaces, Nature communications 9(1), 1766 (2018).

[115] Coleman, P., Miranda, E., and Tsvelik, A. Are Kondo insulators gapless?, Physica B:
Condensed Matter 186, 362–364 (1993).

137



References

[116] Baskaran, G. Majorana Fermi Sea in Insulating SmB6: A proposal and a Theory of
Quantum Oscillations in Kondo Insulators, arXiv preprint arXiv:1507.03477 (2015).

[117] Erten, O., Chang, P.-Y., Coleman, P., and Tsvelik, A. M. Skyrme insulators: Insulators
at the brink of superconductivity, Phys. Rev. Lett. 119, 057603 (2017).

[118] Heath, J. and Bedell, K. Exotic quantum statistics and thermodynamics from a number-
conserving theory of Majorana fermions, Journal of Physics A: Mathematical and
Theoretical .

[119] Heath, J. T. and Bedell, K. S. Collective Excitations and Robust Stability in a Landau-
Majorana Liquid, Journal of Physics: Condensed Matter 32(48), 485602 (2020).

[120] Shen, H. and Fu, L. Quantum Oscillation from In-Gap States and a Non-Hermitian
Landau Level Problem, Phys. Rev. Lett. 121, 026403 (2018).

[121] Thomas, S. M., Ding, X., Ronning, F., Zapf, V., Thompson, J. D., Fisk, Z., Xia, J., and
Rosa, P. F. S. Quantum Oscillations in Flux-Grown SmB6 with Embedded Aluminum,
Phys. Rev. Lett. 122, 166401 (2019).
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