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Abstract

Background: Hepatitis B virus (HBV)-related liver disease induces liver damage by hepatic immune and
inflammatory response. The association between aberrant peripheral blood mononuclear cell (PBMC) DNA
methylation and progression of liver disease and fibrosis remains unclear.

Results: Here we applied Infinium 450 K BeadChip investigating PBMC genome-wide methylation profiling of 48
HBV-related liver disease patients including 24 chronic hepatitis B (CHB), 14 compensated liver cirrhosis (LC), and 10
decompensated liver cirrhosis (DLC). In total, there were 7888 differentially methylated CpG sites (36.06%
hypermethylation, 63.94% hypomethylation) correlate with liver disease progression. LC was difficult to be
diagnosed, intermediating between CHB and DLC. We used least absolute shrinkage and selection operator
(LASSO)-logistic regression method to perform a LC predictive model. The predicted probability (P) of having LC
was estimated by the combined model: P = 1/(1 − e−x), where X = 11.52 − 2.82 × (if AST within the normal range
− 0.19 × (percent methylation of cg05650055) − 0.21 × (percent methylation of cg17149911 ). Pyrosequencing
validation and confusion matrix analysis was used for internal testing, area under receiver operating characteristic
curve (AUROC) of model was 0.917 (95% CI, 0.80–0.977). On the fibrosis progress, there were 1705 genes in LC
compared with CHB, whose differentially methylated CpG sites loading within the “promoter” regions (including
TSS1500, TSS200, 5′UTR, and the 1st exon of genes) subject into the enrichment analysis using Ingenuity Pathway
Analysis (IPA). There were 113 enriched immune-related pathways indicated that HBV-related liver fibrosis
progression caused epigenetic reprogramming of the immune and inflammatory response.

Conclusions: These data support idea that development of HBV-related chronic liver disease is linked with robust
and broad alteration of methylation in peripheral immune system. CpG methylation sites serve as relevant
biomarker candidates to monitor and diagnose LC, providing new insight into the immune mechanisms
understanding the progression of HBV-related liver fibrosis and cirrhosis.
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Introduction
Hepatitis B virus (HBV) infection is a common and
growing global public health problem and CHB-related
liver cirrhosis and hepatocellular carcinoma (HCC) are
the cause of a high rate of morbidity and mortality [1].
WHO estimated that 257 million carriers of hepatitis B
surface antigen (HBsAg) around the world in 2015,
among which there were more than 887,000 deaths,
mostly from hepatitis B resulted liver cirrhosis and HCC
(World Health Organization fact sheets are available at
www.who.int)
Clinically, it might be easy to distinguish decompen-

sated liver cirrhosis (DLC) compared compensated
liver cirrhosis (LC) according to presence of series of
clinical symptoms form ascites, variceal bleeding,
gastrointestinal bleeding, or hepatic encephalopathy,
and Child-Turcotte-Pugh (CTP) score is class B or C
[2]. It is relatively simple to diagnose DLC, although
the treatment might be problematic. On the contrary,
it is more challenging to make a distinction from
CHB [3]. CT, MRI, and other imaging examinations
are limited in the diagnosis of LC. It is still
dependent on liver biopsy that is traditional gold
standard procedure for staging of fibrosis and diagno-
sis of LC in Chinese guidelines for the prevention
and treatment of chronic hepatitis B (version 2019)
[4] and AASLD 2018 Hepatitis B Guidance [5]. How-
ever, it is invasiveness with risk of serious complica-
tions [6], sampling limitation, and interpretational
variability [7]; therefore, clinicians have been trying to
seek more accurate and noninvasive tools for asses-
sing LC.
DNA methylation is stable epigenetic modification,

whose variation is induced by environmental factors
[8], and changes of DNA methylation are used to de-
tect and monitor HBV-related chronic disease and
HCC has been reported in recent years [9, 10]. Our
previous studies had demonstrated that large changes
in peripheral blood mononuclear cell (PBMC) DNA
methylation altered in HBV/HCV-chronic hepatitis
that might be playing a role in the progression form
liver disease to HCC. Nevertheless, there was a dra-
matic and clear differentiation in PBMC DNA methy-
lation profiles between chronic hepatitis and HCC.
Meanwhile, the study supported the hypothesis that
changes in DNA methylation of PBMC reflect
changes in the host immune system interaction of
HCC, rather than the footprints of circulating DNA
of tumors or tumor substitutes [10].
Here, we initially applied Infinium Human Methyla-

tion 450 K BeadChip arrays to examine genome-wide
DNA methylation profiles in PBMC samples from 48
HBV-related liver fibrosis and cirrhosis. The chip cov-
ered about 480,000 single CpG sites from 21,231 human

genes annotated by the university of California Santa
Cruz genome database [11]. Genome-wide CpG sites
methylation profiling of PBMC DNA could provide rele-
vant biomarker candidates to monitor the process of
HBV-related liver fibrosis and cirrhosis, which was used
to examine the associations of LC specific CpG sites for
establishing diagnosis model. Meanwhile, methylated
variations of CpG sites occurred mostly within the pro-
moter regions of genes to regulate their transcription
[12]. CpG sites methylation correlating with liver fibrosis
and cirrhosis could contribute evidence for immune
functional and canonical pathway changes. Our findings
also provided new insight into the immune mechanisms
underlying the progression of HBV-related liver fibrosis
and cirrhosis.

Result
Clinical and pathological characteristics of the diseased
patients
Forty-eight patients with HBV-related diseases were
from Beijing area, whose clinical and pathological char-
acteristics were described in Table 1. These three groups
did not differ for age, gender, smoking and alcohol, total
bilirubin (TBIL), aspartate transaminase (AST), alanine
transaminase (ALT), and serological diagnosis model
(APRI, FIB-4) (all P > 0.05). All patients were subjected
accurate diagnosis of staging of fibrosis and cirrhosis
with traditional gold standard liver biopsy.

Correlation between quantitative distribution of site
specific DNA methylation levels and progression of liver
disease
PBMC was isolated by density gradient centrifugation
from 48 patients’ blood. After treatment by bisulfite con-
version, PBMC genomic DNA was detected using Illu-
mina Infinium HumanMethylation450 BeadChip arrays.
Raw data was loaded and analyzed using the ChAMP
Bioconductor package in R. In total, 485,577 methylation
probes were in the 450 K arrays, while probes with a
detection P value > 0.01 (1850 probes), with a beadcount
< 3 in at least 5% of samples (6368 probes), containing
single nucleotide polymorphisms (SNPs, 49,659 probes),
aligning to multiple locations (7074 probes), locating on
X,Y chromosome (10,073 probes) as well as NoCpG sites
(3330 probes) were consequently removed, finally 407,
223 probes were used for further analysis. Following
normalization and correction for batch effects, Pearson
correlation analysis with Bonferroni correction for mul-
tiple testing (< 1 × 10−7) was used to show linear correl-
ation between the quantitative distribution of CpG sites
methylation levels across the array and liver disease pro-
gression. The result revealed significant correlation be-
tween CpG sites methylation levels and progression of
liver disease. DNA methylation levels obviously varied in
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the whole genome, within 7888 CpG sites (r > 0.8, r < −
0.8; P < 10−7, Supplementary table 1) including 2845
(36.06%) hypermethylation CpG sites and 5043 hypome-
thylation CpG sites most significantly changed during
liver disease progression. Hierarchical clustering analysis
showed 7888 differentially methylated CpG sites probes
distinguish patients of CHB, LC, and DLC (Fig. 1). Obvi-
ously, DLC patients were differed form CHB and LC
ones, in addition to fibrotic process of the liver, the
other symptoms of DLC might be major factors distin-
guishing DLC from of CHB and LC. Meanwhile, liver fi-
brosis S4 stages were both within DLC and LC patients
who were separated into two groups, indicating that liver
fibrosis was not the cause but one of outcome of the
liver disease.

The PBMC DNA methylation characters of progression of
liver disease remained significant after correction for
potential confounders: gender, age, smoking, alcohol
drinking, and cell type.
To rule out the influence of cell mixture distribution in
PBMC, gender, age, smoking, and alcohol drinking on
DNA methylation, these covariates were checked for
correction. First of all, the cell mixture distribution for
each patient was determined using the Houseman algo-
rithm [13]. There was no significant difference in cell
mixture between the groups using two-way ANOVA
followed by pair-wise comparisons and false discovery
rate. Then, a multivariate linear regression was per-
formed on the normalized beta values of the 7888 CG
sites to divide all cases using group (CHB, LC, and

Table 1 Clinical and pathological characteristics of patients with HBV-related diseases

Variable CHB (n = 24) LC (n = 14) DLC( n = 10) P value

Age (mean ± SD) 42.5 ± 6.4 43.1 ± 7.2 41.3 ± 10.0 0.848

Gender 0.953

Male/female 16 (66.7%)/8 10 (71.4%)/4 7 (70.0%)/3

Smoking 0.181

No 12 (50%) 5 (35.7%) 4 (40.0%)

Infrequent 7 2 3

Heavy 5 7 3

Alcohol

No 15 (62.5%) 9 (64.3%) 8 (80.0%) 0.181

Infrequent 7 1 2

Heavy 2 4 0

TBIL (μmol/L) 25.63 ± 25.87 41.75 ± 46.23 70.04 ± 105.96 0.133

AST (U/L) 127.76 ± 182.01 332.8 ± 576.45 76.2 ± 103.7 0.131

ALT ((U/L)) 206.03 ± 319.22 524.14 ± 956.423 73.09 ± 117.38 0.130

APRI (mean ± SD) 77.75 ± 109.58 269.08 ± 475.83 91.53 ± 71.21 0.108

FIB4 (mean ± SD) 2.15 ± 1.42 3.63 ± 4.54 4.95 ± 3.31 0.054

HBsAg positive/negative 23 (100%)/0 (a) 12 (85.7%)/2 9 (100%)/0 (b) 0.083

Anti-HBs positive/negative 1 (4.16%)/22 2 (14.29%)/12 0 (0%)/9 0.291

HBeAg positive/negative 16 (69.56%)/7 6 (45.85%)/8 2 (22.22%)/7 0.034

Anti-HBe positive/negative 10 (43.47)/13 8 (57.14)/6 6 (66.67%)/3 0.447

Anti-HBc positive/negative 23 (100%)/0 14 (100%)/0 9 (100%)/0 NA

Fibrosis

S1 10

S2 9

S3 5

S3-4 4

S4 10 10

CHB chronic hepatitis B, LC compensated liver cirrhosis, DLC decompensated liver cirrhosis, TBIL total bilirubin, AST aspartate transaminase, ALT alanine
transaminase, APRI, FIB-4 serological diagnosis model, HBsAg hepatitis B surface antigen, Anti-HBs hepatitis B surface antibody, HBeAg hepatitis B e antigen, Anti-
HBe hepatitis B e antibody, Anti-HBc hepatitis B core antibody. a: one CHB patient data of HBV markers unavailable, b: one DLC patient data of HBV
markers unavailable
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DLC), gender, age, smoking, alcohol drinking, and cell
type as covariates. In the model including the other co-
variates, all CG sites remained highly significant for
group covariate, even after following Bonferroni correc-
tions, all CG sites remained highly significant for the
group (Supplementary table 2).
A multifactorial ANOVA analysis was performed on

the beta values of the 7888 sites as dependent variables
and group (CHB, LC, and DLC), gender, age, smoking,
and alcohol drinking as independent variables to deter-
mine whether there were possible separate and com-
bined effects on DNA methylation by the five
independent variables. The group remained significant
for all 7888 CG sites, no significant interactions between
group and separate or combine other four independent
variables (gender, age, smoking, and alcohol drinking)
were found after Bonferroni corrections (Supplementary
table 3).

Profiles and cluster of CpG sites methylation level by
STEM analysis
We aimed to address the hypothesis that changes of
DNA methylation level reflected the progression of the

disease. We used short time-series expression miner
(STEM) analysis to perform a global temporal analysis of
the detected CpG sites, in order to find the sites demon-
strating a common pattern of change of methylation
level along with the disease stages. Of the 50 randomly
selected profiles investigated, 18 profiles (1, 2, 4, 8, 9, 13,
17, 18, 19, 22, 24, 26, 31, 37, 37, 43, 44, and 45) showed
a statistically significant higher number of CpG sites
than expected (shown as colored profiles in Fig. 2).
Among these profiles, we focused on two profiles for
further analysis. In profile 24, the methylation level of
the CpG sites was stable from stage S1 to stage S3, then
reached the lowest level at stage LC, afterwards returned
to higher methylation level at stage DLC (but still lower
than stage S3). In profile 26, the methylation level of the
CpG sites was stable from stage S1 to stage S3, and then
reached the highest methylation level at stage LC. At
stage DLC, the methylation level was the lowest.

Selection of from PBMC DNA CpG sites for LC prediction
model
From profile no. 24 and no. 26, nine CpG sites were se-
lected and successfully distinguish LC PBMC samples

Fig. 1 Heatmap showing hierarchical clustering based one minus Pearson correlation of 48 liver disease patients by beta values of 7888 CpG sites
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from CHB and DLC samples using hierarchical cluster-
ing. Nine CpG sites candidates used to subject least ab-
solute shrinkage and selection operator (LASSO)
regularized regression method [14] implemented in the
glmnet R package [15, 16] to identify CpG sites panel
that predicted LC. Optimal value of LASSO penalty
weighting, λ was selected with 5-fold cross-validation
(CV). The minimum-deviance (λmin) plus 1 standard
error (λ1se) was used to select CpG sites sets (Fig. 3a).
Using the λ1se = 0.051, five CpG sites cg23899408
(HOOK2), cg20332088 (no gene can be mapped),
cg17040924 (OR52M1), cg17149911 (AAK1), and
cg05650055 (MYEOV) were prepared for LC prediction
model (Fig. 3c).

LC prediction model from CpG sites in PBMC DNA
combined with AST in blood
Firstly, CpG sites methylation obtained from Illumina
450 K array data were validated using the correlation
analysis. The three CpG sites (cg20332088, cg05650055,

and cg17149911) were chosen for pyromarksequencing,
and the primers and cycling conditions for pyrosequenc-
ing were shown in Supplementary table 4. The results
showed remarkable correlation between quantitation of
CpG sites methylation ratio using pyrosequencing and
Illumina 450 K array data, with a correlation coefficient
of 0.92, 0.90, and 0.87, respectively (Fig. 4a, b, and c).
Univariate analysis and multivariate logistic regression

were performed on five CpG sites were selected by
LASSO and clinical characteristics of the patients to de-
termine the independent association of each variable
with LC. In consideration of clinically relevant and given
the number of events available [17], thus the final model
contained three variables: cg05650055 (PyroMark value),
cg17149911 (PyroMark value), and AST levels in blood.
The predicted probability (P) of having LC was esti-
mated by the combined model: P = 1/(1 − e−x), where X
= 11.52 − 2.82 × (if AST within the normal range) −
0.19 × (percent methylation of cg05650055) − 0.21 ×
(percent methylation of cg17149911) (Table 2).

Fig. 2 STEM clustering was used to analyze profiles and cluster of methylation level of CpG sites. The upper numbers indicate type of profiles.
The lower contained P value of the profiles. The black lines showed mean pattern of CpG sites methylation level of the profile. The pink lines
showed all CpG sites methylation level of profiles. Colorful background showed significantly different profiles. The x-axis represents 5 stages (S1,
S2, S3, LC, DLC), and the y-axis represents CpG sites beta values
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The PBMC DNA methylation characters between LC and
CHB remained significant after correction for potential
confounders: gender, age, smoking, alcohol drinking, and
cell type.
The differentially methylated CpG sites between LC and
CHB were identified by applying the Bioconductor pack-
age Limma. The result showed 4325 significantly meth-
ylated CpG sites (Bonferroni correction P value ≥ 0.05),
including 1949 (45.06 %) hypermethylated and 2376

(54.94%) hypomethylated CpG sites (Fig. 5a) in PBMC
DNA of LC.
A multivariate linear regression was performed on the

normalized beta values of the 4325 CG sites to differen-
tiate LC from CHB cases using group (CHB versus LC),
gender, age, smoking, alcohol drinking, and cell type as
covariates. In this model including the other covariates,
all CG sites remained highly significant for group covari-
ate, following Bonferroni corrections, 4219 CG sites

Fig. 3 Biomarker CpG sites selection using hierarchical clustering and LASSO-regularized regression. a Hierarchical clustering analysis consisting of
nine differentially CpG sites in PBMC DNA from 48 liver disease patients. b Representative repetition of five-fold CV LASSO coefficients of nine
candidate CpG sites. The first vertical dotted line corresponds to the λmin that minimized binomial deviance during CV. The second dotted line
corresponds to λ1se (0.051), used for the selection of biomarker CpG sites. c LASSO coefficient profile plot of the coefficient paths. Nine CpG sites
had their coefficients significantly different from zero
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remained highly significant for the group (Supplemen-
tary table 6).
A multifactorial ANOVA analysis was performed on the

beta values of the 4325 sites as dependent variables and
group (CHB versus LC), gender, age, smoking, and alcohol
drinking as independent variables to determine whether
there were possible separate and combined effects on
DNA methylation by the five independent variables. Fol-
lowing Bonferroni corrections, 4167 CG sites remained

highly significant for the group, 158 significant interac-
tions between group and separate or combine other four
independent variables (gender, age, smoking, and alcohol
drinking) were found (Supplementary table 7).

Immune functional and canonical pathway changed
between LC and CHB in PBMC
To gain insight into the immune functional footprint of
the differentially methylated genes between LC and CHB

Fig. 4 Correlations between Illumina 450 K Array data and PyroMark sequencing data of three CpG sites, a cg20332088, b cg05650055 (MYEOV), c
cg17149911(AAK1), d ROC curves of the CpG sites (cg17149911 + cg05650055) model and LC-combined model, and their respective AUROC, 95%
CIs, sensitivity and specificity were reported in parentheses.

Table 2 Multivariate logistic regression model to predict LC

Variables B OR 95% CI of OR P

Intercept 11.52 1.01 e + 05 0.0326

cg05650055 (%) − 0.19 0.83 0.68–0.92 0.0386

cg17149911 (%) − 0.21 0.81 0.64–0.92 0.0471

AST (U/L) ≤ 15 or > 40(male) ≤ 13 or > 35(female) Reference Reference

15–40 (male) − 2.82 0.059 0.003–0.538 0.05

13–35 (female)

B regression coefficient, OR odds ratio in favor of having LC
The LC prediction model was conducted for training and internal testing with 48 liver disease patients and its accuracy was examined using a confusion matrix
analysis. The AUROC of CpG sites (cg17149911 + cg05650055) model and LC model to predict LC was 0.8542 (95% CI, 0.722–0.939), 0.917 (95% CI, 0.80–0.977),
respectively in Fig. 4d and Supplementary table 5.
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Fig. 5 (See legend on next page.)
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in PBMC, the genes whose “promoter” regions contain-
ing differentially methylated CpG probes (Supplemen-
tary table 8) were subjected to enrichment analysis using
Ingenuity Pathway Analysis (IPA). There were 113
enriched immune-related pathways (Supplementary
table 9), and the highlighted pathways (P value < 0.05)
with relevance to HBV-related fibrosis progression were
identified in this analysis (Fig. 5b). The top five immune
functional and canonical pathways were including IL-15
production, IL-17A signaling in airway cells, CD40 sig-
naling, IL-8 signaling, production of nitric oxide, and re-
active oxygen species in macrophages.

Discussion
HBV infection does not cause directly hepatocyte le-
sions, interactions between virus and host immune re-
sponse determine virus clearance or liver damage [18]. It
has been well known of viral clearance; however, mecha-
nisms of host immune response responsible for the liver
damage caused by HBV infection are still need to eluci-
date. Less is known about the alterations occurring in
immune cells DNA methylation in non-tissues in HBV-
related disease patients. From our analysis, 7888 CpG
sites in PBMC DNA whose quantitative state of methyla-
tion showed strong correlation (r > 0.8, r < − 0.8; P <
10−7) with progression from CHB, LC to DLC (Fig. 1),
which remained significant even after taking into ac-
count in the regression model differences in gender, age,
smoking, alcohol drinking, and cell-type distribution.
These data support idea that development of HBV-
related chronic liver disease is linked with robust and
broad alteration of methylation in peripheral immune
system.
Interestingly, the overall of differences in PBMC DNA

methylation varied as HBV-related chronic disease ad-
vanced, from hypermethylation to hypomethylation in
Fig. 1. Importantly, the profiles of PBMC DNA of DLC
patients were clearly differentiated from the CHB and
LC ones. There was a sharp boundary between DLC and
CHB and LC in heatmap, even both LC and DLC were
fibrotic S4. Except for fibrosis level, the clinical and
pathological characteristics of DLC might be other im-
portant factors distinguishing themselves from CHB and

LC. This inference was consistent with some clinical ob-
servation that there was no significant correlation be-
tween severity of necrosis or liver injury and fibrosis
progression in DLC patients [19, 20]. The same was true
in IL-15RαKO mice [21].
The alteration of PBMC DNA methylation modifica-

tion with chronic liver disease progression is important
and helpful to find biomarkers of liver disease in clinical
diagnosis and therapies [22]. Clinically, it might be easy
to distinguish DLC according to a series of clinical
symptoms. However, the LC patients with fibrosis S4
stage are difficult to make a distinction from CHB [3].
At present, LC diagnosis is still dependent on liver bi-
opsy that is traditionally gold standard procedure for sta-
ging of fibrosis and diagnosis. LC specifically PBMC
DNA-methylated CpG sites were significantly enriched
by STEM analysis based on their beta value of differenti-
ation in the process of liver fibrosis progression [23].
Based on the both profile no. 24 and no. 26 form STEM
results, we used five-fold cross-validation to select pen-
alty weighting λmin, five candidate CpG sites were se-
lected by LASSO basing on λ1se. In consideration of
clinically relevant and available number of events, we se-
lected cg05650055 and cg17149911 to prepare for LC
prediction model. Considering together with clinical
characteristics of patients, we made the LC combine
model. In this study, confusion matrix analysis was used
for LC model internal testing with 48 liver disease pa-
tients, further external validation will carry out to con-
firm detection efficiency of model.
There were 4325 differentially methylated CpG sites in

PBMC DNA of LC comparing CHB, including 1949
(45.06 %) hypermethylation and 2376 (54.94%) hypome-
thylation CpG sites. Previous reports demonstrated 18,
234 significant CpG sites in biopsy DNA of severe fibro-
sis comparing mild; however, hypermethylated CpG sites
(11,475, 62.94%) were more than hypomethylated ones
(6759, 37.06%) [9]. The DNA methylation profile of
PBMC DNA was not the same as tissue in severe fibrosis
patient. Without an overlap differentially methylated
CpG site between PBMC and liver biopsies (partial avail-
able data) suggested that changes of DNA methylation
seen in PBMC reflect variation in the immune system
were not a footprint of disease tissue.

(See figure on previous page.)
Fig. 5 a The volcano plot for differential DNA methylation CpG sites between LC and CHB. The x-axis showed the mean DNA-methylation
difference (delta Beta), whereas the y-axis showed the –log10 of the adjusted P value, hypermethylated CGs were shown in red, hypomethylated
CGs were shown in red blue, non-significant methylated change CGs were shown in green (Bonferroni correction P value < 0.05). b Immune
functional and canonical pathway changes between LC and CHB. Ten most significant pathways identified by the IPA canonical pathways analysis
(“Cellular Immune Response,” “Cytokine Signaling,” and “Humoral Immune Response”) of genes, whose “promoter” regions containing differentially
methylated CpG probes. Upper x-axis represented negative –log (P value) of the enrichment score, which calculated by IPA using Fisher’s exact
test, right-tailed. Lower x-axis represented the ratio values between selected genes and the total number of genes in each of these curated
pathways, and the orange curve pointed out the ratio, orange vertical line represented threshold value was 1.3.

Li et al. Clinical Epigenetics           (2020) 12:81 Page 9 of 13



The accurate relationship between DNA methylation
and gene expression was complex and unclear [24, 25].
An effect of DNA methylation on transcription was
highly dependent on specificity of tissue and genomic
context [24]. Methylation of promoter regions (TSS1500
and TSS200) and 5′UTR had mostly negative regulatory
effect on transcription compared to gene body regions
[26, 27]. The 1st exon was considered as an important
negative factor of transcription regulation [28]. Hyper-
methylation of the 1st exon region blocked transcrip-
tional initiation, or vice versa and its length was closely
related with gene activity [28–30]. On other hand, once
transcription began, methylation of downstream region
was not a significant interference factor restraining ex-
tension of RNA polymerase [28]. Methylation of CpGs
loaded within the body regions, 3′UTR, ExonBnd, and
intergenic region was not taken into account for func-
tional and canonical pathway analysis. Finally, we se-
lected CpGs loaded within “promoter” regions including
TSS1500, TSS200, 5′UTR, and the 1st exon of genes for
immune functional and canonical pathway analysis.
IPA canonical pathways analysis showed the immune

and signal pathway had changed in LC compared to
CHB, and provided an overview of the functional path-
ways that were affected. IL-15 and its signaling played
an anti-fibrotic role in two independent ways, IL-15
maintained homeostasis of NK cell whose cytolytic effect
avianized fibrogenic potential of hepatic stellate cells
(HSCs) [31] and IL-15Rα inhibited collagen transcription
repressors in HSCs [21]. In hepatitis B virus-related cir-
rhosis, IL-17 could activate STAT3 signaling pathway to
induce production of type I collagen in HSCs [32]. IL-
17A played critical role of HSC activation for liver fibro-
sis, and the induction of inflammatory cytokine and neu-
trophils recruitment were IL-17A-dependent [33].
Activation of the IL-17 pathway was a characteristic of
human alcoholic hepatitis [34]. IL-8 significantly in-
creased in chronic liver diseases, it served as a novel role
to recruit and activate hepatic macrophages via CXCR1
that enhanced hepatic inflammation [35]. The produc-
tion of nitric oxide (NO) and reactive oxygen species
(ROS) in macrophages suggested that except for neutro-
phils [36], macrophages were another important source
of NO and ROS in fibrosis progression. The CXCL12/
CXCR4 pathway recruited and retained immune cells to
involve into inflammation and fibrosis both in chronic
HCV and HBV infection [37]. These findings provided
considerable support for the point that the epigenetic al-
tering of immune system and inflammatory response
during HBV-related liver fibrosis progression.
We build a LC prediction combine model, using con-

fusion matrix analysis to confirm the model to be highly
sensitive and specific. An external verification study was
a necessary for LC diagnosis. The progression of HBV-

related liver disease is affected by interaction between
viral load, viral genotypes, and immune system. We de-
termine that the PBMC DNA methylation characters of
progression of liver disease (7888 CGs) and difference
between LC and CHB (4325 CGs) remain significant
after correction for HBV markers (Supplementary table
10 and 11) and PBMC cell type (CD4+ T cell, CD8+ T
cells, B Cells, natural killer cells, monocytes, granulo-
cytes). However, further research needs to investigate
the effect of HBV markers’ change, viral genotype, and
HBV infection of PBMC on methylation variety in host
PBMC. Meanwhile, we still need to find out the specific
methylation site in PBMC of HBV infection compared
with cases associated with HCV infection, especially
end-liver diseases.
In conclusion, we demonstrated epigenome-wide

methylation of fibrosis and cirrhosis in PBMC DNA of
HBV-related liver disease patients. From PBMC DNA
methylome profiling, we found that clinical and patho-
logical characteristics of DLC might be important factors
distinguishing themselves from CHB and LC. That was
consistent with some clinical observation. On study of
HBV-related liver fibrosis progression, we compared
PBMC DNA methylome changes of CHB with LC. IPA
pathway data showed that fibrosis progression caused
epigenetic reprogramming of the immune and inflam-
matory response, which providing potential targets for
the treatment of liver fibrosis.

Materials and methods
Study sample
In this study, 48 HBV-related disease patients who were
admitted into Beijing You’An Hospital, Capital Medical
from August 23, 2013 to March 1, 2017 were recruited.
Forty-eight patients included CHB consisting of 10 pa-
tients with fibrosis S1, 9 S2, and 4 S3; 14 LC consisting
of 4 S3-4 and 10 S4; and 10 DLC. All patients and their
family signed informed consents, and ethical approval
was granted from the respective ethics committees at
the Beijing You’An Hospital, Capital Medical University
(EC-B-031-A01-V9.1-2017-26).

Illumina HumanMethylation450 BeadChip analysis
After extraction, PBMC DNA was treated by bisulfite
converted (ZYMO Research, Irvine, USA), and prepared
for Illumina HumanMethylation 450 K BeadChip (Illu-
mina, Inc., San Diego, USA) analysis by CapitalBio Tech-
nology according the manufactures’ guide. In brief,
bisulfite-converted genomic DNA was whole-genome
isothermally amplified at 37 °C for 23 h, and enzymati-
cally fragmented, precipitated, denatured, and hybridized
on the BeadChips for 18 h at 48 °C. Then BeadChips
were washed, extended with biotin modified ddCTPs,
ddGTP or DNP modified ddATP, ddTTP prior to
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scanning with Illumina iScan system. Preprocessing of
the methylation data including raw.idat file loading, fil-
tering out probes located in chromosome X and Y, qual-
ity check, normalization, and batch effect correction was
performed with Bioconductor package Chip Analysis
Methylation Pipeline (ChAMP) implemented in R [38].
Raw data were filtered the probes with detection P value
> 0.01, with a beadcount < 3 in at least 5% of samples,
containing single nucleotide polymorphisms (SNPs)
aligning to multiple locations, locating on X,Y chromo-
some as well as was NOCpGs.

STEM analysis
We investigated the continuous change of CpG methyla-
tion over 5 disease development stages by applying short
time-series expression miner (STEM) analysis [39]. For
our analysis, mean CpG sites beta value of each group
was used for STEM analysis. Firstly, the clustering algo-
rithm was set as STEM Clustering Method to create 50
model profiles, all these model profiles were defined in-
dependently of the data from the experiment. Then,
STEM used the hypergeometric distribution to compute
the significance of overlap between the data from the ex-
periment and model profiles. Filtering parameters were
adjusted for CpG methylation data, as difference was set
to from 0 to 1 and minimum absolute expression change
was set to 0.

PCR and pyromarksequencing
Bisulfite-converted DNAs were amplified by PCR
primers designed with the Pyromark Assay Design soft-
ware 2.0 (Qiagen, Hilden, Germany) and primers and
cycling conditions for pyrosequencing shown in Supple-
mentary table 2. These PCR amplicons were separated
and detected by electrophoresis on 2% agarose gel.
Briefly, the PCR amplicon for each sample was immobi-
lized by master mix which contained Streptavidin Seph-
arose High Performance beads (GE, Healthcare) and
PyroMark Binding Buffer (Qiagen). The immobilized
product was purified by 70% ethanol, PyroMark De-
naturation Solution (Qiagen), and PyroMark Wash Buf-
fer (Qiagen) on the PyroMark Q24 Vacuum
Workstation (Qiagen), sequentially. Finally, single-
stranded DNA was then annealed to a specific sequen-
cing primer (Supplementary table 2) at 80 °C for 2 min,
and then cooled to room temperature for at least 5 min.
Results were analyzed with the PyroMarkQ24 Software
2.0 (Qiagen).

Pathway analysis
All CpG sites were linked to genes on basis of only the
450 K BeadChip annotation file. The majority of the sig-
nificantly differentially methylated CpG sites were lo-
cated within the gene region, which was categorized into

8 groups: TSS1500 (1500 bp regions upstream of the
transcription start site (TSS)), TSS200, 5′untranslated
region (UTR), the 1st exon, exon boundaries (ExonBnd),
gene body, 3′UTR, and intergenic region. “Promoter” re-
gion included TSS1500, TSS200, 5′UTR, and the 1st
exon of genes, which was tightly linked to transcriptional
progress [28–30, 40, 41]. Selected genes whose “pro-
moter” region containing differentially methylated CpG
probes were subjected to QIAGEN’s Ingenuity Pathway
Analysis (IPA, QIAGEN Redwood City, www.qiagen.
com/ingenuity) to identify relevant immune signaling
and functional pathways.

Software platform and packages
All analyses were carried out using the R 3.5.1 lan-
guage (http://www.r-project.org/). Correlations be-
tween pyromarksequencing and 450 K BeadChip data
were tested using Pearson coefficients as implemented
in R stats-package. The ChAMP package was for ana-
lysis of Illumina BeadChip assay [38] and package
Limma [42] was implemented in ChAMP. The R
package “glmnet” [15, 16] was for Lasso logistic re-
gression, and “caret” was for cross validation to select
the optimal λ value of LASSO penalty [43] and con-
fusion matrix analysis of internal testing of LC model.
“ROCR” [44] was employed to plot the ROC curve
and determine the AUROC.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13148-020-00847-z.

Additional file 1:. Supplementary table 1. Distribution of 7888
significantly differentially methylated CpG sites correlated with liver
disease progression ( r > 0.8, r < − 0.8; p < 10−7)

Additional file 2:. Supplementary table 2. Multivariate linear regression
of 7888 CpG sites

Additional file 3:. Supplementary table 3. Multifactorial ANOVA analysis
of 7888 CpG sites

Additional file 4:. Supplementary table 4. Primers and cycling
conditions for pyrosequencing methylation analysis of candidate CpG
sites

Additional file 5:. Supplementary table 5. Results of confusion matrix
analysis of CpG sites model and LC model

Additional file 6:. Supplementary table 6. Multivariate linear regression
of 4325 CpG sites

Additional file 7:. Supplementary table 7. Multifactorial ANOVA analysis
of 4325 CpG sites

Additional file 8:. Supplementary table 8. Distribution of significant
4325 CpG sites between LC and CHB

Additional file 9:. Supplementary table 9. IPA canonical pathways
analysis revealed 113 enriched immune-related pathways between LC
and CHB

Additional file 10:. Supplementary table 10. Multivariate linear
regression of 7888 CpG sites using group and HBV marker

Additional file 11:. Supplementary table 11. Multivariate linear
regression of 4325 CpG sites using group and HBV marker
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