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1. Introduction

Active matter encompasses reaction–diffusion systems out of equilibrium whose com-
ponents are subject to local non-thermal forces [1]. There is a plethora of interesting
patterns and phenomenology in this broad class of systems. Some fascinating examples
are active nematics [2–4], active emulsions [5], and active motility [6, 7], among many
others. Active matter has become a research focus in statistical mechanics over recent
years, as it addresses fundamental questions on the physics of non-equilibrium systems,
but also as a quantitative approach to biological physics and the path to designing an
autonomous microbiological engine [8–11].
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In this paper we study a model of active motility known as run and tumble (RnT) [12]
that has been used to describe bacterial swimming patterns such as that of Escherichia
coli and Salmonella [13]. A particle undergoing RnT motion moves in a sequence of
runs at constant self-propulsion speed w interrupted by sudden changes (tumbles) in its
orientation that happen at Poissonian rate α, [14–21]. This motion pattern is ballistic
at the microscopic scale and diffusive at the large scale with effective diffusion constant
Deff = w2/α [12, 20, 22–27]. We study a RnT particle subject to thermal noise with
diffusion constant D confined in a harmonic potential V (x) = kx2/2, see figure 1. The
thermal noise is an important element in our derivation, as it allows the introduction
of the Hermite orthogonal system, although it can later be switched off by taking the
limit D → 0. Despite the stationary distribution has been derived in the limit D → 0
before [28], to our knowledge most of our results are novel for D > 0. Here we show
how to derive a Doi-Peliti field theory for an RnT particle in a harmonic potential and
calculate the short-time propagator; zeroth, first and second moments of the position of
a right-moving particle; entropy production rate (or Kullback–Leibler distance between
forward and backward paths); stationary distribution of the RnT particle and the right-
moving particle; and other observables such as the mean-square displacement, the two-
point correlation function, and the two-time correlation function. The stochastic process
described above has a parallel in the context of gene regulation, where a gene switches
back and forth between two states with different transcription rates. Gene transcription
gives rise to a product (mRNA molecules) that is subject to decay (degradation of
mRNA molecules) [29–32]. This biological process can be mapped to an RnT particle
in a harmonic potential, where the gene state corresponds to the particle species (right-
or left-moving), and the switching rates correspond to the tumbling rate α/2. The
product concentration corresponds to the position of the particle x, the transcription
rates correspond to the self-propulsion speeds, and the degradation rate corresponds
to the potential strength k. This model is closer to the biological process if we allow
for asymmetric transcription and switching rates, which correspond to asymmetric self-
propulsion speeds and tumbling rates. We discuss this generalisation of RnT motion in
appendix A.

In this paper, we follow a path integral approach [15] whereby we derive a pertur-
bative field theory in the Doi-Peliti framework [33] and use it to calculate a number of
observables in closed form, with an emphasis on the entropy production [34]. Despite
our approach being perturbative, all our results are exact. The presence of the external
potential presents technical challenges in the derivation of the field theory that resemble
those encountered in other contexts such as the quantum harmonic oscillator [35–37].
We use a combination of the Fourier transform and Hermite polynomials to parametrise
the fields as to diagonalise the action functional.

We regard the Doi-Peliti framework as a method to solve a master equation, or a
Fokker–Planck equation of a particle system. It therefore crucially retains the micro-
scopic dynamics of the system and captures the particle nature of the constituent degrees
of freedom, see appendix H. For this reason, the Doi-Peliti framework provides a solid
route to calculate the entropy production and, most importantly, proves itself to be an
effective tool to study active particle systems. In this paper, we illustrate this point by
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Figure 1. Trajectory snapshots of an RnT particle in a harmonic potential V (x)
(solid line). Initially, the particle at (x0, t0) is right-moving with positive velocity
w (red circles), until it tumbles at (x1, t1) and becomes left-moving with negative
velocity −w (blue circles).

studying RnT motion. We regard the present work as the foundation to address a num-
ber of important questions about interacting active matter, such as the microscopics of
motility induced phase separation, an active kinetic theory and how to extract useful
work from active matter.

The contents of this paper are organised as follows: in section 2, we derive a field
theory for an RnT particle in a harmonic potential; in section 3 we use this field theory to
calculate the entropy production; and in section 4 we discuss our results. In the appendix,
we have included other relevant observables: mean square displacement (appendix F),
two-point correlation functions (appendices H and I), expected velocity (appendix G),
and stationary distribution (appendix D).

2. Field theory of RnT motion with diffusion in a harmonic potential

In one dimension, we can think of RnT motion as the interaction between right- and left-
moving particles that transmute into one another at Poissonian rate α/2, see figure 1.
The Langevin equations of each species are

ẋφ = −∂xV (x) + w + η(t) (1)

for right-moving particles and

ẋψ = −∂xV (x)− w + η(t) (2)

for left-moving particles, where η is a Gaussian white noise with mean 〈η(t)〉 = 0 and cor-
relation function 〈η(t)η(t′)〉 = 2Dδ(t− t′), with diffusion constant D. The corresponding
Fokker–Planck equations are coupled due to the transmutation between species through
a gain and loss terms,
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∂tPφ = −∂x [(−kx+ w)Pφ] +D∂2
xPφ +

α

2
(Pψ − Pφ), (3a)

∂tPψ = −∂x [(−kx− w)Pψ] +D∂2
xPψ +

α

2
(Pφ − Pψ), (3b)

where Pφ(x, t) and Pψ(x, t) are the probability densities of a right- and a left-moving
particle respectively, as a function of position x and time t. As we show throughout
this paper, the symmetry between right- and left-moving particles due to isotropic self-
propulsion velocities and equal tumbling rates turns out to simplify our derivations.
However, our results can be generalised to the asymmetric case, with anisotropic self-
propulsion and different tumbling rates, which we discuss in appendix A.

Most of the results that follow can be derived directly from the Langevin
equations (1) and (2), and Fokker–Planck equation (3) via classic probabilistic meth-
ods. However, we follow instead a Doi-Peliti path integral approach because it provides
a systematic route to calculate results using perturbative expansions. Moreover, in this
framework, the stochastic system can be easily extended to include other interactions
and particle species, and allows for tools such as renormalisation Group that are not
available in classic methods. These features are essential for our current and future
research in active matter.

In the following we show how to derive a Doi-Peliti field theory of our system.
Without having to translate the Langevin equations in (1) and (2) to the lattice and
later taking the continuum limit, we write the action functional straightaway from the
Fokker–Planck equation (3) as shown in [38],

A =

∫
dx dt

{
φ̃
(
∂tφ+ ∂x [(−kx+ w)φ]−D∂2

xφ
)

+ ψ̃
(
∂tψ + ∂x [(−kx− w)ψ]−D∂2

xψ
)
+

α

2
(φ̃− ψ̃)(φ− ψ)

}
, (4)

where φ is the annihilation field of right-moving particles; φ̃ is the Doi-shifted [39] cre-

ation field φ† = φ̃+ 1 of right-moving particles; ψ is the annihilation field of left-moving

particles; and ψ̃ is the Doi-shifted creation field ψ† = ψ̃ + 1 of left-moving particles. The
action functional (4) allows the calculation of an observable • via the path integral

〈•〉 =
∫

D[φ, φ̃,ψ, ψ̃] • e−A([φ,φ̃,ψ,ψ̃]). (5)

The action in equation (4) contains only bilinear terms, where the only interaction
between species is due to transmutation. This action does not have any non-linear
couplings. Motivated by the matrix representation of the action (4), we refer to any

terms involving φ̃φ or ψ̃ψ as diagonal terms, and to the terms φ̃ψ and ψ̃φ as off-diagonal
terms. The diagonal terms in (4) are semi-local due to the derivatives in space and time,
which need to be made local in order to carry out the Gaussian (path) integral. This
is usually achieved by expressing the fields in Fourier space. In this case, however,
Fourier-transforming (4) yields the action local in the frequency ω but not in position

x Fourier-transformed. Due to the diagonal terms −kφ̃∂x(xφ) − kψ̃∂x(xψ), the action
remains semi-local after Fourier-transforming.
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Instead, we first parametrise the action by the density field ρ = (φ+ ψ)/
√
2 and the

polarity field ν = (φ− ψ)/
√
2, also called chirality [40], with the analogous transforma-

tion for the conjugate fields. This change of variables is useful in other contexts and is
known under other names, such as the Keldysh rotation [41]. In our case, the advantage
is that the action remains invariant under the transformation ρ ↔ ν, ρ̃ ↔ ν̃, except for
the mass term αν̃ν,

A =

∫
dx d̄ω

{
−̊ıωρ̃ρ− kρ̃∂x(xρ)−Dρ̃∂2

xρ− ı̊ων̃ν − kν̃∂x(xν)

−Dν̃∂2
xν + αν̃ν + wρ̃∂xν + wν̃∂xρ

}
. (6)

We then use the solution to the eigenvalue problem L[u(x)] = λu(x), with

L[u(x)] = ∂2
xu(x) + ∂x(x u(x))/L

2, (7)

L =
√

D/k and λ ∈ R, where the differential operator follows from the diagonal terms
in (6). By using the fields ρ and ν, instead of the original φ and ψ, we have the same
differential operator L acting on both ρ and ν.

The solution to this eigenvalue problem is the set of functions

un(x) = e−
x2

2L2 Hn

(x
L

)
, (8)

with eigenvalue λn = −n/L2, where Hn (x) is the nth Hermite polynomial in the
‘probabilists’ convention’, see appendix B [35, 42–44]. The functions un(x) are simi-
lar to the so-called Hermite functions exp(−x2/(4L2)) Hn (x/L). Defining the set of
functions

ũn(x) =
1√
2π n!

Hn

(x
L

)
, (9)

the orthogonality relation between un(x) and ũm(x) follows from the orthogonality of
Hermite polynomials in equation (B.2),∫ ∞

−∞
dx un(x)ũm(x) = L δn,m, (10)

where δn,m is the Kronecker δ. We can now use un and ũm as basis for the fields ρ, ρ̃, ν
and ν̃,

(∼)
ρ (x, t) =

∫
d̄ω e−̊ıωt 1

L

∑
n

(∼)
ρ n(ω)

(∼)
u n(x), (11a)

(∼)
ν (x, t) =

∫
d̄ω e−̊ıωt 1

L

∑
n

(∼)
ν n(ω)

(∼)
u n(x). (11b)

Using the representation (11) and the orthogonality relation (10) in the action A =
A0 +A1 in (6), we have
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A0 =
1

L2

∑
n,m

Lδn,m

∫
d̄ω d̄ω′ δ̄(ω + ω′)

× [(−̊ıω + kn) ρ̃n(ω
′)ρm(ω) + (−̊ıω + kn+ α) ν̃n(ω

′)νm(ω)] , (12a)

A1 = −w

L

1

L2

∑
n,m

Lδn−1,m

∫
d̄ω d̄ω′ δ̄(ω + ω′) [ρ̃n(ω

′)νm(ω) + ν̃n(ω
′)ρm(ω)] , (12b)

where A0 contains the local, diagonal terms and A1 contains the off-diagonal terms,
which are non-local due to δn−1,m. We can then regard A0 as the Gaussian model and
A1 as a perturbation about it.

The Gaussian model corresponds to Ornstein–Uhlenbeck particles where one species
has decay rate α. Defining an observable • in the Gaussian model as

〈•〉0 =
∫

D[ρ, ρ̃, ν, ν̃] • e−A0([ρ,ρ̃,ν,ν̃]), (13)

from (5) it follows that the perturbation expansion of the observable in the full model,
the RnT particle, is

〈•〉 =
〈
• e−A1

〉
0
=

∞∑
N=0

1

N !

〈
•(−A1)

N
〉
0
. (14)

By performing the Gaussian path integral [45] in (13), the bare propagators read

(15a)

(15b)

where r is a mass term added to regularise the infrared divergence and which is to be
taken to 0 when calculating any observable. We use Feynman diagrams to represent
propagators [33, 39, 45], where time (causality) is read from right to left. On the other
hand, we have

〈ρn(ω)ν̃m(ω
′)〉0 = 0, (16a)

〈νn(ω)ρ̃m(ω′)〉0 = 0, (16b)

for any n,m, which implies that there is no ‘interaction’ between ρ and ν at the bare
level. The perturbative part A1 of the action, equation (12b), however, provides the
amputated vertices

(17)

which shift the index by one. As the coupling w/L = w
√
k/D diverges for small D,

more and more perturbative terms have to be taken into account in the limit of small
D, figure D1.
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2.1. Full propagator in reciprocal space

To calculate certain observables such as the time-dependent probability distribution of
the RnT particle, we need the full propagators. To derive the full propagators we use
the action in (12), the bare propagators in (15), (16), the perturbative vertex (17), as
well as Wick’s Theorem [45]. Consider, for instance, the propagator of the density field
〈ρρ̃〉. From (14) we have

(18)

where the zeroth order term is given in equation (15a) and the first order term is

〈ρn(ω)ρ̃m(ω′)(−A1)〉0 = 0. (19)

Equation (18) allows us to calculate the stationary distribution, appendix D. The second
order term in (18) is

(20)

using two of the index-shifting vertices (17). From (16a) it follows that any term in (18)
of odd order N vanishes because the fields ρ, ρ̃, ν and ν̃ cannot be paired according to
(15). Then, the contributions to the full propagator 〈ρρ̃〉 are

1

N !

〈
ρn(ω)ρ̃m(ω

′)(−A1)
N
〉
0

=

⎧⎪⎪⎨⎪⎪⎩
Lδn,m+N δ̄(ω + ω′)

(w
L

)N N∏
j=0

1

−̊ıω + k(m+ j) + pj
if N even,

0 if N odd,

(21)

where pj = r if j is even and pj = α if j is odd. Similarly, the contributions to the full
propagators 〈νν̃〉, 〈ρν̃〉 and 〈νρ̃〉 are, respectively,

1

N !

〈
νn(ω)ν̃m(ω

′)(−A1)
N
〉
0

=

⎧⎪⎪⎨⎪⎪⎩
Lδn,m+N δ̄(ω + ω′)

(w
L

)N N∏
j=0

1

−̊ıω + k(m+ j) + qj
if N even,

0 if N odd,

(22a)
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1

N !

〈
ρn(ω)ν̃m(ω

′)(−A1)
N
〉
0

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if N even,

Lδn,m+N δ̄(ω + ω′)
(w
L

)N N∏
j=0

1

−̊ıω + k(m+ j) + qj
if N odd,

(22b)

1

N !

〈
νn(ω)ρ̃m(ω

′)(−A1)
N
〉
0

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if N even,

Lδn,m+N δ̄(ω + ω′)
(w
L

)N N∏
j=0

1

−̊ıω + k(m+ j) + pj
if N odd,

(22c)

where qj = α if j is even and qj = r if j is odd. The diagrammatic representation of the
full propagators is

(23a)

(23b)

(23c)

(23d)

where the black circle • represents the sum over all possible diagrams that have the
same incoming and outgoing legs. Some of these propagators are calculated in closed
form in appendix C.

2.2. Short-time propagator in real space

In this section we calculate the short-time propagator 〈φ(y, τ)φ̃(x, 0)〉1 of a right-moving
particle that moves from position x to y in an interval of time τ , and the short-time

propagator 〈ψ(y, τ)φ̃(x, 0)〉1 of a right-moving particle x that transmutates into a left-
moving particle at y in an interval of time τ . The subindex indicates that the propagator
is expanded to first order about the Gaussian model, 〈•〉1 = 〈•〉0 − 〈•A1〉0. Expanding
to Nth order in the perturbative part of the action generally provides the Nth order in
τ [38]. Using the recurrence relation (B.6), Mehler’s formula (B.7) and the propagators
in equations (C.1)–(C.6), these two propagators are,

(24a)
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=
1

2

√
k

2πD (1− exp(−2kτ))
e−

k(y−x exp(−kτ ))2

2D(1−exp(−2kτ ))

×
(
1 + e−ατ +

wk
(
y − xe−kτ

)
D (1− e−2kτ )

[
1

k − α

(
e−ατ − e−kτ

)
+

1

k + α

(
1− e−(k+α)τ

)])
(24b)

=
1√

4πDτ
e−

(y−x(1−kτ ))2

4Dτ

(
1 +

w(y − x)

2D

+
(
−α

2
+

w

4D
(k(y + x)− α(y − x))

)
τ +O

(
τ 2
))

, (24c)

and

(25a)

=
1

2

√
k

2πD (1− exp(−2kτ))
e−

k(y−x exp(−kτ ))2

2D(1−exp(−2kτ ))

×
(
1− e−ατ +

wk
(
y − xe−kτ

)
D (1− e−2kτ )

[
1

k − α

(
e−ατ − e−kτ

)
− 1

k + α

(
1− e−(k+α)τ

)])
(25b)

=
1√

4πDτ
e−

(y−x(1−kτ ))2

4Dτ

(α
2
τ +O

(
τ 2
))

. (25c)

Comparing (24) with (25) we see that the transition probability that involves exactly
one transmutation event, independently of displacement, is of higher order in τ than
the transition probability of just a displacement.

2.3. Zeroth, first and second moments of the position of a right-moving particle

As it will become clear in section 3, we need the zeroth, first and second moments
of the position of a right-moving particle to calculate the entropy production of an
RnT particle in a harmonic potential. Assuming that the system is initialised with a
right-moving particle placed at x0 at time t0 = 0, the nth moment of its position is〈

xn
φ(t)

〉
=

∫ ∞

−∞
dx xn〈φ(x, t)φ̃(x0, 0)〉, (26)

where the propagator 〈φ(x, t)φ̃(x0, 0)〉 expressed in terms of the
(∼)
ρ and

(∼)
ν fields con-

tains the four full propagators, , equation (23).
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Definition (26) contains a mild abuse of notation that we will keep committing through-
out, as the angular brackets were introduced in (5) as a path integral but are expectation
over a density in (26). Since there is an integral over space and xn is a polynomial in x, the
observable can be written as linear combinations of Hermite polynomials, which simpli-
fies the calculations by virtue of the orthogonality relation in (B.2). In particular, for the
first three moments, 1 = H0 (x/L), x/L = H1 (x/L) and (x/L)2 = H0 (x/L) +H2 (x/L).
Using the representation in (11) and the propagators derived in appendix C, the zeroth,
first (see figure 2) and second moments are

(27a)

(27b)

(27c)

From the propagators in equations (C.1)–(C.6), we see that at stationarity, only those
terms remain where the Doi-shifted creation field is ρ̃0. Then, equation (27) simplify to

lim
t→∞

〈
x0
φ(t)

〉
=

1

2
(28a)

lim
t→∞

〈
x1
φ(t)

〉
=

1

2

w

k + α
(28b)

lim
t→∞

〈
x2
φ(t)

〉
=

D

2k
+

w2

2k(k + α)
(28c)

at stationarity.
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Figure 2. Conditional expected position 〈xφ(t)〉 /
〈
x0
φ(t)

〉
of a right-moving RnT

particle in a harmonic potential, equations (27a) and (27b), for a range of w and
x0, with α = 1 and k = w/ξ with ξ = 1.

3. Entropy production rate

In this section we derive the internal entropy production rate Ṡi at stationarity [46–49],
assuming that the observer is able to distinguish whether the RnT particle is in its
right- or left-moving state. We discuss the case where the observer is not able to dis-
tinguish the RnT particle’s state in appendix E. Other observables we calculate are in
the appendix: mean square displacement (appendix F), two-point correlation function
(appendix H), two-time correlation function (appendix I), expected velocity (appendix
G) and stationary distribution (appendix D).

The internal entropy production is defined as the Kullback–Leibler distance between
forward and backward paths [38, 46, 50]. Because the particle’s position and species are
Markov, the entropy production can easily be expanded in terms of the short-time
propagators [51]

Ṡi(t) = lim
τ→0

1

2τ

∫
dx dy [P (x, t)W (x→ y ; τ)− P (y, t)W (y → x ; τ)]

× ln

(
P (x, t)W (x→ y ; τ)

P (y, t)W (y→ x ; τ)

)
, (29)

where P (x, t) is the probability that the system is in state x at time t and W (x→ y ; τ)
is the transition probability of the system to change from state x to y in an interval of
time τ . The internal entropy production rate Ṡi is non-negative, and it is zero if and
only if detailed balance P (x, t)W (x→ y ; τ) = P (y, t)W (y → x ; τ) is satisfied for any
two pairs of states x and y. A positive entropy production rate is thus the signature of
non-equilibrium and it indicates the breakdown of time-reversal symmetry. The entropy
production Ṡi(t) of a drift-diffusive particle in free space with velocity w and diffusion

constant D is known to be Ṡi(t) = 1/(2t) + w2/D [46], where the first contribution is
due to the relaxation to steady state and is independent of the system parameters, and
the second contribution is due to the steady-state probability current.
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We can anticipate that the stationary entropy production rate Ṡi of an RnT par-
ticle in a harmonic potential is positive given that, between tumbles, the particle is
drift-diffusive and, therefore, there is locally a perpetual current. Moreover, a particle’s
forward trajectory, such as in figure 1, is distinct from its backwards trajectory, which
indicates the breakdown of time-reversal symmetry.

Given the RnT particle is confined in a potential, its probability distribution develops
into a stationary state, see appendix D. We denote the stationary distribution by P (x) =

limt→∞ P (x, t). In the following, we derive the stationary Ṡi = limt→∞ Ṡi(t) in (29) along
the lines of [46, 51].

First, the contribution of P (x) in the logarithm vanishes at stationarity,∫
dxdy [P (x)W (x→ y ; τ)− P (y)W (y → x ; τ)] ln

(
P (x)

P (y)

)
= 0, (30)

because of (i) the Markovian property,
∫
dyW (x→ y ; τ) = 1, which implies∫

dyP (x)W (x→ y ; τ) = P (x), and (ii) the identity for Markov processes at stationarity,∫
dxP (x)W (x→ y ; τ) = P (y). Using (30) in (29) yields

Ṡi = lim
τ→0

1

2τ

∫
dx dy [P (x)W (x→ y ; τ)− P (y)W (y → x ; τ)] ln

(
W (x→ y ; τ)

W (y → x ; τ)

)
.

(31)

Second, using the convention W (y → x ; 0) = δ(x− y), we have

−P (x)W (x→ y ; 0) + P (y)W (y → x ; 0) = 0, (32)

which we introduce in the square brackets in (31), to write limτ→0(W (y → x ; τ)−
W (y → x ; 0))/τ = limτ→0 Ẇ (x→ y ; τ), so that

Ṡi = lim
τ→0

1

2

∫
dx dy [P (x)Ẇ (x→ y ; τ)− P (y)Ẇ (y → x ; τ)] ln

(
W (x→ y ; τ)

W (y → x ; τ)

)
, (33)

And third, expanding the square bracket in (33) and changing x ↔ y in one of the
integrals gives

Ṡi = lim
τ→0

∫
dx dy P (x)Ẇ (x→ y ; τ) ln

(
W (x→ y ; τ)

W (y → x ; τ)

)
. (34)

Since the entropy production involves the limit τ → 0 of the transition rate Ẇ =
d
dτ
W , the entropy production crucially draws on the microscopic dynamics of the process.

We can therefore focus on lower order contributions to Ẇ in τ and neglect higher order
contributions.

For an RnT particle, all possible transitions between states involve a displacement
(run) and/or a change in the direction of the drift (tumble). Given that, at stationarity,
there is a symmetry between right- and left-moving particles under the transformation
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Figure 3. Stationary probability density and local entropy production rate σ(x) of
a right-moving (R) and left-moving (L) particle, equations (40), (D.3) and (D.7),
with D = 0.01, α = 2. In (a) and (d) w = 2, k = 2; in (b) and (e) w = 1, k = 1; and
in (c) and (f) w = 0.5, k = 0.5. We used multiple-precision floating-point arithmetic
[52] to implement Hermite polynomials up to H104 (x) based on the GNU Scientific
Library implementation [53], see figure D1.

x ↔ −x, we can summarise the contributions to the entropy production (34) as

Ṡi = lim
τ→0

2

∫
dx dy Pφ(x)

[
Ẇ (x→ y,φ ; τ) ln

(
W (x→ y,φ ; τ)

W (y → x,φ ; τ)

)
+ Ẇ (x→ y,φ→ ψ ; τ) ln

(
W (x→ y,φ→ ψ ; τ)

W (y → x,ψ → φ ; τ)

)]
, (35)

where Pφ(x) = limt→∞ 〈φ(x, t)φ̃(x0, 0)〉, which normalises to 1/2. The first term in the
square bracket in (35) corresponds to the displacement of a right-moving particle from

x to y with transition probability W (x→ y,φ ; τ) = 〈φ(y, τ)φ̃(x, 0)〉. The second term
in the square bracket of (35) corresponds to the displacement of a particle from x
to y that starts as right-moving and ends as left-moving, with transition probability

W (x→ y,φ→ ψ ; τ) = 〈ψ(y, τ)φ̃(x, 0)〉. These two transitions include any intermediate
state where there may be displacement and transmutation, although their transition
probabilities are of higher order in τ and therefore can be neglected. We therefore use
the short-time propagators in (24) and (25) [38, 46].

In the following, we analyse which terms in (35) contribute to the entropy produc-

tion rate Ṡi. We first consider the transition due to transmutation and displacement,
whose short-time propagator is (25). By symmetry, we see that the transition probability
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Figure 4. Stationary internal entropy production rate Ṡi of an RnT particle in a
harmonic potential as a function of the self-propulsion w, assuming the state of the
particle is known, equation (41), with α = 2, D = 0.01, and varying k. The grey
line corresponds to systems where the potential strength k and the self-propulsion
speed w preserve the characteristic length ξ = 1. The points where the grey line
crosses the lines with k = 0.5, k = 1 and k = 2 give Ṡi in the examples shown in
figure 3.

corresponding to displacement and transmutation in the short-time limit is

W (x→ y,φ→ ψ ; τ) = W (−x→−y,ψ → φ ; τ) =
1√

4πDτ
e−

(y−x)2

4Dτ

(α
2
τ +O

(
τ 2
))

,

(36)

which is equal for the forward and backward trajectories. As the logarithm vanishes,
the second term in (35) does not contribute.

The transition associated to the displacement of a right-moving particle from x to y is
similar to that of a drift-diffusive particle in a harmonic potential, so we expect the first
term in (35) to contribute to the entropy production. Using the short-time propagator

of a right-moving particle W (x→ y,φ ; τ) � 〈φ(y, τ)φ̃(x, 0)〉1 in (24) and (25), the first
logarithm in equation (35) is,

lim
τ→0

ln

(
〈φ(y, τ)φ̃(x, 0)〉1
〈φ(x, τ)φ̃(y, 0)〉1

)
=

y − x

D

(
w − k

x+ y

2

)
. (37)

From the short-time propagator in (24) and, equivalently, from the Fokker–Planck

equation (3a), the kernel Ẇ that we need in (35) is

lim
τ→0

Ẇ (x→ y,φ ; τ) = Dδ′′(y − x)− (w − kx)δ′(y − x)− α

2
δ(y − x). (38)

Using (37) and (38), equation (35) simplifies to

Ṡi = 2

∫
dx Pφ(x)

(
1

D
(w − kx)2 − k

)
, (39)
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which shows that the local entropy production rate [34, 54] for right-moving particles is

σφ(x) =
1

D
(w − kx)2 − k, (40)

and σψ(x) = σφ(−x) for left-moving particles, see figure 3. The local entropy production
rate σφ is minimal at the characteristic point ξ = w/k, where a right-moving particle
has a zero expected velocity because the self-propulsion equals the force exerted by the
potential, and its motion is entirely due to the thermal noise. We can calculate (39) using
the moments derived in section 2.3. On the basis of equation (28), the total stationary
internal entropy production is

Ṡi =
αw2

D(k + α)
, (41)

see figure 4.

4. Discussion, conclusions and outlook

In this paper we have used the Doi-Peliti framework to describe an RnT particle in
a harmonic potential and calculate its entropy production (41) and other observables
(such as (24), (28), (F.4), (G.4), (H.2), (I.3), (D.3) and (D.7)) in closed form. The
key result in equation (41) shows that the stationary internal entropy production of
an RnT particle is proportional to that of a drift-diffusive particle in free space, where
Ṡi = w2/D [46]. In the presence of an external harmonic potential (k > 0), the entropy
production is always smaller than that of a free particle. If there is no tumbling (α = 0),
then the system is an Ornstein–Uhlenbeck process, which is at equilibrium and therefore
produces no entropy.

The positive entropy production rate implies the breaking of time symmetry whereby
forward and backward trajectories are distinguishable [46]. This is visible in the trajec-
tory of an RnT particle, such as in figure 1, where we can see that the particle runs fast
when ‘going down’ the potential and it slows down as it moves up the steep slope of the
potential.

Deriving the Doi-Peliti field theory of an RnT particle in a harmonic potential
presents an important technical challenge. Due to the external harmonic potential, the
action functional is semi-local both in real space and in Fourier space. Instead, to diag-
onalise the action we decomposed the fields in a basis of Hermite polynomials following
the spirit of the harmonic oscillator [43].

Extending the above results to higher dimensions requires the tumbling mecha-
nism to be suitably changed. The different spatial dimensions decouple only if tumbling
between two velocities is maintained in each spatial direction. Otherwise, different mech-
anisms, such as a diffusive director as in active Brownian particles or RnT with the new
direction taken from a uniform distribution [17, 24], require different approaches. In gen-
eral it will no longer be possible to decompose the particle densities into scalar densities
and polarities, which may need to be cast into a vector field. It is a matter of future
research to find a convenient, microscopic field theory of RnT in higher dimensions.
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The present example of an RnT particle illustrates the power of field theories that
capture the microscopic dynamics to deal with active systems. Since the large scale
behaviour of an RnT particle is that of a diffusive particle, by studying an effective
theory that captures the large scale only, we would obtain a zero entropy production
rate, in contradiction with our result (41). A similar coarse-graining simplification is
assumed, for instance, when motility induced phase separation is modelled via quo-
rum sensing, that is the self-propulsion depends on the particle density [24], instead of
pairwise repulsive interactions.

Our work can be extended to studying Active Ornstein–Uhlenbeck Particles [44],
whose self-propulsion is modelled by an Ornstein–Uhlenbeck process, and therefore
share important features with an RnT particle in a harmonic potential. In particu-
lar, the field decomposition is also based on Hermite polynomials. Another extension
for possible future work is to include a birth and death, or branching dynamics, by

adding
∫
dx dt {rφ̃φ− q2φ̃

2φ} to the action (4) [55].
To study a microscopic description of motility induced phase separation, we can

introduce pairwise interactions. Interactions between particles at positions x and y
mediated by a potential V (x− y) result in the following term in the action

A2 =

∫
dx dy dt

(
∂xφ̃(x, t)φ(x, t) + ∂xψ̃(x, t)ψ(x, t)

)
V ′(x− y)

×
((

φ̃(y, t) + 1
)
φ(y, t) +

(
ψ̃(y, t) + 1

)
ψ(y, t)

)
, (42)

which probes for the particle numbers of either species at a distance x− y and imple-
ments their interaction via the potential V . In terms of density and polarity fields, this
nonlinear term is

A2 =

∫
dx dy dt (∂xρ̃(x, t)ρ(x, t) + ∂xν̃(x, t)ν(x, t))V

′(x− y)

× ((ρ̃(y, t) + 1) ρ(y, t) + ν̃(y, t)ν(y, t)) . (43)

Having established the field-theoretic foundational work for an RnT particle, we shall
now proceed to studying more intricate processes that will advance our understanding
of active matter.
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Appendix A. Generalisation to anisotropic self-propulsion and different tumbling
rates

The formalism presented in section 2 can be generalised to anisotropic self-propulsion
and asymmetric tumbling rates, which has applications in the context of gene regula-
tion [29–32]. First, we consider the case where the self-propulsion velocities are w + Ω
for right-moving particles and −w + Ω for left-moving particles, similar to a persistent
random walk [56, 57]. The coupled Fokker–Planck equations in (3) then read

∂tPφ = −∂x [(−kx+ w + Ω)Pφ] +D∂2
xPφ +

α

2
(Pψ − Pφ) , (A.1)

∂tPψ = −∂x [(−kx− w + Ω)Pψ] +D∂2
xPψ +

α

2
(Pφ − Pψ). (A.2)

We see that the shift in the self-propulsion can be absorbed into the position x through
the change

x→ x− Ω

k
, (A.3)

so that we recover the Fokker–Planck equations in (3). Asymmetric velocities, Ω 
= 0,
therefore amount to a shift of the origin by Ω/k in the results above.

Second, assuming that the tumbling rates are αφ = α+Λ and αψ = α− Λ, the
Fokker–Planck equations in (3) read

∂tPφ = −∂x [(−kx+ w)Pφ] +D∂2
xPφ +

α+ Λ

2
(Pψ − Pφ), (A.4)

∂tPψ = −∂x [(−kx− w)Pψ] +D∂2
xPψ +

α− Λ

2
(Pφ − Pψ), (A.5)

so that the action functional in (4) aquires an additional bilinear term with coupling Λ,

A =

∫
dx dt

{
φ̃
(
∂tφ+ ∂x [(−kx+ w)φ]−D∂2

xφ
)

+ ψ̃
(
∂tψ + ∂x [(−kx− w)ψ]−D∂2

xψ
)

+
α

2
(φ̃− ψ̃)(φ− ψ) +

Λ

2
(φ̃+ ψ̃)(φ− ψ)

}
. (A.6)

Along the lines of the derivation in section 2, we transform the fields to ρ = (φ+ ψ)/
√
2

and ν = (φ− ψ)/
√
2, and use the parametrisation in (11). It turns out that the addi-

tional bilinear term is local and hence it can be included in the Gaussian part,

A0 =
1

L2

∑
n,m

Lδn,m

∫
d̄ω d̄ω′ δ̄(ω + ω′) [(−̊ıω + kn) ρ̃n(ω

′)ρm(ω)

+ (−̊ıω + kn+ α) ν̃n(ω
′)νm(ω) + Λρ̃n(ω

′)νm(ω)] . (A.7)
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This new term results in the new bare propagator

(A.8)

instead of (16b) whereas the bare propagators 〈ρn(ω)ρ̃m(ω′)〉0, 〈νn(ω)ν̃m(ω
′)〉0 and

〈ρn(ω)ν̃m(ω
′)〉0 in (15) and (16a) remain unchanged.

The new contribution to the bare theory parametrised by Λ > 0 makes the diagram
bookkeeping much more convoluted, although it is doable in principle. We leave it for
future study, as it is beyond the scope of the present work.

Appendix B. Hermite polynomials

The definition of Hermite polynomials according to the ‘probabilists’ convention’ [58]
we use in this paper is

Hn (x) = (−1)n e
x2

2
dn

dxn

(
e−

x2

2

)
, (B.1)

where x ∈ R, n ∈ N ∪ {0}. Some of the properties of Hermite polynomials that we use
are listed in the following [58].

Orthogonality: Hermite polynomials are orthogonal with respect to the weight
function f(x) = exp(−x2/2),∫ ∞

−∞
dx e−

x2

2 Hn (x)Hm (x) =
√
2π n! δn,m, (B.2)

where δn,m is the Kronecker delta.
Hermite’s differential equation: Hermite polynomialsHn (x) are eigenfunctions of the

differential operator

H ′′ − xH ′ = −μH, (B.3)

for non-negative integer eigenvalues μn = n. Using this equation, we can show that
the functions un(x) = f(x/L)Hn (x/L) are solution to the eigenvalue problem L[u] =
u′′ + (x u)′/L2 = λu in section 2, equation (7), with eigenvalues λn = −n/L2 [59].

Generating function: Hermite polynomials can be obtained through the generating
function

exβ−
1
2β

2

=

∞∑
n=0

Hn (y)
βn

n!
, (B.4)

from which it follows that Hermite polynomials conform an Appell sequence, namely,
they have the property

H ′
n(x) = nHn−1 (x) . (B.5)

Recurrence relation: Hermite polynomials satisfy the recurrence relation

Hn+1 (x) = xHn (x)−H ′
n(x). (B.6)
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Mehler’s formula: Hermite polynomials satisfy the following identity [43, 58],

e−
x2

2

∞∑
n=0

sn

n!
Hn (x)Hn (y) =

1√
1− s2

e
− (x−ys)2

2(1−s2) . (B.7)

Appendix C. Some propagators in closed form

We list the propagators that we have used to calculate in the observables. Using the
bare propagators in (15) and the interaction part of the action in (12b), we obtain the
following propagators in real time,

(C.1)

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

after letting r → 0. These propagators are then used to calculate the full propagator in
real space via

〈ρ(x, t)ρ̃(x′, t′)〉 = 1

L2

∑
n,m,N

un(x)ũm(x
′)

1

N !

〈
ρn(t)ρ̃m(t

′)(−A1)
N
〉
0
, (C.7)

where
(∼)
ρ may be replaced by

(∼)
ν . The stationary distribution is derived from this

expression in appendix D.
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Appendix D. Stationary distribution

The distribution of an RnT particle is captured by the propagator P (x, t) = 〈(φ(x, t) +
ψ(x, t))φ̃(x0, 0)〉, where the system is initialised at t0 = 0 with a right-moving particle
at x0 [27, 60]. Diagrammatically, the particle distribution is

(D.1)

When Fourier transforming back into direct time, all poles −̊ıp of all bare propagators
of the form (−̊ıω + p)−1, equation (15), eventually feature in the form exp(−pt). In the
limit t→∞, from equations (22a) and (22b), we have that any diagram containing ν̃
as the right, incoming leg , decays exponentially in time t (see for instance (C.2),

(C.3) and (C.6)). Moreover, the diagrams that have as their right, incoming leg
decay exponentially with rate mk, so only those with m = 0 remain in the limit t→∞.
Then, the distribution in (D.1) reduces to

(D.2)

where the sum has contributions only from even n (see equations (21) and (23a)). The
stationary distribution then reads

P (x) = lim
t→∞

P (x, t)

=

√
k

2πD
e−

kx2

2D

⎛⎜⎝1 +
∞∑
n=2
n even

(
w√
kD

)n

Hn

(√
k

D
x

)
n∏

j=1

1

j + pj/k

⎞⎟⎠ , (D.3)

where pj = α if j odd and pj = r → 0 otherwise, see figures 3 and D14 [29].
Similarly, the stationary distribution of a right-moving particle is

(D.5)

whose contribution is known from (D.3). As above, only diagrams that have
index m = 0 remain in the limit t→∞, so that

(D.6)

4The stationary distribution of a non-diffusive RnT particle follows from the coupled Fokker–Planck equation (3a),

P (x) =
kΓ
(
1
2
+ α

2k

)
√
πwΓ

(
α
2k

) [1−(k x

w

)2
] α

2k
−1

, (D.4)

where x ∈ [−w/k,w/k] [12, 20, 28, 61–63].
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Figure D1. Stationary distribution P (x) of an RnT particle in a harmonic poten-
tial for a range of values of w, k and D according to (D.3) for D > 0 and (D.4) for
D = 0. To ease comparison, we let α = 2 and w = ξk so that the limits of the space
explored by the confined particle in the diffusionless case are ξ = ±1. In (a), where
k � α/2, the active behaviour of the particle is manifested by the pronounced pres-
ence of the particle around ξ for increasing velocity w. In (b), where k � α/2, the
self-propulsion of the particle is less prominent and its behaviour resembles that
of a passive particle as the velocity w decreases. In fact, for w = 0, the particle
is simply a diffusive particle confined in a harmonic potential, which is the Orn-
stein–Uhlenbeck process [64]. We used multiple-precision floating-point arithmetic
[52] to implement Hermite polynomials up to H104 (x) based on the GNU Scientific
Library implementation [53], which are needed when the perturbative prefactor
w/

√
kD in equation (D.3) is large.

which has contributions only from odd n, see equations (22c) and (23d). Equation (D.6)
has the same form as (D.3) except that the dummy variable n is odd. Therefore, the
probability distribution in (D.5) contains the sum over both even and odd indices n � 0,

lim
t→∞

Pφ(x, t) =
1

2

√
k

2πD
e−

kx2

2D

(
1 +

∞∑
n=1

(
w√
kD

)n

Hn

(√
k

D
x

)
n∏

j=1

1

j + pj/k

)
,

(D.7)

see figure 3 [29]. Alternatively, the stationary distributions (D.3) and (D.7) can in prin-
ciple be derived from the Fokker–Planck equation (3) by inserting the ansatz P (x) =∑

ncn exp(−kx2/(2D))Hn

(√
k/Dx

)
and determining the coefficients cn recursively.

Appendix E. Orientation-integrated entropy production rate

The entropy calculated in equation (41) is based on the Markovian evolution of the
particle in terms of its position and species. However, Seifert’s formulation of the entropy
production [54, 65–67]
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S̊ i = lim
t→∞

1

t

〈
ln

p[x(t′)]

p[xR(t′)]

〉
= lim

t→∞

1

t

∫
D[x]p[x(t′)] ln

(
p[x(t′)]

p[xR(t′)]

)
, (E.1)

where p[x(t)] refers to the probability of observing a path x(t′) for t′ ∈ [0, t] and p[xR(t′)]
to the probability of the reverse path to occur, allows for ‘non-Markovian paths’, i.e.
paths not specified in a degree of freedom in which the process is Markovian. As a
result, transition probabilities do not factorise, so that the path probabilities are not
simply products, which makes them more difficult to calculate and manipulate. In the
present case, we consider the evolution of the RnT particle system solely in terms of
the particle’s position. This is of particular relevance where the entropy production
is used as a proxy for the particle’s energy output that can be harvested. While we
have made some progress, the derivation is incomplete and will need to be explored in
future work.

RnT particles produce entropy even when their species is not known, which is vis-
ible in the apparent difference of forward and backward path probabilities. This is
most easily seen in paths that reach from x = −ξ = −w/k to x = ξ and vice versa,
figure 1, as forward paths show particles that move initially fast and slow down as they
reach their destination, while backwards paths show a slow descent and a fast ascent.
This difference is in marked contrast to RnT particles on a ring whose backward and
forward trajectories are indistinguishable if their species and thus preferred direction
is unknown.

To motivate the following, we first consider the probabilities of a path in terms
of species and position x(t) probed at equidistant times ti = iτ with i = 0, . . . ,N and
x(t0) = x0. At stationarity, this amounts to creating particles with stationary probabil-
ities P (x), equation (D.3), along the real line and then probing for the presence of a
particle of suitable species at the desired positions. To simplify the notation, we consider
at first only one species. The probability of a path is then〈

N∏
i=1

(
φ†(x(ti), ti)φ(x(ti), ti)

) ∫
dx0 P (x0)φ

†(x0, t0)

〉

=

∫
dx0 P (x0)

N∏
i=1

〈
φ(x(ti), τ)φ̃(x(ti−1), 0)

〉
, (E.2)

where we have replaced
〈
φ(x(ti), ti)φ̃(x(ti−1), ti−1)

〉
by

〈
φ(x(ti), τ)φ̃(x(ti−1), 0)

〉
,

because of time-homogeneity.
The path probabilities to be used in equation (E.1) are sums over all contributions

from the particle being any of the species at any point in time. The particle number
operator φ†φ in equation (E.2) therefore needs to be replaced by φ†φ+ ψ†ψ = ρ†ρ+ ν†ν.
This can be expressed most comprehensively using a transfer matrix,
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p([x(t)]) =

∫
dx0

(
1
1

)T

·
N∏
i=1

⎛⎝〈φ(x(ti), τ)φ̃(x(ti−1), 0)
〉 〈

φ(x(ti), τ)ψ̃(x(ti−1), 0)
〉〈

ψ(x(ti), τ)φ̃(x(ti−1), 0)
〉 〈

ψ(x(ti), τ)ψ̃(x(ti−1), 0)
〉⎞⎠(Pφ(x0)

Pψ(x0)

)
(E.3)

and correspondingly in terms of fields ρ and ν. The probability Pφ(x0) denotes the
stationary density of finding a particle of species φ at x0 and correspondingly for ψ, see
(D.7).

Using the short-time propagators in equations (24) and (25), and variations thereof
obtained by replacing w by −w, results for the transfer matrix in equation (E.3)

M(x→ y ; τ) =

⎛⎝〈φ(y, τ)φ̃(x, 0)〉 〈
φ(y, τ)ψ̃(x, 0)

〉〈
ψ(y, τ)φ̃(x, 0)

〉 〈
ψ(y, τ)ψ̃(x, 0)

〉⎞⎠
=

1√
4πDτ

e−
(y−x(1−kτ ))2

4Dτ

×

⎛⎜⎜⎝exp

(
w(y − x+ kxτ)

2D
− α

2
τ

)
α

2
τ

α

2
τ exp

(
−w(y − x+ kxτ)

2D
− α

2
τ

)
⎞⎟⎟⎠
(E.4)

where we have used expansions like

1 +
w(y − x)

2D
+
(
−α

2
+

w

4D
(k(y + x)− α(y − x))

)
τ +O

(
τ 2
)

= exp

(
w(y − x+ kxτ)

2D
− α

2
τ

)(
1 +O

(
τ 2
))

, (E.5)

assuming that y − x = τ ẋ ∈ O (τ). The matrix product to determine in equation (E.3)
is thus

M(x(tN−1)→ x(tN) ; τ)M(x(tN−2)→ x(tN−1) ; τ) . . .M(x(t0)→ x(t1) ; τ) (E.6)

which may be approximated by writing

M(x→ y ; τ) =
1√

4πDτ
e−

(ẋ+xk)2

4D τ exp

⎛⎜⎝
⎛⎜⎝w(ẋ + kx)

2D
− α

2

α

2
α

2
−wτ(ẋ + kx)

2D
− α

2

⎞⎟⎠ τ

⎞⎟⎠+O
(
τ 2
)

(E.7)

using the shorthand ẋτ = y − x and ẋ(ti)τ = x(ti+1)− x(ti) below. To our understand-
ing, no grave error is introduced at this stage by omitting terms O (τ 2). Much of the
derivation above can be made keeping the Hermite basis used for the propagators (15),
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which immediately results in a matrix exponential, as the Fourier transform of the
inverse matrix (−̊ıω1− F )−1 is the matrix exp(τF ) [38] (also appendix C).

To ease notation, we may write

M(x→ y ; τ) =
1√

4πDτ
e−

(ẋ+xk)2

4D τ em(x→y ; τ ) (E.8)

with suitable exponentiated matrix m(x→ y ; τ) in the following. What seems to under-
mine further progress to calculate the matrix product in equation (E.3) is that the prod-
uct exp(m(y → z ; τ)) exp(m(x→ y ; τ)) can be written as the exponential of the sum,
exp(m(y → z ; τ) +m(x→ y ; τ)) only when the matrices m(x→ y ; τ) and m(y → z ; τ)
commute. Yet they generally do not, with correction terms of the form

exp(m(x(tN−1)→ x(tN) ; τ)) exp(m(x(tN−2)→ x(tN−1) ; τ))

= exp(m(x(tN−1)→ x(tN) ; τ) +m(x(tN−2)→ x(tN−1) ; τ))

+
τ 2

2

⎛⎜⎝ 0
wkα

2D
(x(tN−1)− x(tN−2))

−wkα

2D
(x(tN−1)− x(tN−2)) 0

⎞⎟⎠ . (E.9)

Proceeding on the basis of the Trotter formula, we find in the continuum limit τ → 0

p([x(t)]) = N−1 e−
1
4D

∫ t
0 dt

′ (ẋ(t′)+kx(t′))2
∫
dx0

(
1
1

)T

· exp

⎛⎝∫ t

0

dt′

⎛⎝ w

2D
(ẋ(t′) + kx(t′))− α

2

α

2α

2
− w

2D
(ẋ(t′) + kx(t′))− α

2

⎞⎠⎞⎠
·
(
Pφ(x0)
Pψ(x0)

)
, (E.10)

with suitable normalisation N−1. Equation (E.10) can be simplified further by noting

that any term of the form
∫ t

0
dt′ ẋ(t′) = x(t)− x(0) or

∫ t

0
dt′ x(t′)ẋ(t′)/2 = x2(t)− x2(0)

will be dominated by other terms of order O(t) as the particle is in a binding potential,
so that x(t)− x(0) and x2(t)− x2(0) are essentially bounded. We may thus replace at

any stage
∫ t

0
dt′ (ẋ(t′) + kx(t′))2 by

∫ t

0
dt′ ẋ2(t′) + (kx(t′))2 and similarly inside the matrix,

so that

p([x(t)]) = N−1 e−
1
4D

∫ t
0dt

′ (ẋ2(t′)+kx2(t))
∫
dx0

(
1
1

)T

· exp

⎛⎝∫ t

0

dt′

⎛⎝ w

2D
kx(t′)− α

2

α

2α

2
− w

2D
kx(t′)− α

2

⎞⎠⎞⎠(Pφ(x0)
Pψ(x0)

)
. (E.11)

This expression is invariant under ẋ→−ẋ, i.e. forward and backward paths are
incorrectly determined to have the same probability.

https://doi.org/10.1088/1742-5468/ac014d 25

https://doi.org/10.1088/1742-5468/ac014d


J.S
tat.

M
ech.

(2021)
063203

Run-and-tumble motion in a harmonic potential: field theory and entropy production

The apparent failure of the formalism is not resolved by considering the Ito-
Stratonovich dilemma that occurs when writing

lim
τ→0

∑
i

(x(ti+1)− x(ti))x(ti) =

∫ t

0

dt′ ẋ(t′)x(t′) (E.12)

rather than

lim
τ→0

∑
i

(x(ti+1)− x(ti))x(ti)

= lim
τ→0

∑
i

(x(ti+1)− x(ti))

(
x(ti+1) + x(ti)

2
− x(ti+1)− x(ti)

2

)

=

∫ t

0

dt′
1

2
ẋ(t′)x(t′). (E.13)

Remarkably, proceeding from equation (E.10) without removing integrals of the form∫
dt′ ẋ and setting k → 0 seems to correctly produce the path probabilities for RnT on

the ring. The resolution of the problems to determine the path probabilities encountered
above is an interesting question to pursue in future research.

Appendix F. Mean square displacement

The mean square displacement is defined as

R2(t) =
〈
(x(t)− x0)

2
〉
. (F.1)

Assuming that the system is initialised with a right-moving particle, the propagator

that probes for any particle at a later time is
〈
(φ(x, t) + ψ(x, t)) φ̃(x0, 0)

〉
. Following

the same scheme as in section 2.3, the first and second moments of the position of an
RnT particle are

〈x(t)〉 = x0 e
−kt +

w

k − α

(
e−αt − e−kt

)
, (F.2)

〈
x2(t)

〉
= x2

0 e
−2kt +

D

k

(
1− e−2kt

)
+ 2

x0w

k − α

(
e−(k+α)t − e−2kt

)
+ 2w2

(
exp(−2kt)

2k(k − α)
+

exp(−(k + α)t)

(k + α)(α− k)
+

1

2k(k + α)

)
. (F.3)

Then, the mean square displacement at stationarity is

lim
t→∞

R2(t) = x2
0 +

D

k
+

w2

k(k + α)
, (F.4)

see figure F1(a).
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Figure F1. (a) Mean square displacement R2(t) and (b) expected velocity 〈Wφ(t)〉
of an RnT particle in a harmonic potential. In (a), x0 = 0.5, α = 1, k = w/ξ with
ξ = 1, and a range of D, using equations (F.1), (F.2) and (F.3). In (b), k = 0.5, α =
1 and a range of x0 and w, using equations (G.3), (27a) and (27b). The dotted lines
show the particle’s self-propulsion speeds w, which are the instantaneous velocities
at the origin.

Appendix G. Expected velocity

To calculate the expected velocity of a right-moving particle, one could näıvely
differentiate the expected position 〈xφ(t)〉 in equation (27b) with respect to time,

∂t 〈xφ(t)〉 =
∫
dx x∂tPφ(x, t). (G.1)

However, this expression fails to capture the expected velocity because in the limit
t→∞, the stationary distribution satisfies ∂tPφ(x, t) = 0, implying that the result in
(G.1) is zero. This seems in contradiction to the nature of an RnT particle, which has
a perpetual non-zero drift even when ‘stuck’ at times. Ultimately, the ambiguity in the
definition of the velocity is a matter of Ito versus Stratonovich, namely to consider a
particle’s displacement conditional to its point of departure (Ito), its point of arrival or
the average of the two (Stratonovich).

The instantaneous velocity of a right-moving particle departing from x0 can
immediately be derived from its short-time propagator equation (24),

wφ(x0) = lim
τ→0

1

τ

∫
dy (y − x0)

〈
φ(y, τ)φ̃(x0, 0)

〉
= w − kx0, (G.2)

which in fact is the apparent velocity featuring in the Fokker–Planck equation (3a). The
expected velocity of a right-moving particle 〈Wφ(t)〉 anywhere in the system at time t
after having started at x0 at time t0 is therefore the conditional expectation

〈Wφ(t ;x0)〉 =
∫
dx (w − kx)〈φ(x, t)φ̃(x0, t0)〉∫

dx′ 〈φ(x′, t)φ̃(x0, t0)〉
, (G.3)
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which, using equations (27a) and (27b), is, at stationarity

lim
t→∞

〈Wφ(t ;x0)〉 =
αw

k + α
, (G.4)

see figure F1(b).

Appendix H. Two-point correlation function

The two-point correlation function F(x, y ; t) is the observable

F(x, y ; t) =
〈
(φ(x, t) + ψ(x, t)) (φ(y, t) + ψ(y, t)) φ̃(x0, 0)

〉
+
〈
(φ(x, t) + ψ(x, t)) φ̃(x0, 0)

〉
δ(x− y), (H.1)

where, after placing a right-moving particle at x0 at time t0, the system is probed for
any particle at positions x and y simultaneously. The second term contributing only
when x = y has its origin in the commutation relation of the creation and annihilation
operators [39]. Since there is exactly one RnT particle in the system, it cannot be in two
different positions at the same time and therefore F(x, y ; t) = 0 for all t when x 
= y.
Diagrammatically, (H.1) may be written as

(H.2)

which is zero at x 
= y due to a lack of a vertex , i.e. due to the impossibility of
joining a single incoming leg with two out-going legs because there is no suitable vertex
available. This is an example of how a Doi-Peliti field theory retains the particle entity.
At x = y the two-point correlation function reduces to the propagators in equations (23a)
and (23c).

Appendix I. Two-time correlation function

The correlation function 〈x(t)x(t′)〉, with t0 < t′ < t, is given by the observable

〈x(t)x(t′)〉 =
∫

dx dx′ xx′G(x, x′, x0 ; t, t
′, t0), (I.1)

where the ‘propagator’ is now

G(x, x′, x0 ; t, t
′, t0) =

〈
[φ(x, t) + ψ(x, t)]

[
φ̃(x′, t′)φ(x′, t′)

+ ψ̃(x′, t′)ψ(x′, t′)
]
φ̃(x0, t0)

〉
. (I.2)

This propagator indicates that the system is initialised with a right-moving particle at
x0 at time t0 = 0, and it is let to evolve by an interval of time t′ − t0. At time t′, the
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propagator probes for the presence of a particle at x′, which involves its annihilation and
immediate re-creation. The system is then let to evolve a further interval of time t− t′,
at which point the presence of either species is measured again at position x. Following
the same procedure as in section 2.3, the two-time correlation function reads

〈x(t)x(t′)〉 = e−k(t−t′)

[
x2
0 e

−2kt′ +
D

k

(
1− e−2kt′

)
+ 2

x0w

k − α

(
e−(k+α)t′ − e−2kt′

)
+2w2

(
e−2kt′ 1

2k(k − α)
+ e−(k+α)t′ 1

(k + α)(α− k)
+

1

2k(k + α)

)]
+

w

k + α

(
1− e−(k+α)(t−t′)

) [ w

k + α

(
1− e−(k+α)t′

)
+ x0 e

−(k+α)t′
]
,

(I.3)

see [22] for details.
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[9] Ekeh T, Cates M E and Fodor É 2020 Thermodynamic cycles with active matter (arXiv:2002.05932)
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[54] Nardini C, Fodor É, Tjhung E, Van Wijland F, Tailleur J and Cates M E 2017 Entropy production in field

theories without time-reversal symmetry: quantifying the non-equilibrium character of active matter Phys.
Rev. X 7 021007

[55] Garcia-Millan R, Pausch J, Walter B and Pruessner G 2018 Field-theoretic approach to the universality of
branching processes Phys. Rev. E 98 062107

[56] De Bruyne B, Majumdar S N and Schehr G 2021 Survival probability of a run-and-tumble particle in the presence
of a drift (arXiv:2101.11895)

[57] Kac M 1974 A stochastic model related to the telegrapher’s equation Rocky Mountain J. Math. 4 497–509
[58] Magnus W, Fritz O and Soni R P 1966 Formulas and Theorems for the Special Functions of Mathematical

Physics (Berlin: Springer)
[59] Rubin K J, Pruessner G and Pavliotis G A 2014 Mapping multiplicative to additive noise J. Phys. A: Math.

Theor. 47 195001
[60] Singh P, Sabhapandit S and Kundu A 2020 Run-and-tumble particle in inhomogeneous media in one dimension

(arXiv:2004.11041)
[61] Tailleur J and Cates M E 2009 Sedimentation, trapping, and rectification of dilute bacteria Europhys. Lett. 86

60002
[62] Cates M E 2012 Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical

physics? Rep. Prog. Phys. 75 042601
[63] Thibaut D and Maes C 2018 Active processes in one dimension Phys. Rev. E 97 032604
[64] Uhlenbeck G E and Ornstein L S 1930 On the theory of the Brownian motion Phys. Rev. 36 823–41
[65] Lebowitz J L and Spohn H 1999 A Gallavotti–Cohen-type symmetry in the large deviation functional for

stochastic dynamics J. Stat. Phys. 95 333–65
[66] Seifert U 2005 Entropy production along a stochastic trajectory and an integral fluctuation theorem Phys. Rev.

Lett. 95 040602
[67] Seifert U 2012 Stochastic thermodynamics, fluctuation theorems and molecular machines Rep. Prog. Phys. 75

126001

https://doi.org/10.1088/1742-5468/ac014d 31

https://doi.org/10.1103/physreve.85.051113
https://doi.org/10.1103/physreve.85.051113
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/1236463.1236468
https://gnu.org/software/gsl/
https://doi.org/10.1103/physrevx.7.021007
https://doi.org/10.1103/physrevx.7.021007
https://doi.org/10.1103/physreve.98.062107
https://doi.org/10.1103/physreve.98.062107
https://arxiv.org/abs/2101.11895
https://doi.org/10.1216/rmj-1974-4-3-497
https://doi.org/10.1216/rmj-1974-4-3-497
https://doi.org/10.1216/rmj-1974-4-3-497
https://doi.org/10.1216/rmj-1974-4-3-497
https://doi.org/10.1088/1751-8113/47/19/195001
https://doi.org/10.1088/1751-8113/47/19/195001
https://arxiv.org/abs/2004.11041
https://doi.org/10.1209/0295-5075/86/60002
https://doi.org/10.1209/0295-5075/86/60002
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1088/0034-4885/75/4/042601
https://doi.org/10.1103/physreve.97.032604
https://doi.org/10.1103/physreve.97.032604
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1103/physrev.36.823
https://doi.org/10.1023/a:1004589714161
https://doi.org/10.1023/a:1004589714161
https://doi.org/10.1023/a:1004589714161
https://doi.org/10.1023/a:1004589714161
https://doi.org/10.1103/physrevlett.95.040602
https://doi.org/10.1103/physrevlett.95.040602
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/1742-5468/ac014d

	Run-and-tumble motion in a harmonic potential: field theory and entropy production
	Contents
	1.  Introduction
	2.  Field theory of RnT motion with diffusion in a harmonic potential
	2.1.  Full propagator in reciprocal space
	2.2.  Short-time propagator in real space

	3.  Entropy production rate
	4.  Discussion, conclusions and outlook
	Acknowledgments
	Appendix B.  Hermite polynomials
	Appendix C.  Some propagators in closed form
	Appendix D.  Stationary distribution
	Appendix E.  Orientation-integrated entropy production rate
	Appendix F.  Mean square displacement
	Appendix G.  Expected velocity
	Appendix H.  Two-point correlation function
	Appendix I.  Two-time correlation function
	References


