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Abstract Lipid droplets (LDs) are ubiquitous organelles that store neutral lipids, such as 
triacylglycerol (TG), as reservoirs of metabolic energy and membrane precursors. The Arf1/COPI 
protein machinery, known for its role in vesicle trafficking, regulates LD morphology, targeting of 
specific proteins to LDs and lipolysis through unclear mechanisms. Recent evidence shows that 
Arf1/COPI can bud nano-LDs (∼60 nm diameter) from phospholipid-covered oil/water interfaces in 
vitro. We show that Arf1/COPI proteins localize to cellular LDs, are sufficient to bud nano-LDs from 
cellular LDs, and are required for targeting specific TG-synthesis enzymes to LD surfaces. Cells 
lacking Arf1/COPI function have increased amounts of phospholipids on LDs, resulting in decreased 
LD surface tension and impairment to form bridges to the ER. Our findings uncover a function for 
Arf1/COPI proteins at LDs and suggest a model in which Arf1/COPI machinery acts to control 
ER-LD connections for localization of key enzymes of TG storage and catabolism.
DOI: 10.7554/eLife.01607.001

Introduction
Nearly all organisms balance fluctuations in the availability of energy sources with the need for energy 
expenditure. With its high energy content, triacylglycerol (TG) stored in lipid droplets (LDs) is the primary 
means of storing energy for many organisms (Thiele and Spandl, 2008; Fujimoto and Parton, 2011; 
Brasaemle and Wolins, 2012; Walther and Farese, 2012). LDs also store lipid precursors for membrane 
synthesis (e.g., cholesterol and glycerophospholipids) needed, for example, when cells exit quiescence 
and expand membranes for cell division (Kurat et al., 2009). Due to their function in lipid storage, LDs 
are central to the development of pathologies associated with excess lipid accumulation, ranging from 
atherosclerosis and cardiovascular disease to obesity and metabolic syndrome (Krahmer et al., 2013).

Unlike most organelles, LDs are not delimited by a bilayer membrane but instead are covered with 
a monolayer of phospholipid surfactant, which is important for their stability in cells (Tauchi-Sato et al., 
2002; Krahmer et al., 2011; Yang et al., 2012a). In this sense, LDs constitute the dispersed phase of 
a cellular emulsion, with the phospholipid monolayer acting as a surfactant at the interface of the oil core 
with the aqueous cytosol (for review, see Thiam et al., 2013b). Proteins specifically located at the LD 
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surface execute many of the reactions of lipid storage or mobilization. For example, enzymes mediating 
TG synthesis and hydrolysis localize to LDs, where they mediate LD expansion and shrinkage, respectively 
(Kuerschner et al., 2008; Schweiger et al., 2008; Stone et al., 2009; Murugesan et al., 2013; 
Wilfling et al., 2013). How such enzymes are specifically targeted to LDs is a poorly understood, yet 
fundamental question.

Unbiased genome-wide screens in model systems, such as Drosophila cells, revealed factors that 
are required for LD targeting of proteins (Beller et al., 2008; Guo et al., 2008). Specifically, members 
of the Arf1/COPI machinery, but not other proteins involved in secretory trafficking (e.g., COPII or 
clathrin), are necessary for normal LD morphology and for the targeting of some proteins to LDs 
(Beller et al., 2008; Guo et al., 2008; Soni et al., 2009). Depletion of Arf1/COPI proteins from cells 
leads to the formation of relatively uniform LDs of a characteristic size that exhibit impaired lipolysis 
(Beller et al., 2008; Guo et al., 2008). Consistent with this, Arf1/COPI proteins are required for LD 
localization of the major TG lipase ATGL (brummer in Drosophila) (Beller et al., 2008; Soni et al., 
2009; Ellong et al., 2011). ATGL was shown to behave, biochemically, as an integral membrane 
protein (Soni et al., 2009), and it was suggested that this lipase is transported to LDs from the ER by 
vesicular trafficking.

In vesicular trafficking, the best-characterized function of Arf1/COPI proteins is in retrograde trans-
port, that is, retrieving ER resident proteins from the Golgi apparatus (Nickel et al., 2002). In this 
pathway, Arf1 is loaded with GTP by a nucleotide exchange factor, such as GBF1 [gartenzwerg (garz) 
in Drosophila]. The activated Arf1-GTP then recruits the coatomer, a heptameric protein complex, 
leading to the formation of a coated transport vesicle. Subsequent uncoating of the vesicle allows its 
transport and fusion to the target membrane (e.g., the ER).

It is unknown how Arf1/COPI proteins function in LD biology. Although one possibility is that Arf1/
COPI proteins target proteins to LDs via bilayer vesicles, a variety of studies suggest a function directly 
at LDs. First, Arf1 and its GEF, GBF1, as well as other members of the COPI machinery, have been found 

eLife digest Just like the body contains organs that perform different jobs, the cells within the 
body contain organelles that carry out different tasks. The endoplasmic reticulum, for example, 
makes proteins that are sent to other organelles or to destinations outside the cell. Each organelle 
is typically sealed within a membrane made from a double layer of phospholipids—molecules that 
have a phosphate ‘head’ group at one end, and two fatty acid ‘tails’ at the other. Proteins are 
shuttled between the organelles inside membrane-bound packages called vesicles.

There is, however, an exception to this rule. Lipid droplets are organelles that store fats and oils 
inside a single layer of phospholipids. This layer can include enzymes that break down the contents 
of the droplet, or make new fat molecules, depending on the needs of the cell and the organism. 
However, it is not clear how these enzymes get from the endoplasmic reticulum to the lipid droplet.

Previous work had suggested that a protein complex called Arf1/COP—which is also involved in 
the movement of vesicles around the cell—might recruit the enzymes to the lipid droplets. 
However, none of the other proteins known to be involved in vesicle transport were needed to 
transport the enzymes to the droplets, which suggested that the Arf1/COPI complex was using a 
previously unknown mechanism to move the enzymes.

Now Wilfling, Thiam et al. have shown that Arf1/COPI complexes trigger the establishment of 
membrane bridges between the endoplasmic reticulum and the droplets, which means that vesicles 
are not needed to get the enyzmes to the lipid droplets. It was also shown that the Arf1/COPI 
complexes could pinch off tiny droplets from full-size lipid droplets taken from living cells. Wilfling, 
Thiam et al. suggest that this ‘budding’ process changes the composition of the phospholipid layer 
around the larger droplet in a way that allows it to interact directly with the membrane of the 
endoplasmic reticulum.

By providing new insights into the trafficking of proteins between organelles, the work of 
Wilfling, Thiam et al. reveals mechanisms that govern the composition of lipid droplets. In the 
future, these pathways could be manipulated to treat conditions that result from excessive storage 
of fat, such as obesity or cardiovascular diseases.
DOI: 10.7554/eLife.01607.002
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on LDs in proteomic and cell biological studies (Nakamura et al., 2005; Bartz et al., 2007; Ellong 
et al., 2011; Bouvet et al., 2013). Second, the expression of dominant-negative Arf1T31N, which 
binds its exchange factor tightly, localizes to LDs (Guo et al., 2008). Third, Arf1Q71L that cannot 
hydrolyze GTP (and hence acts as a dominant-negative mutant in vesicular trafficking) activates lipolysis 
from LDs (Guo et al., 2008). Most recently, GTP-bound Arf1 and COPI proteins were shown to bud 
nano-LDs of ∼60 nm diameter from a phospholipid covered oil-water interface in vitro (Thiam et al., 
2013a), indicating that this machinery can interact with monolayer interfaces such as what is found at 
LD surfaces. Collectively, these data suggest an alternative, so far untested model, in which Arf1/COPI 
proteins function in cells directly at LDs in a way that enables protein targeting.

Besides ATGL, other enzymes involved in TG metabolism also localize to LD surfaces. For example, 
at least one isoenzyme catalyzing each step of de novo TG synthesis from glycerol-3-phosphate 
(e.g., GPAT4, AGPAT3, and DGAT2) localizes to a subset of LDs. Each of these enzymes contains two 
hydrophobic segments likely forming a hairpin in the ER membrane or the LD monolayer (Wilfling 
et al., 2013). LD localization of these enzymes enables LDs to synthesize TG locally and expand their 
neutral lipid cores under conditions of excess energy (fatty acid) availability. Recent evidence indicates 
that these enzymes re-localize to a subset of LDs from the ER via abundant membrane bridges that 
form between the organelles (Wilfling et al., 2013; Thiam et al., 2013a). Intriguingly, this targeting 
reaction can occur rapidly at a particular LD, from which TG synthesis enzymes were absent for a long 
time (Wilfling et al., 2013). How the targeting process is initiated and how bridges between LDs and 
the ER are established is unknown.

Here we investigate the mechanism of Arf1/COP protein function in cellular LD protein targeting by 
using a combination of cell biological and biochemical approaches. In contrast to the canonical role of 
these proteins in vesicular trafficking, we uncover a mechanism of action that relies on altering the surface 
lipid composition of LDs. Based on the presence of the Arf1/COPI machinery at LDs, we propose a newly 
identified function of Arf1/COPI proteins in modulating LD surfaces to enable protein targeting.

Results
Arf1/COPI are required for lipid droplet targeting of triglyceride 
synthesis enzymes
Many cell types, including Drosophila S2 cells, contain two populations of LDs: a few rather large, 
expanding LDs, several microns in diameter, and many smaller (less than a micron diameter) LDs 
(Wilfling et al., 2013). Depletion of the Drosophila Arf1 homologue Arf79F or βCOP results in a relatively 
uniform LD population (Beller et al., 2008; Guo et al., 2008). We quantified this phenotype and found 
that depletion of either Arf79F or βCOP results in a relatively narrow, monodisperse distribution of LDs 
that lies intermediate in size (mean ∼1.3 μm) between small and larger expanding LDs (Figure 1A).

Since the Arf1/COPI-depleted cells lacked large expanding LDs, we tested whether Arf1/COPI 
depletion affected the LD localization of enzymes catalyzing LD expansion by examining LD localization  
of fluorescent GFP-tagged or endogenous GPAT4 (detected by immunofluorescence). We found that 
depletion of Arf79F, garz, or any of the coatomer subunits, with the exception of εCOP, impaired the 
LD localization of GPAT4 (Figure 1B, Figure 1—figure supplement 1B,C). Similarly, depletion of 
Arf79F or βCOP compromised LD targeting of the triglyceride-synthesis enzyme DGAT2 (Figure 1—
figure supplement 1D). Defective GPAT4 localization to LDs with Arf1/COPI depletion was also evident 
in subcellular fractionation experiments, where the amount of GPAT4 in the LD fraction was greatly 
diminished in the absence of βCOP (Figure 1C). Consistent with previous reports (Beller et al., 2008; Soni 
et al., 2009), we found that brummer was also missing from LDs in Arf1/COPI-depleted cells (Figure 1—
figure supplement 1E). The targeting defect was apparently specific to proteins targeting LDs from bilayer 
membranes, as at least some proteins that localize to LDs from the cytoplasm, such as the Drosophila 
perilipin Lsd1, were not affected by Arf1/COPI depletion (Figure 1D). The absence of TG synthesis 
enzymes likely explains the absence of large LDs, and the defect in lipase targeting and the associated 
defect in lipolysis, likely contribute to the increase in size of small LDs to an intermediate size.

Arf1/COPI proteins trigger the formation of LD–ER membrane bridges, 
enabling rapid protein targeting to LDs
Some of the proteins requiring Arf1/COPI for LD localization, such as specific isoenzymes of TG 
synthesis (including GPAT4), access LDs from the ER through membrane bridges (Wilfling et al., 
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Figure 1. The COPI machinery is required for LD targeting of specific proteins. (A) The bimodal size distribution of 
control cells (black line) with few large LDs and many small LDs shifts a monodisperse size in Arf1/COPI-depleted cells 
(green and red line). The figure shows the density function of the LD size distribution. (B) Endogenous GPAT4 detected 
by immunofluorescence localizes to LDs (stained by BODIPY) in control treated cells, but not in the absence of any of the 
COPI machinery components, except εCOP. (C) The amount of GPAT4 fractionating with LDs (detected by thin layer 
chromatography of TG) is reduced in cells depleted of βCOP. (D) Arf1/COPI effects on LD protein targeting are protein 
specific, as Lsd1 targeting to LDs is not affected in cells depleted of Arf1/COPI. Cherry-Lsd1 localizes to LDs stained with 
BODIPY in the absence of Arf79F (middle panel) or βCOP (bottom panel). Scale bars are 10 μm (overview) or 1 μm (inlay).
DOI: 10.7554/eLife.01607.003
Figure 1. Continued on next page
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2013). We hypothesized that Arf1/COPI activity on LDs is required for establishing the junctions 
between the ER and LDs.

To test this hypothesis, we performed add-back experiments with Arf1/COPI in GPAT4 localization 
assays. We fused LD-containing cells depleted for βCOP and expressing GFP-tagged GPAT4 localized 
in the ER, with wild-type cells that provide Arf1/COPI proteins in trans (Figure 2A). After cell–cell fusion, 
the COPI pool from wild-type cells rapidly equilibrates in the mixed cytoplasm. This led to rapid 
targeting of GFP-GPAT4 to some of the pre-existing LDs (Figure 2B), with a variable lag phase of 1–25 min 
(Figure 2C). LD targeting of GPAT4 invariably occurred directly from the ER through a number of 

The following figure supplements are available for figure 1:

Figure supplement 1. The COPI machinery is required for LD targeting of specific proteins. 
DOI: 10.7554/eLife.01607.004

Figure 1. Continued

Figure 2. Arf1/COPI mediate LD protein targeting by establishing connections between the ER and LDs. (A) Schematic representation of cell–cell fusion 
experiments. (B) Fusion of βCOP depleted cells expressing GFP-GPAT4 and induced LDs with WT cells rapidly rescues GFP-GPAT4 targeting to LDs. 
Soluble cherry fluorescent protein is expressed as a marker for content mixing of fused cells. Scale bars are 10 μm (overview) or 1 μm (inlay). (C) Time 
lapse analysis of GFP-GPAT4 targeting to LDs. Upper panels shows representative images from time-lapse imaging of cell–cell fusion experiments. 
Arrows point to apparent connections between LDs and the ER. Scale bar = 1 μm. Lower panel shows quantitation of GFP-GPAT4 localization to LDs in 
nine independent cell–cell fusion experiments. Time = 0 indicates fusion and content mixing of cells. (D) Rate of GFP-GPAT4 recruitment to LDs after 
cell–cell fusion. Insert shows the histogram of characteristic recovery time τ.
DOI: 10.7554/eLife.01607.005
The following figure supplements are available for figure 2:

Figure supplement 1. Mathematical model for GPAT4 targeting to LDs through bridges with the ER. 
DOI: 10.7554/eLife.01607.006
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junctions between the two organelles (Figure 2C; Video 1). After the initial lag phase, GPAT4 targeting 
was rapid, with a characteristic time τ of 3.6 ± 1 min (Figure 2D, Figure 2—figure supplement 1A–C). 
A mathematical model using the (experimentally determined) apparent diffusion constant of GPAT4 in 
the ER (0.035 ± 0.005 μm2/sec) revealed that roughly 5–9 connections between a LD and the ER are 
required to obtain the observed speed of GFP-GPAT4 targeting to LDs (Figure 2—figure supplement 1B, 
‘Materials and methods’). This is consistent with the observed number of connections to large LDs in 
fluorescence and EM images (Figure 2C, FW, MJO, and TCW, unpublished observations).

Arf1/COPI proteins localize to the lipid droplet surface
We next asked how Arf1/COPI proteins trigger the formation of LD-ER connections. If Arf1/COPI 
proteins act directly on LDs in this process, then a portion of these proteins should localize to LDs. To 
test this, we determined the localizations of the Arf1 exchange factor garz and αCOP in Drosophila 
S2 cells. For each protein, we observed foci localizing to the surface of some LDs in addition to signal 
likely reflecting the Golgi pool of the proteins (Figure 3A). Importantly, LD co-localization occurred 
more frequently than would be expected by overlaying a random pattern of foci onto the LD signals 
(Figure 3A, Figure 3—figure supplement 1A). We also observed abundant co-localization of GFP-
tagged Arf79F with the LD marker CGI-58 on LDs (Figure 3—figure supplement 1B), and the signal 
was distinct from signals marking the Golgi apparatus (Figure 3—figure supplement 1C).

To test whether Arf1/COPI localization to LDs was conserved between different species, we localized 
GBF1, β′COP, and βCOP in mammalian NRK cells. Similar to findings in Drosophila cells, some signal 
from each protein localized in foci to LDs (Figure 3B, Figure 3—figure supplement 1E). Also in this 
case, LD colocalization of the coatomer protein βCOP was overrepresented, compared with the 
expectation for a random pattern. Moreover, βCOP and β′COP were localized to the same foci 
(Figure 3—figure supplement 1F). In contrast, clathrin or KDEL receptor were either underrepresented 
or only occasionally showed a focus on LDs, consistent with a randomly distributed pattern (Figure 3B, 
Figure 3—figure supplement 1G). In NRK cells, the colocalizing foci completely overlapped with the 
LD marker perilipin3 in confocal and super-resolution stimulated emission depletion (STED) images 
(Figure 3C, Figure 3—figure supplement 1H), but were distinct from signals marking the Golgi 
apparatus (GM130, Figure 3—figure supplement 1I). As expected by its interaction with GTP-loaded 
Arf1, LD localization of COPI coat was blocked completely when cells were incubated with brefeldin A 
(Figure 3D, Figure 3—figure supplement 1D), which inhibits Arf1 nucleotide exchange factors. This 
inhibition by brefeldin A leads to the formation of a stable, abortive complex of the compound with 
Arf1 (Walker et al., 2011). Similar results were obtained with Golgicide A, a specific inhibitor of GBF1 
Arf1 exchange factors (Figure 3D; Dobrosotskaya et al., 2002).

Arf1/COPI proteins bud nano-lipid 
droplets from existing lipid droplets
The presence of Arf1/COPI on LDs prompted us 
to test whether this machinery can bud nano-LDs 
from cellular LDs, similar to the way it forms COPI-
coated nano-LDs from artificial oil-water interfaces 
(Thiam et al., 2013a). We isolated LDs from 
Drosophila S2 cells and incubated them with 
purified Arf1/COPI proteins. Electron microscopy 
revealed that specifically in the presence of the 
Arf1/COPI machinery and a non-hydrolyzable 
GTP analogue (GTPγS), abundant protein-covered 
nano-LDs were formed (Figure 4A). The nano-LDs 
had an average diameter of 65 nm ± 10 nm 
(Figure 4A), consistent with the size range of 
COPI-coated vesicles (Simon et al., 1996) or the 
size of COPI-coated nano-LDs formed at artificial 
oil-water interfaces (Thiam et al., 2013a). For 
vesicle formation by COPI, dimerization of Arf1 
is required (Beck et al., 2008). Interestingly, the 
formation of nano-LDs was unaffected in reactions 

Video 1. Time lapse analysis of GFP-GPAT4 targeting 
to LDs in cell–cell fusion experiments. 
DOI: 10.7554/eLife.01607.007
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Figure 3. The COPI machinery localizes to the LD surface. (A) The endogenous COPI machinery stained with αCOP 
or garz antibodies (red) localizes to LDs in S2 cells. Frequencies of colocalization of αCOP and garz spots with LDs 
from experiments are higher than expected from a random distribution. (B) The endogenous COPI machinery localizes 
to LDs in NRK cells. NRK cells stained for βCOP or GBF1 by immunofluorescence (red) show partial colocalization with 
LDs stained with BODIPY (green). Colocalization of βCOP with LDs in NRK cells is not random. Relative frequencies of 
βCOP, KDEL receptor and clathrin spots colocalizing with LDs determined in experiments are respectively compared 
to the frequencies of colocalization from a binomial random distribution. From the two frequencies (experiment vs 
simulation), a significant overrepresentation of βCOP on LDs is observed, whereas clathrin and KDEL receptor 
(KDELR) are not found on LDs. For (A) and (B) scale bars are 10 μm (overview) or 1 μm (first inlay) or 250 nm (second 
inlay). Statistical significance was tested by a student t test with p<0.01 (n = 30). (C) Localization of β’COP (green) to 
the LD surface (perilipin3, red) using confocal (upper panel) and super-resolution STED microscopy (lower panel). 
Scale bar = 500 nm (overview) or 100 nm (inlay). (D) Localization of β’COP to LDs is efficiently blocked by treatment of 
cells with the Arf1 GEF inhibitors brefeldin A or golgicide A. Scale bar = 10 μm (overview) or 1 μm (inlay).
DOI: 10.7554/eLife.01607.008
The following figure supplements are available for figure 3:

Figure supplement 1. COPI machinery localizes to the surface of LDs. 
DOI: 10.7554/eLife.01607.009

http://dx.doi.org/10.7554/eLife.01607
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Biochemistry | Cell biology

Wilfling et al. eLife 2014;3:e01607. DOI: 10.7554/eLife.01607	 8 of 20

Research article

Figure 4. Arf1/COPI bud nano-LDs from purified, cellular LDs. (A) Purified LDs from S2 cells were incubated with components of the Arf1/COPI 
machinery in the presence or absence of GTPγS. Representative electron micrographs reveal abundant nano-LDs formed in the presence of activated 
Arf1/COPI. Scale bars are 500 nm (overview) or 100 nm (inset). Histograms show the size distribution of nano-LDs formed. (B) Purified LDs have the 
ability to activate Arf1 by GTP loading. Purified LDs incubated with Arf1, GTPγS, and fluorescently labeled COPI, but without the addition of a 
nucleotide exchange factor, are able to recruit COPI (green) in a GTP-dependent manner (top left panel and bottom right panel). COPI binding is 
abolished by blocking the exchange factor garz with an antibody (bottom left panel), or by digesting LD proteins with trypsin prior to the experiment 
Figure 4. Continued on next page

http://dx.doi.org/10.7554/eLife.01607
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performed with the Arf1Y35A mutant, which is deficient in dimer formation (Beck et al., 2008; 
Figure 4—figure supplement 1A,B). This lack of requirement for dimerization of Arf1 in nano-LD 
formation might reflect a lower energy barrier in the scission step of budding off a nano oil droplet 
compared with a vesicle.

We next tested whether purified LDs can activate Arf1 by GTP loading and, as a consequence, 
form COPI nano-LDs. Addition of ARNO, a soluble Arf1 nucleotide exchange factor to the in vitro 
budding reaction increased the number of nano-LDs observed, demonstrating that exchange activity 
was limiting (Figure 4A). Using fluorescently labeled coatomer, we observed recruitment to LDs in 
such reactions in a GTP-dependent manner (Figure 4B). COPI binding to LDs was abolished efficiently 
by blocking the exchange factor garz with an antibody or by digesting LD proteins with trypsin 
before the experiment (Figure 4B,C). In either case, recruitment could be partially restored by 
adding a soluble Arf1-GEF, ARNO. When we added a secondary antibody against the αgarz antibody, 
LDs were labeled if the primary antibody was present, further indicating that Arf1-GEF was on the 
LDs (Figure 4B).

In addition to COPI labeling of the LD surface in these reactions, we observed nano-LDs (stained by 
BODIPY) in the supernatant from reactions containing fluorescently labeled Arf1 (Cy3) and COPI 
(Alexa647), as well as GTPγS (Figure 4D; Video 2), directly demonstrating nano-LD formation from 
isolated LDs.

Modulating lipid droplet surface 
properties rescues lipid droplet 
protein targeting defects due to 
lack of Arf1/COPI
The budding of nano-LDs, with a very high surface 
to volume ratio, from the surface of donor LDs 
is predicted to remove primarily phospholipids. 
Therefore LDs from Arf1/COPI-depleted cells 
should contain more phospholipids than LDs from 
control cells. Indeed, when we compared lipids  
of purified LDs from cells depleted of βCOP with 
those from control cells, we found the levels of 
phosphatidylcholine (PC) and phosphatidyletha-
nolamine (PE), but not TG, increased (Figure 5A).

We previously discovered that the enzyme 
CCT1, catalyzing the rate-limiting step of PC 
synthesis, binds to LDs deficient in PC, effectively 
acting as a biosensor for PC on expanding LDs 
(Krahmer et al., 2011). We therefore reasoned 
that Arf1/COPI depletion, by causing increased 
PC levels on LDs, would affect the time course of 
CCT1 recruitment to LDs. Indeed, CCT1 localized to 
LDs at later times during LD expansion (Figure 5B).

The model of Arf1/COPI removing primarily 
phospholipids from donor LDs predicts that the 
effects of Arf1/COPI depletion might be overcome 

(top right panel). Recruitment is partially restored by addition of a soluble Arf1-GEF, ARNO. Adding a secondary antibody (red) that recognizes the 
αgarz antibody labeled LDs dependent on the presence of the primary antibody. Scale bars are 5 μm (overview) or 1 μm (inlay). (C) Quantification 
of the recruitment of COPI to purified LDs. For each experiment in (B) the average intensity of 15 LDs was determined. (D) Nano-LDs formed 
from cellular LDs into the buffer visualized by fluorescence microscopy detecting Arf1 (red), COPI (green) and LDs (MDH labeled, blue). Scale  
bar is 5 µm.
DOI: 10.7554/eLife.01607.010
The following figure supplements are available for figure 4:

Figure supplement 1. Purified LDs were incubated with Arf1-Y35A, coatomer, ARNO and GTPγS, upon budding conditions shown in Figure 4A. 
DOI: 10.7554/eLife.01607.011

Figure 4. Continued

Video 2. Time lapse video of Arf1/COPI coated 
nano-LDs formed from cellular LDs. Nano-LDs are 
visualized by fluorescence microscopy detecting Arf1 
(red), COPI (green) and LDs (MDH labeled, blue). Shifts 
between channels are due to short time delays 
between channel acquisitions, during which nano-LDs 
diffuse in solution.
DOI: 10.7554/eLife.01607.012
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Figure 5. Lack of Arf1/COPI increases phospholipids on LDs, abolishing GPAT4 LD targeting. (A) PC and PE, but 
not TG levels are increased in LDs from βCOP depleted cells compared with WT cells. (B) LD (green) targeting of 
endogenous CCT1 (red) is delayed in cells depleted of βCOP. Time = 0 indicates the addition of oleate to the cells. 
Ratios between nuclear and LD targeted CCT1 signals are shown. Error bars represent the SD of the mean ratio 
from 100 cells. Western blot analysis shows decreased targeting of CCT1 to LDs when cells are depleted for βCOP. 
(C) Efficient co-depletion of CCT1 and Arf1 or βCOP restores GPAT4 targeting to LDs even in the absence of a 
Figure 5. Continued on next page

http://dx.doi.org/10.7554/eLife.01607
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by alternative treatments limiting the availability of phospholipids for LDs. To test this prediction, we 
decreased PC synthesis by depleting CCT1, either alone or in combination with Arf79F or βCOP. Depletion 
efficiency was equally efficient in single and double depletions (Figure 5—figure supplement 1). As 
expected from previous studies, CCT1 depletion resulted in coalescence of LDs into giant LDs, due to 
limiting availability of phospholipids on LDs (Figure 5C; Guo et al., 2008; Krahmer et al., 2011). Also, 
as predicted, CCT1 depletion did not abolish GPAT4 targeting to LDs. Strikingly, when CCT1 was 
depleted concomitantly with Arf79F or βCOP, GPAT4 targeting to LDs was efficiently restored (Figure 5C). 
The ability of CCT depletion to complement deficient Arf1/COPI function was specific to the GPAT4 
targeting to LDs, as CCT1 depletion did not restore the defect in protein secretion due to Arf79F or 
βCOP depletion (Figure 5D).

If Arf1/COPI proteins function to remove phospholipids from LDs and thus allow membrane bridges 
to be established between the ER and LDs, then modulating the LD surface properties by other means 
should similarly alter protein targeting to LDs. To test this prediction, we added PC to cells. In agreement 
with the hypothesis, adding excess PC prevented GPAT4 targeting to the LD surface (Figure 6A). 
We suspect that, in this experiment, PC accumulates on LD surfaces and shields their TG cores, 
thereby lowering surface tension, and thus might prevent the establishment of membrane bridges 
with the ER.

Conversely, we predicted that a surfactant with a low potential to shield TG, therefore generating 
higher LD surface tension, might restore GPAT4 targeting to LDs even in the setting of Arf1/COPI 
depletion. We hypothesized that cholesterol (which in Drosophila cells is normally only present in very 
low amounts), with its small head-group and pronounced cone shape, might act in this manner. As 
predicted, in vitro measurements confirmed that cholesterol addition increased the surface tension of 
a TG-buffer interface when added in the presence of phospholipids (PC and PE) mimicking the LD 
surface composition (Figure 6—figure supplement 1A). Additionally, emulsion stability was reduced 
by cholesterol (Figure 6—figure supplement 1B). When cholesterol was added to Arf1/COPI-
depleted cells, the cholesterol content increased at LDs (Figure 6—figure supplement 1C,D). 
Importantly, adding cholesterol to cells was sufficient to restore targeting of GPAT4 to LDs in Arf1/
COPI-depleted cells (Figure 6A), and the number of GPAT4-positive LDs depended on the ratio of 
cholesterol and PC added to cells (Figure 6A). To test whether the effect is due to cholesterol’s physical 
properties, or alternatively, to some physiological change in the cells induced by cholesterol, we 
repeated these experiments with SR59230A and stearylamine. Both of these agents are surface active, 
amphiphilic molecules that normally do not occur in cells, but which induce LD destabilization in vivo 
(Murphy et al., 2010), likely by increasing LD surface tension or by decreasing line tension of coalescence 
intermediates. In agreement with the findings with added cholesterol, adding SR59230A or stear-
ylamine efficiently restored GPAT4 targeting to Arf1/COPI-depleted LDs (Figure 6B).

To further test whether changes of LD surface properties, introduced by the action of Arf1/COPI, 
controls GPAT4 targeting to LDs through membrane bridges, we reconstituted this reaction in vitro with a 
microfluidic device (Figure 6—figure supplement 1E). We introduced microsomes harboring GFP-GPAT4 
into buffer-in-oil micro-reactors (Figure 6C). Mixing the content of the micro-reactors by flow through 
zig-zagging micro-channels led to localization of some GPAT4 to the monolayer delimiting the TG phase. 
The amount of GFP-GPAT4 at the monolayer depended on its composition and varied according to 
the surface tension. Similar to the situation in cells, monolayers rich in cholesterol and having higher 
surface tension, bound GFP-GPAT4 more efficiently than control monolayers of PC and PE (Figure 6C).

Discussion
The Arf1/COPI machinery is important for governing LD morphology, protein targeting, and conse-
quently lipolysis (Beller et al., 2008; Guo et al., 2008; Soni et al., 2009; Ellong et al., 2011). However, 

functional COPI machinery. (D) Arf1/CCT1 or βCOP/CCT1 co-depletion blocks HRP secretion. Error bars represent 
the SD of triplicate measurements.
DOI: 10.7554/eLife.01607.013
The following figure supplements are available for figure 5:

Figure supplement 1. Depletion of COPI machinery components is efficient. 
DOI: 10.7554/eLife.01607.014

Figure 5. Continued
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Figure 6. LD surface properties modulate GPAT4 LD targeting. (A) Addition of exogenous PC to S2 cells inhibited GPAT4 LD targeting in βCOP or 
control RNAi-treated cells. Cholesterol (chol) addition to cells restored GPAT4 LD targeting in βCOP-depleted cells. Targeting efficiency depends on the 
ratio of added cholesterol and PC in βCOP or control RNAi-treated cells. (B) The artificial compounds SR59230A or stearylamine rescued GPAT4 LD 
targeting in βCOP depleted cells. The numbers of GPAT4-targeted LDs per cell are shown. Error bars represent the SD from the mean number of 
GPAT4-targeted LDs in 40 cells. Statistical significance was calculated using ANOVA, followed by a Dunnett test with a 99% confidence interval (p=0.01). 
(C) GPAT4 targeting to phospholipid monolayers depends on the surface tension. Buffer drops containing GPAT4-GFP-labeled microsomes are formed 
in a microfluidics device by flow focusing. The buffer micro-reactors are surrounded by oil of different composition (TG containing PC/PE (0.25% ea.) or 
PC/PE (0.25% ea.) + 2% cholesterol, or cholesterol only (0.5%); concentrations are w/w compared to TG). Each formed buffer drop pass through a zigzag 
Figure 6. Continued on next page
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how Arf1/COPI proteins act to affect LDs has been unknown. Recent evidence from in vitro experiments 
using artificially generated oil-water interfaces show that GTP-bound Arf1 and COPI proteins are 
sufficient to bud nano-LDs (Thiam et al., 2013a), suggesting that the Arf1/COPI machinery might 
perform a similar function at the oil-water interfaces of LDs in cells.

The current studies show that Arf1/COPI machinery has an additional function other than its canonical 
function in forming bilayer vesicles namely that these proteins can control the formation of membrane 
bridges between LDs and the ER to mediate targeting of specific proteins (such as ATGL, GPAT4, and 
DGAT2) from the ER to LDs.

Taken together, our data are most consistent with a model for the function of Arf1/COPI in which 
these proteins act directly on LDs to remove phospholipids from the LD surfaces through the forma-
tion of nano-LDs. Budding of nano-LDs in turn, increases surface tension of the donor LD and allows 
membrane bridges to be established between this LD and the ER. These membrane bridges provide 
a pathway for the localization of membrane-associated proteins, such as ATGL and GPAT4, and it 
allows them to diffuse to the LD surface where they perform key steps in TG metabolism. Without 
functional Arf1/COPI, TG synthesis enzymes fail to target LDs, which as a consequence cannot expand 
to form large LDs. In addition, as reported (Beller et al., 2008; Soni et al., 2009), ATGL fails to target 
LDs leading to a defect in lipolysis and a mild increase in the size of small LDs. Consistent with this 
model, incubation of cells depleted for components the Arf1/COPI machinery with chemicals that 
increase LD surface tension, such as cholesterol, stearylamine or SR59320A is sufficient to restore 
GPAT4 targeting. Various proteomic, biochemical, and cell biological studies showing that compo-
nents of the Arf1/COPI machinery are present on LDs (Nakamura et al., 2005; Bartz et al., 2007; Guo 
et al., 2008; Ellong et al., 2011; Bouvet et al., 2013) are also consistent with this model.

Calculations based on the size of the targeted LDs and the formed nano-LDs suggest that only a 
few nano-LD budding events are required to significantly increase the surface tension of the donor LD 
(Thiam et al., 2013a). Thus, Arf1/COPI activity that results in the budding of nano-LDs will cause a 
significant change in the surface properties of existing LDs, and these changes are required to enable 
interactions of the LD monolayer surface with bilayer membranes. Specifically, we posit that the 
increase in the surface tension of LDs allows for the formation of bridges with the ER, whereas the 
densely packed phospholipid shell on LDs with low surface tension, where Arf1/COPI have not acted, 
are refractive to forming a bridge with the ER.

In an alternative and possibly complementary model, Arf1/COPI might also function to maintain ER 
lipid composition or structure in a manner that allows for the formation of bridges with LDs. In other 
systems inhibition of the Arf1 guanine-nucleotide exchange factor led to collapse of the Golgi appa-
ratus into the ER and ectopic cleavage and activation of the transcription factor SREBP (Walker et al., 
2011). In Drosophila, SREBP up-regulates phospholipid synthesis (Dobrosotskaya et al., 2002), which 
could indirectly affect LD surface properties (Krahmer et al., 2011). However, in our experimental 
system, we did not detect increased SREBP cleavage, up-regulation of the SREBP target genes (such 
as CCT1, acetyl-CoA synthase, acetyl-CoA carboxylase and fatty acid synthase) or changes in cellular 
PC or PE levels after Arf1 depletion (Figure 5—figure supplement 1 and MJO and TCW, unpublished 
observations).

Once ER-LD bridges are established, GPAT4, and presumably other enzymes (e.g., AGPAT3, 
DGAT2, or ATGL/brummer) rapidly migrate to LDs. The time course of enzyme relocalization, in our 
experiments triggered at some point during oleate loading or after adding back COPI by cell–cell 
fusion, suggests that, once LD-to-ER bridges are established, targeting is limited by diffusion across the 
bridges. It is unclear how cargo that migrates from the ER to LDs is selected. Intriguingly, the Arf1/COPI 

region where microsomes inside the buffer drop are constantly brought into contact with the monolayer at the oil interface. Drops are arrested in a 
network of trapping chambers. In the presence of PC/PE, little GPAT4-GFP is targeted to the monolayer but stays in microsomes. Addition of 2% 
cholesterol or cholesterol alone significantly increased GPAT4-GFP signal on the monolayer. Quantification of the relocalization efficiency of GPAT4 from 
microsomes to the monolayer interface. Bar = 100 μm (device) or 25 µm (drop).
DOI: 10.7554/eLife.01607.015
The following figure supplements are available for figure 6:

Figure supplement 1. Cholesterol leads to an increase of surface tension at a TG/buffer interface. 
DOI: 10.7554/eLife.01607.016

Figure 6. Continued
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mechanism appears to operate specifically for proteins that are embedded in the membrane, such as 
GPAT4 and ATGL, which behaves similarly to GPAT4 as an integral membrane protein (Soni et al., 
2009, and FW, MJO, RVF, and TCW, unpublished observations). It is also unclear why these LD-targeted 
proteins accumulate on LD surfaces. Accumulation could be mediated by partitioning into the oil 
phase, but the mechanism providing energy for the reaction is not yet known.

Our findings provide a number of new questions for investigation. It is unknown if the Arf1/COPI 
machinery is constitutively active stochastically on some LDs or if is regulated. Interestingly, data from 
in vitro budding reactions from oil-water interfaces indicate that Arf1/COPI can act only on membranes 
sufficiently covered by phospholipids (Thiam et al., 2013a). Therefore, Arf1/COPI might be part of a 
system that detects LDs that are sufficiently coated by PC (i.e., have reached a sufficiently low surface 
tension) and thus are suitable for further expansion. It is also unclear how Arf1/COPI-mediated protein 
targeting is affected by lipolysis. Generation of surface-active lipids during lipolysis, such as fatty acids 
or diacylglycerol, might increase LD surface tension and subsequently augment the triggering of 
ER-LD bridge formation, thereby allowing more lipases to migrate to LDs. Also unclear is how the 
specificity of membrane bridge formation of LDs to the ER is controlled. Finally, it will be of interest to 
determine the fate of the nano-LDs formed by Arf1/COPI actions. Nano-LDs are similar in size to typ-
ical COPI vesicles. However, in contrast to vesicles, they are made up of a small oil core that is likely 
coated with a monolayer of phospholipids and may contain specific proteins.

The model emerging from our studies highlights how cells solved a fundamental problem—how to 
deal with LDs, which are essentially emulsified oils in the aqueous cytosol. Through the actions of the 
Arf1/COPI machinery, the surface properties of LDs can be altered such that proteins are able to 
access them. Among all coat complexes known to function in vesicular trafficking, the Arf1/COPI system 
has unique properties that make it ideally suited to function in this process. All other vesicular coat 
complexes require exchange factors that contain trans-membrane spanning protein segments, which 
are unlikely to be found on LDs. Arf1/COPI does not require such a factor. By this unique mechanism, 
cells can alter the surface properties of LD emulsions and enable them to interact with membranes, so 
that specific enzymes can gain access to LDs and facilitate dynamic changes in lipid storage or utilization. 
Our findings additionally provide evidence for a previously unrecognized cellular mechanism by which 
Arf1/COPI proteins can control protein trafficking.

Materials and methods
Antibodies
Rabbit polyclonal antibodies used: anti-GPAT4 (Wilfling et al., 2013), anti-CCT1 (Wilfling et al., 2013), 
anti-GBF1 (BD Biosciences, San Jose, CA), anti-KDEL-receptor (KDELR; gift from Dr JE Rothman; Yale 
University), anti-βCOP (gift from Dr JE Rothman; Yale University), anti-perilipin3 (TIP47; Novus Biologicals, 
Littleton, CO), anti-αCOP (Abcam, Cambridge, MA), anti-GRP78/BiP (ET-21) (Sigma–Aldrich, St. Louis, 
MO) and anti-garz (Wang et al., 2012) (gift from Dr A Paululat; University of Osnabrück). Mouse mono-
clonal antibodies used: anti-GM130 (BD Biosciences), anti-tubulin (Sigma–Aldrich), anti-β’COP (gift from 
Dr JE Rothman; Yale University), and anti-clathrin heavy chain (x22) (Thermo Scientific, Waltham, MA) 
antibody. The following secondary antibodies were used: Alexa Fluor 568 goat anti-rabbit (Invitrogen, 
Grand Island, NY), Alexa Fluor 488 goat anti-mouse (Invitrogen), ATTO 647N (STED) goat anti-rabbit 
(Active Motif, Carlsbad, CA), and goat anti-mouse STAR470SX (Abberior, Göttingen, Germany).

Plasmid DNA construction
Full-length cDNA encoding CG5295 (brummer) and CG10374 (Lsd1) were obtained from the DGRC 
(https://dgrc.cgb.indiana.edu/) and subcloned into the pENTR/SD/DTOPO vector (Invitrogen) and indi-
cated destination expression vectors (actin promoter). The destination vectors used in this study are part of 
the Drosophila Gateway Vector Collection and are available from the DGRC (https://dgrc.cgb.indiana.edu/).

Cell culture and transfection
WT Drosophila S2 or stably transfected cells (pAGW-brummer or pACherryW-Lsd1) were cultured, 
treated with oleate, transfected and depleted by RNAi as described (Krahmer et al., 2011). Cells were 
analyzed 4 days after RNAi treatment. Table 1 contains a list of primers to generate dsRNAs for RNAi. 
A segment of pBluescript backbone was used as the template for control RNAi. Expression of the ss-
HRP construct was induced and the secretion assay was performed as previously described (Bard et al., 
2006). If not otherwise indicated, cells were treated after RNAi treatment with 1 mM oleate for 8 hr. 

http://dx.doi.org/10.7554/eLife.01607
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Exogenous lipids (PC, or cholesterol, or PC/cholesterol) were added to Drosophila S2 cells at the 
second day of the RNAi treatment. The final concentration of these lipids in the growth medium was 
5 mM. On the fourth day, medium was replaced by fresh medium containing 1 mM oleate and LD 
formation was induced for 8 hr before cells were fixed. The artificial lipid SR59230A was added to 
RNAi treated cell during the last hour of oleate treatment to a final concentration of 100 µM. NRK cells 
were cultured in DMEM with 10% FBS and antibiotics (100 units of penicillin and 100 µg of streptomy-
cin per ml). Cells were split onto glass bottom plates and incubated in the culture media the day 
before imaging. LDs were induced by treatment with 0.5 mM oleate for 2 hr before fixation and 
imaging.

Protein purification
Fluorescently labeled Arf1 was generated using an Arf1-variant in which the single cysteine residue of 
Arf1 was replaced with serine, and the C-terminal lysine was replaced with cysteine, yielding Arf1-
C159S-K181C. Published work has demonstrated that exchanging the C-terminal lysine of the small 
GTPase with a Cys- residue, and subsequent fluorescent labeling (using thiol-reactive dyes on Cys181), 
does not inhibit Arf1-function (Beck et al., 2008; Manneville et al., 2008). In short, human Arf1-
C159S-K181C and yeast N-myristoyltransferase were coexpressed in Escherichia coli supplied with 
BSA-loaded myristate. Cell lysates were subjected to 35% ammonium sulfate, and the precipitate, 
enriched in myristoylated Arf1, was further purified by DEAE-ion exchange. Eluted fractions of interest 
were concentrated in spin-column filters with a 10-kD cutoff (Millipore), and fluorescently labeled using 
Cy3-maleimide (GE Healtcare) according to the manufacturer’s protocol. To remove excess dye, sam-
ples were purified by gel filtration using a Superdex 75 column (GE Healthcare).

Recombinant coatomer protein was expressed and purified, as described in Sahlmuller et al., 
(2011). In short, Sf9 insect cells were infected with baculovirus encoding for heptameric coatomer. 
Coatomer complexes were isolated from the soluble protein fraction by nickel-affinity purification, 
concentrated in spin-column filters with a 250-kD cutoff (Millipore), and fluorescently labeled using 
Alexa-Fluor-647-NHS (Molecular Probes) according to the manufacturer’s protocol. Excess imidazole 
and dye was removed by gel filtration using a Superose 6 column (GE Healthcare).

Lipid droplet size measurements
Cells were treated with 1 mM oleate, stained with BODIPY, and subsequently imaged and measured 
as described (Wilfling et al., 2013). Density plots were computed using R (http://www.r-project.org/).

Light microscopy
For live-cell imaging and immunostaining, cells were prepared and imaged as described (Wilfling et 
al., 2013). The antibody dilution buffer used for immunostaining of perilipin3 in NRK cells did not 
contain detergent. The permeabilization buffer used for immunostaining of CCT1 in Drosophila S2 
cells had a final concentration of 0.1% NP-40. Also, the buffer for first and secondary antibody dilution 

Table 1. Sequences of primers used for RNAi experiments

Gene Gene ID Forward Reverse

garz CG8487 TTGCACAAACTTTGATTCCTG CATATCGGCGCACTATAATC

Arf79F CG8385 TAGCGATTAGCGTTCTTCA CTGCCAAATGCAATGAACG

αCOP CG7961 AGGAAGCTAAGCTTGTCAAA GGACGAGTCTGGAGTGTTT

βCOP CG6223 CCAGTCAGTTGGGTGACCTT CCTAGCAAGCCCATAACCAA

β’COP CG6699 ATCTTGCTTCCCACAACGTC CCGAAGGACAACAACACCTT

γCOP CG1528 ATTACGTTCACAGCACGCAG CAGAGGAGGGCTATGACGAC

ζCOP CG3948 CCGTCGCAGATCTCGTC GCATCCTGGCCAAGTACTA

εCOP CG9543 AGGTGCCAGATGTTGGTCTC CCAACTCGGTGCTATTCGAT

δCOP CG14813 AAGCTGTCTGCGCCATAAAT TCCAGTGGCACATTCCAATA

CCT1 CG1049 ACATCTATGCTCCT1CTCAAGGC CTCTGCAGACTCTGGTAACTGC

pBluescript AATTCGATATCAAGCTTATCGAT TAAATTGTAAGCGTTAATATTTTG

DOI: 10.7554/eLife.01607.017
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was detergent free. LDs were stained with 1 µg/ml BODIPY (Invitrogen) or LipidTOX (Invitrogen) or 10 
mM of MDH (Yang et al., 2012b).

STED microscopy
STED microscopy (Hell and Wichmann, 1994) was performed on a custom-built system featuring an 
80 MHz mode-locked Ti:Sapphire laser (Chameleon Ultra II, Coherent) tuned to either 760 nm or 770 
nm as the depletion beam. The 140 fs pulses output from this laser were stretched to several hundred 
picoseconds using a glass block and a 100 m polarization-maintaining optical fiber (Thorlabs) to pre-
vent multiphoton excitation of the fluorophores. A spatial light modulator in the depletion beam path 
allowed phase modulation for generating a toroidal depletion focus in the sample and for correction 
of system induced optical aberrations (Gould et al., 2012). For fluorescence excitation, 510 nm and 
640 nm pulsed diode lasers (PicoQuant) were electronically synchronized to the depletion beam and 
an electronic delay (Colby Instruments) allowed adjustment of the relative arrival time of the laser 
pulses at the sample. Excitation and STED beams were combined using dichroic mirrors and focused 
into the sample through a 100×/1.4NA oil immersion objective lens (UPLSAPO 100XO/PSF, Olympus). 
Imaging was preformed via beam scanning. A 16 kHz resonant scanner and a galvanometer mirror 
(EOPC) were placed in the beam path and imaged into the pupil plane of the objective lens to scan 
the beams through the sample. Fluorescence from the sample was collected by the objective lens, 
de-scanned by the scan mirrors, separated from laser light using dichroic mirrors, bandpass filtered 
(FF01-685/40 for ATTO647N or FF01-593/46 for STAR470SX; both from Semrock), and focused onto 
105 μm core diameter (ATTO647N: ∼0.7 Airy units; STAR470SX: ∼0.8 Airy units) multimode fibers 
(Thorlabs) connected to single-photon counting avalanche photodiodes (APD; ARQ-13-FC, Perkin 
Elmer). APD counts were acquired using a FPGA-based data collection board (PCIe-7852R, National 
Instruments) and custom acquisition software programmed in LabView (National Instruments). 
Recorded pixel values were linearized (on the DAQ card) to account for the sinusoidal velocity profile 
of the resonant mirror and normalized according to the pixel dwell times such that the center pixel was 
divided by unity. Dual-color imaging of ATTO647N and STAR470SX were performed using sequential 
frame acquistions similar to previously published reports using a long Stoke’s shift fluorophore as the 
second color channel (Schmidt et al., 2008). Laser powers (measured at the objective back aperture) 
were ∼16 μW of 510 nm excitation light and ∼130 mW of 760 nm STED light for STAR470SX and ∼17 μW 
of 640 nm excitation light and ∼130 mW of 770 nm STED light for ATTO647N. Images were acquired 
with a 20 nm pixel size in a 1024 by 1024 image format with 500 accumulations per line, resulting in a 
frame rate of 0.032 Hz.

Comparison of colocalization between the experiment and a random 
distribution
To assess whether the overlapping signals of βCOP, clathrin, KDELR (in NRK cells) and αCOP, garz 
(for S2 cell) with BODIPY was erratic a Matlab script was written.

The population of the immunostained foci was denoted A and BODIPY stained LDs were denoted 
LD. For each colocalization experiment, a minimum of 15 snapshots was taken. Each image was first 
analyzed to assess the frequency of colocalization between A and LD from the experiment (1), from a 
random situation where A-type particles were randomly distributed (2); both situations were then 
compared (3).
 
1.	 The brightness contrast was adjusted for each channel of the picture using ImageJ. After applying 

a threshold binary images were generated for each channel. The total number of A-type particles, 
nA, and their corresponding radius, rA, were determined. For each LD particle, the distance of the 
first A-type neighbor was determined. Negative distances corresponded to overlapping of A and 
LD. The colocalized fraction of A-type particles with LD population was given by nexp/nA, where 
nexp was the number of colocalized A-type spots (number of negative distances).

2.	 The random distribution of A particles was based on an analytical model following a binomial 
distribution hypothesis. The choice of a binomial distribution model was adequate to assess over-
dispersion of A-type particles (Rosner, 2011). From the binary mask of the LD population, each LD 
of radius rLD was given a new radius rLD + rA. The probability of colocalization of A and LD can 
be formulated by the probability of having an A-type dot colocalizing to a LD of the new defined 
radius. In the total field occupied by the cells (areaf denoting for the area of the field), the total area 
fraction occupied by LD is given by:
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Colocalization of ns (ns = s*nA) from the nA particles has the highest occurrence (P(n) < P(ns)). 
Therefore the most likely situation from a random distribution was the colocalization of ns A-type 
particles with LD. Likewise we observed that a random simulation based on a normal distribution 
results in similar values for ns (data not shown).
 
3.	 If ns >> nexp, particles A are excluded from LDs; if ns << nexp, they are enriched on LDs.
 
Quantitative real-time PCR
Expression levels were measured by quantitative Real-Time PCR. Total RNA was prepared with the 
RNeasy Mini Kit (Qiagen); 1 μg was used for first-stand cDNA synthesis with the iscript cDNA synthesis 
kit (BioRad). Real-time quantitative PCR was performed on a LightCycler 480II (BioRad) using the 
Power SYBR green mix (Applied Biosystems). Pimers used are listed in Table 2.

TLC and lipid measurements
Purfication of lipid droplets was done as previously reported (Wilfling et al., 2013). Lipids were 
extracted (Folch et al., 1957), separated on silica TLC plates (Merck) with chloroform/methanol/acetic 
acid/formic acid/water (vol/vol) (70:30:12:4:1) for phospholipids or n-heptane/isopropyl ether/acetic 
acid (60:40:4) for neutral lipids, and detected by Hanessian’s

Electron microscopy
Purified LDs incubated with ARF/COPI at various conditions were absorbed to continuous carbon-
coated grids (glow discharged) at room temperature for 5 min, rinsed briefly with HKM buffer (25 mM 
HEPES-KOH at pH 7.4, 100 mM KCl, 10 mM MgCl2), and stained with 1% uranyl formate for 20 s. 
Negatively stained samples were imaged under low-dose conditions in an FEI Tecnai12 micro-
scope (120 kV). Micrographs were collected at 26,000 × magnification using Gatan 4K × 4K CCD 
camera, giving a pixel size of 4.5 Å. The diameters of nano LDs were manually measured on digital 
micrographs.

Surface tension measurements
The surface tension of different lipids or lipid mixtures was measured using a drop weight method. 
HKM buffer containing different concentrations of phospholipids and/or cholesterol was formed in a 
TG oil phase. Buffer drops were slowly formed in the oil (at a flow rate of 20 µl/hr) to allow dynamic 
interfacial equilibrium. At a critical size the drop detaches. For each concentration, videos of this 
process were taken using a 1394 Unibrain camera. From the inner diameter d of the injection tube 
(d = 250 µm), the surface tension is determined by mg/(π*d*f) where f is a Wilkinson geometric parameter 
correction that depends on the ratio between d and the radius of the detached drop and g is the gravity 
constant. The mass m of the drop was calculated according to m = v*Δρ (v is the volume of the drop 
and Δρ is the volume mass difference between oil and buffer phases).

Table 2. Sequences of primers used for RT-PCR

Gene Gene ID Forward Reverse

GAPDH1 CG12055 TTGTGGATCTTACCGTCCG ACCTTAGCCTTGATTTCGTC

Arf79F CG8385 TTACAGTGTGGGATGTGGG GAAGATAAGACCTTGTGTATTCTGG

βCOP CG6223 GACTTCTGCAATATCAAGGCC GGTTTCGTAAACAATATTGCCG

CCT1 CG1049 GATACGGAGTGCGTCA AATTCATCGGACAGAGTCCA
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Stability assay of oil microdroplets in aqueous solution
2.5 mg of DOPE and 2.5 mg of DOPC (Avanti Polar Lipids) were solubilized in 250 mg TG (Sigma–
Aldrich) by sonication. Lipids were then mixed with buffer (25 mM HEPES-KOH at pH 7.4, 100 mM KCl, 
10 mM MgCl2) in a ratio of 1/16 (oil/buffer) by vortexing and sonication for 5 min using a Branson 3510 
sonicator water bath. The emulsion was added to the indicated amounts of cholesterol and sonicated 
for 2 min. The optical density of the emulsion was monitored over a time course of 2 hr in 1-min inter-
vals by a TECAN infinite M200.

Cell–cell fusion assay
Drosophila S2 cells were co-transfected with pAW-VSVG and pAW-cherry. After 24 hr cells were mixed 
1:1 with a stable transfected cell line of GFP-GPAT4 depleted for β-COP for 4 days and treated for 8h 
with 1 mM oleate. The cell mixture was prepared for live cell imaging as described (Wilfling et al., 
2013). Fusion of cells was initiated by addition of a low pH buffer (10 mM Na2HPO4, 10 mM NaH2PO4, 
150 mM NaCl, 10 mM MES, 10 mM HEPES, pH 5) for 30 s. After incubation with the fusion buffer cells 
were immediately shifted to regular growth medium.

Microfluidic experiments
The microfluidics device was fabricated by well-established soft lithography techniques. A wafer 
mold was made by lithography with a negative resin (SU8-2035). The device was made of a poly-
dimethylsiloxane polymer, used to replicate the pattern on the mold and stuck on a glass cover slip. 
The height of the device is 58 ± 5 µm. A buffer and oil stream was generated using a syringe pump. 
By flow focusing, defined buffer drops were generated in the oil stream. These buffer micro-reactors 
contained GFP-GPAT4 microsomes. The oil used was a mixture of TG with phospholipids and/or 
cholesterol (PC/PE each 0.25% (wt/wt); PC/PE/cholesterol 1/1/4 with 2% (wt/wt) cholesterol; cholesterol 
0.5% (wt/wt); indicated lipid concentrations are compared to TG). To ensure the same frequency of 
interaction of the microsomes with the monolayer interface, the flow rate of the buffer and oil stream 
(150 and 30 µl/hr) was kept constant for all experiments.
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