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Abstract: Zoontic visceral leishmaniasis (ZVL) due to Leishmania infantum is a potentially fatal
protozoan parasitic disease of humans and dogs. In the Americas, dogs are the reservoir and the sand
fly, Lutzomyia longipalpis, the principal vector. A synthetic version of the male sand fly produced sex-
aggregation pheromone attracts both female and male conspecifics to co-located insecticide, reducing
both reservoir infection and vector abundance. However the effect of the synthetic pheromone
on the vector’s “choice“ of host (human, animal reservoir, or dead-end host) for blood feeding in
the presence of the pheromone is less well understood. In this study, we developed a modelling
framework to allow us to predict the relative attractiveness of the synthetic pheromone and potential
alterations in host choice. Our analysis indicates that the synthetic pheromone can attract 53% (95%
CIs: 39%–86%) of host-seeking female Lu. longipalpis and thus it out-competes competing host odours.
Importantly, the results suggest that the synthetic pheromone can lure vectors away from humans
and dogs, such that when co-located with insecticide, it provides protection against transmission
leading to human and canine ZVL.

Keywords: Leishmania; vector biology; host choice; disease prevention; sex-aggregation pheromone;
Lutzomyia longipalpis

1. Introduction

Understanding the blood-seeking behaviour of arthropod vectors has relevance to
vector control against transmission of public and veterinary health diseases [1,2]. The
emerging behavioural adaptations of important mosquito vectors to alter their blood-
feeding host preferences, locations and feeding time periods, and thus their ability to evade
fatal exposure to indoor insecticide interventions [2–4], highlight the need for sustained
vector surveillance and development of complimentary vector control strategies.

Insect pheromones that mediate mating, aggregation, and invitation behaviours [5],
could play a role in maintaining vector contact with insecticides, and consequently in
reducing the human biting index. In the agricultural sector, insect pheromones and other
semiochemicals have been widely exploited to monitor and reduce pest populations to
protect crop yields [5–7]. In contrast, pheromones produced by vectors of public or veteri-
nary health importance have not been widely identified or characterised [8] despite their
potential to be used to help reduce infection or disease incidence.

One exception is the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), which
throughout the Americas is the predominant vector of Leishmania infantum (Kinetoplastida:
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Trypanosomatidae), a protozoan parasite that causes human and canine zoonotic visceral
leishmaniasis (ZVL) which is usually fatal if not treated [9]. The males of this species pro-
duce a sex-aggregation pheromone that mediates attraction of female and male conspecifics
to leks for mating [10]. Since leks are usually located on or near to animal hosts, lekking
facilitates successful blood feeding by females and thus Le. infantum transmission.

Lu. longipalpis are catholic in their host choice, feeding on a wide range of non-
reservoir (“dead-end”) hosts including household animals, livestock and wildlife species,
as well as on domestic dogs which are the sole proven reservoir of Le. infantum [11].
Lu. longipalpis are not particularly endophagic or endophilic, and are usually trapped in
greatest abundance in animal shelters, to which they show a degree of site loyalty as they
have a short dispersal range (<100 m) [12–15]. Dead-end host populations in the near
vicinity of human habitation help to maintain the sand fly populations through provision
of blood [16], and consequently are likely to influence the epidemiology of ZVL through
diversion of infectious vector bites away from humans and the reservoir (zooprophylaxis),
or alternatively, by increasing vector densities as the numbers of attractive animals increase
(zoopotentiation) [17]. Evidence for these possible outcomes in leishmaniasis epidemiology
are currently contradictory or untested [18].

The recent development of a synthetic copy of the male produced Lu. longipalpis
sex-aggregation pheromone placed in controlled-release dispensers, has provided a unique
opportunity to test its attractiveness to conspecific males and blood-seeking females under
experimental and field conditions [19–23]. The pheromone has been shown to be attractive
at least 30 m from it’s source [23], and can attract many times more females and males
to the source than controls [19–23]. Furthermore, co-location in close proximity with
pyrethroid insecticides sprayed onto chicken roosting sites or onto household compound
perimeter walls in control trials in Brazil, demonstrate that this “lure-and-kill” approach
can reduce confirmed canine infection incidence and tissue Le. infantum parasite loads
by 52–53%, and household vector abundance by 49%–70% [24,25]. A next step is to
design and optimise community-wide deployment strategies of this vector control method.
However, this requires a good understanding of the potential changes in host choice
seeking behaviours in context of competing host odours and variations in demographic
and epidemiological conditions.

Mathematical models aid in deciphering important drivers of insect behaviour and
predicting changes in epidemiological dynamics when such factors vary. Feeding pref-
erences of sand fly vectors have been modelled explicitely to identify the importance of
host defensiveness [26], host irritability [27], host body surface area [28] and host species
biomass [29]. However one of the key drivers of vector host-seeking behaviour of Lu. longi-
palpis and possibly other sand fly species is pheromone-mediated lek formation [12,15].

In this study, we report on the development of a mathematical framework to simu-
late and predict vector blood-seeking behaviour in the context of deploying a synthetic
pheromone attractant, parameterised using data from relevant recent field and laboratory
studies. To our knowledge this is the first time that the potential of a synthetic pheromone
of an arthropod vector has been applied to control a microorganism of public health
importance [20,24,25].

2. Materials and Methods

To address the question of the contribution of different attractive elements to the
overall attractiveness of a household, we developed a mechanistic spatial model for sand
fly host choice in response to a synthetic conspecific sex-aggregation pheromone, whereby
the local distribution of sand flies was constructed in terms of attraction profiles. The
attraction profile for a household is made up of multiple attractive (and repellant) elements,
including hosts (humans, dogs and chickens) and synthetic pheromone traps (Figure 1a).
The behaviour of a sand fly responding to a source of attraction depends on the distance
required to travel and the strength of competing stimuli received.
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We have defined an attraction profile as:
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where d is the distance, n is either amount of pheromone or a number of hosts; and
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are parameters defining the shape of attraction profile for an attractor
S = {P, H, D, C} , where pheromone (P), human host (H), dog (D) or chicken (C) indicates
a type of attractor. We made the following assumptions: (i) attraction decreases with a
distance from a source with an exponential decay defined by a parameter p1; (ii) there
is a saturation effect with increasing amount of pheromone or hosts which is defined by
parameter pS

3 ; (iii) the height of the attraction profile is equal to pS
2 .

We have parametrised attraction profiles using data on dispersal of Lu. longipalpis [12],
host-biting preference [30], and sand fly capture success in synthetic pheromone-baited
field traps generated by studies conducted in various locations in Brazil [22,23]. Details of
the experiments are given below.

Dataset A. Capture experiments to assess attraction of Lu. longipalpis to the synthetic
pheromone [22]. The attraction of individual sand flies to different amounts of pheromone
was measured using a series of choice tests. The experiments aimed to test the dose
response to the synthetic pheromone relative to chicken-only controls. The quantities of
synthetic pheromone tested were 10, 50, 100 or 500 mg and at distances of 5, 10, 15, 20 and
30 m between test and control CDC light traps [22].

Dataset B. Capture–mark–recapture experiments to assess the attraction of Lu. longi-
palpis to the synthetic pheromone [23]. These experiments were conducted using wild-
caught sand flies which were marked with fluorescent powders and released at a specific
distance from test and control chicken boxes and collected with a modified (no light) CDC
trap baited with the synthetic pheromone (10 mg). The synthetic pheromone was placed
in the chicken boxes set at distances of 5, 10, 15, 20 and 30 m from the sand fly release
point [23] and control traps (without pheromone) were also set at 5, 10, 15, 20 and 30 m
from the sand fly release point and 5, 10, 15, 20 and 30 m from the pheromone-baited trap.
All chicken boxes (test and control) contained 1 chicken.

Dataset C. Capture experiment to assess host preference [30]. Fieldwork was con-
ducted to investigate the preference of Lu. longipalpis for dogs, humans and chickens. CDC
light traps were set in three domestic locations: one trap in the bedroom of the house, one
in the chicken shed and one trap above a wire mesh cage containing a dog, the relative
positions rotated. The relative numbers of sand flies captured per night in each trap were
counted [30].

Dataset D. Mark–release–recapture experiment to assess dispersal of Lu. longipalpis [12].
Wild-caught sand flies were marked with fluorescent powders and released for recapture
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at chicken sheds by CDC light trap. The relationship between the percentage of recaptured
sand flies at distances (on a natural logarithm scale) was estimated to be proportional to
−0.16

√
d, where d is the distance in meters [12].

A likelihood function for these aggregated data was formulated as a product of
binomial distributions for the experimental datasets A and B, and multinomial distribution
for experimental dataset C. The probability of success in a single trial was set equal to the
probability that a sand fly would be attracted to a source. This probability was calculated
by the integration of the convolution between the attraction profile and the dispersal kernel
using the MCMC algorithm [31] to estimate the parameters from the aggregated dataset.
More details on the likelihood function and fitting procedure are given in Appendix A.

To further understand how the presence of the synthetic pheromone might influence
host choice in the heterogeneous landscape, an agent-based mathematical model was
designed where a sandfly chooses a household, and a host or pheromone within the
household, based on the parametrised attraction profiles. Model simulations were run
1,000 times. The fractions of sand flies attracted to humans, dogs and chickens in each
household were calculated running simulations with and without the presence of 10 mg
of the synthetic pheromone per household. Variations in the household characteristics
were based on the observed geospatial and demographic characteristics of an example
rural village (Caldeãro) in Marajó, Pará state, Brazil [30] (Figure 1b). More details on the
simulations are given in Appendix B.

3. Results
3.1. Parametrisation of Attraction Profiles

We fitted attraction profiles to the aggregated dataset containing 309 records from
datasets A, B and C. The log-likelihood trace plot for the final 1,000 MCMC iterations and
posterior distributions of parameters are shown in supplementary Figure S1.

The observed fraction of Lu. longipalpis captured on chickens, and fitted proportions
αA (for the experiment A) and αC (for the experiment C) are shown in Figure 2.
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Figure 2. Proportions of Lu. longipalpis as a function of: (a) amount of pheromone (for the experiment A); (b) number of
chickens (for the experiment C); (c) amount of pheromone and number of chickens (simulation results). Measured mean
and standard deviation are shown in blue and fitted curves in black in (a) and (b).

The model fits indicate that a greater proportion of female Lu. longipalpis would be
attracted to a trap baited with the synthetic pheromone relative to a control trap containing
a single chicken, where the proportion depends on the amount of pheromone in the trap.
Fitted attraction profiles indicate that the number of female Lu. longipalpis attracted to
the synthetic pheromone can be increased through addition of more pheromone, but the
effect saturates at approximately 100 mg (Figure 2a). In the absence of pheromone traps,
a similar response can be seen when the number of chickens is increased: the fraction of
Lu. longipalpis attracted to chicken sheds increases and then saturates at approximately
5 chickens per shed (Figure 2b).
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Having a mechanistic model is advantageous to investigate hypothetical and real
scenarios which otherwise would require expensive and time consuming field studies.
We have simulated capture experiments to measure the effect of increasing the amount
of pheromone vs increasing the number of chickens. We have assumed that the virtual
experimental setup used one pair of chicken sheds set 30 m apart. The first shed contained
a chicken and a different amount of pheromone and the second shed contained different
numbers of chickens. The simulated fraction of sand flies attracted to the shed with
pheromone is shown in Figure 2c. This fraction was between 0.4 and 0.85. It can be seen
that chickens were more attractive only for the minimum amount of pheromone (10–20 mg
per trap). In the case of 20 mg, the second shed had to have at least 25 chickens to attract
more than 50% of the sand flies.

3.2. Effect of the Synthetic Pheromone on Lu. longipalpis Host Preference

The estimated effects on host preference in the heterogeneous spatial and demographic
landscape is depicted in Figure 3 showing the predicted relative attraction of female Lu.
longipalpis to the most commonly recorded blood-source hosts: chickens, dogs and humans,
in the absence (3a) and presence (3b) of the synthetic pheromone. The variability in the
fraction of Lu. longipalpis attracted to each source arises from the observed heterogene-
ity in host demography, i.e., the numbers of humans, dogs and chickens, recorded per
household [29,30].
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Figure 3. Lu. longipalpis estimated preference for hosts and pheromones: (a) in the absence of the
synthetic pheromone; (b) in the presence of the synthetic pheromone.

Across all households, in the absence of the synthetic pheromone, a median 6.7%
(95% CIs: 3.8–36.6%) of sand flies are preferentially attracted to humans, 15.1% (95%
CIs: 7.8–84.0%) to dogs, and 81.2% (95% CIs: 54.4–87.6%) to chickens. In the presence of
10 mg of the synthetic pheromone, the expected median proportion of sand flies attracted to
each of the three hosts decreased by approximately half: 3.1% (95% CIs: 2.2–4.9%) (humans),
8.1% (95% CIs: 4.3–22.2%) (dogs), and 42.1% (95% CIs: 14.8–49.1%) (chickens), whereas the
attraction to the synthetic pheromone accounted for 53.7% (95% CIs: 39.7–86.4%) of total
Lu. longipalpis (Figure 3b).

4. Discussion

We modelled the localised influence of the synthetic pheromone in treated households
based on empirical data showing that it can attract conspecifics from at least 30 m away [23],
and that the attraction strength is non-linearly related to the pheromone quantity (dose
dependent) [22]. When constructing the attraction profiles, we assumed that attraction
decreases exponentially with distance from a source, and a saturation effect is reached
as the amount of the synthetic pheromone or numbers of hosts (kairomone quantity)
increases [15,22,23]. We introduce the term “attraction profile” to incorporate the synthetic
pheromone as a potential “choice” for sand flies, in contrast to malaria models where the
term “attraction rate” refers to the blood-meal choice dependence on the propensity of
hosts to emit kairomone attractants, and on host accessibility [17]. Here we present an
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extension to the vector-host interaction model framework to inform interventions that
include vector attractants, in this case a synthetic vector pheromone which can be co-
located with insecticide as a “lure-and-kill” method against a public health disease. Our
proposed mathematical framework explicitly models the quantitative interactions between
the synthetic pheromone and key types of host (dead-end, reservoir and humans) within
a realistic heterogeneous spatial and demographic dimension. Other influencing factors
such as host accessibility [32,33] could easily be encorporated into the model framework.

The current simulations indicate that in the absence of the synthetic pheromone,
chickens would be expected to be the preferred host (81.2%), with dogs being second
choice (15.1%) and humans the least attractive (6.7%). This is expected as many studies
demonstrate that Lu. longipalpis is trapped at greatest densities in animal shelters compared
to inside houses [13,33]. In households fitted with the synthetic pheromone, model simula-
tions predict that the synthetic pheromone attracts female Lu. longipapis away from the three
potential alternative hosts, and in approximately similar proportions (46.3–53.6%), indicat-
ing substantial reductions in the absolute biting rates on humans and the canine reservoir.
There is no evidence from community studies that the synthetic pheromone attracts larger
numbers of Lu. longipalpis to households which could lead to zoopotentiation [24]. On the
contrary, when co-located with insecticide, the pheromone can reduce vector numbers even
in neighbouring houses which do not receive the lure-and-kill intervention [25]. Locating
the synthetic pheromone and insecticide within household compounds contrasts to that
of experimental human odour lures to attract mosquitoes, which are longer range attrac-
tants, and therefore best placed further away from human residencies and other mosquito
aggregation sites in order to reduce the risk of zoopotentiation [34].

The model outcomes clearly demonstrate that the preference of Lu. longipalpis is
skewed towards the synthetic pheromone within the context of competing host odours and
the naturally-released male pheromone, but it appears not to alter the relative preference
for the three types of hosts. A similar finding is observed from data independent from
those used to parameterise the current model, collected elsewhere in Brazil where CDC
traps were placed in houses, chicken roosting sites and above tethered dogs, in control and
treated households [24]. In that study, the lure-and-kill approach reduced transmission
in the canine reservoir by approximately 50% but did not increase household vector
abundance [24].

The feasibility of a lure-and-kill strategy for community-wide deployment will depend
on economic evaluation as an important consideration for public policy decision making. A
key motivation of this study was the need to provide a mathematical framework to predict
the likely outcomes on host choice underpinning field trial results, but it also serves as a
framework to help optimise alternative interventions with spatial modes of action. The
next steps will be to incorporate the predictive mathematical model of vector host-seeking
behavior with spatially explicit VL transmission models to evaluate changes in human and
canine spatial infection incidence under variable pheromone implementation scenarios
and demographic conditions.

In conclusion, our analysis indicates that when the synthetic pheromone (10 mg) is
co-located with insecticide, the lure-and-kill approach could dilute mean vector biting rates
on humans and the canine reservoir by approximately half.
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Appendix A

The dispersal was evaluated through the mark–release–recapture method [12]. The
relationship between the percentage of recaptured sand flies (Iog scale) has been estimated
to be proportional to −0.16

√
d , where d is the distance in meters. Consequently, we have

set the dispersal kernel function as:

K(d) = K0exp
(
−0.16

√
d
)

where
K0 =

(∫ ∞
0 exp

(
−0.16

√
x
)
dx
)−1 .

A proportion of sand flies attracted to a household h with nS(t) number of attractors
at time t can be calculated by summing the integrals:

fh(t) =
∑S∈{P,H,D,C}

∫ ∞
0 K(x)AS

(∣∣∣xh − x
∣∣∣, nS(t), pS

)
dx

F(t)
,

where S is source, {P, H, D, C} stands for pheromone lure, human, dog and chicken; K(x) is
the dispersal kernel, attraction profile is given by Equation (1), and xh is coordinate of the
household h.

Normalisation is obtained by summing over all households, i.e.,

F(t) = ∑h ∑S∈{P,H,D,C}

∫ ∞

0
K(x)AS

(∣∣∣xh − x
∣∣∣, nS(t), pS

)
dx

We can also calculate a fraction of sand flies attracted to a particular host in a household
h, for example for dogs:

f D
h (t) =

∫ ∞
0 K(x)AD

(∣∣∣xh − x
∣∣∣, nD(t), pS

)
F(t)

.

There are nine parameters defining attraction profiles:
{

p1, pP
2 , pP

3 , pH
2 , pH

3 , pD
2 , pD

3 , pC
2 , pC

3
}

,
where the upper indices are for pheromone (P), human hosts (H), dogs (D) or chickens (C),
and the lower indices correspond to decays with distance (1), relative height of the profile (2)
and saturation with amount (3). We set pP

2 = 1 , i.e., the height of the attraction profile for a
maximum amount of pheromone to be equal to one.

Below we describe how the likelihood function for each of the experiment has been for-
mulated.

https://wellcome.ac.uk
https://wellcome.ac.uk
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In the experiment A, there were two chicken sheds positioned at xtest and xcontrol sites.
In each shed, there was a synthetic pheromone trap equipped with ϕi (i = {contr, test})
amount of the synthetic pheromone, where ϕi = 0 corresponds to the control with no
synthetic pheromone present. We set up a virtual experiment within a rectangle around
a control and test trap and assumed that sand fly can enter at a random point along the
perimeter. The proportion of sand flies attracted to the test trap is calculated as:

αA
j =

β
(
dtest, ϕtest, xtest)

β(dtest, ϕtest, xtest) + β
(
dcontrol , ϕcontrol , xcontrol

) ,

β(d, ϕ, y) =
∫ d

0
K(x)A(|y − x|, ϕ, nC, p)dx/d.

where dtest is the distance between the test trap and entry point; dcontrol is the distance
between a control trap and entry point. As a chicken was placed in each shed to provide a
source of host odour, we assume that:

A(|y − x|, ϕ, nC, p) = AP(|y − x|, ϕ, p) + AC(|y − x|, 1, p),

i.e., the attraction profile is a sum of attraction profiles for the synthetic pheromone and
chickens with nC = 1. We run r simulations with randomly positioned entry point along
perimeter of the rectangle and set αA = 1

r ∑r
j=1 αA

j .
In experiment B, sand fly was captured, colour coded, released and recaptured. We

assumed that released sand flies which were not recaptured in the test trap have dispersed
elsewhere. Therefore, the proportion of sand flies attracted to the test trap was calculated as

αB =

∫
R2 K(y)A(|x − y|, ϕ, nC, p)dy∫

R2 K(y)A(|x − y|, ϕ, nC, p)dy +
∫

R2 K(y)dy
.

In experiment C, the proportions of sand flies attracted to humans, dogs and chickens
are calculated as:

αC
s,i =

(1/ds)
∫ ds

0 K(x)A(|xs − x|, ns, p)dx

∑s∈S
∫ ds

0 K(x)A(|xs − x|, ns, p)dx
,

where S = {H;D;C}, dS is the distance between a trap S and entry point, nS is a number of
individuals of type S. We run r simulations with randomly positioned entry point and

αC =
1
r ∑r

j=1 αC
s,i .

Finally, we assume that the number of sand flies caught in a trap follows a binomial
distribution with success probability equal to αA for the experiment A, αB for the experi-
ment B, and multinomial distribution with probabilities αC for the experiment C. Then the
likelihood function is given by:

L(p) = ∏nA
i=1 Binom

(
ntest

i , ntest
i + ncontrol

i , αA
)
×

nB
∏
i=1

Binom
(

nrecapture
i , nrelease

i , αA
)

×
nC
∏
i=1

Multinom
(
nC

i , nD
i , nH

i , nC
i + nD

i + nH
i , αC).

We used the MCMC algorithm to estimate the parameters from 309 available datasets.
We set a number of entry points to r = 10ˆ5. We chose uniform priors U[0; 1] for all parame-
ters. Parameters were updated using an adaptive random walk Metropolis algorithm with
proposal distribution given at iteration k [31]:

Qk(x, .) =
{

N
(

x, 0.12 Im/m
)

i f k ≤ 2m,
(1 − ξ)N

(
x, 2.382Σm/m

)
+ ξN

(
x, 0.12 Im/m

)
, otherwise.
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where m = 8 is a number of parameters to estimate, Σm is an empirical estimate of the
covariance matrix at iteration k, and ξ = 0.05 .

Appendix B

The spatial and demographic data for a rural setting came from the fieldwork and
survey data from Calderao village, Marajó [30]. The data consisted of GPS coordinates
of households, and the number of humans, dogs and chickens resident in the household.
Households with missing data for human numbers were assigned a median of five closest
neighbours, and number of chickens were sampled from the Marajó dataset. The latitude
and longitude coordinates of households were converted to Universal Transverse Mercator
zone 22 projection and translated so that the left bottom corner of a local coordinate system
is (0,0). There were 235 households in the village. Locations of the households are shown
in Figure 1b. Table S1 gives statistics on demographic data.

To account for a local impact of synthetic pheromone traps, we apply following steps:
1. We calculate a number of sand flies in each household without pheromone traps Vh.
2. For each household with a pheromone lure, we redistributed sand flies to pheromone

lure and hosts according to a ratio between attraction profiles:

fs =

∫ ∞
0 K(x)As(|xs − x|, ns, ps)dx

∑S∈{P,H,D,C}
∫ ∞

0 K(x)AS(|xS − x|, nS, pS)dx
.

3. Number of sand flies attracted to a host after introduction of the synthetic pheromone
is equal:

VS
h = fSVh .

We set total number of female sand flies to Vh = 1000 . We calculate sand flies
attracted to hosts and pheromones in each household and aggregate these proportions in
order to draw a distribution. The boxplots for estimated sand fly preferences for hosts and
pheromones in the absence and presence of pheromone traps are shown in Figure 3.
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