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Abstract

A healthy neuron must continually produce millions of proteins and distribute them to
function-specific regions of the cell. Among these proteins are ion channels that modulate
neuronal excitability, allowing neurons to fulfill their primary role of information transfer.
Neurons are unique among cells in their morphology, with projections that extend hundreds
to thousands of microns. Neuron size and asymmetry pose a challenge for autoregula-
tion of properties that require cargo transport across the cell. Homeostasis of ion channel
localization has strong implications for neural excitability. This thesis concerns the intracel-
lular distribution of ion channels in the context of longitudinal transport and global neuron
regulation.

The principal contributions are experimental measurements, data analysis, and modeling
in the study of longitudinal neurite transport. Empirical investigations focus on the distribu-
tion and trafficking kinetics of ion channel Kv4.2, including quantitative measurements of
both passive diffusion and active microtubule-based transport in both axons and dendrites
(Chapters 3 and 5). Mass action models reveal that measured transport profiles corroborate
discrepancies in Kv4.2 localization both between neurite types and along the somatodendritic
axis (Chapter 4). Exchange between mobile and immobile fractions, inferred from analysis
of repeated photobleaching, shapes intracellular distribution of Kv4.2 (Chapter 5). Further,
the ensuing theoretical study surveys global regulation of ion channels, specifically for
synaptic scaling, which requires cell-wide modulation of AMPA receptors for normalization
of neural excitability. A unified model of synaptic potentiation, transport, and feedback
reveals limitations imposed on synaptic scaling by neuron morphology. A neuron balances
the stability, accuracy, and efficiency of synaptic scaling (Chapter 6).
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Chapter 1

Introduction

1.1 Background

Neurons are excitable cells that process and transmit information in the form of electrical and
chemical signals. A typical neuron consists of a soma, axons, and dendrites. The soma, or
cell body, is the bulbous center of the cell that contains the nucleus housing genetic material
as well as organelles for energy production, protein translation, processing, and storage. The
dendrites are long, thin projections of plasma membrane that branch and extend hundreds of
microns in a tree-like arborization, allowing the cell to receive signals from numerous inputs
and electrically and chemically propagate and integrate them into the soma. Axons are a
specialized projections extending and branching for thousands of microns through which the
cell relays output information. Neurons connect to each other and to end organs, forming
neural circuits. Though not the only cells found in neural tissue, neurons are regarded
as the basic functional unit of the nervous system. Neurons are the foundation of signal
and information transfer in the brain. Neurons therefore have centralized control over an
organism’s functions and are integral to learning, memory retention, and all other major
cognitive functions.

The complex functions of a neuron (and all other cells) requires continual cargo trafficking
and distribution. The most primitive and simplest of cells, including prokaryotes, are small
(~1 µm in diameter) and therefore rely on simple diffusion as a means of transport. As life
and cells became more complex, eukaryotic cells evolved to larger sizes [249] and developed
active mechanisms of long-range transport. Typical eukaryotic cells are fairly symmetric and
~10 µm in diameter, and cargo can be transported on a timescale of minutes.

The intracellular environment of a neuron, like all cells, is compact and incredibly
complex with many moving parts. Individual cells contain tens of millions of protein
molecules [96] with specialized functions that are often site-specific. Transporting all
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proteins to their proper location is a challenging endeavor. To complicate matters, proteins
and other cargo do not last forever, and cells must continuously recycle and replace them.
To further complicate matters, neurons are among the longest, most asymmetric cells. This
poses a problem: transport takes longer (on the order of hours to days) and thus is harder to
regulate.

How can cells that are so integral to the workings of our minds and bodies overcome a
challenge exacerbated by their unique morphologies? Long-range longitudinal transport is
necessary for localization of proteins throughout a large cell. Continual active delivery of
cargo is therefore crucial to the functioning of neurons. This thesis concerns the dynamics of
such transport as well as the challenges associated with regulating cargo activity over long
distances.

1.1.1 Perspective

This project is unique in that it combines the expertise in experimental neuroscience, molecu-
lar/cellular biology, and imaging of one research group with the knowledge of computational
neuroscience, bioengineering, control theory, and mathematics of another group. This inte-
gration of distinct disciplines encourages new perspectives and approaches to open questions
relevant to both fields.

The experimentalists working alone might have an excellent working knowledge of the
structure and mechanisms of an ion channel and the manifestation of phenotypes, but they
might overlook the global function in the context of a full neuron or circuit, or how that
function might be regulated. Theorists might have a comprehensive understanding of cell
conductance and transport, but without an experimental basis, their results lack grounding
in reality. This project ideally combines the skills and eliminates the drawbacks of both
disciplines, which creates an advantage in these fields of study.

1.1.2 Organization of the thesis

This chapter introduces the high-level concepts that unify the entire thesis. This chapter
also establishes the premises of the major results. Relevant background information from
the conventional pillars of neuroscience is introduced, covering cell and molecular biology
from the experimentalist’s perspective as well as modeling and feedback regulation from the
theorist’s view. The overarching questions of the dissertation are also outlined and addressed.
More specialized introductions and thorough reviews of concepts and literature are reserved
for the following chapters.
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Chapter 2 covers the experimental and computational methods, materials, and procedures
for obtaining the results. This includes experimental protocols from the wet lab; equipment
and settings for microscopy; techniques for image/data analysis; strategies for modeling; and
methods of statistical inference. This chapter also includes the preliminary results for dissec-
tion and culturing of hippocampal cells as well as techniques for imaging and microscopy.
This includes pilot trials and optimization experiments that established competency required
for efficient collection of consistent, meaningful data.

Chapter 3 contains experimental results on active microtubule-based transit of Kv4.2. This
includes comparisons of puncta frequencies between axons and dendrites with experimental
controls and attempts to perturb Kv4.2 active transit. We also compare transit frequency with
static localization data collected with collaborators, revealing a paradoxical relationship.

Chapter 4 reconciles the aforementioned discordant relationship between static and trans-
ported cargo introduced in the previous chapter. This includes deterministic, compartmental
models that illustrate the discordance both across neurite types and along the somatodendritic
axis. This chapter also includes inference of mechanistic differences in puncta transit between
axons and dendrites using a stochastic model.

Chapter 5 broadly covers measurement and modeling of Kv4.2 longitudinal diffusion
in dendritic shafts. This analysis reveals that measurements of fluorescence recovery after
photobleaching can approximate rates of cargo transfer between mobile and immobile
fractions, which shapes intracellular distribution of Kv4.2.

Chapter 6 examines a logistical problem regarding intraneuronal distribution of ion
channels. Transport, activation, and regulation of AMPA receptors are modeled in real
neuron morphologies, revealing the limitations of synaptic scaling. The tradeoffs imposed by
neuron morphology are quantified based on experimental data.

Chapter 7 is a brief summary that condenses our key findings, ties together the results
chapters, and includes closing remarks.

1.2 Historical introduction

The study of neuroscience has matured substantially throughout history. To introduce each
topic of this thesis, the relevant historical foundations are discussed. A condensed overview
of each topic follows. This introduction is by no means an exhaustive account of the vast
history of neuroscience. Rather, this historical introduction covers events and discoveries
that are most significant for neuroscience and/or most relevant to this dissertation.
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1.2.1 Early history

Greek philosopher Alcmaeon of Croton was among the first people in recorded history to
consider the brain rather than the heart as the seat of intelligence, cognition, and conscious-
ness. From the pre-Socratic era, this is the earliest description of the fundamental functions
of the central nervous system [83]. The study of the brain largely progressed through early
civilizations with crude methods and macroscopic observations. Human neuroscience in
ancient Greece was limited since the human body was considered sacred. In contrast, ancient
Egyptians introduced nervous system anatomy through their embalming practices. Roman
anatomists further dissected the nervous system, linking the brain to bodily movements
[83, 12]. The Islamic Golden Age introduced early treatments of the nervous system, as Avi-
cenna and Al-Zahrawi became known as the fathers of modern neurology and neurosurgery
[2, 158].

In more recent history, the field of neuroscience has broadened to overlap with many
other disciplines. Many modern day neuroscientists, projects, and institutions cover multiple
subfields and adapt data and methods from one domain to another. This dissertation is most
closely associated with neurobiophysics and computational neuroscience and uses techniques
from fluorescence microscopy and control theory. The foundational breakthroughs that
established these specialized disciplines are outlined next.

1.2.2 Microscopy

A major advancement for neuroscience and experimental biology in general was the devel-
opment of optical microscopy. The earliest compound microscopes, or upright microscope
with two lenses, date back to around 1590, with claims of invention by Dutch spectacle-
maker Zacharias Janssen and/or his father [240]. Microscope usage soon spread among
biologists and was improved and popularized by Antonie van Leeuwenhoek. Three quarters
of a century later, Robert Hooke observes and is credited for the discovery of cells using
optical microscopy [79, 44]. Other major advancements in optical microscopy include mass
production by Carl Zeiss [67] and combinations of lenses to resolve aberrations by Joseph
Jackson Lister [56].

For the past century and a half, optical microscopes have become essential instruments
for experimental biologists and neuroscientists. Advanced microscopy techniques have been
and are continually adapted to experimental neuroscience. Fluorescence microscopy is a
method that relies on emission rather than scattering or reflection of light. This brought about
several advantages, including improved resolution, labels for multiple structures, and filters
for emitted wavelengths [218].
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Confocal microscopy further reduces the scattering of light for improved image resolution
and feature distinction. A sample is illuminated with a small beam of light focused by a
pinhole at a narrow plane depth. By restricting the region of sample excited by light, signal
that is out-of-focus or scattered is minimized. However, the pinhole that produces focused
light also reduces excitation intensity. The light detector must therefore be sensitive and the
signal is often amplified. [181]

One of the main advantages of fluorescence and confocal microscopy is the ability to
distinguish multiple structures and features of cells and molecules. Identifying, measuring, or
tracking molecules and structures using advanced microscopy techniques is often limited by
the sample fluorescence. Cells can be visualized with their own intrinsic fluorescence—called
autofluorescence. More frequently, structures and molecules are labeled with fluorescent
stains and/or expressed with fluorescent tags [159]. One such fluorescent tag that is very
prevalent in cellular and molecular biology is green fluorescent protein (GFP). Originally
purified from jellyfish Aequorea victoria by Osamu Shimomura in the 1960s [211], GFP
has become a widely used reporter gene and fluorescent tag (2008 Nobel Prize). Several
improved derivatives of GFP are continually developed for broad applications of fluorescence
microscopy in the life sciences. [206]

A number of methods beyond single frame captures have been developed using fluores-
cence microscopy. Confocal microscopy at several depths can produce three-dimensional
spatial reconstructions of a sample. A time series of micrographs can be captured to study
the dynamics of a system, such as in particle tracking. [223] Another set of methods involves
photobleaching, or the exposure of fluorophores to high intensity light to induce chemical
alternations such that they no longer fluoresce. For instance, fluorescence recovery after
photobleaching (FRAP) was first analyzed for quantification of diffusion in the 1970s [9].
These methods, among others in fluorescence microscopy, are especially useful in the study
of molecular biophysics. Biological events, such as protein dynamics and transport kinetics,
can be observed and manipulated. Confocal microscopy with fluorescence labeling can
elucidate the physical mechanisms that drive biological phenomena.

Experimental neuroscience broadly involves empirical approaches and the scientific
method to investigate the nervous system. This includes biophysics, physiology, and cel-
lular/molecular biology applied to neurons. By contributing substantially to each of these
fields, the optical microscope and its subsequent iterative improvements have ushered in the
modern era of experimental neuroscience.
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1.2.3 The neuron doctrine

Modern neuroscience at the level of single cells and their interconnections in neural circuits
is largely made possible by improving microscope technology. Microscopy first enabled
early observations of unbranched tubular processes that were termed axons. This led to
the development of reticular theory, which contends that all nervous tissue is joined in a
single network called reticulum. A proponent of this theory, Italian biologist Camillo Golgi
developed a silver stain that contrasts neurons against a yellow background. Thanks to
microscopy and Golgi’s stain, a neuron’s morphology was wholly visible for the first time in
the 1870s. [50, 140]

Over the next few decades, Spanish neuroscientist and artist Santiago Ramón y Cajal
used Golgi’s staining method to produce hundreds of neuron illustrations. Among these
anatomical images were dendritic arbors, neural networks, and forests of cells. Ramón y
Cajal’s work facilitated the decline of reticular theory and rise of the neuron doctrine, which
states that a neural system made of individual cells with distinct terminals. [48] Despite
their opposing theories, Golgi and Ramón y Cajal were jointly awarded the 1906 Nobel
Prize in Physiology or Medicine "in recognition of their work on the structure of the nervous
system" [18]. It wasn’t until the 1950s that the neuron doctrine was reinforced following the
development of electron microscopy. [140]

A neuron comprises a central cell body called the soma with long projections—or
neurites—for input and output of signal. Biophysicists Kenneth Cole and Howard Curtis were
among the first to establish the function of each neurite with early intracellular recordings in
the 1930s. [70] However, the identification and coinage of axons and dendrites dates farther
back. German neuroanatomist Otto Deiters was among the first to describe the axon, calling
it an "axis cylinder" around 1860 [59]. Swiss anatomist Wilhelm His was among the first to
describe the "protoplasmic processes" that he observed as dendrites, which he differentiated
from axons in 1889 [70]. By then, the functional unit of the nervous system and its major
structures had been identified.

1.2.4 Intracellular organization and transport

The past century saw the maturation of biochemistry, biophysics, and molecular/cell biology.
What follows is a brief survey of the most relevant advancements from these fields. The
biologic flow of information from nucleic acid to protein was considered central dogma by
Francis Crick in 1957 [51]. Over the next few decades, biologists Claude, de Duve, and
Palade gradually uncovered the structural organization of the cell, elucidating the specialized
functions of organelles and establishing cellular biology (1974 Nobel Prize) [189]. The
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novel view of a compartmentalized cell raised new questions. How does the cell maintain
its organization? How do molecules and organelles arrive at their functional sites? In
the following decades, Günter Blobel discovered signal peptides, which direct proteins
through post-translational processing in the endoplasmic reticulum, Golgi apparatus, and
targeting to terminal sites (1999 Nobel Prize) [17]. But open questions still remained. How is
cargo transported for secretion or membrane integration? Rothman, Schekman, and Südhof
elucidate the packaging, trafficking, and secretion of membrane vesicles—small cargo-
containing structures surrounded by a phospholipid bilayer (2013 Nobel Prize). In neurons,
vesicular trafficking is prominent as a means of cargo distribution and neurotransmitter
release, among other functions [152].

The inner workings of the eukaryotic cell were revealed to be exceedingly complex—with
compartmentalization, organelles, specialized functions, and self-regulation. Between all
cellular components are networks of interlinking protein filaments collectively called the
cytoskeleton. Connecting the variety of cell compartments are numerous transactions of
molecular cargo and signals. The cytoskeleton—consisting of microfilaments, intermediate
filaments and microtubules—serves as tracks for molecular motors that carry out all direct
transport in the cell. This movement is termed intracellular transport. [55]

The earliest record of intracellular transport was cytoplasmic streaming in algae genus
Chara observed by Italian botanist Bonaventura Corti in 1774 [229]. Over the next century,
the movement of chromosomes during cell division was observed in detail [151]. The first
reported observation of transport unique to neurons was fast axonal trafficking in the 1980s
[237, 6]. In recent years, with advanced microscopy and fluorescent tagging with GFP,
intracellular trafficking of more and more cargos are visualized and studied. [238]

1.2.5 Neuron excitability and ion channels

Neurons are among a select group of cells that exhibit electrochemical excitability. This
was first recorded in the late 1700s, when Italian biologist Luigi Galvani dissected frog
legs, applied electrical current, and observed muscle contraction he described as "animal
electricity" [184]. The underlying mechanism of neuron excitability, however, would not be
elucidated for another hundred years. Galvani’s work inspired Alessandro Volta to develop
an early electric battery, the Voltaic pile, to study animal electricity [185]. In 1843, the action
potential was discovered by Emil du Bois-Reymond, student of Johannes Peter Müller [72].
In 1850, the conduction velocity of action potentials was measured by du Bois-Reymond’s
friend and fellow student Hermann von Helmholtz [175]. This team of three are regarded as
pioneers in experimental electrophysiology.
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Several decades later, a student of du Bois-Reymond and assistant to Helmholtz, Julius
Bernstein established the concept of resting potential. In 1902 and 1912 publications,
Bernstein proposed that action potentials result from changes in potassium ion permeability
of a membrane [204]. The threshold potential was first proposed by Louis Lapicque in
1907 [129]. The membrane hypothesis and threshold potential were supported by the early
intracellular recordings of Cole and Curtis, who in 1939 demonstrated increased membrane
conductance during an action potential [54].

These early membrane recordings and related theory enabled a series of breakthroughs
by Bernard Katz, Alan Hodgkin, and Andrew Huxley. They first amended the membrane
hypothesis with a second ion, sodium [103]. In their next five papers, all in 1952, they apply
voltage clamping to the giant squid axon and record changes in membrane permeability
to sodium and potassium. From these measurements, they reconstruct the measured axon
potential (1963 Nobel Prize). [102, 99, 98, 100, 101].

In the last of their 1952 papers, Hodgkin and Huxley propose that dynamic membrane
permeability is a result of discrete ion channels existing in distinct states. Their original model
used open and closed states with potassium channel activation, sodium channel activation,
and sodium channel inactivation. [101] This expanded upon membrane pores proposed by
Cole and Curtis in 1941 [53], the first models of ion channels passing current. The hypothesis
of ion channels was confirmed in the mid-1970s by Erwin Neher and Bert Sakmann, who
developed patch clamping and made the first conductance recordings of individual channels
(1991 Nobel Prize) [163]. Patch clamping soon became a widespread technique and ion
channels were extensively characterized in the following decades. For instance, neuroscientist
Roderick MacKinnon made significant strides in elucidating the function of potassium
channels, including determining their structure using X-ray crystallography (2003 Nobel
Prize) [141]. As the fundamental carrier of current in excitable cells, research on ion
channels continues to expand into relevant areas including channelomics, pharmacology, and
intracellular trafficking.

All of these discoveries were made possible by the aforementioned advancements in
optical microscopy and other modern methods. Altogether, experimental neuroscience has
produced a wealth of information. This data—along with theory, models, and abstractions
of neural function—have been consolidated and analyzed in computational neuroscience,
which developed concomitantly with experimental neuroscience.

1.2.6 Computational neuroscience and control theory

Computational neuroscience is defined as an interdisciplinary field that links neuroscience,
physics, and mathematics. In practice, computational neuroscience is the application of
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theory, modeling, and other mathematical methods to the study of the brain. [58] The
pioneers of computational neuroscience vary by subfield or subject. What follows is a short
history of the major breakthroughs in the subjects most applicable to this thesis. Among
these are advancements in single-neuron modeling, transport, and classical control theory.

One of the earliest and simplest models of the biological neuron is the integrate-and-fire
model introduced by Louis Lapicque in 1907 [129]. Integrate-and-fire models track input
current that modulates the membrane potential of a single neuron until action potential firing
upon reaching a threshold potential [1]. A more complex single neuron model is the aforemen-
tioned Hodgkin-Huxley model in the 1950s with nonlinear differential equations describing
dynamic membrane permeabilities. In the ensuing decades, both the integrate-and-fire and
Hodgkin-Huxley models yielded numerous variants for a broad range of applications [58].
In the next decade, Wilfred Rall made significant advancements to biological representations
of neurons in compartmental models [190–192]. Rall’s cable theory became fundamental
for the study of currents transfer in neurites [120]. Since then, detailed multi-compartment
neuron models have become widely used and adapted to various software tools, such as
GENESIS and NEURON [20, 35].

Among the physics concepts most relevant to cargo distribution in neurons are transport
and diffusion. Macroscopic observations of pollen grain diffusion in water were observed
by botanist Robert Brown in 1827; the jittery movement was thus called Brownian motion
[239]. Adolf Fick first reported on diffusion in 1855, introducing diffusive flux, the diffusion
coefficient, and the partial differential equation that became the common diffusion equation
[69]. Fifty years after Fick’s macroscopic findings, Albert Einstein reported his microscopic
observations of Brownian motion, in which he presented a solution in statistical mechanics
[66]. In 1906, Marian Smoluchowski independently solved Brownian motion [216], and
the resultant Einstein-Smoluchowski equation has become a major foundation in stochastic
processes. [183] Fick’s diffusion equations can be derived from an unbiased random walk,
linking the stochastic motion of individual particles to the diffusive behavior of the population.
A similar derivation with a biased random walk produces the drift-diffusion equation [39].
Much like cable theory for the study of neuronal currents, these transport equations became
essential first principles for the study of intracellular trafficking.

Classical control theory is also relevant to regulation of cargo in neurons. A control
system is a set of devices that cohesively performs a regulatory task. For instance, a
thermostat contains an input, a sensor, and a controller to regulate temperature. Control
systems were first formally analyzed following the industrial revolution and turn of the
twentieth century. Two major contributions were Maxwell’s analysis of the centrifugal
governor [150] and the Wright brothers’ control of sustained manned flight [108]. A number
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of mathematical operations were integral to the development of control theory and regulation
in computational neuroscience today. In the early 1820s, Pierre-Simon Laplace formulated
the Laplace transform and the generalized Z-transform, [130, 149, 187] which change a
system from time domain to frequency domain. In the 1930s, Harry Nyquist published
a seminal paper on the stability of now-obsolete vacuum tube oscillators, which was the
origin of Nyquist stability criterion for feedback control theory [170]. Laplace and Nyquist’s
contributions form the basis of classical control theory. Control theory was later modernized
for analysis of state-space systems using linear algebra with controllability and observability
among other principles [7, 68].

Control theory and feedback regulation most plainly relate to biology through the concept
of homeostasis. Homeostasis is the condition in which an organism, cell, organelle, or
other biological entity tends to maintain its current state for optimal functioning. This
resistance to changing a number of intrinsic properties is implemented through autoregulation.
This concept was first described by physiologist Claude Bernard in 1849 in the context of
organisms self-regulating their milieu intérieur, French for "internal environment," referring
to interstitial fluid between cells. The term homeostasis was coined by Walter Bradford
Cannon, who popularized the idea in a 1932 book [32, 33]. Joseph Barcroft was the first
to discuss homeostasis in the context of the nervous system. In a 1934 book [10], Barcroft
suggested not only that the brain mediated efferent mechanisms for homeostasis, but also
that the brain required strict fixity of internal environment [11, 215]. The study of biology
through the lens of control theory coincides well with the concept of homeostasis. Nervous
system homeostasis and control theory thus form an emerging subfield within computational
neuroscience.

Computational neuroscience covers a broad scope of theoretical principles and methods
applied to the study of the nervous system. This limited outline highlights the historical ori-
gins of multi-compartment neuron models, transport, classic control theory, and homeostasis
which are most relevant and applicable for this work. Next is a more detailed introduction to
topics with open questions in computational neuroscience that unify this thesis.

1.3 Overview of ion channels

The excitability of neurons is based on the maintenance of electrochemical potentials across
the plasma membrane. These electrochemical potentials, or voltage gradients, are caused
by an imbalance in the number of positive-charged ions on either side of the plasma mem-
brane. Voltage gradients are created through the functioning of ion pumps, and ions are
transmitted between intra- and extracellular compartments through ion channels embedded
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in the membrane. Some of these ion channels are ligand-gated; that is, they are opened by
binding of a ligand, such as AMPA and NMDA receptors which are opened by glutamate
binding. Many of these ion channels are voltage-gated: they are activated by voltage poten-
tials across the plasma membrane, which can be induced by ion currents passing through
the channels themselves. This positive feedback results in an electrochemical pulse that can
travel down neurites (dendrites or axons). The primary function of ion channels is to initiate
and propagate these signals.

The propagating electrochemical pulse consists of a region of membrane whose electro-
chemical potential rises and falls. This activates a cascade of voltage-gated ion channels
that depolarize and repolarize, which causes adjacent regions of membrane to repeat the
cycle. In axons, this propagation begins near the soma at a site called the axonal initial
segment. An electrochemical propagation in axons is called an action potential. Action
potentials are rapid with no attenuation in an all-or-none response, depending on whether
the initial depolarization exceeds the threshold potential. Action potentials excite the entire
cell and backpropagate into dendrites. In dendrites, there are weaker electrochemical pulses
called dendritic potentials or dendritic spikes, which have variable shape, propagation, and
attenuation. Dendritic potentials do not behave as a fixed, stereotyped, all-or-none response
like an action potential. Nonetheless, dendritic potentials are still regenerative events that
require active, nonlinear dynamics, allowing signals to propagate long distances unlike in
passive cables.

The properties of dendritic potentials are largely determined by the ion channels available
for activation in the neurite. Distinct dendritic potentials are aptly named for the type of
channel providing current for the regenerating electrochemical pulse: sodium and calcium
spikes are propagated by voltage-gated sodium and calcium ion channels, respectively, and
NMDA spikes are sustained by ligand-gated NMDA channels. Therefore, the degree of
propagation and attenuation of dendritic potentials is largely dependent on the distribution of
ion channels throughout the dendrites. Moreover, the distribution of ion channels through the
vast, branching structure that is the dendritic arbor is quite complex.

1.3.1 Ion channel transport

Molecular trafficking refers to how macromolecules are distributed throughout a cell. This
field encompasses the activity of molecules between organelles (endoplasmic reticulum to
Golgi apparatus) during protein production; microtubule transport along cell protrusions;
and movement to/from/within the plasma membranes. Protein transport can occur over short
distances between the soma, organelles, and around the plasma membrane. In neurons, local
trafficking of ion channels occurs during synthesis in the soma or spines, interactions with
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scaffold/cytoskeleton, membrane insertion, endocytosis, and membrane clustering/dispersion.
Local transport over short distances of ion channels has been reviewed elsewhere [205, 207,
127, 63] and will not be covered here. This overview primary focuses on transport of ion
channels over longer distances between production site in the soma and functional site on the
plasma membrane.

The transport of ion channels to a complex arborization of dendrites is by no means a
simple feat. Given that the bulk of channel protein subunits are produced and processed
in a central location and exported from the cell soma, the neuron requires an established,
purposeful mechanism for allocation of ion channels into the dendritic arbor that expands up
to one millimeter away from this production site. The active mechanisms of microtubule-
based transport are sufficient for this purpose and are strongly implicated in the delivery of
cargo throughout a neuron.

Microtubules are tubulin-based structures that with actin make up the structural network,
or cytoskeleton, that spans the neuron’s dendrites and axons. Microtubules thus provide
both structural integrity in and transport throughout a neuron. Microtubules exhibit polarity
according to whether the alpha- or beta-subunit of the tubulin protein dimer is exposed.
The alpha- and beta-subunits of the dimer correspond to (-) and (+) ends of the filament,
respectively. This asymmetry is relevant when observing the direction of microtubule
transport. Cargo is transported on tubulin via motor proteins that utilize energy from ATP
hydrolysis for mechanical movement. Two such motor proteins are dynein and kinesin,
which attach to microtubules and move toward the (-) and (+) ends, called retrograde and
anterograde transport, respectively. Kinesin has also been observed in retrograde transport
toward the (-) direction with the ability to switch direction. [203, 138]

Microtubules in neuronal projections also exhibit polarity that is relevant to transport
of subunits in or out of axons and dendrites. Axons are oriented such that the (+) end of
microtubules aligns with the axon terminal. Microtubules in most dendrites have mixed
polarity, with fibers oriented in both directions. In distal dendrites, like axons, the (+)
directions point toward the distal tips. Trafficking in neurons is generally mediated by kinesin
motor proteins from the KIF gene family. Ion channels can either be (1) transcribed in the
soma and transported as mRNA for translation in dendritic shafts/spines or (2) translated in
the soma and transported in pre-protein or final protein form. Ion channels can attach directly
to the microtubule structure but often attach within membrane vesicles exported from the
Golgi apparatus after post-translational processing. [63, 203]

Ion channels in dendrites and axons are crucial to the normal functioning of a neuron.
Voltage-gated ion channels are essential for signal initiation and propagation within a neurite,
which ultimately contributes to neuronal intrinsic excitability within a network. Nucleic
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acids and their protein products are relatively transient molecules in human cells, with
average half-lives for human mRNA and protein at ~50 minutes and ~6.9 hours, respectively
[201, 65]. A cell with numerous subtypes of voltage-gated channels must therefore have
a precise, accurate, and robust mechanism of producing ion channels and segregating and
distributing them throughout the cell. In multipolar neurons spanning over one millimeter in
length, microtubule-based transport is hypothesized to be the primary means of transferring
proteins to their site of function. This is especially true for ion channels with peak density
in the distal dendrites and ion channels that are modulated for homeostatic or neuroplastic
regulation of excitability.

1.3.2 Candidate cargo Kv4.2

To study transport and delivery in neurons, we select a candidate cargo from many prospective
options. Of the dozens or hundreds of ion channel variants, the ideal cargo would be
thoroughly studied and established as well as have an interesting distribution profile. For
these reasons, we choose voltage-gated potassium channel Kv4.2 for experimental studies in
this thesis.

In hippocampal CA1 neurons, Kv4.2 produces A-type current present in the membranes
of soma, dendrites, and dendritic spines. Kv4.2 has an unusual expression profile—increasing
density with distance from the soma [105]. Although other cargoes also exhibit this distribu-
tion (such as HCN channels), they are of particular interest because they contrast significantly
with profiles arising from passive diffusion (decreasing density with distance from the source,
the soma). Kv4.2 distribution is also polarized across neurite types; it is largely localized in
dendrites with little or no static density in axons [208, 117, 3].

Further, there was also evidence of Kv4.2 regulation in response to excitation of the
neuron. The ion channel redistributes to distal dendrites when the neuron is excited with
AMPA stimulation, which is a chemical surrogate for electrical stimulation of the cell [118].
A trafficking study (discussed further in Sec. 1.3.4), also found increased local cycling
rates—observed via fluorescence recovery—with AMPA stimulation [164]. These studies
demonstrated that, at some level, Kv4.2 is regulated by neural excitability. Kv4.2 is therefore
a good prospect for studies on global regulation of ion channel transport.

1.3.3 Kv4.2 function

Although not the primary subject of study, the function and computational roles of Kv4.2 are
of tangential interest in the context of the channel’s distribution and transport. A localization
profile with increasing density from the source requires more energy than a profile resulting
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from passive diffusion. Why would a neuron contribute resources to this distinct distribution
if not for a critical function?

In hippocampal CA1 neurons, Kv4.2 produces A-type current present in the membranes
of soma, dendrites, and dendritic spines. A-type currents are transient currents, which
undergo rapid activation and inactivation. In contrast, delayed rectifier channels (such as
Kv2.x, Kv3.x, and others) pass sustained potassium currents, which are slowly inactivating
or non-inactivating. [219]

There are a few proposed functions of Kv4.2 in the published literature, largely re-
lated to dendritic excitability and signal integration. Kv4.2 is hypothesized to attenuate
back-propagating action potentials, prevent action potential initiation in dendrites, prevent
excessive postsynaptic depolarization, and temper long-term potentiation. [106, 105, 155,
114, 30, 119, 43, 118] Kv4.2 has also been implicated in the pathogenesis of several neuro-
logical disorders, including fragile X syndrome, autism, epilepsy, and Alzheimer’s disease.
[16, 213, 82, 84, 87, 153]

1.3.4 Kv4.2 trafficking

Limited studies have focused specifically on long-distance subcellular trafficking of Kv4.2.
For instance, Kv channel-interacting proteins (KChIPs) have been established as auxiliary
subunits that promote Kv4.2 exit from the endoplasmic reticulum for surface expression,
partially mediated by CaMKII [209, 243, 196]. Another subunit, dipeptidyl aminopeptidase-
like protein 6 (DPP6), is attached to Kv4.2 by a transmembrane domain and extends into the
extracellular space [143], and, like KChIPs, assists in trafficking Kv4.2 out of the endoplasmic
reticulum to the plasma membrane and during inactivation recovery [134]. Kv4.2 was found
to interact with kinesin Kif17, lending support to transport on microtubules. In the absence of
Kif17, Kv4.2 fails to localize in dendrites [49]. Deletion of 16 aa at the C-terminus or fusion
with myosin Va restricts expression of Kv4.2 in the somatodendritic region [112, 133, 194].
Duménieu et al summarize these results with a hypothesis that Kv4.2 is trafficked short
distances on actin filaments with myosin Va, such as to proximal dendrites or within spines,
whereas Kv4.2 is trafficked longer distances on microtubules with KChIPS and Kif17 [63].

Kv4.2 density on the plasma membrane decreases in response to cell stimulation, and
internalization is mediated by protein kinase A [118, 88]. Membrane-bound Kv4.2 subunits
appear to have different sites of phosphorylation based on location along the dendrites of
various cell types. This suggests that phosphate groups might contribute to targeting of
subunits to specific regions of dendrite [242]. In addition, dephosphorylated Kv4.2 has been
phosphorylated at different sites by CaMKII (at Ser438 or Ser459) and PKA (Ser552) to
increase and decrease surface expression of the channel, respectively [243, 88].
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Even fewer studies have explored the distribution and motion of Kv4.2 on the plasma
membrane, the protein’s final destination and site of its primary function. Nestor and
Hoffman performed one of the few published accounts of microscopic visualization of Kv4.2
membrane trafficking [164]. They used fluorescence recovery after photobleaching (FRAP)
microscopy to observe cycling rates of GFP-tagged Kv4.2. The authors found that basal
cycling rates increased tenfold as distance from soma increased. AMPA-stimulation increased
diffusion rates in distal dendrites, but a Kv4.2 mutant lacking a phosphorylation site for
PKA abolished this distance-dependent change in cycling. They lastly conclude that their
FRAP recovery curve fits a two-phase function of exponential decay, indicating "that Kv4.2g
channels transiently interact with immobile cellular structures." Filamins and large adaptor
proteins are suggested as immobile structures that might be anchoring and constraining the
diffusion of Kv4.2. [164]

All in all, the details of Kv4.2 trafficking are largely unknown with many open questions.
There is great potential for study of both the molecular mechanisms of Kv4.2 transport as
well as the general logistics of ion channels with this unique somatodendritic profile.

1.3.5 Relation to drift-diffusion

The transport of ion channels and other cargo through neurites can altogether be described
with the one-dimensional drift-diffusion equation. The evolution of cargo concentration over
time is related to a diffusion term with coefficient D and an drift term with coefficient v.
D and v describe the bulk flow of a population of particles. In the context of ion channel
trafficking, D corresponds to a combination of diffusive processes, including diffusion in the
cytosol, diffusion in the plasma membrane, and movement on microtubules. v corresponds to
the bias of the random walk on the microtubule, which manifests as a velocity.

Because drift-diffusion in observed transport of cargo is the superposition of at least
three types of linear transport, the magnitude of each can be analyzed independently. For
instance, one might isolate the active (energy-dependent) process of microtubule diffusion
from other passive diffusion processes by disrupting microtubules, depriving of the cell of
energy carriers, or otherwise disrupting microtubule function.

1.4 Overview of neuroplasticity and regulation

The biological neuron is the elementary unit of signal transmission in the brain. In the
context of a network, a neuron can be represented as an input-output model. A typical
neuron receives one or more inputs in the form of excitatory postsynaptic potentials (EPSPs)
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or inhibitory postsynaptic potentials (IPSPs) to the neural dendrites. These signals are
propagated throughout the complex, branching dendritic arbor and integrate in the cell
soma. The singular output is the action potential transmitted along the neural axon. Action
potentials are often initiated in the axon initial segment and are direct functions of the
membrane potential in the soma. The description of a neuron as an input-output system
facilitates the study of its homeostatic tendencies, such as when exposed to perturbations or
changing environments.

Like many biological organisms and cells, neurons exhibit a tendency to maintain stability
and auto-regulate a number of their features and properties. This collective proclivity to
maintaining a stable internal state is termed homeostasis. For instance, a neuron whose
neurites are severed or otherwise damaged can regrow axons and dendrites to reestablish
synaptic connections and maintain connectivity in a circuit. Another example can be found
in intracellular calcium: a stable calcium concentration is maintained with buffers and
internal stores, since calcium is an important biochemical regulator of enzyme cascades
and neurotransmitter release. A typical method of homeostatic maintenance is through
feedback regulation, in which a neuron detects a change in some feature or property and
makes appropriate internal adjustments to accommodate or control that change.

Another accommodation that a neuron can make in response to perturbations is regulation
of transport. To this end, the cell can modify cargo trafficked long or short distances. For
instance, a membrane-bound protein might be externalized/internalized to/from a nearby
surface in response to an electrochemical stimulus. Further, new subunits of this protein can
be transcribed in the soma and distributed over long distances to functional sites. This problem
of cell regulation is particularly unique for some neurons given their size. For instance,
pyramidal neurons have cell projections that span hundreds or thousands of microns from the
cell body. This necessitates an interplay between global and local regulation mechanisms
to maintain homeostasis. Global and local regulation both have distinct advantages and
disadvantages, so this interplay creates a number of trade-offs that warrant discussion.
Closed-loop models of cargo trafficking allow for the study of these trade-offs in the context
of neuron adaptation.

What follows are experimental examples of cargo transit that modifies cell properties in
response to perturbation. The models and simulations of cargo transport in this thesis are
agnostic to cargo type and can be applied to these examples or others.

1.4.1 Intrinsic excitability

Homeostasis has been observed for the maintenance of intrinsic excitability. The property
of intrinsic excitability is complex, but it can be broadly described as the degree to which
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a neuron responds with output when exposed to a given input. A discussion of neuron
excitability can comprise all elements of the neural response, such as response time, degree of
depolarization, firing rate, and number of spikes. Moreover, neuron excitability incorporates
all cell processes involved in this response, ranging from transmission of input into dendrites,
propagation through branches, integration of signals into the primary trunk, spread of signal to
the soma, finally resulting in action potential initiation. Experimentalists have found evidence
for feedback regulation in several of these mechanisms. A few studies have directly attributed
a mechanism of homeostatic maintenance to regulation of ion channels [60, 24, 241]. No
studies thus far have examined how longitudinal trafficking of ion channels in dendrites
might play a role in homeostasis.

Dendrites have adapted to boost signals in a unique way. Signal propagation in dendrites
operates in a finely-tuned middle ground between that of passive cables and fully-excitable
axons. Because dendritic potentials are far from the unyielding, all-or-nothing response
found in axons, they are more amendable to regulation by membrane conductances. The
active tuning of dendritic potentials is therefore likely to be strongly related to ion channel
density and distribution. In turn, the trafficking of ion channels is thereby implicated in
regulation of dendritic potentials. The role that ion channel trafficking plays in modulating
dendritic signal propagation and thus in homeostasis and feedback regulation of neuron
excitability has yet to be explored.

Indeed, global regulation of ion channels has been implicated in regulation of intrinsic
excitability [178, 179, 78]. However, no study thus far has evaluated Kv4.2 in this regard.
We observe longitudinal transport of Kv4.2 while perturbing neurons in Chapter 3. We
also theoretically analyze the global regulation of AMPA receptors in the well-established
phenomena of synaptic scaling in Chapter 6.

1.4.2 Spike-timing-dependent plasticity

Perhaps the most prominent example of regulation in neurons is synaptic plasticity. Synaptic
plasticity refers to modulation of neuronal excitability at the level of the synapses, the
junctions through which signals pass from one cell to another. Synapses can strengthen
or weaken over time. Synaptic plasticity can be broadly categorized according to whether
changes in synaptic strength are based on the relative timing of activity in the pre- and
postsynaptic neurons. Synaptic plasticity that is induced by high temporal correlation of
activity between cells of a synapse is called spike-timing-dependent plasticity (STDP). The
major, relevant forms of STDP are discussed here.

STDP can be further categorized according to whether changes in synaptic strength
are positively or negatively related to synaptic activity. Hebbian plasticity is a change in
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synaptic strength that is consistent with (positively correlated with) synaptic activity. Hebbian
theory is typically summarized with Hebb’s rule: “neurons that fire together wire together”
[93]. If a synapse experiences increased activity, the strength of that synapse increases.
Similarly, decreased activity results in decreased synaptic strength. With regard to neuron
excitability, Hebbian plasticity is not homeostatic. The neuron does not maintain an internal
excitability; rather, excited synapses are made more excitable and inactive synapses are
depressed further. Hebbian plasticity in its simplest form is positive feedback and unstable;
many implementations modify the theory with thresholds, limits, or other modifications to
account for this. The principles of Hebbian plasticity are thought to underlie learning and
memory in the brain. [26] Hebbian is hypothesized to be mediated by homeostatic plasticity,
which is non-STDP (discussed in Sec. 1.4.3). STDP that follows a reversal of Hebb’s rule is
termed anti-Hebbian. Here, synaptic strength decreases with increased association in action
potential firing between pre- and postsynaptic neurons. [121]

We can also categorize synaptic plasticity at the level of individual synapses. An activity-
dependent increase or decrease in a synapse’s strength is called long-term potentiation (LTP)
or long-term depression (LTD), respectively. LTP and LTD can occur at varying levels of
granularity—from individual synapses to dendritic branches. LTP and LTD can be either
Hebbian or anti-Hebbian, and they can happen at excitatory and inhibitory synapses alike.
The mechanisms underlying LTP and LTD are complex and vary between brain regions
and organisms [13, 145, 76]. In this study, we model LTP and LTD with changes in AMPA
receptor density in the context of synaptic scaling (see Secs. 6.3 and C.1.6). Activity-
dependent changes in synapses are not necessarily permanent. Brief, transient changes in
synaptic strength are called short-term potentiation (STP) or depression (STD) and last
over timescales of minutes [200, 171]. These processes specifically—LTP, LTD, STP, and
STD—are widely believed the basis of learning and memory.

1.4.3 Other synaptic plasticity

Non-STDP refers to mechanisms of synaptic plasticity that do not depend on coordination
between pre- and postsynaptic neurons.

Homeostatic plasticity is a change in synaptic strength that is independent of synaptic
activity, returning a neuron to an initial state. The neuron maintains an internal excitability:
overactive synapses are scaled down and underactive synapses are scaled up to minimize
distortions to net neuron excitability. This is by definition homeostatic, and such plasticity
might limit the synaptic changes induced through Hebbian theory. A proposed method of
homeostatic plasticity is synaptic scaling. If synaptic scaling is implemented as a multiplica-
tive (rather than additive) manner, a neuron maintains the relative strengths of the synapses,
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thus preserving any information encoded in them. [233–235]. Homeostatic synaptic scaling
is further discussed in Sec. 6.2.

The physiologic mechanisms of Hebbian and homeostatic plasticity revolve around the
glutamate receptors. This includes receptor trafficking as well as modulation with calcium
and second messenger systems. The models described in Chapter 6 concern both mechanisms.
Short-distance trafficking includes recruitment and withdrawal of glutamate receptors to/from
the plasma membrane. Long-distance trafficking supplies local regions of the neurite with a
pool of receptors for shuttling to and from distant compartments.

Lastly, any change in the structure of the nervous system is broadly termed structural
plasticity. Structural plasticity can range from the molecules present in the synapses to
interconnections that form new neural circuits, changing anatomical organization. Structural
changes can be induced by STDP and non-STDP means, alike. [128, 27, 36]

1.5 Research questions

The overarching research goals are stated in the following questions. These aims are organized
under key questions, each with several sub-questions that state specific, testable objectives.

1.5.1 Empirical investigation

How are ion channels, such as Kv4.2, distributed throughout a pyramidal neuron? The
first set of research questions are testable by means of laboratory experiments. The answers
to these questions can be directly observed using neuron cultures and microscopy. Collecting
a large and organized data set is crucial to this empirical investigation. Does transport occur
via passive diffusion, active microtubule-based mechanisms, or some combination of both?

To study passive transport, we can perform a series of photobleaches and measure the
diffusive recovery of ion channels. Can a directional bias in bleach recovery measured during
FRAP microscopy be used to compute drift within neurites? Does bleach recovery rate or
mobile fraction change with recurrent photobleaching?

To study active transport, we observe the stochastic bidirectional movement of membrane
vesicles containing Kv4.2. How does transport behavior quantitatively and qualitatively
differ throughout the neuron—by neurite type, with neurite distance? How do puncta kinetics
differ between these categories? Does the neuron modulate Kv4.2 transport as a means of
regulating its intrinsic excitability in response to perturbation?
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1.5.2 Analytical inquiries

What additional physiologic conclusions can be deduced from our empirical data on
Kv4.2 transport? The second set of research questions depends on the data set gathered
during experiments. These involve mathematical methods including modeling, statistics, and
inference.

Regarding passive transport: Does bleach recovery after photobleaching reflect rates of
cargo transfer between mobile and immobile fractions, and what are these estimated rates
for Kv4.2? How does this impact the distribution and settling time of cargo in real neuron
morphologies?

Regarding active transport: Can discordance between static localization and mobile fre-
quency of Kv4.2 be reconciled with discretized mass action models of lumped or discretized
neurites? To what degree do underlying mechanisms (propensities for microtubule offloading,
directional memory) result in kinetic differences in axons versus dendrites?

1.5.3 Theoretical study

What are the limitations of cargo distribution in large morphologies, and how does the
interplay between global and local regulation affect this? The last set of inquiries apply
concepts, data, and trends from the previous types of inquiries to reach broader conclusions
on neuron logistics.

How long does it take for a cargo like ion channels to fully distributed and settle in
a realistic neuron morphology? Does this settling time impose any limitations for highly
regulated ion channels?

Synaptic scaling is a neuronal mechanism of homeostatic plasticity that requires global
regulation of AMPA receptors. How do the dynamics of ion channel distribution, as explored
in previous inquiries and other experimental studies, impose limitations on synaptic scaling?
How does a neuron balance the stability, efficiency, and accuracy of synaptic scaling?
How can these attributes be quantified in a rigorous manner, and what are the resultant
tradeoffs between them? Do these limitations drastically depend on neuron morphology—
size, symmetry, and/or bottlenecks? How and to what degree do these metrics affect scaling
performance?

1.6 Recapitulation

Neurons are distinct among cells in their morphology, with projections that spread hundreds to
thousands of microns. The size and asymmetry of neurons pose a challenge for autoregulation
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of properties that require cargo transport across the cell. Ion channels are one such cargo
with strong implications for neural excitability. This dissertation concerns the intracellular
distribution of ion channels in the context of global neuron regulation. To this end, passive
and active mechanisms of Kv4.2 transport are studied with a focus on trafficking kinetics and
channel distribution in axons and dendrites. Synaptic scaling is a quintessential mechanism of
ion channel regulation, as it requires global modulation of AMPA receptors for homeostasis
of neural excitability. This thesis also explores the limitations imposed by neuron morphology
on synaptic scaling.

The study of ion channel distribution and regulation is complex with many unconfirmed
hypotheses, unclear mechanisms, and open questions. This work describes a small advance-
ment in this field. These contributions are in the form of experimental measurements, data
analysis, and theoretical study.





Chapter 2

Methods and experimental validation

2.1 Chapter summary and key findings

Experimental validation establishes competency required for efficient collection of consistent,
meaningful data. Routine protocols include dissection and culturing of hippocampal cells as
well as techniques for imaging and microscopy. This chapter also includes pilot trials and
optimization experiments.

1. Pyramidal cells are reliably identified in hippocampal cell cultures for terminal experi-
ments. A number of features are observed during microscopy as indicators of neuron
health and maturity. Microscopy also differentiates cell types and between axons and
dendrites.

2. The sampling rate of a time series balances the number of data points obtained with
the amount of unintentional photobleaching and damage to the sample. Low sampling
rate can produce misleading estimates of transport dynamics. An ideal time series
maximizes the number of frames captured while ensuring no or negligible damage to
the sample.

3. The set number of bleach iterations during FRAP microscopy is a tradeoff between
degree of bleaching and time required for bleaching. The ideal number of bleach itera-
tions is the minimum required to bleach to 30 to 70% of original sample fluorescence.

4. FRAP microscopy curves can be normalized and fit to single or double exponential
curves. This provides an estimate for recovery rate and mobile fraction.

5. Time series fluorescence microscopy can visualize mobile puncta containing Kv4.2
Photobleaching can clear static fluorescence for improved puncta tracking. Puncta mo-
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bility decreases following colchicine administration, suggesting an active mechanism
of transport that is microtubule-based.

6. Raw time series can produce kymograms of 1D transport to reliably visualize puncta
trajectories. Kymogram post-processing, thresholding, and strict protocols for puncta
appearance/disappearance, merging/splitting, and stalling ensure that puncta trajecto-
ries are tracked objectively and carefully.

2.2 Introduction

This chapter broadly covers the methods for all experiments, data analysis, modeling, and
inference. I describe the materials, recipes, and methods for performing experiments, mi-
croscopic imaging, and obtaining data. The analysis of images and data is reported here. In
some cases, detailed methods are more appropriately described in the context of their specific
results. Therefore, some methods described here are general protocols that are broadly appli-
cable to the subprojects of this thesis. An overview of the computational methods is covered,
including modeling, statistical inference, and other heuristic methods. Analytical solutions
and derivations that are supplemental to experimental or modeling results are included in the
Appendices.

The remaining chapters of this thesis contain the main results of these graduate studies.
The experimental validation in this chapter serve as an introductory results for the rest of this
work. These preliminary experiments were performed both as exploratory research and in
preparation for future experiments.

Experimental validation ensures experimental consistency not only among results in this
thesis but also with the surrounding scientific community. For instance, what is deemed a
cultured pyramidal cell in these results should be compatible with typical pyramidal cells
in other studies. These established standards then translate to terminal experiments. For
example, the morphological features, structures, and antibodies used to differentiate axons
and dendrites should be well established before interpreting results based on neurite type.

Many of these results were obtained early in this course of study. Much of this chapter
confirms methods and results from our groups or others before us. But these experiments
were nonetheless necessary. Some of these protocols, such as hippocampal dissections,
require hours of practice for even minimal proficiency. Many of the protocols are difficult
and require mastery for consistent results.

The methods and experimental validation presented here is not necessarily novel or
groundbreaking, but they are certainly beneficial for several reasons. Some results have
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inspired new investigations, as in FRAP microscopy revealing underlying microtubule-based
transport. Some of these results, such as differentiating axons and dendrites, directly precede
more impactful terminal experiments. Experimental controls increase the reliability of our
results. Some results impacted the course of the thesis and are promising leads for future
projects. All preliminary results form the foundation for the remaining work in this thesis.

2.3 Animals and cell culture

All animal procedures are conducted with accordance of the National Institutes of Health
Guide for the Care and Use of Laboratory Animals under a protocol approved by the National
Institutes of Child Health and Human Development’s Animal Care and Use Committee.

2.3.1 Hippocampal dissection and dispersed cultures

The neurons used here and throughout the remainder of this thesis are from primary hip-
pocampal cultures. Hippocampal cultures are prepared from gestational day 18-19 wildtype
Sprague-Dawley rats or wildtype mice as previously described [118]. Briefly, fetal pups are
removed from the mother and hippocampus tissues are dissected and placed in dissection
media (DM). For 500 ml of DM, we filter sterilized: 50 ml 10x HBSS (Gibco™, 14185-052),
5 ml pen/strep (Gibco™, 15140122), 5 ml pyruvate (Gibco™, 11360070), 5 ml HEPES (1M,
Gibco™, 15630080), 15 ml of 1 M stock solution glucose (from powder, Sigma), 420 ml
Ultra Pure Water (Kd Medical Inc).

Tissue was mixed with papain (Worthington Biochemical Corp., Lakewood, NJ) for 45
min at room temperature. Tissues were rinsed for removal of extracellular material with
dissection media several times, and dissociated cells were plated in Neurobasal™ media
(ThermoFisher, Waltham, MA) with 5% FBS (HyClone Characterized Fetal Bovine Serum,
SH30071.03, GE Healthcare LifeSciences, Pittsburgh, PA), 2% GlutaMAX (ThermoFisher),
and and 2% Gibco™ B-27™ supplement (ThermoFisher) (subsequently called NB5 media).
Cells were incubated in 5% CO2 at 37 deg C. After 24 hrs, cells were transferred to Neu-
robasal™ containing 2% GlutaMAX, 2% Gibco™ B-27™ supplement (NB0 media). Half
of the media is replaced with fresh NB0 media every three to four days, and cells are imaged
after 9-13 days in vitro.

Despite strict protocols for rat hippocampal dissection and culturing, there is inevitable
variability in the results. During dissection, pregnant rats were found to have a variable
number of pups. Typical litter sizes for our supplier ranged from 10-12 pups. As many as 17
and as few as 2 pups per litter were observed. Oftentimes, the pups varied in size. A typical
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litter also has at least one significantly smaller, runted pup that was omitted from neuron
preparation.

Dissection of the hippocampus itself also varies with the size of the pups. Smaller
pups require more manual dexterity and increased precision to obtain a clean cut of the
hippocampus. However, smaller pups might be less developed such that their brains contained
a greater fraction of stem cells. We therefore extracted hippocampi from pups of all sizes
with the exception of visibly runted pups. The hippocampus was often unintentionally
broken but still collected in fragments. We aimed to minimize the collection of extraneous,
non-hippocampal tissue to amass a sample with a high fraction of hippocampal cells.

2.3.2 Construct

A Kv4.2 construct was conjugated at the N-terminus to strongly enhanced green fluores-
cent protein (SGFP2) [123], henceforth referred to as Kv4.2-SGFP2. pSGFP2-C1 was
a gift from Dorus Gadella (Addgene plasmid # 22881 ; http://n2t.net/addgene:22881 ;
RRID:Addgene_22881). We sub-cloned mouse Kv4.2 into the SGFP2 plasmid using NheI
amd SalI restriction sites.

2.3.3 Transfection

Lipofectamine® 2000 transfection was performed following manufacturer protocol with
some modifications. 2 µl of Lipofectamine® 2000 Transfection Reagent (ThermoFisher) and
2 µg of DNA plasmid were each diluted in 200 µl of Neurobasal™ media and incubated at
room temperature for 5 min. The two solutions were then combined and incubated at room
temperature for 15-20 min. 100 µl of total mixture was added to each well and incubated at
37 deg C for 4 hrs before changing media. The cells were then incubated for an additional
minimum of 1 hour before imaging.

2.3.4 Immunostaining

Following hour-long time series, samples reserved for antibody staining were fixed/permeabilized
and immunostained as previously described [119, 136] and briefly reiterated here. Upon
completion of time series, the coverslips were removed from the imaging chamber and the
location of the neuron of interest was labeled with a fine tip marker. Coverslips were fixed
with 4% paraformaldehyde (Electron Microscopy Sciences, R 15710, Hatfield, PA) with 4%
sucrose (Sigma, S9378) at room temperature for 15 min followed by three 1X PBS (Gibco™,
14190) washes before overnight storage in 1X PBS at 4 deg C. Coverslips were permeabilized
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Table 2.1 This table complies all antibodies used for fluorescence immunostaining and
electron microscopy in this study.

Name Species Manufacturer Catalog # Dilution/concentration Clonality
Primary antbodies
Ankyrin G Mouse NeuroMab 75-146 1:100 mono
Tau-1 Mouse Chemicon MAB-3420 1:1000 to 1:3000 mono
MAP-2 Mouse Millipore MAB-3418 1:300 mono
Kv4.2 (for human & mouse) Rabbit Made in lab - 1:200 poly
Secondary antibodies
Alexa Fluor® 555 anti-mouse IgG Goat Invitrogen A-21424 1:500 poly
Alexa Fluor® 488 conjugate anti-GFP Rabbit Invitrogen A-21311 1:400 poly
Alexa Fluor® 488 anti-Rabbit IgG Goat Invitrogen A-11034 2 mg⁄mL poly
Anti-rabbit IgG 10 nm gold conjugate Goat Ted Pella, Redding, CA 17010-1 - mono

in 0.2% Triton X-100 (Sigma, T8787) for five minutes at room temperature and washed
once in 1X PBS for 5 min. Cells were incubated for one hour at room temperature in 0.04%
Triton X-100 solution in 1X PBS containing primary antibody. Upon completion of primary
incubation, coverslips are washed three times with 1X PBS for 5 min. Coverslips are then
incubated with secondary antibodies for one hour at room temperature before another three
washes with 1X PBS. Coverslips were then mounted onto glass slides using ProLong™
Diamond Antifade Mountant containing DAPI (Invitrogen, Carlsbad, CA). A full list of
antibodies used in this study is provided in Table 2.1.

2.4 Cell and neurite morphology

Cultured neural hippocampal cells undergo extensive preparation—from plating tissue to
feeding cells and terminal experiments. It is therefore important to understand cell and
neurite morphology throughout this process and when identifying cells and neurites for data
collection. Morphology as observed through a light or confocal microscopy can reveal telling
signs regarding cell type, neurite type, as well as neuron development and health. A good un-
derstanding of morphology allows a scientist to identify not only proper cell/neurite subtypes
for observations but also pathological signs or conditions that might disrupt experiments.
Given the large degree of natural variation in biological experiments, these guidelines are
crucial for collection of consistent data.

2.4.1 Differentiating cell types

It is firstly important to differentiate cells in the cell culture. Ideally, dispersed hippocampal
cultures contain predominantly CA1 and CA3 hippocampal pyramidal neurons. However, this
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is not always the case, since these are mixed cultures. Other cells might include interneurons,
cortical neurons (which can be pyramidal or other morphologies), epithelial (blood vessel)
cells, and glial (nonneuronal support) cells.

50 um

Fig. 2.1 This collage of micrographs from a hippocampal cell culture depicts a prominent
pyramidal cell with the characteristic conical-shape soma in the center. A non-pyramidal cell
with a rounded, spherical soma is visible to the right. Orange indicates transfected subunits
of Kv4.2-SGFP2.
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Terminal experiments in this study use exclusively pyramidal cells. Pyramidal cells are so
called because of their triangular-appearing or conic-shaped soma. In this study, pyramidal
cells are categorized according to the conic-shaped soma, and non-pyramidal cells are not
categorized any further. A neuron that is clearly pyramidal is prominent in Fig. 2.1. Note the
apical dendrite, the thickest dendrite extending out the apex (in Fig. 2.1 pointing southwest).
The other neurites emerging from the base (northeast) of the soma are the basal dendrites.
In this image, we can appreciate the full length of the neurites, bifurcating regularly and
extending hundreds of microns from the soma. This micrograph also contains a smaller
neuron (right) that is not pyramidal.

50 um

Fig. 2.2 This micrograph contains a cell with a soma that is distinctly non-pyramidal. This
cell lacks the conical-shaped soma or the definitive apical dendrite of a pyramidal cell.
Orange indicates transfected subunits of Kv4.2-SGFP2.

A prominent example of a non-pyramidal neuron is depicted in Fig. 2.2. Note the round,
spherical soma that does not have a well-demarcated apical tip. This cell has two large,
similar-sized dendrites—neither of which is differentiable as the apical dendrite. Such a cell
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would not be used in terminal experiments of this study. This micrograph also highlights the
degree of background noise surrounding neurons, especially in samples with low fluorescence.
The patterned fluorescence behind the non-pyramidal cell is a combination of neurites from
other neurons, glial cells, noise, and autofluorescence from transfected cells.

In an attempt to reduce variability in results, terminal experiments exclusively use pyra-
midal cells. To this end, differentiation between cell types on the basis of soma morphology
is a useful skill.

2.4.2 Differentiating neurites

Pyramidal cells have significant morphological heterogeneity especially in dispersed cultures.
The stereotypical assembly of a polarized neuron with distinct axon and dendrites does
not necessarily hold for all observed pyramidal cells. For instance, neurons with multiple
axons have been observed in dispersed cultures. Further, the axon frequently emerges from
a dendritic trunk rather than the soma. [104, 227, 14]. This diversity in neuron structure
motivates precise methods of differentiating neurites for terminal experiments, since both
axons and dendrites are used in terminal experiments.

Axons and dendrites are primarily sorted based on their diameter and morphology. Axons
are thinner (≤1 µm in diameter), and dendrite thickness ranges (approximate range: 1 to
5 µm). Dendrites exhibit a steady decrease in diameter with distance from the soma and
terminate well within 1000 µm. In comparison, axons extend for thousands of microns with
diameters that taper less. The most significant differences in diameter are in the neurite
trunks: the axon initial segment is thin like the rest of the axons, at a few microns, whereas
dendritic trunks can be several microns thick and broadly blend into the plasma membrane of
the soma. In addition, dendrites branch more frequently and at more acute angles, whereas
axons can branch at perpendicular or even obtuse angles. Oftentimes, the morphological
features differentiating axons and dendrites are not visible in the frame of the time series,
and additional global images of the neuron must be referenced to distinguish neurites. An
example of this is depicted in Fig. 2.3, where the frame of the time series is outlined in red,
but the defining morphological features of the axon and dendrites are only visible in the larger,
global image. In Fig. 2.3, an axon (red) and dendrite (blue) exhibiting the aforementioned
characteristics are labeled.

During microscopy, neurites are differentiated according to the aforementioned morpho-
logical features. During image analysis, the diameters of the neurites are measured. We
analyze our data to set a precise threshold in neurite diameter for categorizing axons and
dendrites, depicted in Fig. 2.4. A histogram of undifferentiated neurite diameters produces a
bimodal distribution with peaks at approximately 0.7 and 1.7 µm (Fig. 2.4 top). Categorizing
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20 um

Fig. 2.3 A high magnification frame for time series (outlined in the red dotted line) can
make differentiating axons (red) and dendrites (blue) difficult. Low-magnification global
images tracing the neurites back to the soma can help with differentiation. In this neuron, the
dendrite clearly has branching at acute angles and a thick trunk that blends into the soma.
The axon branches at obtuse angles and has a thinner diameter that does not taper. Orange
indicates transfected subunits of Kv4.2-SGFP2.
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neurites according to the aforementioned morphological features during microscopy aligns
well with the two observed peaks (Fig. 2.4 bottom). Based on this distribution, we set a
precise diameter threshold at 1 µm. Neurites with axonal morphological features and diam-
eters less than 1 µm are designated axons. Neurites with dendritic morphological features
and diameters greater than 1 µm are designated dendrites. Only one neurite did not meet
these criteria (axon #37) and was omitted from subsequent results. The mean diameter of
populations of axons and dendrites are 0.698 and 1.91 µm, respectively. A two-sample t-test
reveals that these populations have significantly different diameters (P = 3.5×10−35).

Fig. 2.4 A precise threshold for differentiating axons and dendrites is defined according
to neurite diameter. Top: Undifferentiated neurite diameters show a bimodal distribution.
Bottom: The observed morphological of axons and dendrites during microscopy separate
well into the two modes in the distributions, motivating a precise diameter threshold at 1
µm. Differences between populations are statistically significant (p = 3.5× 10−35). All
histograms are normalized as probability density functions.

Aside from these morphological changes, a definitive way to differentiate neurites is with
antibody staining for structural proteins exclusively found in one neurite type. Four coverslips
were stained with ankyrin-G post live imaging to confirm identification of the axon initial
segment. One such neuron is depicted in Fig. 2.5. We compare these definitive axons (stained
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with ankyrin-G) to the dataset of probable axons (based on the aforementioned morphological
features, including diameter < 1 µm and obtuse-angled branching). We compare the number
of mobile puncta per one-hour recording in Fig. 2.6 and demonstrate no significant difference
between populations (P = 0.37). This comparison of neurites with live physiologic data
validates our identification of dendrites by morphology with a precise diameter threshold.

10 um

Fig. 2.5 Anti-GFP-488 (orange) indicates Kv4.2-SGFP2 expression and ankyrin-G (cyan)
localized to axons are used for definitive neurite differentiation. This is a frame of a time
series that depicts characteristic high frequency trafficking in axons (red arrow) compared to
dendrites (blue arrow).

2.4.3 Differentiating dendrites

We have thus far discussed identifying pyramidal cells with the conical-shaped soma and
apical dendrite. We have also differentiated axons and dendrites based on branch angle and
diameter. However, micrographs of pyramidal dendrites still exhibit significant variability,
which can be an indicator of cell age and health. Selecting healthy cells of consistent maturity
is crucial for terminal experiments. To this end, the varying morphological features of
pyramidal dendrites are discussed here.

Pyramidal dendrites firstly exhibit variability in their fluorescence heterogeneity. Flu-
orescence heterogeneity refers to the consistency of fluorescence patterns in the dendrites.
For instance, the fluorescence might be evenly and uniformly distributed in a homogeneous
pattern spread smoothly across the entire volume of the neurite. In contrast, the fluorescence
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Fig. 2.6 Definitive axons (stained with ankyrin-G) and probable axons (identified by diameter
and branch angle) are compared. The mean number of mobile puncta per recording for each
population is plotted; error bars indicate standard deviation. Two-sample t-test indicates no
significant difference between populations (P = 0.37), validating the use of morphological
features as indicators for identifying axons.
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can be clustered and aggregated into puncta or patterns with a patchy, uneven appearance,
forming an irregular profile. These differences are visualized in Fig. 2.7.

a b

30 um 30 um

Fig. 2.7 These two dendrites demonstrate differences in morphology and fluorescence pattern.
Dendrite (a) has a low degree of branching, a low spine count, and low fluorescence hetero-
geneity (with smooth, continuous intensity). Dendrite (b) has a higher number of branches
and spines, a high fluorescence heterogeneity (with regions of patchy and variable intensity).
These differences can be indicators of neuron age and health. Green indicates transfected
subunits of Kv4.2-SGFP2.

Another observed difference is the presence of dendritic spines, also evident in Fig.
2.7. CA1 hippocampal pyramidal cells are known to be spiny, and spines might be used to
indicate this cell type. However, spine development is not prominent until 12-14 DIV, so this
differentiating factor is less useful for younger cultures. [169]

There are a number of potential reasons for these observed differences in Fig. 2.7. These
cells might firstly be in varying stages of growth and development. For instance, Fig. 2.7a
might resemble an underdeveloped neurite without spines that will eventually appear more
like Fig. 2.7b. Neurons used in this study ranged in age from DIV 8-14, so cells with features
as in Fig. 2.7a or b would both used in terminal experiments.

Another possible difference is the health of the cells, especially considering the toxicity
of reagents used for transfection. It is possible that the heterogeneous expression seen in Fig.
2.7b is indicative of an unhealthy, dying cell that previously looked like Fig. 2.7a but is now
apoptotic. The patchy appearance might be caused by a membrane that has burst or fractured.
It is therefore important to sample a number of cells per cover slip to get a general sense of
cell health in that culture. It is good practice to do this repeatedly every few days during the
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maturation of the neurons to ensure their health and normalcy. Typical signs of apoptosis or
poor cell health include shrinkage, membrane blebbing, and fractured neurites. Cells with
any of these features would not be used in terminal experiments in this study.

Familiarity with these differences can help with the selection of healthy cells for terminal
experiments that produce consistent results. Next, we discuss the techniques and optimal
methods for capturing micrographic images.

2.5 Electron microscopy

Electron micrographs used in this thesis were collected for a previous study [224]. Mouse
hippocampi used for the postembedding immunogold localization were prepared as described
previously [182, 224, 135, 89]. Mice were perfused with phosphate buffer, followed by
perfusion with 4% paraformaldehyde + 0.5% glutaraldehyde in phosphate buffer. Fixed brains
were vibratomed at 350 µm, then cryoprotected in glycerol overnight and frozen in a Leica
EM CPC (Leica Microsystems, Wetzlar, Germany), and processed and embedded in Lowicryl
HM-20 resin (Electron Microscopy Sciences) in a Leica AFS freeze-substitution instrument.
Thin sections were incubated in 0.1% sodium borohydride + 50 mM glycine in Tris-buffered
saline plus 0.1% Triton X-100 (TBST). Then they were immersed in 10% normal goat serum
(NGS) in TBST, and primary Kv4.2 antibody in 1% NGS/TBST (overnight), Then incubated
with 10 nm immunogold-conjugated secondary antibodies (Ted Pella, Redding, CA) in 1%
NGS in TBST with 0.5% polyethylene glycol (20,000 MW), and stained with uranyl acetate
and lead citrate.

Electron microscopy was used as a comparative measure of endogenous Kv4.2 subunit
density in axons and dendrites, presented in detail in Chapter 3 and used as a modeling con-
straint in Chapter 4. Electron micrographs were captured from the hippocampus CA1-stratum
radiatum wildtype mice for a total of 646 spine profiles. The presynaptic (axonal) compart-
ment was identified by its synaptic contact and the presence of presynaptic vesicles associated
with the synapse structure, called the active zone (AZ). The presynaptic-extrasynaptic region
includes gold close to the membrane within approximately 100 nm along the entire visible
profile of the axon terminal or spine excluding the AZ. The postsynaptic (dendritic) compart-
ment was identified by postsynaptic densities (PSDs). The postsynaptic-extrasynaptic region
includes gold within approximately 100 nm of but excluding the PSDs.
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2.6 Confocal microscopy

Since the bulk of experimental results in this thesis are images or time series captured using
confocal microscopy, it is crucial to understand the various settings and parameters of this
instrument. As with many instruments and techniques, microscopy present a number of trade
offs that are worth evaluating and understanding for optimal data collection. Basic settings
for single frame capture are discussed first.

Single frame imaging parameters include image resolution, digital zoom, image exposure,
laser intensity, color depth, gain amplification, digital gain, digital offset, and airy size. Color
depth is set to the highest value—16-bit—to have a higher quality image with 65,536 intensity
values in monochrome; this comes at the cost of disc write speed and storage space, which
are nonissues. Gain amplification, digital gain, and digital offset are all adjusted such that the
image is background corrected and adjusted to use the full range of 65,536 intensities. Digital
gain and offset are also capped to prevent amplification of noise and to ensure sufficient
signal is obtained from the sample. Proper imaging parameters, as described here, facilitate
transfection confirmation and fluorophore expression.

Image resolution and digital zoom are set to 1024x1024 pixels and 2.5X with lens offering
40X and 63X optical zoom. Image exposure and laser intensity are adjusted such that they
are high enough to produce a strong signal but not too high to photobleach the sample while
imaging. Image exposure time is typically around 3-4 µseconds per pixel, and laser intensity
is set to 2-4 percent.

18-mm coverslips were removed from wells and placed in a Quick Release Chamber
(Warner Instruments, QR-41LP, 64-1944, Hamden, CT). Cells were immersed in 800 µl
imaging buffer consisting of 1x Tyrode’s solution: 135 mM NaCl, 5 mM KCl, 2 mM CaCl2,
1 mM MgCl2, 25 mM HEPES, 10 mM glucose (all Sigma-Aldrich) at pH 7.4. All confocal
imaging was carried out at the NICHD Microscopy and Imaging Core using a Zeiss LSM
710 laser scanning confocal microscope (Carl Zeiss Microscopy LLC, White Plains, NY).

An example of micrographs imaged with these parameters is depicted in Fig. 2.1. In order
to appreciate neurites in the context of the larger cells, the whole neuron can be captured in a
series of snapshots that are stitched together. Global still images were captured using a 40X
oil-immersion objective and stitched together in ImageJ.

2.6.1 Pinhole size

A microscope parameter that warrants discussion is the size of the pinhole, or aperture,
through which light travels before capture. Changing the pinhole size changes the range of
sample depth (in the z-dimension) from which light is captured.
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Small pinholes (≤ 1 Airy units) only pass light from a narrow (focused) z-plane approx-
imately 1 µm in depth. This minimizes light from extrafocal regions, which produces a
sharper image with better lateral resolution.

A larger pinhole (>2 Airy units) passes light from a broader range of sample depth,
including focused light from the z-plane and extrafocal light (and noise) from adjacent planes.
Despite a blurrier image, a larger pinhole captured neurites of variable thickness in primary
cultures which do not lie perfectly flat on the cover glass. Some thicker dendrites or winding
neurites are not completely captured in the focal plane of a small pinhole image. For static
images, a z-stack can be captured to produce a high resolution reconstruction of the 3D
space. For time series, a larger pinhole was advantageous as it captured more signal from a
broader sample depth with low sample exposure time. Pinhole size was set to 4 Airy units to
produce a strong signal from a z-plane depth approximately equal to the diameter of large
dendrites. Although this does capture noise as an artifact of a wide pinhole, the additional
signal from static and mobile fluorescent subunits over the entire thickness of neurites makes
for a reasonable comparative measure between axons and dendrites.

2.6.2 Recording time series and sampling rate

In order to study the motions of particles in a cell, series of frames in chronological order,
known as a time series, must be captured. Similar to the frames of a video clip, this time
series of images can be played back to observe motion, and the positions of particle(s) can be
tracked over time to study their kinetics. Recording a time series involves a few additional
microscope parameters that are worth considering in addition to those previously discussed
for single image capture.

An important consideration, sampling rate, refers to how frequently images are taken.
Fast sampling rates provide more information for curve-fitting and data analysis at the cost
of unintentional photobleaching. Photobleaching is when repeated exposure to high intensity
laser light, such as during imaging or intentionally (see Sec. 2.6.4), can render fluorophores
dim and possibly damage the sample. Slow imaging rates reduce the risk of toxicity to the
sample but might miss the bulk of cargo transport. Fig. 2.8 outlines this tradeoff between fast
and slow sampling rates. In Fig. 2.8(a), the standardized intensities of an arbitrary region of
interest (ROI) over a time series is compared across a range of sampling rates (16.67, 3.33,
and 0.5 Hz). The fast sampling rate clearly captures the essential dynamics, whereas the slow
sampling rates miss most of this information. After introducing fluorescence recovery after
photobleaching, we later show how slow sampling rates fail to capture essential dynamics in
the context of curve fitting in Sec. 2.6.5 and Fig. 2.13.
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Fig. 2.8 Depiction of the trade off in using fast (16.67 Hz) or slow (0.5 Hz) sampling rates
when measuring FRAP recovery (a, left) and with unintentional photobleaching of sample (b,
right).

In Fig. 2.8(b), the intensity of an unbleached region is plotted over time, portraying the
degree of unintentional photobleaching while imaging. The higher sampling rate (green)
results in decreasing average intensity over time. This effect is minimized and becomes
negligible at lower sampling rate. Although this photobleaching is correctable with post-
capture processing, it decreases the sample fluorescence, reducing the signal-to-noise ratio.
Over a long time series (> 1 hr), unintentional photobleaching can make a once bright sample
dim or undetectable. An optimal sampling rate will therefore capture sufficient dynamics
without significant unintentional photobleaching (blue).

2.6.3 Bleach parameters

Controlled and localized photobleaching can be used as a tool to study molecular dynamics
in neurons. Confocal microscopes have a few modifiable settings for photobleaching. Among
these are laser wavelength, laser intensity, number of bleach iterations, region of interest
(ROI) size, and ROI shape. The ideal degree of bleaching results in a post-bleach fluorescence
intensity between 30 to 70% of the pre-bleach intensity, consistent with other FRAP studies.
The general aim of photobleaching is to achieve this degree of bleaching (1) in as little time
as possible and (2) with as little damage to the sample as possible.

Photobleaching parameters are adjusted to achieve this goal. The same 495-nm laser
line is used for photobleaching, since the laser that best fluoresces the sample also most
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effectively photobleaches the sample. Laser intensity is set to 100 percent to minimize the
number of iterations required to bleach. ROI size and shape are set such that a segment of
neurite is bleached as fast as possible, covering only the neurite and not any adjacent blank
space.

The number of bleach iterations refers to the number of times the microscope iterates
over a ROI designated for bleaching. The total bleach time is the time required to bleach the
sample for a set number of iterations. Total bleach time increases linearly with number of
iterations, whereas the degree of bleaching is nonlinearly related to number of iterations, as
shown in Fig. 2.9. These results vary with ROI size and shape; data in Fig. 2.9 was collected
from a characteristic dendrite with the parameters outlined above. Least squares regression
for a line in Fig. 2.9a and logarithmic curve in Fig. 2.9b are depicted, with equations and
coefficients of determination (R2) as insets. In order to achieve 30 to 70% of bleaching in as
little time as possible, 5 to 20 bleach iterations are required with the aforementioned set of
parameters.

Fig. 2.9 Increasing the number of photobleach iterations imposes a tradeoff between (a) the
total time required for bleaching and (b) the degree of bleaching achieved, related linearly
and nonlinearly, respectively. The degree of bleaching saturates at approximately 70% at
high iterations, so the optimal number of bleach iterations for this characteristic sample is 10
to 20.
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2.6.4 Fluorescence recovery after photobleaching

Fluorescence recovery after photobleaching (FRAP) microscopy is a technique used to study
the transport kinetics of a fluorescent molecule. In FRAP, a light source is focused on a
small region in the viewable area of an image. This region of interest is then exposed to high
intensity laser light to photobleach a fluorophore. The laser used for photobleaching is the
same wavelength as that used for imaging at substantially lower intensities. Photobleaching
itself is an irreversible quenching of a molecules fluorescence, typically caused by covalent
changes in the chemical structure. After photobleaching, a time series of images is taken
as the bleached fluorophore diffuses out of the region of interest and as the unbleached
fluoroscopes diffuse into the region. This technique allows scientists to measure a molecule’s
rate of diffusion into a region.

Time series for FRAP microscopy were captured using a 63X oil-immersion objective
with the pinhole diameter set to 4 Airy units. The 495-nm laser line was used for both
imaging and bleaching. During imaging, laser power was set to 4%, and during bleaching
power was set to 100%. Images were acquired at 1024 x 1024 resolution at 1.0X optical
zoom with 750x gain. Time-lapse images were captured at 0.2 Hz for 60 to 85 min using
Zeiss LSM Image Browser software. Z-plane focus was maintained using Zeiss Definite
Focus after each frame captured. The cells were temperature- and CO2-controlled at 37 deg
C and 5% during imaging using a stage top incubator (Tokai Hit, STXG-WSKMX-SET,
Fujinomiya, Japan). Every 10-20 minutes, Kv4.2-SGFP2 was bleached to 30-70% of baseline
intensity by the same 495-nm laser (100% power, 10 iterations) over the bleach region of
interest (ROI).

A sample frame of a FRAP time series is depicted in Fig. 2.10. The ROI over which
photobleaching occurred (bleach region) is enclosed in a red rectangle and is approximately
100 um from the cell soma (located northeast of image). This frame was captured following
photobleaching. Note the reduced fluorescence in the bleach region. This neurite is suitable
for FRAP given its initial strong fluorescence of Kv4.2-SGFP2 both in and out of the bleach
region as well as regions without neurites. Strong fluorescence inside the bleach region
is important for suitable recovery for curve fitting. Strong fluorescence outside the bleach
region is helpful to monitor total cell fluorescence for (1) unintentional photobleaching
while imaging and (2) unintentional depletion of total fluorescence in the cell, known
as fluorescence loss in photobleaching (FLIP). Finally, imaging regions without neurites
provides a background fluorescence that can be subtracted for a more accurate measure of
fluorescence intensity.

We capture a brief series of frames before photobleaching in order to capture a baseline
before recovery. Prebleach fluorescence intensity is stable over at least one hour, depicted in
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Fig. 2.10 A sample frame of an ideal neurite during FRAP microscopy is depicted. The
bleach region is enclosed in a red rectangle. Also visible in this image are dendritic spines,
a bifurcation point, and an adjacent neurite. Green indicates transfected subunits of Kv4.2-
SGFP2.
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Fig. 2.11, indicating minimal unintentional photobleaching as a result of sampling. Signal-
to-noise ratio (SNR) of neurites without photobleaching is estimated using the mean (µ) and
standard deviation (σ ) of fluorescence intensity: SNR = µ

σ
= 10672

174 = 61. The coefficient of
variation, or relative standard deviation, is the reciprocal of SNR: 0.0164.

Fig. 2.11 Prebleach fluorescence intensity in a neurite is stable for at least one hour. A linear
fit produces a low magnitude slope, indicating minimal unintentional photobleaching of the
sample as a result of laser exposure while imaging. Estimated signal-to-noise ratio is 61 with
a coefficient of variation of 0.0164.

A typical FRAP recovery curve is depicted in Fig. 2.12. The fluorescence intensity of the
bleached region is averaged over the course of the time series. The data is normalized such
that the average prebleach intensity is 1 and the minimum intensity is 0. In this case, the time
scale has been adjusted such that recovery begins at time = 0 seconds. Several frames are
captured before the start of photobleaching (in Fig. 2.12, 10 frames).

Bleaching is indicated by the precipitous decline in intensity occurring over one time
frame. Intensity then increases immediately after bleaching, with the fastest recovery occur-
ring immediately after photobleaching (0 to 50 seconds). This is characteristic of exponential
recovery. The recovery curve then begins to settle and appears to reach a steady state towards
the end of the time series (800 to 1000 seconds).

The recovery portion of the curve can be approximated as an exponential. After normal-
izing fluorescence intensities between 0 and 1, the curve is fit to a single ( f 1) or double ( f 2)
exponential recovery curve:

f 1 = A(1− e−τt) or f 2 = A1(1− e−τ1t)+A2(1− e−τ2t) (2.1)
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Fig. 2.12 Left: A typical FRAP recovery curve shows the prebleach intensity, the precipitous
decline during of bleaching (at 0 seconds), the rapid recovery, and settling at a steady state.
Right: The recovery portion of left can be fit to single or double exponential recovery curves.

where f is the fluorescence intensity, t is time, τ is the rate of recovery, and A is the mobile
fraction. Superscripts indicate single or double exponential fits. Subscripts differentiate
between terms in f 2.

The curve fit is performed for As and τs using least squares. The mobile fraction estimated
for the recovery shown in Fig. 2.12 was A = 0.279 for the single and A1 +A2 = 0.316 for
the double exponential fit. This corresponds to the steady state intensity of the standardized
curves. Recovery rate τ is the reciprocal of the time constant of recovery. Further, another
parameter typically used to characterize recovery is the time to half recovery, t1/2 =− ln0.5

τ
.

For the single exponential fit depicted in Fig. 2.12, τ = 0.0061 and t1/2 = 114.3. The latter
appropriately corresponds to the number of seconds required to reach half the mobile fraction,
1
2A = 0.1396.

2.6.5 Data loss during bleach recovery

We explore the aforementioned tradeoff imposed by sampling rate in the context of bleach
recovery. Sample data of bleach recovery is normalized and fitted to a single exponential
recovery curve (as in Eq. 2.1), depicted in Fig. 2.13a. For a fair comparison between
sampling rates, this same signal is down-sampled and re-fitted in Fig. 2.13b-c. A moderate
decrease in sampling rate (20-fold decrease from 0.2 to 0.01 Hz) results in underestimating
the bleach recovery rate τ (Fig. 2.13b). A significant decrease in sampling rate (100-fold
decrease from 0.2 to 0.002 Hz) results in markedly overestimating τ (Fig. 2.13c). Re-fitting
a down-sampled signal still produces a good exponential fit with R > 0.9. This analysis
prompts caution in choosing low sampling rates, which can produce a misleading result with
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a high-confidence fit. This further motivates our choice for a fast sampling rate (0.2 Hz) in
our time series.
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Fig. 2.13 We compare fast and slow sampling rates with sample normalized bleach recovery
data. A signal (a) is down-sampled (b-c) and fitted to single exponential recovery curves.
This produces a markedly different τ with high-confident fits, motivating the use of a high
sampling rate (0.2 Hz) for minimal data loss and more accurate rate estimation.

2.7 Imaging active transport

Imaging active cargo transport requires a combination of previously discussed methods—
mainly time series recording and photobleaching. A frame of a sample time series with active
transport is depicted in Fig. 2.14A. While imaging active transport, the aforementioned
considerations in Sec. 2.6.2 for the sampling rate and number of bleach iterations still apply.
The purpose of photobleaching here is to clear static and diffuse fluorescence such that
underlying active transit is easily visualized. Therefore it is often necessary to recurrently
bleach the static or slow-moving fractions. We found that recurrent photobleaching every
15-20 min, as depicted in Fig. 2.14B, provides sufficient clearance of extraneous fluorescence
without excess damage to the neuron. Fig. 2.14B was generated by selecting a neurite in Fig.
2.14A and generating a kymogram. The method of generating and analyzing kymograms is
detailed in next section (Sec. 2.8).

Upon photobleaching, we observe diffuse fluorescence recovery. We also notice move-
ment of dense, high fluorescence particles into the bleached region. We call these mobile
puncta, and they appear distinct to the other fluorescence in the background and unbleached
neurite. We next evaluate whether these mobile puncta are moving via an active, microtubule-
based process.
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Fig. 2.14 (A): A sample time series of Kv4.2-SGFP2 trafficking (orange) depicts a dendrite
branch exhibiting frequent transport. The segmented line selection (cyan) surrounding the
neurite is used to generawte a kymogram in (B). (B): Kymogram created from segmented line
selection in (A). X-axis indicates neurite position and y-axis indicates time. Left-pointing
arrows indicate time points for intermittent photobleaching.
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2.7.1 Colchicine treatment

During several time series, we administer the microtubule-disrupting drug colchicine [124,
71, 8] to confirm that the observed movement of puncta occurs via motor proteins on
microtubules. Six coverslips were treated with colchicine (Sigma, C9754) during hour-long
recordings, and six are treated with solvent (DMSO) without colchicine as a control. Samples
were prepared as previously descirbed and time series were captured and analyzed (detailed
in Sec. 2.8). At 30 minutes into the recording, 1 µl DMSO (control) or 1 µl DMSO containing
40 µg colchicine was mixed into the imaging chamber, for a final colchicine concentration of
125 µM. Number of mobile puncta per minute was then counted for the duration preceding
administration and starting 10 min post administration.

Examples of representative kymograms for control and colchicine treatments are depicted
in Fig. 2.15 left and right, respectively. These examples show the qualitative, visual
differences from administration of colchicine or control (DMSO) (indicated by the green
line). During control treatments, puncta trajectories appear mobile before and after DMSO
administration, and two-sample t-test indicates no significant change (P = 0.59). During
colchicine treatments, the drug reduces the number of mobile puncta. The motion of some
puncta is ceased mid-trajectory by colchicine administration, and this change is statistically
significant (P = 5.7×10−7).

We next average the number of mobile puncta per unit time before and after drug
adminstration and average the results. Colchicine administration resulted in a substantial
(> 60%) decrease in number of mobile puncta in axons when compared to control (Fig. 2.16).
The Kv4.2-SGFP2 puncta transport that we observe here and elsewhere is thus likely to be
an active, microtubule dependent process.

2.8 Image and data analysis

We next describe the the image processing that occurs after collection of the time series. The
methodical steps of image and data analysis are described with examples.

2.8.1 Import and kymogram generation

In order to generate kymograms from a raw time series, raw microscope time series were
imported into ImageJ with StackReg and Bio-Formats plug-ins. A segmented line selection
is drawn through the neurite of interest with thickness adjusted to cover the diameter of the
neurite, with a resultant region of interest (ROI) as shown in Fig. 2.14A. The width of the
selection is minimized such that it just covers the neurite at its widest point. Using the plugin
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Position

Time

Fig. 2.15 Two representative kymograms of neurites undergoing administration of control
(DMSO) (left) and colchicine (right) are depicted. The green horizontal line indicates DMSO
or colchicine administration.
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Fig. 2.16 Percent change in number of mobile puncta following administration of microtubule
disrupter (colchicine) compared to control (DMSO) during live recording. Colchicine causes
a significant change in mobile puncta (P = 5.7×10−7), whereas control does not (P = 0.59)
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KymoResliceWide, a kymogram was generated from the time series where the horizontal
dimension corresponds to the average pixel intensity along the diameter of the cell for each
pixel distance from the soma and the vertical dimension was time. A sample segment of
kymogram from a bleached neurite is shown in Fig. 2.14B. The intermittent photobleaching
of the ROI is marked in Fig. 2.14B with blue leftward facing arrows. All kymograms were
saved as TIF files.

2.8.2 Manual versus automated puncta tracing

A noteworthy point of discussion is the method of tracing puncta trajectories. The decision to
trace puncta trajectories manually was a significant and difficult decision. Tracing trajectories
would ideally be automated with an unbiased algorithm or script. Single particle tracking is a
complex and unsolved problem, even in one dimension such as in the kymograms shown in
Fig. 2.17. A number of existing tools and methods were attempted using sample data. Some
of the packages explored with sample data are surveyed here, focusing on those adapted to
kymograms.

Chaphalkar et al. wrote a summary of kymogram tracking tools described in the literature
[40]. Their own tool, Automated Multi-Peak Tracking Kymography (AMTraK), cites Otsu’s
method [177] for row-wise segmentation for peak detection. Other peak detection methods
were findpeaks [25], watershed [154]. or canny edge detection [34]. Chaphalkar et al. also
write an algorithm for branch-point detection. Another promising option was KymoButler,
developed by Jakobs et al. [110], which, in short, is a trained neural network that traces
puncta on kymograms.

From a high-level perspective, particle tracking algorithms process a time series with two
sequential steps:

1. Peak intensities in individual frames are identified as puncta locations.

2. Paths are connected between puncta locations across consecutive frames.

These tools and others were tested on Kv4.2 sample data with minimal success. The
limiting factors were low signal-to-noise ratio and the sampling rate in our time series.
KymoButler predicted short trajectories but failed to connect the traces to create the total
puncta path. One option to address this limitation would be to increase the sampling rate
during time series capture. This, of course, is constrained by the limitations described in Sec.
2.6.2. The physical constraint is the fluorescence intensity of the puncta. The exposure time
used in most time series (3.4 sec) already makes up the majority of the sampling period (5
sec). Increasing exposure time further can result in photobleaching or damage to the sample.
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Increasing sampling rate therefore requires either decreased frame size or exposure time.
Decreased frame size reduces the area of neurites captured. Decreased exposure reduces
fluorescence intensity, exacerbating the low signal-to-noise ratio. Reproducing the data
set with higher frame rate might improve the ability of an algorithm or neural network to
connect short traces in our kymograms. However, it could also make the detection of puncta
locations more difficult. In other words, increasing sampling rate with reduced exposure time
might improve the aforementioned Step 2 but worsen Step 1. For these reasons, the use of
automated trajectory tracing was discontinued.

In the end, particle tracing is still very much an unsolved problem outside the scope
of this thesis. Given our experimental constrains, we found no suitable tool for automated
trajectory tracing in our use case. We instead standardize the manual puncta tracing process
as much as possible, as described in Sec. 2.8.4.

2.8.3 Contrast enhancement and thresholding

To improve the visibility of puncta trajectories, kymograms were enhanced using automated
and manual methods in ImageJ. As an example, raw kymogram sections from a representative
axon and dendrite are depicted in Fig. 2.17A-B(i). ImageJ’s automatic optimization of
brightness and contrast is first performed based on the image’s histogram (Fig. 2.17A-B(ii)).
Next, the brightness and contrast settings were manually adjusted by narrowing the visible
display range (Fig. 2.17A-B(iii)). The brightness was manually increased until the upper
visible range was approximately 95% of all total signal, based on the fluorescence intensity
histogram of each kymogram. Lastly, a lower threshold was set at approximately 2% of the
lowest intensity values. This sets pixel values below this threshold to zero, as shown in Fig.
2.17A-B(iv). The trajectories in (iv), although still imperfect, are much clearer for tracing
than the raw images in (i).

2.8.4 Puncta trajectory selection

Puncta trajectories were traced using a segmented line selection in ImageJ. In lieu of auto-
mated tracing, we manually trace trajectories with a systematic protocol. The standardized
methods are outlined here.

In some cases, puncta appear to merge into one trajectory or split into multiple trajectories.
An example of this is depicted in Fig. 2.17C. In these cases, our standardized procedure
was to trace each parent and child path as an individual trajectory, as in the three trajectories
depicted in Fig. 2.17C(ii). The same protocol is followed for two puncta that seemingly
merge into one trajectory.
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Fig. 2.17 (A): An example of axonal kymogram processing, where (i) is the raw image,
(ii) is following automatic brightness/contrast adjustment, (iii) is following manual bright-
ness/contrast adjustment, and (iv) is following thresholding. (B): A segment of dendritic
kymogram is undergoing the same processing as (A). (C): Parent trajectories P that appear to
merge or split into children C trajectories are recorded as distinct trajectories. In (ii), one P
(magenta) splits into two Cs (cyan), for a total of three trajectories. (D): If puncta appear
to oscillate and the specific path cannot be resolved (i), trajectories are traced through the
center of the oscillations (magenta segment) (ii). (E): To eliminate subjectivity in puncta
trajectories that appear or fade away, immobile segments of trajectories are trimmed before
and after mobile segments. For the disappearing trajectory shown in (i), both (ii) and (iii)
would yield the same trajectory (iv) post trajectory trimming.
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Mobile puncta sometimes rapidly oscillate or vibrate in position. At the molecular level,
this might be caused by stochastic movement of membrane vesicles either on or off the
microtubule tracks. This visual artifact is also likely exacerbated by the limited frame rate in
the time series. In these cases, if the specific path of the oscillations cannot be resolved, a
trajectory was drawn through the mean position of the puncta. An example of this is depicted
in Fig. 2.17D, with a trajectory drawn through the mean position of an oscillation marked in
Fig. 2.17D(ii).

All trajectories were saved as TXT files of [time, space] coordinates were imported into
MATLAB for further processing.

2.8.5 Trajectory trimming

In many cases, especially in dendrites, puncta seem to appear or disappear. Bleach regions
were carefully selected around branch points, so these occurrences are unlikely related to
entire puncta moving into or out of the neurite. At the molecular level, puncta disappearance
might be membrane vesicle fusion with the plasma membrane, dispersing fluorescent subunits
across the lipid bilayer. Puncta appearance might be aggregation of subunits into vesicles,
for instance, to modulate dendrite excitability or transport channels for degradation. On ky-
mograms, these occurrences look like gradual appearances or disappearances of fluorescence
intensity with little spatial movement, as seen in Fig. 2.17Ei.

To further standardize our manual tracing, only mobile trajectories are considered. Puncta
with an immobile segment of trajectory before and/or after a mobile segment were trimmed.
This was achieved by iterating through each trajectory and summing the net distance traveled.
Portions of the trajectories up to the mobility threshold were removed, eliminating stall
time before and after mobile segments. The minimum distance threshold was 5 µm for both
axon and dendrite trajectories. We process all trajectories to eliminate periods of stalling
at their temporal beginnings and ends to account for puncta appearance and disappearance,
respectively. This essentially normalizes the trajectories to minimize stalling before and
after mobile segments, and the end result is trajectories with minimal regions of puncta
appearance/disappearance.

As an example, both trajectories shown in Fig. 2.17E(ii) and 2.17E(iii) are interpreted as
the same trajectory with objective shortest length (Fig. 2.17E(iv)) following trimming. This
was useful in cases where puncta appear or disappear on a kymogram, as in Fig. 2.17E(i).
This also relieves some degree of subjectivity surrounding puncta start/end points and in
measurements of stall time (Sec. 3.4).
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2.8.6 Intra- and inter-experimenter variation

To validate that this standardized method of manual puncta tracing is consistent, we test
for intra-experimenter and inter-experimenter variation. I repeat my protocol for image
and data analysis for 10 axons and 10 dendrites, and another scientist (experimenter #2)
also repeats the protocol. The selected metric for comparison is the number of mobile
puncta per recording. The results are depicted in Fig. 2.18, which compares axons and
dendrites within and between each of the three replicates. Two-sampled t-tests firstly reveal
significant differences between axons and dendrites for each replicate (a significant result
further discussed in Sec. 3.3). Statistics also show minimal variation between my protocol
replicates (low intra-experimenter variation) and between my replicates and that of the other
scientist (low inter-experimenter variation). P-values are depicted in Fig. 2.18. This analysis
demonstrates that, although repeated iterations of our protocol are not identical, the observed
differences between axons and dendrites are consistent and the intra- and inter-experimenter
variability is not significant.
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Fig. 2.18 The standardized protocol for image and data analysis has minimal intra- and
inter-experimenter variation. The number of mobile puncta per recording is analyzed for
same 10 axons and 10 dendrites over three replicates. Two trials are performed by me
(experimenter #1) and one by another scientist (experimenter #2). All three replicates
demonstrate a significant difference between axons and dendrites but no significant intra- or
inter-experimenter variability (P-values displayed on figure).
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By following a standardized protocol for tracing and passing trajectories through a nor-
malizing script, we created a semi-automated method of collecting objective measurements of
puncta movement. It is important to note that the trajectories captured here are not intended
to be an absolute measure of subunits trafficked in a neurite. However, these methods provide
a comparative measure for comparing different neurite types. In subsequent chapters, we
compare axons and dendrites, and we analyze and draw conclusions from this data set.

2.9 Deterministic modeling: steady state analysis

This section provides a generalized overview to deterministic compartmental modeling.
These techniques are used throughout the remaining chapters and are described in detail for
each use case.

A compartmental model is a mathematical model that describes how populations of
species in different groups (called compartments) interact. Compartmental models of trans-
port capture the mass action kinetics of trafficked cargo across different spatial and structural
compartments.

The cargo content of each compartment in a model is defined by a differential equation
that sum the quantities of cargo entering and exiting that compartment. A generalized rate vd,r

from a donor d to receiver r transfers an amount of mass dvd,r. As an example, the system of
differential equations describing transport for a simple model with two compartments atot

and dtot (depicted in Fig. 4.2C) is as follows:

ȧtot = sd,adtot − sa,datot

ḋtot = sa,datot − sd,adtot

This system of equations can be solved at steady state to estimate the ratio of these rates. The
steady state assumption sets ȧtot = ḋtot = 0. Then, rearranging either equation yields

dtot

atot
=

sa,d

sd,a

We can now use our experimental data to restrict rates between axon and dendrite. This
same protocol is used for other compartmental models, including lumped models of spatially
discretized neurites:

1. Write out system of equations describing quantities of cargo dvd,r entering and exiting
each compartment.
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2. Set derivatives equal to zero (steady state assumption).

3. Rearrange system of equations to implement model constraints, such as from experi-
mental data.

The steady state analysis as described here is used frequently and is referenced in context
of specific results throughout this thesis.

2.10 Discussion regarding transport behavior

A notable point of discussion concerns the behavior of intracellular transport in endogenous
cells. Broadly speaking, the goal of basic science in biology is to study life as it exists in
nature. Since in vivo, in situ studies are often difficult or impossible, scientists often work
with models of the ideal system. For instance, rather than studying human neurons in a
living, functioning human brain, neurons of a deceased mouse are cultured on a Petri dish.
Experimentalists must accept a number of assumptions when working with such a model.
Such assumptions regarding transport are of interest and discussed here.

The ideal measurements of data for this thesis capture the behavior of some protein
subunit during baseline, endogenous transport. Any assumptions that deviate from this ideal
measurement warrant discussion.

The first assumptions are related to imaging. Molecular-level live imaging in a in vivo, in
situ mammal is currently unfeasible, so we accept cultured, dispersed cultures as a model.
Further, visualizing endogenous subunits with no fluorescence at high frame rate is difficult.
Fluorescence-tagged subunits expressed endogenously (via genetically modified mouse
models) would have low fluorescence levels. One solution is transfection of vectors with
strong promoters. However, this brings into question the impact of highly-expressed subunits
on the limited transport machinery. Does high expression saturate and change the dynamics
of transport? Is transport behavior for high quantities of exogenous channel similar to
baseline, endogenous levels? To address this question, we report quantitative results from
both transfected and endogenous expression systems in Chapter 3.

Some experimental methods specifically modify mechanisms of subunit packaging, se-
cretion, or transport. Intracellular mechanisms can be modified pharmacologically or by
an exogenous vector. For instance, the RUSH system [19] interrupts puncta secretion from
the ER and Golgi by design. The RUSH system aims to achieve better visualization using
triggered release. How does this sequestration impact the release and transport mechanisms
themselves? It is possible that arresting such a mechanism can impose changes on the dynam-
ics of those mechanisms or surrounding mechanisms? The interpretation of data collected
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using these method should consider these assumption and perhaps be cross-referenced with
control experiments. Our methods take a different approach: we image non-sequestered
trafficking, albeit at increased transport rates since we use a transfected expression system.



Chapter 3

Microtubule transport and localization
of puncta containing Kv4.2

The results described in this chapter have been submitted to Biophysical Journal. Some
sections were written in direct connection to that manuscript.

3.1 Chapter summary and key findings

This chapter contains experimental observations of localization and microtubule-based transit
of Kv4.2.

1. Kv4.2 microtubule-based trafficking is observed more frequently in axons than den-
drites. This result holds when standardizing for recording length and duration, for
extended 10 hour recordings, and for neurites from the same soma.

2. Frequency of Kv4.2 active transport opposes its delivered localization profile, with
increased puncta frequency4w in axons compared to dendrites. Kv4.2 primarily
localizes in dendrites in both endogenous and transfected expression systems, but
axonal expression is not negligible.

3. Perturbing neural excitability does not immediately affect microtubule transport in
dendrites. Incubation with neither KCl (chronic depolarization) nor AMPA receptors
(stimulation) produces an observable effect during active transport.
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3.2 Introduction

Kv4.2 is a voltage-gated ion channel prevalently expressed in dendrites of pyramidal cells
in the CA1 hippocampus. Kv4.2 conducts A-type, transient outward potassium current,
which is abundant in dendrites but scarce in axons [208]. Dendritic expression of Kv4.2 is
consistent with its hypothesized role in dendritic integration and control of neural excitability
[208, 106, 220]. Moreover, A-type current exhibits a five- to sixfold increase in current
density over the length of the apical dendrite [106]. Localization studies of Kv4.2 corroborate
this finding, showing a 70% increase in channel density along the apical dendrite [117].

Kv4.2-mediated A-currents have not been reported in axons, but other channels that pass
A-current have been found in axons [208, 52, 232]. Effective surface expression and function
of Kv4.2 in axons therefore seems unlikely. However, the reported amount of Kv4.2 subunits
localized in axons of CA1 hippocampal neurons varies substantially among quantitative
localization studies. Alfaro-Ruíz et al report only 1.2% of total CA1 immunogold-labeled
Kv4.2 subunits are found in axons [3]. Kerti et al contrastingly report nearly 20%, and the
authors remark that "[this result] is surprising, because the Kv4.2 subunit is conceived as
a somato-dendritic ion channel" [117]. We found predominant endogenous expression of
Kv4.2 in dendrites with a non-negligible presence in axons. Due to the imaging modality,
these studies cannot establish whether subunits present in axons are in transit or whether they
are membrane-bound, functional channels.

Other studies have characterized Kv4.2 transport and expression mechanisms. Kv4.2
interacts with kinesin Kif17, which suggests transport on microtubules. In the absence of
Kif17, Kv4.2 fails to localize in dendrites of pyramidal cells [49]. Deletion of a portion of
the C-terminus or fusion with myosin Va restricts expression of Kv4.2 to the somatodendritic
region [194, 133, 112]. Further, KChIPs have been established as auxiliary subunits that
promote Kv4.2 exit from the endoplasmic reticulum for surface expression [209, 244, 196].
An auxiliary subunit, DPP6, attached to Kv4.2 by a transmembrane domain [143], assists in
trafficking Kv4.2 out of the endoplasmic reticulum to the plasma membrane [134]. Duménieu
et al [63] summarize these results with the following working hypothesis for Kv4.2 transport
in pyramidal cells: Kv4.2 is trafficked short distances, such as to proximal dendrites or
within spines, on actin filaments via myosin Va, while long range transport is mediated along
microtubules via KChIPs and Kif17. Although there is evidence for other mRNA presence
in dendrites with local translation [31, 107, 80, 236], there is, as of yet, no evidence for
dendritic synthesis of Kv4.2 specifically.

In CA1 hippocampal pyramidal cells, Kv4.2 passes an outward current, such that it
primarily has an inhibitory effect on initiation and propagation of dendritic potentials. Kv4.2
production, localization, and function thus play significant roles in excitability or sensitivity
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of a dendrite. Ion channels have indeed been implicated in homeostatic maintenance of
intrinsic excitability [24, 60, 241], though no such evidence has been found for Kv4.2. The
transport of subunits that shape dendritic excitability is of interest, since failure to deliver
subunits can disrupt cellular homeostasis. Hence is the motivation for studying transport
of Kv4.2 in this chapter. The data presented in this chapter are then unified into a working
theory of Kv4.2 active transport and intracellular distribution in Chapter 4.

3.3 Kv4.2 microtubule-based trafficking is observed more
frequently in axons than in dendrites

To establish reliable estimates of the frequency, density, and kinetic properties of actively
transported Kv4.2 subunits, we performed 129 hour-long recordings of neurites in cultured
rat hippocampal cells. In total, 507 mobile Kv4.2-SGFP2 puncta were identified among 478
recorded dendrites, and 961 mobile puncta were identified in 46 axons (see Methods). We
define puncta as the smallest fluorescent particles resolved using our methods—the membrane
vesicles containing Kv4.2-SGFP2. Puncta trajectories are visualized as in Fig. 2.14, and we
later depict a schematic of puncta in the context of our modeling in Fig. 4.1Aii,Bi-ii.

Kv4.2 microtubule-based trafficking is observed more frequently in axons than in den-
drites. The durations over which puncta are mobile are depicted in Fig. 3.1A for axons and
Fig. 3.1B for dendrites. Of the 478 dendrites in hour-long recordings, only 213 dendrites
(45%) exhibited at least one mobile punctum. Only data from this subset of dendrites is
presented in Fig. 3.1B. Mobile puncta appeared consistently in axons, whereas in dendrites
mobile puncta appear intermittently or not at all. The average length of a sampled region was
85.4 µm in axons compared to 52.3 µm in dendrites. We found no trend in transit frequency
with degree of branching, from primary (apical) dendrites to quaternary branches (Fig. 3.3).
To ensure that puncta visibility was not an artifact of fluorescence intensity, we plot puncta
frequency versus standardized neurite intensity and find no strong correlation (R2 = 0.0065
and 0.0274 in axons and dendrites, respectively), depicted in Fig. 3.4.

We also plot puncta frequency by neurite diameter to assess whether neurite diameter
might limit or influence puncta trajectories (Fig. 3.5). We find low correlation in axons
and dendrites (R2 = 0.048 and R2 = 0.001, respectively), so neurite diameter is unlikely to
saturate transit of membrane vesicles in our system.

We assess puncta frequency over the course of neuron growth and development. We plot
puncta frequency by recording versus age of the neurons in Fig. 3.2. With the power of our
data set, puncta trafficking is not significantly different across DIV 8 to 14. Two-sampled
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Fig. 3.1 There are more mobile Kv4.2 puncta in axons compared to dendrites. (A): Hour-
long recordings of 46 axons are depicted, with highlighted sections indicating periods of
puncta mobility. Note: Axon with index #37 did not meet criteria for axon diameter (as
established in Fig. 2.4) and was omitted from analysis. (B): Hour-long recordings of
213 dendrites are depicted, with highlighted sections indicating periods of puncta mobility.
This subset of 478 dendrites has ≥ 1 mobile puncta. (C): Puncta frequency in axons and
dendrites is standardized by total neurite length visualized and time recorded (units: number
of puncta/mm/hr). These quantities are used as a model constraint in a lumped model of
Kv4.2 transport and delivery (Sec. 4.4). (D): Histogram depicting puncta frequency by
neurite recording. Puncta frequencies in axons and dendrites were significantly different with
P = 4.6×10−23.
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t-tests between all combinations of DIV show no significant difference, with minimum
P = 0.185 between DIV 11 and 14 in axons.

Fig. 3.2 Puncta frequency in both axons (left) and dendrites (right) does not significantly
change with neuron development over DIV 8 to 14.

We do find a correlation between puncta frequency and distance from soma in dendrites,
which is used for a sub-neurite analysis and constraining a discretized model of transport in
Chapter 4.

When standardizing these measurements for recording duration and neurite length,
the discrepancy in mobile puncta frequency is 4.9 puncta/mm/hr in axons versus 0.18
puncta/mm/hr in dendrites, depicted in Fig. 3.1C. Puncta frequency in dendrites drops to
0.039 puncta/mm/hr when considering dendritic recordings with zero mobile puncta (not de-
picted). A histogram showing puncta frequency by neurite recording is depicted in Fig. 3.1D,
and a Mann-Whitney test demonstrates a significant difference between these populations
with P = 4.6×10−23. In subsequent Sec. 4.4, this standardized data is used as an experi-
mental constraint for the steady state densities of microtubule-bound puncta. We also later
bin microtubule-bound puncta by distance from the soma to constrain distance-dependent
data in Sec. 4.6.
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Fig. 3.3 A: Histogram depicting spread of dendritic recordings by degree of branching.
Primary indicates the apical dendrite. B: Puncta frequency demonstrates no trend with degree
of branching. C: The dendritic ranges along the somatodendritic axis are plotted by branch
order.
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Fig. 3.4 To ensure that puncta appearance or visibility is not an artifact of fluorescence
intensity, we plot standardized puncta frequency and recording duration versus average
prebleach fluorescence intensity for recordings of axons (left) and dendrites (right). Neither
neurite population shows a strong correlation: for linear fits, R2 = 0.0065 and 0.0274 for
axonal and dendritic population, respectively.
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Fig. 3.5 To ensure that neurite diameter does not influence or limit the number of puncta
trafficked, we plot number of mobile puncta as a function of diameter. The low correlations
here suggest that saturation of transport in neurites with small diameters is unlikely.

3.3.1 Extended FRAP recordings

In order to control for the possibility of global trafficking failure in dendrites that did not
show puncta during hour-long recordings, we performed extended recordings lasting up to
11 hours. A distilled water reservoir was placed adjacent to the imaging chamber, and the
chamber was covered with a 35-mm Petri dish to maintain humidity. Time-lapse images
were captured at a deceased sampling rate (0.1 Hz) with recurrent photobleaching every 15
min. All other procedures and conditions are as previously described (in Sec. 2.6.2).

The results are shown in Fig. 3.6. The trend in puncta frequency for extended recordings
is consistent with that of hour-long recordings, suggesting that hour-long recordings with no
puncta are simply a result of sampling.

3.3.2 Axons and dendrites from the same neuron

In some cases, it was possible to reliably identify and record from axons and dendrites origi-
nating from the same soma to control for intercellular variations in trafficking or metabolism.
Axons and dendrites from these 28 recordings are depicted alongside each other in Fig.
3.7A. In all but one case, axons had the majority of mobile puncta, even though multiple
dendrites were recorded for most neurons. Comparisons of raw puncta count (Fig. 3.7H) and
standardized puncta count (units: number of puncta/µm/hr, in Fig. 3.7I) are depicted. After
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Fig. 3.6 Three extended recordings that substantiate the discrepancy in puncta frequency
between axons and dendrites over extended periods of observation.

standardizing measurements to sampling distance and duration, the axons average a 36-fold
increase over the simultaneously recorded dendrites from the same cell.

Thus far, we have imaged and analyzed mobile fractions of Kv4.2. Together, these data
establish that actively transported Kv4.2 puncta are present in significantly higher densities
in axons as compared to dendrites. We next observe qualitative differences in the behavior of
individual puncta between neurite types.

3.4 Kinetic differences in axons versus dendrites

We next analyzed individual Kv4.2 puncta trajectories in axons and dendrites. Kymograms
depicting representative puncta trajectories in axons and dendrites are shown in Fig. 3.8Ai
and Fig. 3.8Bi, respectively. The same kymograms with puncta tracing overlaid follows
in Fig. 3.8Aii and Fig. 3.8Bii. Upon initial observation, axonal puncta generally appear
to undergo unidirectional runs at high speeds, whereas dendritic puncta seem to change
direction more frequently and stall longer.

3.4.1 Calculating kinetic measures

Here, we briefly define the kinetic parameters used to compare puncta trajectories.
The total distance each Kv4.2-SGFP2 puncta travels was computed by summing the

absolute value of the distance traveled between each frame in a time series. Moreover, the
net displacement equals the puncta final position minus initial position.

To average speed, the instantaneous velocity was computed between each two frames of
a time series. The mean of the absolute values of these instantaneous velocities equals the
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A

Fig. 3.7 (A): Axons and dendrites originating from the same soma (same neuron) are depicted,
demonstrating similar trends as those observed in isolated recordings. The central column of
numbers indicate an arbitrary recording index. (B): Number of mobile puncta per neurite for
concurrent recordings from (A) shows a significant difference between axons and dendrites
(P = 2.4× 10−10). (C): Number of mobile puncta per neurite standardized by length and
time for concurrent recordings from (A) is also significantly different (P = 1.2×10−9).
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Fig. 3.8 Kv4.2 trafficking is qualitatively different in axons and dendrites (A): Kymograms
depicting characteristic axon trajectories (i) with puncta tracing overlaid in (ii). Insets
correspond to regions highlighted in green. (B): Same as (A) for characteristic dendrite
trajectories.
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average speed. Puncta stall time is defined as the fraction of total time during which puncta
are traveling with a speed less than 0.1 µm/sec.

Mean squared displacement (MSD) was computed by averaging the square of the dif-
ference between puncta coordinates some time τ apart. This was repeated for τ up to one
fourth the length of the recording duration. MSD was then plotted against τ , and equation
MSD(τ) = Dτα was fit for each set of coordinates. D and α are then recorded as diffusion
and superdiffusivity coefficients, respectively.

We then computed four key kinetic parameters, compiled as histograms in Fig. 3.9. Our
initial observations are supported in these population measurements. On average, axonal
puncta traverse a longer distance Fig. 3.9(A) with higher speeds (B) and longer unidirectional
runs (D). Dendritic puncta exhibit longer stall times than axonal puncta (C), where stall
fraction is defined as fraction of total time spent traveling slower than 0.1 µm/sec. With
the Mann-Whitney test, we show statistical significance between populations for all four
kinetic measures (A-D) with P-values 3.7×10−89,8.7×10−98,4.1×10−29 and 1.6×10−35,
respectively. Since the same cargo is trafficked in both neurite types, we question the
underlying mechanistic differences that might account for these kinetic differences. This is
explored in Chapter 4.

A        B     C    D

Fig. 3.9 Histograms for various kinetic transport parameters, normalized as probability
density functions. On average, axonal puncta have greater net displacement (A), faster
speed (B), deceased stall time (C), and increased unidirectional runs (D). Solid blue and red
lines indicate kernel fits to experimental data (dendrites and axons, respectively). We use
two-sample t-tests to reliably establish significant differences between populations in (A-D)
with P = 3.7×10−89,8.7×10−98,4.1×10−29,1.6×10−35, respectively.

To assess whether these dynamics are partially explained by constraints of neurite size,
we plot all four kinetic measures against neurite diameter in Fig. 3.10. None of these
measures correlate with neurite diameter within each neurite type. Correlation for lin-
ear fits with net displacement, average speed, stall fraction, and superdiffusivity was low:
R2 = 0.0012,0.0234,0.0004,0.0016 for axons and R2 = 0.0048,0.0003,0.0000,0.0001 for
dendrites. None of the measures are significantly different in small-diameter dendrites com-
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pared to large-diameter dendrites, suggesting that the difference in dynamics is not explained
by the physical constrains of a thin neurite.

A physiologic feature that might influence the trajectories is microtubule orientation,
which has been found to different in axons vs dendrites. The presence/absence of molecular
motors in each neurite type might also play a role, but these topics in molecular biology fall
outside the scope of this work.
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Fig. 3.10 Trajectory kinetics correlate weakly with neurite diameter, suggesting that mobile
puncta are not constrained by neurite size. Correlations for linear fits were low (top to bottom):
R2 = 0.0012,0.0234,0.0004,0.0016 for axons and R2 = 0.0048,0.0003,0.0000,0.0001 for
dendrites.
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By now, we have observed both quantitative and qualitative differences in active trans-
port of Kv4.2-containing puncta between axons and dendrites. Axons have higher puncta
frequency than dendrites, and axonal puncta travel farther distances at faster speeds with
decreased stalling compared to dendrites.

3.5 Kv4.2 preferentially localizes to plasma membrane of
dendrites compared to axons in both endogenous and
transfected expression systems, but expression in ax-
ons is not negligible

This section was a collaboration with Ronald Petralia and Ya-Xian Wang from the National
Institute on Deafness and Other Communication Disorders as well as Lin Lin from the
National Institute of Child Health and Human Development.

To independently assess the static density of native Kv4.2 expression in axons and
dendrites, we used electron microscopy (EM) following immunogold labeling of endoge-
nous Kv4.2 subunits. Owing to the inherent constraints of EM imaging, we quantified
axon/dendritic expression in identifiable pre- or postsynaptic compartments, respectively,
and regions of neurite that were clearly contiguous with these compartments. We imaged
624 presynaptic and 646 postsynaptic regions. Example micrographs in Fig. 3.11A show an
axon (ax) that can be traced to presynapses (pre), with gold particles present in both the axon
shaft and terminals.

Sampled immunogold particles identified in the synapses and perisynapses are broadly
divided into pre/postsynaptic regions. Presynaptic terminals (axons) contained 30.6% of
all gold particles and 0.15 particles/synapse. Postsynaptic terminals (dendrites) contained
69.4% of particles and 0.33 particles/synapse. This is consistent with previous localization
studies [117] in showing substantial, non-negligible subunit localization in axons. The
pre/postsynaptic regions are subdivided into synaptic and extrasynaptic regions. In both
axons and dendrites, under one third of particles (28.0 and 32.2%, respectively) of particles
were found in synaptic spaces, with the remaining two thirds in extrasynaptic regions. These
percentages and gold particle frequencies are summarized in Table 3.1 and depicted in Fig.
3.11B. In subsequent Sec. 4.4, this standardized data is used as an experimental constraint
for the steady state densities of delivered Kv4.2 subunits (later defined as del).

We perform a few statistical tests on this electron microscopy data in order to reliably
establish our claims. A two-way ANOVA with two categories: (1) gold particle location
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Fig. 3.11 Endogenously expressed Kv4.2 preferentially localizes to dendrites (A): Immuno-
gold localization (arrows) of Kv4.2 in the CA1 stratum radiatum of the hippocampus of WT
mice. Synapse profiles show the presynaptic terminal (pre) contacting one or two postsynap-
tic spines. In (i) and (ii), the axon (ax) can be traced from the presynaptic terminal. Gold
labeling extends along the axon and into the presynaptic terminals. Examples of gold label-
ing associated with the plasma membrane of the synapse and counted in the accompanying
graph include those at the axon synaptic membrane shown in (iv), (v), and (vi), the axon
extrasynaptic membrane shown in (iii) and (v), the dendrite synaptic membrane shown in
(i) and (vi), and the dendrite extrasynaptic membrane shown in (ii). (B): Quantification of
(A). Concentrations in the four compartments are 0.0417, 0.1074, 0.1053, and 0.2214 gold
particles per synapse. Error bars indicate standard error of the mean.
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(axon synapses, axon extrasynaptic, dendrite synapses, extra-dendrite extrasynaptic) and (2)
biological replicate (mouse #) is first performed. The results indicate that mean number of
gold particles did not significantly differ between biological replicates (P = 0.2018) but did
significantly differ by location (P = 3.4×10−7). Further, there is no significant interaction
between particle location and biological replicates (P = 0.1176). Next, two-sample t-tests
between each combination of particle locations (axon synapses, axon extrasynaptic, dendrite
synapses, extra-dendrite extrasynaptic) are evaluated. Axonal and dendritic synapses have
significantly different mean particle density (P = 1.7× 10−4), and extrasynaptic regions
in axons and dendrites are also significantly different (P = 0.0011). Each pair of puncta
density locations are significantly difference with P < 0.05 except for [axon extrasynaptic,
dendrite synapses], as is evident in Fig. 3.11B. Lastly, I combined all axonal particles (from
axon synapses and axon extrasynaptic regions) and all dendritic particles, and again found a
significant difference (P = 1.4×10−6).

Table 3.1 - Density of immunogold particles identified by electron microscopy in synapses of
axons and dendrites.

Axons, N = 624 Dendrites, N = 646 Neurite, number of synapses sampled
93 211 Number of gold particles

0.149 0.327 Gold particles / synapse
30.6 69.4 Percent of total

Synaptic Extrasynaptic Synaptic Extrasynaptic Subdivision
26 67 68 143 Number of gold particles

0.042 0.107 0.105 0.221 Gold particles / synapse
28.0 72.0 32.2 67.8 Percent of subdivision
8.6 22.0 22.4 47.0 Percent of total

To further depict endogenous localization of Kv4.2 by neurite, we performed immunola-
beling fluorescence. Immunolabeling confirmed low endogenous localization of Kv4.2 in
axons. Fig. 3.12 depicts a neuron with multiple dendrites and one axon stained for soma-
todendritic marker MAP2 (Fig. 3.12(ii), red). Neurites lacking this marker are designated
as axons. We found substantial Kv4.2 ((i), green) in both dendrites and the axon (marked
with the arrow). Kv4.2 observed in the axon is well above levels of background staining,
providing further evidence of non-negligible subunit density in axons. Our measurements of
Kv4.2-sGFP2 transfected neurons also corroborates this trend.

To demonstrate and quantify Kv4.2 localization in an exogenous expression system, we
use prebleach fluorescence intensity following transfection of Kv4.2-SGFP2. A histogram of
the prebleach fluorescence intensity is depicted in Fig. 3.13. Dendrites contain significantly
more Kv4.2 per unit area compared to axons. Mean relative prebleach intensities for axons
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Fig. 3.12 Endogenously expressed Kv4.2 visualized with immunolabeling localizes to den-
drites. E18 cultured rat hippocampal neurons at DIV5 were immunostained with Kv4.2 ((i),
green) to visualize the endogenous Kv4.2 and MAP2 ((ii), red) to mark the dendritic arbor.
The arrow indicates an example of an axon that still shows substantial endogenous Kv4.2.

I

Fig. 3.13 Histogram of the relative prebleach fluorescence intensity for Kv4.2-sGFP2 trans-
fected neurons. This data shows a higher density of total Kv4.2 in dendrites compared to
axons (P = 1.3×10−19) and is used as a modeling constraint in Sec. 4.4.
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and dendrites are 0.0788 and 0.1503, respectively—a significant difference (P= 1.3×10−19).
Taken together, these results establish that Kv4.2 preferentially localizes in dendrites, but
its expression in axons is non-negligible, consistent with other studies. The mean prebleach
fluorescence intensity is used to constrain total Kv4.2 subunit density (later defined as tot) in
subsequent Sec. 4.4.

3.6 Perturbing neural excitability does not have an imme-
diate observable effect on dendritic transport

Thus far, we have collected data on Kv4.2 transport and localization. We now consider
whether perturbations to neural excitability have any impact on our recent observations.
Similar experiments have been performed for AMPA receptors and other ion channels
[24, 60, 241]. Previous studies have also revealed that Kv4.2 surface expression is regulated
as a function of neuron excitability [244, 118, 88]. Moreover, dendritic stimulation is reported
to change local Kv4.2 trafficking rates as measured with FRAP microscopy [164]. We wonder
whether Kv4.2 active transport too might be regulated in a similar way. To this end, we
observe active Kv4.2 microtubule-based trafficking while perturbing the neurons. Neurons
can be experimentally depolarized by incubation with AMPA, which activates synapses
throughout the dendrites. Neurons can also be depolarized by incubation with extracellular
KCl, which increases the resting membrane potential of the cell.

3.6.1 KCl depolarization

We began with elevated KCl. Membrane depolarization with excess KCl has been found to
reduce transient outward current in ventricular rat cells [85]. We hypothesized that high KCl
might reduce Kv4.2 trafficking to cause this decrease in transient outward current.

Samples treated with high KCl concentration were prepared and time series were captured
as previously described (Sec. 2.6.2). A modified Tyrode’s solution is prepared with 15 mM
KCl. NaCl concentration is reduced to maintain isotonicity. Modified Tyrode’s solution:
95 mM NaCl, 45 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 25 mM HEPES, 10 mM glucose
(all Sigma-Aldrich) at pH 7.4. Modified Tyrode’s was added to standard 1x Tyrode’s at
20 minute into live imaging. The final concentration of KCl is determined by the ratio of
normal:modified Tyrode’s. For instance, 3:1 normal:modified Tyrode’s produces 15 mM KCl.
1:1 produces 25 mM KCl. All ratio combinations maintain the same osmolarity (isotonicity).

The immediate result of excess KCl incubation on active transport in 37 time series is
depicted in Fig. 3.14. The red line indicates the time point at which high KCl solution was
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added. Excess KCl has no significant effect on frequency of puncta transport in dendrites
when comparing time periods 0-20 min (before administration) and 40-60 min (after admin-
istration). Some recordings (indices #7-13) have no or minimal puncta before and after KCl
administration, whereas others (indices #35-36) have high transport frequency throughout
the recording. To reliability establish this, we counted mobile puncta before and after KCl
administration. An average of 0.7105 and 0.6316 mobile puncta per recording were present
during the 20 min interval before KCl administration and 20 min from time 40 to 60 min,
respectively. Two-sample t-test reveals no significant difference between these sample means
(P = 0.8193). Excess KCl does not observably increase or decrease rates of puncta transport.
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Fig. 3.14 Neuron depolarization by incubation with increased extracellular KCl concentration
does not have an immediate observable effect on microtubule transport. We found no
statistically significant difference in the number of mobile puncta observed from time 0 to 20
min to time 40 to 60 min (P = 0.8193).

3.6.2 AMPA stimulation

We next attempt similar trials with AMPA stimulation. AMPA is a compound that mimics
the neurotransmitter glutamate and activates AMPA receptors, which are the most abundant
excitatory neurotransmitters and receptors in the nervous system. Incubation with AMPA
increases synaptic activity throughout the cell. We hypothesize that Kv4.2—an inhibitory
channel that passes outward current—would be upregulated with such a perturbation, as
indeed is observed with local Kv4.2 cycling rates [164].

Samples were stimulated with an AMPA agonist to study homeostasis as in previous stud-
ies [118, 164]. Time series were captured as previously described for hour-long recordings.
(S)-AMPA (Tocris, 0254) was dissolved in nanopure water to concentration of 75 mM and
frozen in aliquots. A range of AMPA concentrations were administered 10 to 50 µM. AMPA
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administration occurred 20 min into live imaging with an open chamber. AMPA solution
was removed and replaced with fresh 1x Tyrode’s 10 minutes later to prevent excitotoxicity.

The results of AMPA stimulation are mixed, as depicted in Fig. 3.15. In some dendrites,
puncta transit stops with AMPA administration (Fig. 3.15A). In others, puncta transit begins
10 minutes after administration (Fig. 3.15B), seemingly triggered by AMPA. In most cases,
there is no discernible trend with AMPA administration (Fig. 3.15C). Given the intermittent
nature of trafficking in dendrites, a significant trend in puncta frequency does not emerge.
Upon averaging number of mobile puncta during the first and last 20 min periods of each
recording, we found no significant difference in puncta frequency with AMPA administration
(P = 0.301).

A        B        C

Fig. 3.15 Neuron stimulation by incubation with AMPA does not have an consistent effect
on microtubule transport. Red arrows indicate the time point of AMPA administration.
Depending on the recording, puncta frequency might decrease (A) or increases (B) with
AMPA. In many cases, there is no discernible trend (C). We found no significant difference
in puncta frequency with AMPA administration (P = 0.301).
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3.7 Discussion

In this study, we measured mobile Kv4.2-SGFP2 in puncta using recurrent photobleaching
while imaging live neurons. Rather than measuring fluorescence recovery as in standard
FRAP experiments, we use photobleaching as a tool to remove static fluorescence. A benefit
of this technique is that it allows for analysis of mobile puncta in bleached regions and
basal trafficking of cargo in neurons. Other methods of visualizing cargo in transit require
subunit sequestration, triggered release, and/or temperature blocks. Although we briefly
explored triggered release with the RUSH system [19], our final methodology visualizes
basal trafficking of cargo.

We found substantially higher Kv4.2 subunit trafficking in axons than in dendrites.
This surprising result appears to contradict widely documented dendritic expression of this
protein. However, just as a satellite photo of car traffic might reveal the highest density
of cars on freeways as opposed to parked at a destination, our later analysis showed that
our measurements are consistent with a mass action model of transport, as explored in
Chapter 4. This implies that increased dendritic demand and local interactions with Kv4.2
depletes dendritic microtubule-bound subunit density, with axons obeying to opposite trend.
Importantly, previous localization studies show a non-negligible density of axonal Kv4.2
[117, 3]. With no known presynaptic function, this axonal fraction might be subunits in
transit, as our trafficking dataset suggests.

There are unavoidable methodological tradeoffs between attempting to quantify protein at
physiologically low expression levels, and inducing high expression that enables live imaging.
We assumed that the transport behavior of the transfected construct Kv4.2-sGFP2 is similar
to that of endogenously-expressed subunits. Our results are therefore subject to this caveat. It
is possible that transfection of a recombinant construct alters intracellular expression profiles.
For this reason, we validated expression profiles by labeling and quantifying both endogenous
and transfected Kv4.2 subunits, while using a construct that has been thoroughly compared
to endogenous channel [119]. We anticipate that our approach can spur future work that will
mitigate experimental challenges by designing enhanced fluorescent probes that might be
suited to live superresolution imaging. Such methods will be crucial for peering deeper into
the logic of intracellular protein regulation. Another potential method might involve CRISPR
to study endogenously labeled channels. We discuss the methodological impacts on transport
behavior in the context of other constructs in Sec. 2.10.

Another notable limitations is our expression system. We observed trafficking in cultured
neurons rather than an in vivo system. It is possible that cargo trafficking and regulation for a
neuron in vivo and in an active circuit differs from a neuron cultured on a dish. The cell’s
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orientation, adjacent neurons, surrounding glial cells, and tissue parenchyma vary between
environments.

Lastly, we observed that perturbations to neural excitability with KCl and AMPA made
no immediate impact to the rate of trafficking. Treatment with AMPA hours or days before
imaging might have produced a more significant change in trafficking frequency. Similarly,
longer incubation with KCl before imaging would be most consistent with so-called chronic
depolarization. However, these perturbations would also have widespread effects throughout
the cell, including on mechanisms involved in intraneural distribution. For instance, subunit
biosynthesis, modifications, and expression might all be regulated by neural excitability.
We intended to isolate the effect of the perturbations on active transport. Herein lies a
major challenge of performing and interpreting experimental results. A simple perturbation
undoubtedly has multiple effects, each with their own downstream effects. Over long time
scales, chronic depolarization with KCl likely impacts Kv4.2 biosynthesis and trafficking.
And of course, trafficking frequency depends on subunit biosynthesis. The challenge lies in
determining whether chronic depolarization has a direct or indirect effect on subunit transit.

It would have been interesting if trafficking of Kv4.2 puncta was affected on a short time
scale. From our experiments here, we cannot rule out such regulation occurs. However,
we can conclude that it is unlikely to occur on a timescale as observed here (minutes to
hours). We return to this question in Chapter 6, where we explore the sensitivity of feedback
regulation at global and local scales. We later show that there are serious disadvantages to
highly sensitive regulation, which might explain why perturbing neural excitability does not
immediately affect microtubule transport as observed here.





Chapter 4

Reconciling the discordant distributions
of microtubule-bound and delivered
cargo densities

The results described in this chapter have been submitted to Biophysical Journal. Some
sections were written in direct connection to that manuscript.

4.1 Chapter summary and key findings

Building on the experimental observations of the previous chapter, we next reconcile the
static and transported cargo densities of Kv4.2. We establish our working framework of
cargo distribution in neurites, where we differentiate mobile, microtubule-bound subunits
(abbreviated mt) from delivered subunits (abbreviated del) which include cytosolic and
membrane-bound ion channels.

1. The discrepancy between Kv4.2 localization (del) and subunits in transit (mt) is
reconciled by simple mathematical models. Mass action kinetics reveal that the local
density of actively transported intracellular cargo can show an inverse relationship with
its static expression density. This is demonstrated first in lumped models.

2. A gradient static (del) and transported (mt) expression profiles of Kv4.2 along the
somatodendritic axis is also sufficiently explained by simple mathematical models.
Expression gradients in del at the sub-neurite level that oppose transport gradients
mt can arise solely from a directional transport bias and mass action kinetics. This is
illustrated for the previously unexplained, unique expression and functional profile of
Kv4.2.
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3. Kv4.2 puncta exhibit kinetic differences between axons a and dendrites d consistent
with local interactions for cargo demand. These discrepancies are attributable to
varying propensities for cargo offloading (poff) and unidirectional runs (pmem) in
axons and dendrites. Using statistical inference with our experimental data, we make
qualitative estimates: pa

off < pd
off and pa

mem > pd
mem.

4.2 Introduction

Most cell types exhibit polarity, an intrinsic asymmetry that defines subcellular directionality
and compartment identity. Neurons exhibit strong polarity, with most neuron types showing
clear morphological and functional differences between axons and dendrites that shapes the
flow of information. The functional differences between these compartments is underpinned
by localization of proteins, organelles, and other material within these cell projections. Such
global patterning of intracellular expression is thought to be largely mediated by intracellular
transport [115, 142] which is increasingly well understood. However, we still lack an
understanding of how intracellular transport gives rise to consistent expression profiles
in complex neuronal morphologies [58, 220, 247]. To better understand this topic, we
develop a framework of intracellular transport in which cargo is either actively transported on
microtubules (termed mt) or delivered and localized in the cytosol or membrane (termed del).

How does cargo dynamically settle to a required distribution? Individual subunits of
cargo are unlikely to have directions or otherwise be oriented to the cell morphology. Such a
centralized addressing system is inconsistent with observations of stochastic and bidirectional
cargo transport. Rather than directed navigation, leading conceptual models suggest that
cargo is exported and sorted, while local interactions detect and sequester bypassing subunits
as needed [165, 61, 28, 29]. This system is called the sushi-belt model, a hypothesized
framework governing intraneuronal trafficking [61], which leaves a number of questions
unanswered:

1. What is the expected relationship between mobile microtubule-bound cargo (mt) and
delivered cargo (del)? For a specific ion channel, we find that mobile subunits are
observed less frequently in regions of high localization, as a result of high cargo
demand and sequestration.

2. Can this framework account for unique localization profiles at the sub-neurite level?
The sushi-belt model constrained with our experimental observations reproduces a
distinct delivered subunit distribution that increases with dendritic distance.
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3. Do the kinetics of cargo motion reflect the regional demand and associated local
interactions? For a specific ion channel, we report ballistic trajectories in regions of
low demand and diffusive trajectories in regions of high demand, partially explained
by region-specific interactions.

Is the sushi-belt model a plausible framework for intracellular trafficking in large neuron
morphologies? We evaluate this for a candidate cargo by comparing densities of cargo in
transit with distributions of delivered cargo.

We investigate Kv4.2 as a candidate cargo because of its polarized localization and
unique distribution profile. As introduced in previous chapters, Kv4.2 is a voltage-gated
ion channel prevalently expressed in excitatory neuron dendrites. Kv4.2 conducts A-type,
transient outward potassium current, which is abundant in dendrites but scarce in axons
[208]. Dendritic expression of Kv4.2 is consistent with its hypothesized role in dendritic
integration and control of excitability [208, 106, 220]. Moreover, A-type current exhibits
a five- to sixfold increase in current density over the length of the apical dendrite [106].
Localization studies of Kv4.2 corroborate this finding, showing a 70% increase in channel
density along the apical dendrite [117]. Several studies have measured Kv4.2 trafficking and
internalization in dendrites [242, 244, 118, 88], but none to date have enabled a quantitative,
global model of transport and expression patterns.

We report observations that answer the aforementioned three questions for Kv4.2 subunits
in hippocampal neurons. During live imaging of actively transported Kv4.2 subunits, we
found a greater density of microtubule-based transport in axons than in dendrites (Chapter 3).
The apparent discordance of high trafficking densities in regions of low cargo delivery turns
out to be consistent with a simple mass action model of intracellular transport. Assuming
higher propensity for cargo sequestration and delivery in dendrites, the model predicts a
resultant lower density of microtubule-bound cargo. Conversely, a low probability of delivery
in axons results in more cargo remaining on the microtubule.

A discretized variant of our model accounts for increasing Kv4.2 localization from
proximal to distal compartments. This expression pattern has been extensively characterized
and is important for dendritic function, but the question of how it emerges from a relatively
simple trafficking mechanism has remained unanswered. We experimentally estimated model
parameters including microtubule occupancy and transport rates as functions of distance from
soma. Constrained with these data, we provide an analytical solution for the microtubule
occupancy (mt) profile that can recapitulate the previously unexplained Kv4.2 localization
(del) profile along dendrites.

Finally, a stochastic variant of our model accommodates and accounts for qualitative
kinetic differences in individual cargo trajectories. We inferred that dendritic transport
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with lower speed and displacement is consistent with increased local interactions on the
microtubule. Consistent with lower subunit demand, axonal transport is faster and also
mechanistically distinct with longer uninterrupted runs.

The global patterning of intracellular expression is largely mediated by intracellular
transport which is increasingly well understood [115, 142]. However, we have yet to elucidate
how intracellular transport gives rise to consistent expression profiles in complex neuronal
morphologies [58, 220, 247]. Here, we reveal the transport dynamics of ion channel Kv4.2,
a cargo with polarized localization (largely in dendrites) and unique density distribution
(increasing profile). Our coarse grained models based on first principles accommodate a
number of transport phenomena, fit various experimental observations, and are compatible
with other mechanistic models of trafficking. This analysis generalizes to intracellular
transport and delivery of other cargo and prompts caution in the interpretation of cargo
distributions.

4.3 Coarse-grained modeling captures cargo transport and
delivery with various levels of detail

In this chapter, we address the question of how cargo localization relates to the density of
cargo transported on microtubules. We first discuss a conceptual model of cargo transport and
delivery. A cartoon of a neurite segment in Fig. 4.1Ai depicts membrane vesicles (circles)
containing cargo (green). An enlargement of the vesicle (Fig. 4.1Aii-iii) shows ion channel
Kv4.2 with conjugated fluorescent probe sGFP2 embedded in the lipid bilayer. Each ion
channel is a complex of four subunits containing four sGFP2 molecules (Fig. 4.1Aiii), and
each membrane vesicles contains numerous ion channels (Fig. 4.1Aii)

In a neurite segment (Fig. 4.1Ai), vesicles containing Kv4.2-sGFP2 are either bound to
the microtubule on motor proteins or delivered following local interactions for cargo demand.
Delivered cargo includes both cytosolic vesicles as well as membrane-bound subunits. These
microtubule-bound and delivered cargo fractions are henceforth referred to as mt and del.
Both mt and del cargo degrade with rate w.

We use the described framework (Fig. 4.1A-B) to understand our results through a
model built up from first principles. We begin with the smallest particles resolved using our
methods—the membrane vesicles containing Kv4.2-sGFP2—termed puncta (Fig. 4.1Aii,
Bi-ii). A single puncta of cargo is attached to opposing motor proteins (Fig. 4.1Bii) and is
subject to numerous forces and interactions with motors, microtubules, and auxiliary proteins
[73, 74, 122, 77, 165, 61, 28, 29]. We use coarse-grained modeling to represent the net
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Fig. 4.1 Microtubule-bound (mt) and delivered (del) subunit densities. (A): Kv4.2 subunits,
broadly categorized into microtubule-bound (mt) and delivered (del) compartments (i), are
transported in membrane vesicles (ii), which contain Kv4.2-sGFP2 subunits embedded in a
lipid bilayer (iii). (B): Our biophysical model captures various experimental observations.
Beginning with first principles, individual vesicles containing cargo (termed puncta) behave
stochastically as a random walk (i-ii). An ensemble of such punctas (iv) yields a deterministic
process, described by the drift-diffusion equation with decay (iii), which can be discretized
to mass action models of varying compartment size (v). Discretized compartments represent
neurites of a full neuron morphology (vi). (C): Mass action models accommodate steady
state cargo densities. Delivered (del) density is low in axons, high in dendrites, and increases
with dendritic distance (i). Microtubule-bound (mt) trafficking densities are high in axons
and low in dendrites (ii).
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effects of collective forces on individual puncta. In the simplest variant of our model, puncta
move right and left with propensities p+ and p− in a random walk. Puncta also detach
and reattach with net propensity poff. At this level, the stochastic model accommodates
measurements of individual puncta with discrete trajectories (Fig. 3.8).

An ensemble of puncta undergoing stochastic motion behaves predictably according
to the drift-diffusion equation with decay as shown in Fig. 4.1Biii-iv [214, 247]. This
partial differential equation describes the position x and time t variation of microtubule-
bound puncta density nmt with rates for bulk flow directed to the right f , left b, and off the
microtubule noff. The drift-diffusion equation with decay can be discretized to represent
neurites (Fig. 4.1Bv) of a larger neuron (Fig. 4.1Bvi). The resultant mass action models
can be further discretized or lumped into smaller or larger compartments, respectively, for
average or distance-dependent data [245, 247], depicted later in Fig. 4.2. These deterministic
models accommodate measures of bulk puncta flow.

With steady state assumptions, mass action models can also accommodate bulk puncta
densities or frequencies (Figs. 3.1, 3.11, and 3.13). The CA1 pyramidal cell in Fig. 4.1Bvi is
shaded according to the steady state density of delivered (del) Kv4.2 subunits from studies of
A-current density and electron microscopy [106, 117, 3]. Delivered cargo localization (del) is
low in axons and high along the somatodendritic axis with increasing density with dendritic
distance, also plotted in Fig. 4.1Ci. In this study, we corroborate this trend of high delivered
(del) localization in dendrites in both endogenous and transfected expression systems using
electron microscopy and immunostaining (Figs. 3.11 and 3.12). In Fig. 4.1Cii, we depicted
mt density as observed in the previous chapter (Fig. 3.1), which is notable because it mirrors
the delivered (del) density.

Delivered (del) localization and microtubule-bound (mt) density appear to be negatively
correlated. Experimental measurements and mathematical models reconcile these distribu-
tions in both lumped neurites (Fig. 4.2B-D) and along an intraneurite gradient (Fig. 4.10).
Local demand for circulating cargo results in the observed profiles by simple mass action. We
also report transport kinetics, from which we infer local cargo interactions that are consistent
with the observed profiles (Fig. 4.8). We adapt variants of our biophysical model to numerous
experimental observations to reach unified conclusions on the relationships between mt and
del densities.
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4.4 Disparity between Kv4.2 static localization and mobile
frequency is explained by a mass-action model

Our results in the previous chapter show that the static distribution (del) of Kv4.2 is con-
centrated in dendrites (see Sec. 3.5 and Fig. 3.11), in agreement with known physiological
function of this channel. On the other hand, we found in Sec. 3.3 that the vast majority of
puncta undergoing active transport (mt) appear in axons (Fig. 3.1). How can these apparently
conflicting results be reconciled? We addressed this question by constructing biophysical
models of transport and delivery constrained with our experimental data from Chapter 3. We
constrain del with electron microscopy data (Fig. 3.11), which quantified subunits in synapses
or extrasynaptic regions. We constrain mt with frequencies of actively transported subunits
(Fig. 3.1). We constrain total tot subunit density with prebleach fluorescence intensity (Fig.
3.13).

A full neuron morphology can be discretized into spatial compartments, depicted in
Fig. 4.2A, as previously described. In each compartment, we assumed that cargo is either
undergoing transport on microtubules (subscript mt) or delivered (subscript del) in axonal
(a) and dendritic (d) compartments. Compartments del account for all channel subunits
that have detached from microtubules, including those in local pools and on the plasma
membrane. Rates from mt to del represent cargo offloading from the microtubules (aoff, doff).
The reverse rates (areload, dreload) represent cargo reloading from del to mt.

Our puncta measurements sampled segments of dendrites and axons, which did not
provide data at all locations along each neurite. To incorporate these measurements into a
model, we coarsened into a lumped compartmental model that considers only the average
density of material in axons and dendrites, irrespective of location (Fig. 4.2B). In the lumped
model, sa,d and sd,a represent cargo passing between axons and dendrites. All other rates and
compartments are as previously described.

The system of differential equations for this lumped compartmental model is shown
below:

ȧdel = aoffamt −areloadadel −wdeladel

ȧmt = P+ areloadadel −aoffamt + sd,admt − sa,damt −wmtamt

ḋmt = P+ dreloadddel −doffdmt + sa,damt − sd,admt −wmtdmt

ḋdel = doffdmt −dreloadddel −wdelddel

(4.1)

where a lumped rate vd,r describes flow of mass dvd,r from donor d to receiver compartment
r. The lumped model does not contain a soma compartment. To account for biosynthesis,
we add a fixed production term P to both dendritic and axonal microtubule compartments.
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Fig. 4.2 Box diagrams of compartmental models of cargo transport in axons and dendrites.
(A): In a full morphology, the central soma is surrounded by microtubule (mt) and delivered
(del) cargo compartments for axons a and dendrites d. Arrows denote rates of cargo transfer
between compartments. (B): A lumped variant can accommodate experimental constraints to
simulate disparities in subunit density between axons and dendrites. (C): Simulation of (B)
requires estimation of inter-neurite transit rates sa,d and sd,a using experimental constraints
for total (tot) cargo. (D): Simulation of (B) requires estimation of cargo offloading (off ) and
reloading (reload) rates using experimental constraints for mt and del
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Note that flux into both is not assumed to be equal, since flow between axons and dendrites is
accounted for by parameters sd,a and sa,d . w represents cargo degradation, which, consistent
with endolysosomal and authophagic degradation pathways of membrane proteins [113],
is faster in del than mt: wdel > wmt. The remaining rates in Eqs. 4.1 are estimated from
experimental results.

We assumed that sa,d and sd,a are slower than the other four rates for two reasons. First,
the distances traveled on microtubules are substantially longer than from mt to del, as evident
in the full morphology in Fig. 4.2A. The net flux due to active transport between dendritic
and axonal compartments is lumped into the parameters sa,d and sd,a. Allowing separate
fluxes, sa,d and sd,a, provides for asymmetric flow due to sorting mechanisms that are known
to regulate cargo entry into both axons and dendrites [116, 161, 126], including for Kv4.2
[112]. To enable a (quasi) steady state estimate of cargo density we set rates sa,d and sd,a to a
timescale ten-fold slower than the other rates, although more modest timescale separation
produced the same qualitative result.

We next constrained the rates in this model with our experimental measurements. Rates
sa,d and sd,a are estimated using the total cargo in axons atot and dendrites dtot. We assumed
that

atot = amt +adel and dtot = dmt +ddel (4.2)

We also assumed that fluorescence microscopy of Kv4.2 captures atot and dtot, in which we
found a dtot : atot ratio of 7.1 : 1 (see Fig. 3.13). Predominant dendritic segregation of the
channel is corroborated by other localization studies [208, 117, 220, 3]. To estimate rates
from tot densities, we grouped mt and del compartments (from Fig. 4.2B) to produce a
model with only atot and dtot, depicted in Fig. 4.2C. Steady state analysis of the differential
equations (described more thoroughly in Sec. 2.9) for this model variant yields:

dtot

atot
=

sa,d

sd,a
≈ 7.11

1
. (4.3)

Rates sa,d and sd,a are normalized to axonal measures.
Estimating offload (aoff, doff) and reload (areload, dreload) rates requires a measure of mt

and del cargo in both axons and dendrites. We constrained the steady state densities of mt
compartments (amt, dmt) using experimental data (Sec. 3.3 and Fig. 3.1C). Normalizing to
axonal puncta frequency, we estimated dmt = 0.04 and amt = 1.

We estimate steady state del compartments (adel, ddel) using our data from electron
microscopy in synapses (see Sec. 3.5, Fig. 3.11, and Table 3.1). Normalizing to the axon,
ddel = 2.24 and adel = 1.
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Fig. 4.3 Result of simulation with experimentally-constrained rates, corroborating observed
mt and del densities.

To estimate offload and reload rates from mt and del densities, we modeled axons and
dendrites individually as depicted in Fig. 4.2D. As twice before, we arrived at expressions
that allowed us to solve for ratios of rates:

amt

adel
=

areload

aoff
≈ 1

1
and

dmt

ddel
=

dreload

doff
≈ 0.0374

2.24
(4.4)

Together these estimates (Eqs. 4.3-4.4) provide constraints for all rates in the lumped model
variant (Fig. 4.2B).

The simulation of this model are depicted in Fig. 4.3. At steady state, the negative
correlation between mt and del compartments in both neurites is clear: adel < amt and
dmt < ddel. In the context of mass action, the result is intuitive. Because cargo demand in
axons is restricted (adel < ddel), more cargo tends to accumulate in the microtubules of axons
versus those of dendrites (amt > dmt). The disparity between total Kv4.2 subunit density and
puncta frequency is partially explained by the simple mass action model.

We analyzed negative correlation between mt and del compartments using Eq. 4.2 and
the estimate in Eq. 4.3. We normalized the constraint in Eq. 4.3 to a total mass atot +dtot = 1
(atot = 0.12, dtot = 0.88) such that each density (amt,adel,dmt,ddel) is a fractional quantity.
The resultant steady-state densities of del and mt cargo are plotted in Fig. 4.4. Shaded regions
indicate the range of atot and dtot from first to third quartiles on Fig. 3.13. Quantities of cargo
mt have a clear negative correlation with del, and this result holds for any atot and dtot. In
other words, the negative correlation within a neurite exists regardless of cargo predilection
for that neurite.
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Fig. 4.4 Analytical result demonstrating negative correlation between adel and amt or ddel and
dmt when restricted to a constant tot mass.

In summary, these results so far show that apparently contradictory densities of mobile
(mt) and delivered (del) cargo are consistent with a simple transport model. This conclusion
only required considering bulk flow between compartments that represented the entirety of
the axonal and dendritic arbors. However, our experimental measurements also indicated
strong differences in the detailed motion of axonal and dendritic puncta. We next analysed
detailed transport kinetics in both axons and dendrites to infer whether differences could be
accounted for by qualitatively different transport mechanisms.

4.5 Kinetic differences between axons and dendrites are at-
tributable to varying propensities for cargo offloading
and unidirectional runs

We analyzed Kv4.2 puncta trajectories in axons and dendrites. Kymograms depicting
representative puncta trajectories in axons and dendrites are shown in Fig. 3.8Ai and Fig.
3.8Bi, respectively. Population measurements of puncta kinetics are shown in Fig. 3.9. We
found that axonal puncta undergo unidirectional runs at high speeds, whereas dendritic puncta
appear to change direction more frequently and stall longer. Since the same cargo is trafficked
in both neurite types, we asked whether these differences in trafficking kinetics were better
explained by an intrinsic difference in the microtubule transport mechanism, or whether
they could simply be accounted for by a difference in dendritic and axonal propensities for
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cargo offloading from microtubules. To infer which of these mechanisms best captured our
observations we modeled out individual trajectories using a modified random walk.

Our previous models cannot represent individual puncta trajectories, since these kinetics
were lumped into single compartments amt or dmt. We require a model with fine spatial
discretization of the microtubules. Two such models are the random walk and drift-diffusion,
which respectively describe the motion of an individual particle and population of particles.
These models are used in conjunction to draw conclusions from the experimental data.

4.5.1 Modeling transport using a modified random walk

We constructed a simplified compartmental model of active transport in the form of puncta
undergoing modified random walks. This model is shown in Fig. 4.5A and contains three
types of compartment: axon (A), soma (S), and dendrite (D). Each punctum begins in the S
compartment and has some probability per unit time (propensity) of moving right p+ and
some propensity of moving left p−. These transition propensities represent the stochastic
movement of actively transported cargo along microtubules.

We incorporated local interactions by allowing neurite-specific cargo offloading. Puncta
on axonal microtubules have a propensity of offloading, pa

off, while puncta on dendritic
microtubules have a distinct propensity pd

off. Given our own observations (Fig. 3.11-3.13)
and the extensive published evidence for Kv4.2 proclivity to dendrites versus axons [208,
106, 30, 118, 117, 220, 3], we explored ratios of pa

off to pd
off for which pa

off << pd
off.

In a variation of this model, we implemented our observation that axonal puncta travel
unidirectionally with little stall time, which is characteristic of a superdiffusive process.
Indeed, there is experimental evidence for microtubule-based transport undergoing superdif-
fusive unidirectional runs [37, 38, 193]. We therefore incorporated an additional probability
parameter pmem that acts as a memory term, depicted in Fig. 4.5B-C. pmem is the probability
that a punctum repeats its previous step, giving rise to extended runs if pmem > 0. When
pmem = 0, the next step is independent of the previous step (Fig. 4.5B). When pmem = 1, the
next step is always the same as the previous step (Fig. 4.5C). A linear interpolation between
these extremes, as described in [247], produces a range of memory propensities that scales
the average length of the unidirectional run.

Fig. 4.6 depicts a simulation of 10 puncta over 500 time steps. The resultant simulated
trajectories agree qualitatively with kymograms from experiments (Fig. 3.8). In this simula-
tion, as in experiments, puncta in axons on average travel longer distances, at faster speeds,
and with decreased stall times when compared to puncta in dendrites. We next rigorously
examined the goodness of fit of our experimental data to this model to infer mechanistic
differences between axons and dendrites. We start by estimating jump rates p− and p+ using
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Fig. 4.5 Model of modified random walk. (A): Setup of stochastic simulations along lin-
ear multi-compartment model (axon-soma-dendrite), with left/right jump and offloading
propensities depicted. (B) and (C) depict extreme cases for memory parameter pmem.
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Fig. 4.6 For demonstration of the stochastic model, 10 puncta are simulated over 500 time
steps with pa

off < pd
off and pa

mem > pd
mem. The resulting simulated trajectories visually compare

to the experimentally-obtained kymograms in Fig. 3.8.
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bulk flow averages in the drift-diffusion model. We then infer parameters poff and pmem by
simulating individual puncta trajectories with the modified random walk.

4.5.2 Drift-diffusion equation

We estimated left and right jump rates p− and p+ of individual puncta by analyzing the bulk
flow of a population of particles. We used population dynamics for average puncta position
as a function of distance along the dendrite. Fig. 4.7 depicts the observed puncta frequency
of dendritic puncta versus their measured distance from the soma. Puncta trajectories are
grouped in 1 µm bins along the dendrites, normalized by the number of dendritic recordings
in each bin. To avoid numerical errors with low replicate count, we only considered bins with
≥ 30 dendrite recordings. The resulting distribution of puncta frequency is plotted (Fig. 4.7
bottom) and displays a trend of decreasing puncta frequency with distance from the soma.

Fig. 4.7 Puncta frequency decreases with distance from soma in dendrites. Top-left: All
dendrites and dendritic puncta are binned according to distance from the soma. Only distances
with N > 30 dendrites (bolded) are selected for analysis to avoid numerical error with low
replicates. Top-right: The number of dendritic puncta is standardized by number of dendrites
for each recording, producing a normalized puncta frequency as a function of dendritic
distance. Bottom: The puncta frequency is consistent with analytical solutions to the drift-
diffusion equation (R2 = 0.74). This result is used to constrain mt densities at steady state in
the discretized model of Kv4.2 transport (Sec. 4.6).
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This distribution of puncta frequency versus distance is expected for a collection of
mobile particles obeying the drift-diffusion equation, which we can demonstrate analytically.
The one-dimensional drift-diffusion equation (derived in Sec. A.1 of Appendix A) is as
follows:

∂m(x, t)
∂ t

= D
∂ 2m(x, t)

∂x2 + v
∂m(x, t)

∂x
(4.5)

where m(x, t) denotes the concentration of some substance (heat, particles—in this case,
Kv4.2-containing puncta) as a function of position x and time t. D is the diffusion coefficient
and v is the mean net velocity, or drift.

Since all of our measurements were in cells with strong fluorescence many hours after
transfection, we may assume transport has reached a steady state in which an equal number
of puncta enter and leave the recording region. Thus, ∂m(x,t)

∂ t = 0, reducing Eq. 4.5 to:

∂ 2m(x)
∂x2 +

v
D

∂m(x)
∂x

= 0

This special case of the drift-diffusion equation is known as Poisson’s equation, which we can
solve as a boundary value problem using the boundary conditions observed experimentally.
The endpoints of our data, m(0 µm) = BP and m(200 µm) = BD, are set for fitting, where BP

and BD are also the proximal and distal boundaries of the model. Our analytical solution is
as follows:

m(x) =
e−

v
D x(BDe200 v

D (−1+ e
v
D x)+(e200 v

D − e
v
D x)BP)

−1+ e200 v
D

(4.6)

We fitted this analytical solution to the experimental data using least squares to obtain BP,
BD, and the drift/diffusion coefficient ratio v

D :

BP = 0.47; BD = 0.12;
v
D

= 0.002 (4.7)

This analytical solution (R2 = 0.74) and is overlaid on the experimental data in Fig. 4.7.
D and v describe the bulk flow of a population of particles. When Eq. 4.5 is discretized,

D and v characterize the rates of cargo transfer between adjacent compartments:

D =
∆x2( f +b)

2∆n
and v =

∆x( f −b)
∆n

(4.8)

where f and b are the forward and backward rates of the discretized compartmental model.
∆x and ∆n are discretizations in space and time, respectively, for a discrete-time random
walk on a 1D lattice. The coefficients describing bulk cargo flow, D and v as defined in Eq.
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4.8 are estimated from a population of particles undergoing the random walk, as derived in
Appendix A.

In the limit of large numbers, the propensities of a particle undergoing a random walk p+
and p− are related to compartmental model rates f and b according to

f =
2p+− (p+− p−)2

2
and b =

2p−− (p+− p−)2

2
(4.9)

as derived in [247]. Using the result from the BVP (Eq. 4.7) along with Eqs. 4.8 and 4.9
and the constraint that p++ p− = 1, we can estimate random walk jump rates: p+ = 0.5005,
p− = 0.4995. Puncta thus have a modest directional bias and p+ ≈ p−.

4.5.3 Analysis of stochastic model

Returning to the random walk model, we first produced analytical descriptions of the kinetic
measures using model parameters. These analytical derivations are described in Sec. B.1 of
Appendix B. The result of these derivations reveal that the distribution profiles of punctal
distance traveled and mean speed are analytically complex. However, both are geometrically
tractable and can be approximated as decreasing monotonic functions.

We next performed parameter inference of model parameters using experimental data
and maximum likelihood. This heuristic method is fully described in Sec. B.2 of Appendix
B and briefly summarized here. The fitting of this model to experimental data using a
combination of maximum likelihood estimation (MLE) and least squares fitting is described
here. A gamma distribution, given its continuity and coverage of a semi-infinite [0,∞)

interval, accommodates the analytical solutions as well as experimental and model data.
Experiment and model data are normalized and fit to a gamma distribution using MLE
(MATLAB function fitdist). The shape and scale parameters of gamma fits are compared
using nonlinear least squares data fitting (MATLAB function lsqcurvefit). Generating
stochastic model estimates necessitates a large number of simulated puncta Ns to produce
consistent distributions, which requires high computational cost. To resolve this, we employ
a moderate Ns = 10,000 and increase the finite difference step size of lsqcurvefit. A
script continuously iterates between (1) running Ns iterations of the stochastic model, (2)
MLE of stochastic data, and (3) least squares fitting of distribution parameters to match those
of experimental data.
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4.5.4 Inference of qualitative differences in axonal and dendritic traf-
ficking via stochastic modeling of experimental data

We compared models with (0 < pmem < 1) and without (pmem = 0) memory. Fig. 4.8 (second
column) shows fits to a memoryless model (pmem = 0). Optimal parameter estimates for
surface delivery gave pa

off < pd
off (pa

off = 0.01 and pd
off = 0.04) consistent with experiments

and previous results in Figs. 4.3-4.4. A random walk with poff alone is sufficient to explain
the differences in net displacement and average speed (Fig. 4.8A and B). However, stall
time and unidirectional runs are not captured (Fig. 4.8C and D). This result suggests that
a memoryless random walk explains the speed and displacement of cargo. However, a
memoryless model fails to capture unidirectional runs and stalling.

The result of fitting the model with a memory term (0 < pmem < 1) is shown in the third
column of Fig. 4.8. We again found pa

off < pd
off, producing the same trends in displacement

and speed (Fig. 4.8A and B). Optimal estimates of the memory term were pa
mem = 0.60 and

pd
mem = 0.05 which is consistent with superdiffusivity being more prominent in axons (Fig.

4.8C and D) and with longer unidirectional runs and with elevated stall times in dendrites, as
observed in trajectories (Fig. 3.8A-B).

These observations are consistent with an analysis of mean squared displacement (MSD)
for each trajectory (Fig. 4.9). We computed average MSD as a function of time interval, τ up
to one quater of the total recording duration. Resulting data were fitted to MSD(τ) = Dτα for
each trajectory to obtain parameters D and α . Puncta in both dendrites and axons appear to
undergo motion with similar D (Fig. 4.9B). However, the MSD tends to increase more rapidly
with τ for axonal puncta than for dendritic puncta (Fig. 4.9A). This corresponds to the axonal
puncta taking more consecutive steps in the same direction, resulting in motion that is more
directed than the memoryless walk of particles in typical diffusion. Axon puncta exhibited
a higher degree of superdiffusivity than dendrite puncta (Fig. 4.8D). This discrepancy
is consistent with simulated puncta behavior with inferred parameters pa

mem = 0.60 and
pd

mem = 0.05.
Together, this analysis suggests mechanistic differences in the transport of Kv4.2 in

axons and dendrites. Increased net displacement, average speed, and puncta frequency in
axons are explained by a random walk with minimal delivery in axons, consistent with Kv4.2
predilection for dendrites. However, reduced surface delivery of cargo in axons only partially
explains the longer observed runs. Other kinetic parameters—stall time and superdiffusivity—
require an additional memory term in a modified random walk model, suggesting a distinct
axonal transport mechanism.
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Fig. 4.8 Histograms for various kinetic transport parameters, normalized as probability
density functions. On average, axonal puncta have greater net displacement (A), faster speed
(B), deceased stall time (C), and increased unidirectional runs (D). Model fits to these results
using poff alone (second column) as well as using poff and pmem (third column) are depicted.
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Fig. 4.9 Result of curve fitting for mean squared displacement (MSD) versus time separation
(τ), revealing higher degree of superdiffusivity in axons compared to dendrites (A). Bold
curves indicate the medians of the populations. Histograms show distribution for D (B), is
significantly different (Mann-Whitney test) between axons and dendrites with P = 3.9×
10−73. Histogram for α was depicted in Fig. 4.8D.

4.6 Mass-action kinetics reconcile mt and del gradients along
the somatodendritic axis

We have established that lumped densities of delivered cargo (del) and cargo in transit (mt)
are negatively correlated, consistent with models of mass action. In distance-dependent
measurements, we observe a decreasing mt profile along dendrites with distance from the
soma (Fig. 4.7). On the other hand, functional and localization studies show that surface
density of Kv4.2 increases along this axis [106, 117]. Can our modeling and experimental
results also account for this relationship? Does negative correlation between mt and del
compartments hold along a sub-neurite gradient—in a spatially discretized dendrite? Are
mass action kinetics sufficient to create a profile of increasing del with distance from the
soma?

To address this, we constructed a model of distribution and delivery across a linear
multi-compartment dendrite discretized in space. This model is depicted in Fig. 4.10, where
di

mt and di
del represent mt and del compartments, respectively. di

off is the rate of microtubule
offloading for each di

mt, and fi and bi denote the forward and backward transport rates along
the length of the dendrite. Using our dendritic data (507 mobile puncta in 478 dendrites) to
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estimate rates, we can infer compatible spatial profiles of cargo offloading di
off and delivery

given our experimental data.

ii

Fig. 4.10 Box diagram of a mass action model of dendritic transport and delivery with
feedback. The dendrite is spatially discretized, with each discretization i comprising a
microtubule di

mt and delivered di
del compartment. fis, bis, and di

offs denote rates between
compartments. Degradation rates for all compartments are simulated but not depicted.

We considered a dendritic branch extending 250 µm from the soma, which captures typical
distances over which trafficking and localization have been characterized. To constrain the
steady state concentrations of mt compartments (s,d1

mt,d
2
mt, ...,d

10
mt), we used experimental

values obtained in Fig. 4.7.
We next computed directional bias in punctal velocity as a function of distance to constrain

rates fi and bi. We averaged the instantaneous velocities of each puncta trajectory in bins by
distance from the soma. Mean puncta velocity was directed distally, away from the soma, and
showed an increasing linear trend, as plotted in Fig. 4.11 (R2 = 0.0399 with 90% confidence
intervals). Despite low correlation for a linear trend, a two-sample t-test for bins between
0-50 µm and 150-200 µm indicates a significant increase (P = 0.0136) in mean velocity from
1.81 to 5.22 µm/s. With a positive y-intercept and slope, the mean punctal velocity is directed
distally and increases with distance from the soma. That is, fi > bi and fi+1 >> bi+1. The
velocities in Fig. 4.11 range from 1.5 to 5.2 µm/s and are scaled according to the spatial
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Fig. 4.11 The mean instantaneous velocities for all dendritic puncta are standardized by
puncta frequency along the length of the dendrite. Mean velocity (y-axis) is directed distally,
away from the soma. A linear tread line is plotted through the data with 90% confidence
intervals, indicating a positive (distal) velocity bias that increases with distance from soma.
This data is used to constrain rates between mt compartments.

discretization of the model to estimate fis and bis. The diffusion coefficient D = fi+bi
2 was

estimated using Eq. 4.7, which we assume remained constant throughout the dendritic tree.
As in the previous mass action models, each di

mt has a corresponding differential equation
describing cargo entering and exiting as depicted in Fig. 4.10. We use steady state analysis to
solve for cargo offloading rates di

offs in these equations. We find that a profile of increasing
fis and decreasing bis with distance from the soma produces an increasing profile of di

offs. In
other words, for cargo with an increasing directional bias such that 0 < fi −bi < fi+1 −bi+1

and decreasing mt profile, mass action dictates increasing offload rates di
off < di+1

off with
distance from the soma. This result is derived solely from equations describing mass action
and conservation of mass.

Increasing di
offs can produce del profiles that have the opposite spatial trend to mt densities.

To demonstrate this, we simulate regulated Kv4.2 production, distribution, and delivery in our
model. In the soma, Kv4.2 biosynthesis P is regulated by active subunits in del compartments,
as depicted in Fig. 4.10. The equation for negative feedback is

P = KP

(
dtarget

avg,del −
∑

10
i=1 di

del
10

)

where dtarget
avg,del is the target del concentration (setpoint), ∑

10
i=1 di

del
10 is mean delivered cargo

(process variable), and KP is the sensitivity of the proportional controller. This control loop
feedback mechanism is consistent with experimental observations that Kv4.2 expression is
regulated as a function of neuron excitability [244, 118, 88, 164]. Averaging di

dels provides a
realistic process variable for a global controller in a neuron.
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Fig. 4.12 Simulation of mass action model of dendritic transport and delivery with feed-
back. (A): Plot depicting cargo quantities on microtubules, di

mt (i), and delivered cargo
quantities, di

del (ii). (B): Steady state concentrations of all compartments. (C): Steady state
concentrations of di

dels standardized by d2
del at 50 µm overlaid on equivalently-standardized

experimental data of Kv4.2 localization [117].
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With all rates defined, the result of simulation is depicted in Fig. 4.12A. di
mts assume

a profile similar to that observed experimentally (Fig. 4.7), with decreasing density with
distance from the soma (Fig. 4.12Ai). di

dels express the opposite profile—increasing density
with distance from the soma (Fig. 4.12Aii). Steady state density versus position along
the dendrite is plotted in Fig. 4.12B. The increasing di

del density is notable because local-
ization experiments [117] and, to a larger degree, recordings of A-type current [106] both
demonstrate increasing profiles with distance from the soma.

In this analysis, the increasing gradient of di
dels (Fig. 4.12B) largely depends on the

gradient of the mean velocities (Fig. 4.11) used to constrain the directional bias fi > bi. In
Fig. 4.12C, we plot di

dels for the linear fit and 90% confidence intervals from our measured
directional bias. On the same plot, we shade the reported localization profile of Kv4.2
immunogold-tagged particles from Kerti et al’s 2012 study [117]. Our model constrained
by our measured Kv4.2 transport bias predicts an asymmetric profile of delivered Kv4.2
that falls within a standard deviation of localization data. Together these results provide an
account of how a previously unexplained and highly organized protein expression pattern
can emerge from relatively simple active transport mechanisms.

4.7 A summary of the relationships between microtubule-
bound (mt) and delivered (del) cargo densities

The questions we address in this study concern how densities of actively transported cargo
relate to their delivered localization. We discuss a conceptual model of how cargo densities on
microtubules give rise to delivered densities. A cartoon of the potential relationships is shown
in Fig. 4.13. Cargo on microtubules and cargo localized to the plasma membrane is depicted
by the shading of the interior and outline of the cell, respectively (Fig. 4.13A). Intuitively,
one might expect to measure higher densities of transported cargo in the compartments where
the cargo eventually becomes localized (Fig. 4.13B). Indeed, this is the implicit assumption
made in static imaging studies that attempt to quantify intracellular protein and mRNA
distributions by labeling and counting puncta or integrating signal density [168].

However, under mass-action, the rate of transport between cellular compartments is
proportional to density. In a well mixed system with homogeneous cargo affinity, cargo
with strong offload proclivity can fill both mt and del compartments simultaneously, as in
Fig. 4.13B. With heterogeneous, compartmentalized neurites, the mt in branches with lower
offload proclivity act as a cargo sink. This can result in a negative correlation between mt
and del within each section of neurite, as depicted in Fig. 4.13C.
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Increasing density  ⟶
- Cargo in transit (shape fill): 

- Delivered cargo (outline):

     
dendrites 
  

soma

axons

Low High

A B Positive correlation
      as delivered density ↑, transit density ↑ 

C Negative correlation 
      as delivered density ↑, transit density ↓ 

Low High

D

Kv4.2 in dendrites:
• high surface localization
• low microtubule trafficking

Kv4.2 in axons:
• low surface localization
• high microtubule trafficking

Fig. 4.13 Mass action transport causes discordance of delivered and transported cargo
densities between axons and dendrites. (A): Schematic legend. (B): If membrane and
microtubule densities are positively correlated, both quantities increase or decrease together.
(C): In a negative correlation, an increase or decrease in del density results in the opposite
deflection in mt. (D): Measured densities for Kv4.2 are negatively correlated, consistent with
mass action models for a system with multiple neurites.

We experimentally measured and quantified the mt trafficking of a specific cargo, Kv4.2
subunits, whose distribution is especially relevant to these considerations. Kv4.2 has a highly
regulated dendritic del expression whose density increases along dendrites with distance
from the soma. We measured del and mt densities of Kv4.2 in neurites of varying surface
expression. A summary of these results is depicted in Fig. 4.13D. Kv4.2 has high del density
and surprisingly low mt density in dendrites.

We next summarize our results in a gradient at the sub-neurite level. We show that a
gradient del density can have a positive, negative, or no correlation with the mt gradient in
that neurite (Fig. 4.14A). We find that the density of Kv4.2 subunits in transit mt decreases
in dendrites with distance from the soma. Taken with localization data (del) and the well-
established functional profile of the channel, this is consistent with a continuous expression
gradient with negative correlation, depicted in Fig. 4.14B.

Lastly, the kinetic properties of trafficked cargo in mt reflect the cargo demand in del (Fig.
4.15). Transport in axons is mechanistically distinct in that cargo is trafficked efficiently
through regions of low, sparse demand with direct, unidirectional trajectories. Increased
cargo demand in dendrites results in diffusive, winding, and meandering trajectories.
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Increasing density  ⟶
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Fig. 4.14 Mass action transport causes discordance of delivered and transported cargo densi-
ties along the length of a neurite. (A): The question of positive, negative, or no correlation
holds for gradient expression along a single neurite. (B): Kv4.2 exhibits continuous gradients
of cargo delivered and in transit that are consistent with negative correlation.

  del slots:               puncta trajectory: 
 

      vacant slots     filled slots

Axon Dendrite

Fig. 4.15 The kinetic properties of individual puncta trajectories in mt also reflect cargo
demand in del.
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4.8 Discussion

Transport kinetics of Kv4.2 puncta in axons qualitatively differ from those in dendrites.
Puncta in axons showed increased superdiffusivity, with increased net displacement, in-
creased velocity, and decreased stall time. The opposite is observed in dendrites. This
relationship makes sense physiologically, since we assumed that dendrites have a preponder-
ance of sequestration mechanisms that need opportunity to bind cargo and offload it from
the microtubules. However, increased microtubule offloading is not sufficient to explain
the observed differences in kinetics. A random walk with memory better characterizes the
experimental distributions for stall fraction and diffusivity. We therefore infer that transport
in axons is mechanistically different, with an effective internal state increasing the probability
of unidirectional runs.

A number of implicit assumptions are made in our modeling. For instance, microtubule
orientation is not considered in mass action or stochastic simulations. Axons have a uniform
arrangement of "plus-end-out" microtubules, whereas dendritic orientation is mixed. How-
ever, the microtubule motors are also mixed, with both kinesins and dyneins present in all
neurites. Our understanding of Kv4.2 interaction with microtubule motors is incomplete.
We have previously introduced the known transport mechanisms for Kv4.2 (Sec. 3.2), and
the only microtubule motor identified to have a role in subunit trafficking is Kif17 [49].
Without a comprehensive understanding of all motors and localization mechanisms, we
assume the molecular "tug of war" between motors is equivalent in dendrites and axons,
and we implement no additional bias for microtubule orientation. Further investigation can
elucidate the observed kinetic differences in axons and dendrites. For instance, Kv4.2 might
be predisposed to unidirectional runs in axons if Kif17 is the only axonal motor protein for
transport.

An intuitive analogy to ground transportation can be made for the observed kinetics in
axons and dendrites. Consider public transit in regions of high versus low passenger demand.
A bus or train in a dense city requires many stops, resulting in low net displacements, low
velocity, and increased stalling per unit time, similar to puncta transit in dendrites with
high subunit demand. On the contrary, in regions of low demand, such as axons or rural
highways, a train or bus makes fewer stops, behaves less stochastically, and can achieve
higher velocities, larger net displacement, and shorter stall times.

We also observed proximal-to-distal trends in dendrites, particularly in puncta frequency
and directional bias. When these parameters constrain the rates of a mass action model, they
account for the well-established, characteristic localization and functional profiles of Kv4.2
[106, 117]. A similar increasing profile also exists for hyperpolarization activated cyclic
nucleotide-gated (HCN) channels [144]. Moreover, a study of HCN channel trafficking
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and surface expression reveals similar dendritic trafficking dynamics to those reported here
[167] (but with no mention of kinetic trends with distance along the dendrite). We suspect
that the distance-dependent trafficking parameters observed here are partial contributants
to the functional expression profiles of Kv4.2 and HCN channels. Our results reveal that
an increasing expression profile does not require an increasing microtubule profile. The
increased Kv4.2 expression profile is achievable with a distal directional bias in microtubule
transport. By result of mass action, a seemingly complex profile can arise from low magnitude
but increasing directional bias.

We have previously discussed (Sec. 3.7) the unavoidable tradeoffs involved in quantifying
protein at physiologically low expression levels and inducing high expression that facilitates
live imaging. This limitation is persistent in our methodology here. The majority of our data
set is collected from a transfected expression system (Fig. 3.1). Further, sorting mechanisms
from the dendritic trunk or axonal initial segment are not modeled, despite the specific
sorting mechanism for Kv4.2 puncta being partially elucidated [111]. These concepts are
interrelated: we can assume that the increased expression of transfected vector saturates
post-Golgi sorting mechanisms such that they play a minimal role in transport.

Previous investigations have studied Kv4.2 localization, function, regulation and particu-
lar molecular pathways underlying these processes. Few studies examine Kv4.2 trafficking
from a broad, logistical perspective. Our work provides new insights into long distance
transit in both axons and dendrites without sequestration or stimulation of mobile puncta.
We provide evidence for trends in Kv4.2 transport and their relevance to our understanding
of cargo production and distribution in the neuron. Our results are grounded in physical
measurements, and the trends observed corroborate Kv4.2 distribution from previous studies.
This approach and the methods discussed here can be widely applied to other cargo to further
our understanding of intraneuronal organization.



Chapter 5

Characterization of Kv4.2 longitudinal
diffusion in dendrites

5.1 Chapter summary and key findings

We now study longitudinal diffusion of Kv4.2 in dendritic shafts through experimental
observations, modeling, and analysis.

1. Bleach recovery in a large dataset of hippocampal dendrites contains significant vari-
ability in mobile fraction and recovery rate. Mobile fraction and recovery rate are
inversely related. Heterogeneous fluorescence and patchy appearance correspond with
high immobile fraction during FRAP microscopy.

2. Directional bias in fluorescence recovery can be computed from a spatially discretized
bleach region. Diffusion of Kv4.2 is largely symmetric with a slight directional bias
(drift) directed away from the soma.

3. Mobile fraction typically increases with subsequent bleaching. Contrastingly, recovery
rate decreases after the first bleach and then remains constant.

4. Recurrent photobleaching can be used to analyze the rate of cargo mobilization and
immobilization—i.e., the rate of cargo transfer on and off immobile structures. Cargos
with increasing successive mobile fractions have low im/mobilization rates, whereas
those with constant successive mobile fractions have high im/mobilization rates.
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5.2 Introduction

The longitudinal transport of cargo in neurites can be categorized into active and passive
mechanisms. Active transport requires cellular energy and motor proteins, whereas passive
transport involves movement of material down a concentration gradient with no energy
required. Cargo can be collected in vesicles and actively shuttled on microtubules. [94] The
microtubule-based active transit of membrane vesicles containing Kv4.2 is the subject of
Chapters 3 and 4. [55]

Here, we consider the diffusive component of transport along the length of the neurites.
This was first observed as a wave of fluorescence during photobleach recovery, visible in
kymograms such as Fig. 2.14B. This diffusive filling of the bleach region is distinct from
the microtubule-based transit of vesicles. It is assumed that fluorescent cargo is consistently
moving in this manner throughout the neurites, and that photobleaching simply reveals the
rate of diffusion. [55]

This wave-like movement during photobleach recovery can be attributed to a number of
mechanisms in/on the (1) cytosol, (2) microtubules, and (3) plasma membrane. These are
briefly outlined here.

The first and most obvious mechanism is free diffusion of ion channels in the cytosol.
Ion channels in the cytosol are likely contained in vesicles enclosed in a phospholipid bilayer.
Ion channels are integral membrane proteins, meaning they are attached to the plasma
membrane with protein domains that are structurally designed for lipophilic interactions
with the nonpolar interior of the lipid bilayer. Ion channels are unlikely to float freely in
the cytosol with no membrane integration—this would require conformational changes in
protein structure, which could render channels nonfunctional and result in aggregations called
inclusion bodies. Ion channels are stable in cytosolic membrane vesicles, in which they can
be maintained as reserve pools for local demand. [139, 55]

Secondly, the wave-like movement can consist of microtubule-based transport as dis-
cussed in previous chapters. The motor-bound vesicles might differ in size from the observed
puncta of previous chapters. It is possible that an aggregation of smaller vesicles produces
the diffusive wave that is observed during bleach recovery. A collection of small vesicles
drifting and diffusing in the neurite can appear wave-like in motion. This is analogous to
particulates of water droplets or gas spreading throughout a volume in a diffuse manner. Such
microtubule-based transport might be a significant source of drift, or bias in diffusion. In
unbiased diffusion, an equal number of particles are transported in both directions. If more
particles are actively trafficked in one direction, this would appear as a drift on microscopy
time lapse. [55]
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Lastly, another potential mechanism underlying the wave-like movement is longitudinal
diffusion on the plasma membrane. The fluid mosaic model describes the consistency of the
plasma membrane. The lipids and proteins in the bilayer flow freely like a two-dimensional
liquid. [212, 109] In the context of neurites, this liquid is wrapped into a tube. Small-diameter
neurites can be approximated as one-dimensional structures with free-flowing motion in the
plasma membrane in one dimension along the longitudinal axis.

In this chapter, we study this longitudinal diffusion in dendritic shafts using FRAP
microscopy and Kv4.2-SGFP2 as candidate cargo. The kinetics observed during bleach
recovery are likely a combination of the aforementioned mechanisms. The contributions
of these mechanisms to the net movement of cargo is unclear. Further, the variability in
diffusion rate of cargo in the cytosol, microtubules, and plasma membrane is not known.
Nonetheless, a general estimate of diffusion and drift can be measured.

The aforementioned mediums of transport—the cytosol, microtubules, plasma membranes—
do not necessarily have uniform mobility. In this chapter, we perform a generalized analysis
using photobleaching recovery that does not differentiate between those modes of transport.
Cargo is not divided according to transport medium but rather into mobile and immobile
fractions. We estimate the cargo’s recovery rate, which is related to the cargo’s diffusion co-
efficient. We introduce a method of spatial discretization, where cargo recovery is computed
as a function of distance along the dendrite. From this analysis, we report a weak directional
bias away from the soma.

We then explore the conventional division of cargo into mobile and immobile fractions
in the context of recurrent photobleaching. We deduce a significant conclusion regarding
immobile fraction on/off rates from subsequent measures of cargo mobility. From this
analysis, we infer that Kv4.2 im/mobilization rates are slower than the experimental bleach
rate and observed diffusion rate. We also explore the impact of Kv4.2 im/mobilization rates
in the context of global intraneuronal distribution.

5.3 Diffusion and drift rates during single bleach recovery

These results begin with an estimation of drift and diffusion of Kv4.2 in dendrites. Recall
the principles of FRAP recovery introduced in Sec. 2.6.4 and depicted in Fig. 2.12. The
equations for fitting exponential recovery curves (Eq. 2.1) also apply here.

FRAP microscopy was performed on 484 dendrites. Bleach recovery was analyzed and
fitted to single exponential recovery curves. Selecting for highest quality fits (based on sum
of squares error (SSE) less than 0.5) yields a subset of 250 dendrites. Mobile fraction A
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indicates the percentage of refilled cargo with recovery rate τ . The A and τ from these fits
are plotted as histograms in Fig. 5.1, which depicts the variance of the data set.

0 0.5 1

 A (fraction)
0 0.01 0.02 0.03

  (Hz)

Fig. 5.1 A single exponential recovery curve is fitted to over 250 dendrites and yields these
parameters. Left: The mobile fraction A has mean 0.322 with standard deviation 0.142. Right:
Recovery rate τ has mean 0.0062 Hz with standard deviation 0.0041 Hz.

The variability in recovery was also evident in raw kymograms, depicted in Fig. 5.2.
Some dendrites appear to have large immobile structures, resulting in an irregular, jagged
recovery (Fig. 5.2 left). Other dendrites with higher mobile fraction appear to have smooth,
fluid recovery (Fig. 5.2 right). These changes can likely be attributed to morphological
differences between neurites as discussed in Sec. 2.4.3.

In addition, Fig. 5.3 shows examples of directional bias evident during bleach recovery.
Notice that the left portion of the bleached region appears to recover more rapidly than the
right side. This bias corresponds to the drift component of recovery. Kymograms are oriented
such that increasing distances (x-axis) denote increasing distance from the soma. Therefore,
in each of these examples, the directional bias of the drift appears to be directed away from
the soma. Indeed, this was the result of mean drift, analyzed later in Sec. 5.3.2.

These parameters and observations give a broad overview of diffusion recovery in
dendrites. Further analysis of this data can extract meaningful information, as explored
in the following sections.

5.3.1 A and τ are correlated but not attributable to experimental pa-
rameters

Cultured neurons are highly variable in structure, size, and (in transfected expression systems)
fluorescence. Measurements of pyramidal cells alone still reveal a wide range of distances
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Fig. 5.2 These raw kymograms reveal variability in cargo recovery profiles. Left has the
largest immobile fraction, indicated by the jagged, heterogeneous pattern during and after
recovery. Right has a smaller immobile fraction and a smooth recovery. Note the decrease in
dendrite fluorescence adjacent to the bleach region in the middle kymogram. The concept of
subsequent bleaches are further analyzed in Sec. 5.5. A color bar indicates the color mapping
of fluorescence intensity standardized between 0 and 1.
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Fig. 5.3 These raw kymograms reveal a directional bias during bleach recovery, which
corresponds to drift. The bias is directed away from the soma in each of these examples. A
color bar indicates the mapping of fluorescence intensity standardized between 0 and 1.
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from soma, branching degrees, fluorescence intensities, and bleach widths—in this discussion,
these are all categorized as experimental parameters. It is reasonable to assume that the
variability in our data set (Fig. 5.1) is partially attributable to experimental parameters. To
address this, we plot recovery parameters (τ and A) against these experimental parameters
(bleach width, fluorescence intensity, distance from soma, and branching degree) in Fig. 5.4.
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Fig. 5.4 Experimental variability is not strongly correlated with bleach recovery parameters.
Variability in dendrites, bleach parameters, and imaging settings do not have a strong
correlation with recovery rate or mobile fraction after photobleaching. Imaging and bleach
parameters include the width of the bleach region (first column) and the mean prebleach
intensity (second column). Biological parameters include distance from soma (third column)
and degree of branching (fourth column). Drift as computed in Sec. 5.3.2 is in last column.
None have a strong correlation with parameters τ or A.

Bleach region width refers to the width of the region bleached on the dendrite. Fluores-
cence intensity is measured using frames of the time series prior to bleaching. Distance from
the soma is measured from the proximal end of the bleach region to base of the dendritic
trunk using a collage of micrographs as shown in Fig. 2.1. Degree of branching refers to
the number of branches from the soma, where primary is the apical dendrite, secondary is a
branch of the primary, etc.

Each of these experimental parameters vary greatly in the data set. However, none
seem to have a significant impact on fit parameters. The coefficients of determination R2

for linear fits between these parameters (bleach width, prebleach intensity, distance from
soma, branching degree, and drift slope) and τ are 0.0129, 0.0254, 0.0058, 0.0015, and
0.00706, respectively. R2 for linear fits with A are 0.0656, 0.0366, 0.0231, 0.0225, and
0.0072, respectively. This indicates that bleach recovery parameters do not correlate strongly
with experimental parameters.
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Fig. 5.5 Left: Bleach recovery parameters A and τ are reciprocally related. Dendrites with
high A recover that mobile fraction at a slow rate τ . Right: Mobile fraction A and time
constant (1/τ) are directly related.

Interestingly, there is strong correlation between the recovery parameters τ and A them-
selves, depicted in Fig. 5.5. Here, R2 for a linear fit is 0.2094, substantially higher than all
previous scatter plots. Further, τ and A appear to have a multiplicative inverse or reciprocal
relationship. The fit depicted is A = 0.144/τ0.433 with R2 of 0.2837. This suggests that
dendrites with high A have slower recovery (smaller τ).

One possible explanation is cargo mobility dependent on recovery source. Dendrites
with large recovery fractions (high A) might recover from multiple sources of cargo transport
(cytoplasmic, membrane, and microtubule transport), as discussed in Sec. 5.2. Some of these
sources of cargo recovery might be slower than others (e.g., membrane transport), so the net
τ would be slower. Dendrites with smaller A might recover fluorescence only from faster
sources of cargo (e.g., microtububle transport) with larger τ .

5.3.2 Spatial analysis of recovery reveals minimal distal drift

We next analyze single bleach recovery profiles along the length of the bleach region to
quantify directional bias. Each bleach region was binned by length and recovery profiles
was fitted for each bin. Recovery rates were computed as a function of longitudinal distance
down the bleach region. If one end of the bleach region has recovery that contrasts greatly
from the other end, this suggests a drift in fluorescence recovery.

We expect material at both ends of bleach regions to recover more quickly given their
proximity to stores of unbleached cargo. This was corrected in our analysis.
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Fig. 5.6 Drift is computed by spatially binning kymograms. Left: A kymogram has one
bin highlighted in red. The red τ corresponding to the strip highlighted in red. Right: A
linear trend is traced through the τs. The sign and steepness of the slope corresponds to the
direction and magnitude of the drift.
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An example of this spatial analysis is depicted in Fig. 5.6. A sample kymogram is
referenced for demonstration purposes. Along the distance of the kymogram, bins with
fixed width were fitted to exponential recovery curves with A fixed to 1. The resultant τs
are then plotted versus distance. A linear trendline is then fitted to the τs. The slope of this
line corresponds to the directional bias in bleach recovery. τ near the both borders of the
bleach region is increased, as expected, and excluded from the linear fit. The slope of the
line in Fig. 5.6 is negative (−3.41×10−5), corresponding to a rightward directional bias, or
a drift component directed away from the soma. This is consistent with the direction of drift
depicted in the kymograms in Fig. 5.3.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

               Drift slope
         Negative - away from soma                   Positive - toward soma

10 -5

Median
1st, 3rd quartile

Fig. 5.7 The drift slopes as computed in Fig. 5.6 for 250 dendrites are depicted as a kymogram
here. Negative slopes correspond to drift away from the soma; positive slopes indicate drift
toward the soma. First, second (median), and third quartiles are labeled.

This method of calculating drift is repeated for 250 dendrites, and the resultant drifts are
depicted as a histogram in Fig. 5.7. The median of the drift slopes is negative, corresponding
to a slight directional bias away from the soma. Median drift slope is −1.14×10−6 with
first and third quartiles at −7.02× 10−6 and 4.19× 10−6, respectively. Variance in drift
can largely be attributed to experimental variation; however, there is no strong correlation
between drift and A or τ (Fig. 5.4, last column). Negative drifts are likely the result of cargo
being produced in the soma and disseminating throughout the cell. The magnitude of drift is
weak and is unlikely to be active transport on microtubules as studied in Chapters 3 and 4.

5.4 Inference of im/mobilization rates

FRAP microscopy is typically used to study the dynamics of freely diffusive particles in a one,
two, or three dimensional space. FRAP is more extensively introduced and discussed in Sec.
2.6.4, and a typical FRAP recovery curve is shown in Fig. 2.12. In brief, the fluorescence
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recovery data is normalized and plotted against fluorescence intensity normalized from 0
to 1. After photobleaching, some fraction of mobile particles recover within the bleached
area. The percentage of fluorescent particles that recover is known as the mobile fraction A,
which is graphically represented by the steady state of the exponential fit in Fig. 2.12. The
remaining fraction of particles that does not recover from photobleaching is the immobile
fraction 1−A. FRAP data is typically fitted to a single or double exponential recovery curve
to solve for A and the recovery rate τ .

This well-established model for FRAP microscopy makes a few key assumptions. First,
the recovering particles are assumed to exist in one of only two degrees of mobility. Particles
are either (1) mobile with some diffusion coefficient D > 0 or (2) immobile with D = 0.
Second, the mobility state of particles (mobile or immobile) is assumed persistent and
unvarying over the course of fluorescent recovery: immobile fluorescent particles cannot
mobilize and mobile particles cannot immobilize. These assumptions are largely invalid for
some fluorescent particles. For instance, neurotransmitter receptors and ion channels are
constantly trafficked within and between regions of varying mobility. An AMPA receptor
might be shuttled into or out of a postsynaptic density to potentiate or depress a synapse
[176, 75]. A diffusing ion channel might enter or exit regions of decreased mobility in the
plasma membrane, such as lipid rafts, neurite branch points, and postsynaptic densities [230].

To address the assumption of unvarying mobility, the standard model of diffusion is
revised with dynamic mobility states. Cargo transfer between mobile and immobile states
is considered. Transport from an immobile to a mobile state is called mobilization, and the
reverse is called immobilization. A series of photobleaches are performed in succession to
study the fraction of molecules in the immobile fraction. This framework assumes that the
total population of fluorescent particles (in the entire neuron) is not being depleted during the
experiment. Since a small region of individual branches are being bleached, the impact of
bleaching on total fluorescent particles is likely negligible.

In this section, we address how fluorescence recovery reveals the rate of cargo mobiliza-
tion and immobilization. We begin by discussing a conceptual model of our experimental
setup to define terms and to illustrate our analysis.

5.4.1 Schematic of photobleaching and im/mobilization rates

A compartment containing cargo (yellow particles) and immobile substrate (blue ribbons) is
depicted in Fig. 5.8Ai. xmob denotes mobile particles that are allowed to diffuse freely with
rate vd . ximm denotes immobile particles that are bound to a static structure with restricted
diffusion. Mobilization rate vi,m describes detachment from the immobile structures; i.e.,
particle transfer from ximm to xmob. For an ion channel, this biologically corresponds to
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exiting a lipid raft or postsynaptic density that was previously restricting motility. The
reverse process is immobilization: vm,i, which describes particle transfer from xmob to ximm,
such as an ion channel entering a restrictive region. The depicted compartment is part of
a larger neurite (Fig. 5.8Aii) in a larger arborization like a dendritic tree (Fig. 5.8Aiii). A
localized region (Fig. 5.8Ai) is bleached by a high intensity laser (yellow trapezoid). During
photobleaching, cargo is bleached with rate vb and fades in color (to dark particles, Fig.
5.8Aiv). This approximates discrete periods of photobleaching performed experimentally, as
described in Sec. 2.6.

Two examples with differing im/mobilization rates vm,i >> vi,m and vm,i << vi,m pro-
ducing contrasting effects are depicted in Fig. 5.8B. Both examples undergo bleaching of
all fluorescent cargo in the region of interest. Then, bleached cargo that is mobile (xmob)
recovers through diffusion.

In the case of high immobilization (vm,i >> vi,m, Fig. 5.8Bi), most cargo is bound
to the immobile substrate (static) and does not freely diffuse in/out of the bleach region.
The majority of cargo after recovery is bleached and immobilized, resulting in a observed
low mobile fraction A during FRAP. Now consider the example with low immobilization
(vm,i << vi,m, Fig. 5.8Bii). During recovery, most cargo is mobile and can freely diffuse
on/off the immobile substrates and in/out of the bleach region. The observed mobile fraction
A during FRAP is higher.

Rates of im/mobilization and diffusion determine the speed τ and degree A of fluorescence
recovery. Pursuing this principle, we design a model to infer vm,i and vi,m from FRAP
recording.

5.4.2 Data analysis

To establish reliable estimates of bleach recovery, mobile fraction, and im/mobilization rates,
we performed hour-long recordings with recurrent photobleaching in over 450 dendrites of
rat hippocampal cells. Each dendrite was bleached 2-9 times, and each bleach diminished
fluorescence intensity by 30-70%, with bleach intervals ranging from 5-20 minutes.

An example of recurrent photobleaching is depicted in Fig. 5.9, where a region of dendrite
was recurrently bleached every 1000 seconds. Each recurrent recovery appears similar to the
prototypical FRAP curve; however, individual recoveries are not identical. One of the most
obvious changes between successive bleaches is the degree of recovery Ai. The standardized
Ais appear to increase with successive bleaches:

A1 < A2 < A3 < A4
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Fig. 5.8 Schematic of recurrent photobleaching reveals increasing mobile fraction with low
immobilization rates. (A): Our experimental setup with defined rates and states is depicted
(i). The region of interest is part of a dendrite (ii) from a larger dendritic arbor (iii). This
region is photobleached, which fades the fluorescence intensity of cargo (iv). (B): Examples
of photobleaching with (i) vm,i >> vi,m and (ii) vm,i << vi,m are depicted. Bleached particles
accumulate on static structures in (i), resulting in low mobile fraction at steady state compared
to (ii).
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Fig. 5.9 Left: Typical example of recurrent photobleaching in a dendrite containing trans-
fected Kv4.2-SGFP2. Mobile fraction increases with subsequent bleaching, indicating
minimal mass transfer between im/mobile fractions. The first occurrence of bleaching occurs
at 50 seconds and subsequent bleaches occur every 1000 seconds thereafter. Right is a
replication of left with labeled mobile fraction Ai for each successive bleach i. Ai here is
computed using a single exponential fit
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Fig. 5.10 Left: An example of recurrent photobleaching in a dendrite in which there appears
to be no clear trend in successive mobile fractions, indicating a higher degree of mass transfer
between im/mobile fractions than in Fig. 5.9. Right is a replication of left with labeled
mobile fraction Ai for each successive bleach i. Ai is computed using a single exponential fit
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0.2522 < 0.4571 < 0.5146 < 0.6439

If the mobile and immobile populations were static, as is assumed in typical FRAP mi-
croscopy, the mobile fraction would increase after each successive bleach, as shown here.
The first bleach removes some percentage of the immobile population, leaving mobile fraction
A1. The second bleach removes more of that immobile population, so the mobile population
is a larger fraction A2 of the total fluorescent intensity. If there is no cargo transfer between
mobile and immobile fractions, this continues until all immobile subunits are bleached and
Ai→∞ = 1.

However, this is not always the case. Some neurites show no definitive increase in mobile
fraction with successive bleaches. An example of a dendrite with no definitive trend in Ais is
depicted in Fig. 5.10. Here, successive mobile fractions are approximately equal:

A1 ≈ A2 ≈ A3 ≈ A4

0.3594 ≈ 0.3402 ≈ 0.4655 ≈ 0.3860

Dynamic mobile and immobile populations would explain this. That is, immobile cargo can
be mobilized and mobile cargo can be immobilized.

Fig. 5.9 and Fig. 5.10 depict bleach recovery with a fundamental difference in cargo
kinetics. The specific differences are not yet well elucidated and have not been studied. This
section serves as a continuation of the discussion of the data set in Sec. 5.3. As before,
parameters are obtained by fitting a single exponential recovery curve, as described in Sec.
2.6.4.

Histograms comparing parameters for first through fourth bleach recoveries are shown
in Fig. 5.11. The top row shows the trend in A with successive bleaches. The A from the
first bleach appears to be smallest, and each subsequent bleach produces a larger A. This
trend appears for at least three or four bleaches. The bottom row shows the trend in τ . The
first bleach clearly has a larger τ , and all subsequent bleaches appear to have a smaller but
consistent τ .

The legends indicate the number of samples N that reached each bleach iteration. N
varies with bleach iteration because of experimental variation—some samples were bleached
five or more times whereas others were bleached just twice. N varies between parameters
because outliers were removed from each distribution.

The median ± standard deviations for A of the first through fourth iterations are 0.30±
0.12,0.49±0.17,0.58±0.20,0.69±0.16, respectively. Successive A seem to increase, and
there is no obvious trend in variance for A.
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Fig. 5.11 Trends in A and τ following successive photobleaching. (A): Mobile fraction A
increases with subsequent bleaches. Statistical analysis demonstrates significant change in
A between all combinations of the four bleach iterations (with maximum P = 5.4×10−4).
(B): Recovery rate τ decreases after the first bleach and then remains constant. Statistical
analysis only demonstrates significant difference between the first and second bleaches
(P = 8.1×10−16). All other subsequent pairs of τ are not significantly different (minimum
P = 0.0835).
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The median ± standard deviations for τ are 0.0049±0.0028,0.0035±0.0019,0.0035±
0.0017,0.0031±0.0014 for the first through fourth bleach iterations, respectively. The trend
in mean τ might be a result of cargo saturation in the cell. The first bleach appears to
recovery quickly (large τ), perhaps because the borders of the bleach region are saturated
with unbleached cargo that can immediately spill into the bleached region. Successive
bleaches have a slower recovery (smaller τ) since unbleached cargo is no longer saturated
at the bleach region borders. This is possibly explained by close proximity of replacement
unbleached particles following the first bleach. During subsequent bleaches, unbleached
particles diffuse from farther regions of the cell. Subsequent bleaches have similar τi with
decreasing variance, which might indicate the cell achieving a steady state of particle flow
into the bleach region.

We amassed a sizable dataset of fluorescence intensity during recurrent photobleaching
using ion channel Kv4.2 as candidate particles. We also have a working theory on how this
data might reflect im/mobilization rates that are otherwise difficult to measure. We next
develop a mathematical model to make sense of this data and theory.

5.4.3 Inference from reduced model of photobleach recovery

We have thus far presented a conceptual model of cargo im/mobilization with photobleaching
(Fig. 5.8) and experimental data of Kv4.2 subunits undergoing this scheme in hippocampal
dendrites (Fig. 5.11). We now formalize these results in a mass-action model constrained to
our empirical observations. We subsequently infer rates of Kv4.2 im/mobilization that are
otherwise not directly measurable using our current methods.

In a region of interest, particles are categorized by fluorescence and mobility into four
compartments: xunbl

mob, xunbl
imm, xblea

mob, and xblea
imm, depicted in Fig. 5.12Ai. Superscripts unbl

and blea correspond to unbleached and bleached particles, respectively. Subscripts mob and

imm indicate mobile and immobile particles, respectively. As in the conceptual model,
particles are mobilized (ximm → xmob) and immobilized (xmob → ximm) with rates vi,m and
vm,i, respectively. Mobile particles diffuse freely with rate vd and can disperse out of the
region of interest into the external region—i.e, the rest of the neuron. xunbl

mob enters the region
of interest with rate u.

Photobleaching (xunbl → xblea) occurs in discrete events with high intensity laser power.
We consider photobleaching vb to be a series of impulses (δ function), between which
fluorescence recovery f is modeled as an impulse response. We therefore use a variant of the
model without photobleaching (Fig. 5.12Aii) for fitting to individual bleach recoveries.

The results of these fits are depicted as distributions in Fig. 5.12Bi-ii. Mean rates
were u = 0.0021, vd = 0.0063, vi,m = 0.00066, and vm,i = 0.0016. We established statistical
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Fig. 5.12 Im/mobilization rates are inferred from a mass-action model of photobleaching
and recovery. (A): A mass-action model of photobleaching categorizes cargo according to
mobility and fluorescence (i). A variant of the model (ii) is fitted to experimentally observed
fluorescence f for constraining rates. (B): The results of model fitting to > 1000 bleaches
are depicted as distributions: u and vd in (i) and vi,m and vm,i in (ii). A comparison of rate
fits for first to third bleaches are depicted in (iii)-(vi). (C): vi,m and vm,i fits from individual
recoveries are paired, showing vm,i > vi,m with statistical significance (P = 1.2×10−10). (D):
Model fits with at least 70% accuracy are used as rate constraints.
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significance between vi,m and vm,i with the Mann-Whitney with P = 1.2×10−10. We also
compare rate estimates from first, second, and third bleaches (Fig. 5.12iii-vi). This supports
our modeling as a linear, time-invariant system. We depict vi,m and vm,i from individual
recoveries to illustrate the variability in model fits. Our model fit the data with reasonable
accuracy (Fig. 5.12D), and we used fits with >70% accuracy as rate constraints in a full
neuron morphology in Sec. 5.6.

5.5 Trends with subsequent bleaches and recoveries

In our analysis thus far, we have fit each individual bleach recovery to a linear, time-invariant
model (Fig. 5.12). We have made no observations during bleaching and could not estimate
bleach rate. We therefore fitted a reduced variant of our model (Fig. 5.12Aii) to individual
bleach recoveries. In this analysis, we observe minimal deviation in parameter estimates for
u, vd , vm,i, and vi,m between the first, second, and third bleaches.

However, we previously alluded to changes in fluorescence recovery with recurrent
photobleaching. In Fig. 5.9, we depicted a neurite whose mobile fraction increased with
subsequent bleaches. In this section, we re-examine the data set for trends with subsequent
photobleaching.

We begin by plotting whether subsequent As increase or decrease with recurrent photo-
bleaching in Fig. 5.13. Samples that experience monotonic increases in A with successive
bleaching are plotted in green. 193 of the 308 samples with at least three bleaches (62%)
experienced this trend—nearly two thirds of the samples. 113 samples (37%) that have no
definitive increase or decrease in A are plotted in blue. The raw kymogram in Fig. 5.10
exhibits this trend. Two samples (less than one percent) of samples exhibited a monotonic
decrease in A.

What do these trends reveal about our system? Less than two thirds of samples exhibit a
monotonic trend, and there is certainly variability in the data set. It is likely that different
dendrites have different vi,m rates. vb might also vary between trials, since the same micro-
scope parameters can have varying effects on different neurons. Further, dendrite diameter
and bleach regions also varied slightly, so model parameters vd and u might be expected to
vary as well. These potentially confounding parameters were plotted in Fig. 5.4, although no
significant correlation was found.

In an attempt to understand this, we perform simulations of all four compartments of the
system (Fig. 5.12) with theoretical bleach rate vb. We then analytically solve this system to
understand how im/mobilization rates might impact subsequent As.
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Fig. 5.13 According to the proposed model, the trend in mobile fractions from experiments
with recurrent bleaching can reveal information about transport rates. This plot replicates
Fig. 5.11 for samples with three bleaches organized by trend in A. Nearly two thirds of
samples exhibit a monotonic increase in A (green). Approximately one third of samples
have no obvious trend in A (blue). Statistical analysis demonstrates significant increase in
A between first and second (P = 5.6×10−58) as well as second and third (P = 3.6×10−9)
bleach iterations when averaged between all samples.

5.5.1 Simulations and interpretation

Preliminary simulations with all four compartments xunbl
mob, xunbl

imm, xblea
mob, and xblea

imm of the model
(Fig. 5.12Ai) are shown in Fig. 5.14. States were initialized such that all cargo was
unbleached, half was mobile, and half was immobile. The states are then simulated with
particle input, diffusion, and continuous bleaching: u = 0.01, vd = 0.1, vb = 0.1. We
simulated varying degrees of im/mobilization, with vm,i = vi,m = 0, 0.1, and 0.5 depicted
in Fig. 5.14(a)-(c). Simulated rates vm,i = vi,m range from below and above the other rates
in the model. In simulations, bleaching is now a continuous event with a constant rate vb,
compared to discrete periods of photobleaching from the experiments.

In the top row of simulations, all four state variables are plotted versus time. In the
middle row, bleached and unbleached compartments are combined. This makes for a suitable
comparison between the yellow line indicating total unbleached cargo and the raw fluorescent
recovery from an experiment with multiple bleaches (Figs. 5.9 and 5.10). Both appear to be
decreasing, likely with some rate of exponential decay, and settle at a nonzero steady state.

The bottom row of Fig. 5.14 plots mobile A and immobile 1−A fractions. In typical
FRAP analysis, im/mobile fractions are percentages of the fluorescent population—rather
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Fig. 5.14 Simulation of recurrent photobleaching and immobilization with varying
im/mobilization rates. Left, middle, and right columns correspond to increasing cargo
attachment and detachment from immobile structures ((a), (b), and (c), respectively). The
top row shows all state values during simulation. The middle row combines bleached and
unbleached compartments. The bottom row plots mobile A and immobile 1−A fractions.
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than the total (fluorescent+bleached) population. These are therefore computed as follows:

A =
xm

xm + xi
and 1−A =

xi

xm + xi
(5.1)

These values (Fig. 5.14, bottom row) show the greatest discrepancy between the three
simulations. When cargo im/mobilization is lower than cargo diffusion and bleaching rate
(vm,i = vi,m = 0, Fig. 5.14(a)), mobile fraction increases and immobile fraction decreases.
When cargo im/mobilization is higher than cargo diffusion and bleaching rate (vm,i = vi,m =

0.5, Fig. 5.14(c)), the mobile and immobile fractions are largely unchanged. This model
predicts that a static mobile fraction during recurrent photobleaching corresponds to high
vm,i = vi,m relative to other rates in the system.

We again consider the subsequent mobile fractions Ai from our data (Fig. 5.13), now
in the context of the hypothetical simulations (Fig. 5.14). 62% of our samples exhibit
monotonically increasing Ais. This might correspond to Fig. 5.14(a) or (b), which have a low
transport rate between im/mobile fractions relative to the other rates in the system. Fig. 5.9 is
an example neurite that exhibits this trend of increasing Ais. 37% have no monotonic increase
or decrease in Ais with subsequent bleaches. This corresponds to Fig. 5.14(c) or simulations
with even greater vi,m (not shown) that have fast transport rates between im/mobile fractions
relative to the other rates in the system. Fig. 5.10 depicts one such neurite. Less than one
percent of samples showed a monotonic decrease in subsequent Ais, which is theoretically
impossible in the framework of the simulated model, and these can likely be attributed to
experimental error and/or drastic variations due to noise.

A discrepancy between the model and experiments that warrants discussion is the
(dis)continuity of photobleaching. In experiments, the neuron segment experiences re-
current, periodic photobleaching in short, discrete boluses. In simulation, bleaching occurs
continuously at a constant rate. There are a few reasons as to why this discrepancy is neces-
sary and useful. The first regards the practicality of photobleaching during experiments: a
confocal microscope switching between imaging and bleaching modes is time consuming and
taxing on the microscope. A better time series (with higher imaging frequency and decreased
sample drift) is obtained when bleaching is performed in distinct boluses with high intensity
laser power. Secondly, as evidenced in simulation (Fig. 5.14), the most substantial indicators
of im/mobilization rates vm,i = vi,m in simulation are the im/mobile fractions. In order to
compute im/mobile fractions, some degree of recovery is required to fit an exponential
recovery curve. A longer bleach recovery results in a better curve fit and a better estimation
of im/mobile fractions. Lastly, from an analytical standpoint, it is easier to mathematically
estimate the impact of parameter variations in a continuous rather than discrete system. In



128 Characterization of Kv4.2 longitudinal diffusion in dendrites

fact, an analysis of discrete bleaching would first begin with approximating infinite bleaching
events with infinitesimal partitions between events, such that bleaching becomes continuous
anyway.

5.5.2 An analytical perspective

In addition to model simulation and inference with experimental constraints, this framework
can be approached from an analytical perspective.

The analysis of the model of recurrent photobleaching and immobilization (Fig. 5.12Ai)
begins with stating the ODE for each compartment:

˙xunbl
mob = u+ xunbl

immvi,m − xunbl
mob(vm,i + vb + vd)

˙xunbl
imm = xunbl

mobvm,i − xunbl
imm(vi,m + vb)

˙xblea
mob = xunbl

mobvb + xblea
immvi,m − xblea

mob(vm,i + vd)

˙xblea
imm = xunbl

immvb + xblea
mobvm,i − xblea

immvi,m

The steady states of this system are solved by setting each time derivative to zero and solving
for the four state variables. The steady state solution is as follows:

xunbl
mob = u

vb + vi,m

v2
b + vbvd + vbvi,m + vbvm,i + vdvi,m

xunbl
imm = u

vm,i

v2
b + vbvd + vbvi,m + vbvm,i + vdvi,m

xblea
mob = u

vb(vb + vi,m + vm,i)

vd(v2
b + vbvd + vbvi,m + vbvm,i + vdvi,m)

xblea
imm = u

vb(vbvm,i + vdvm,ivi,mvm,i + v2
m,i)

vdvi,m(v2
b + vbvd + vbvi,m + vbvm,i + vdvi,m)

We use the aforementioned Eq. 5.1 for mobile fraction, now applied to the steady state
solutions. This will produce a mobile fraction at a steady state after infinite bleaching and
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recovery time. This is termed Ass, defined using steady state values:

Ass =
xunbl

mob

xunbl
mob + xunbl

imm

=

u(vb+vi,m)

v2
b+vbvd+vbvi,m+vbvm,i+vdvi,m

u(vb+vi,m)

v2
b+vbvd+vbvi,m+vbvm,i+vdvi,m

+
uvm,i

v2
b+vbvd+vbvi,m+vbvm,i+vdvi,m

Ass =
vb + vi,m

vb + vi,m + vm,i

If we next assume that vi,m ≈ vm,i,

Ass =
vb + vi,m

vb +2vi,m
(5.2)

This can be plotted as a surface to visualize the effects of increased bleaching vb and
im/mobilization rate vi,m on steady state mobile fraction Ass, as depicted in Fig. 5.15.

0.5
0

1

A
ss

vi,m

0.5

vb

1

0.5
1 0

Fig. 5.15 A system containing mobile and immobile compartments with symmetric exchange
rate vi,m and recurrent photobleaching with rate vb has a steady state mobile fraction Ass. Ass

can be solved analytically, and the result (Eq. 5.2) is depicted as a surface.

Eq. 5.2 and the associated surface can be evaluated at several edge cases to draw
conclusions about the system. In the case with no mass transfer between im/mobile fractions
(vi,m = 0), fluorescent cargo always recovers completely, and Ass = 1. Increasing vb has a
greater impact on systems with no or low vi,m.
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In the case with no photobleaching (vb = 0), fluorescent cargo equalizes between compart-
ments, and Ass = 0.5. This is also the lower limit of the surface Ass. In a system with capacity
limits c in im/mobile compartments, Ass would be equal to the size of mobile compartment
over the total system capacity: Ass = cm

cm+ci
. In this case with no capacity limits (cm → ∞ and

ci → ∞) and Ass = 0.5. Capacity was omitted from this analysis to preserve linearity.
The usefulness of this theory is largely dependent on how readily vb can be controlled

during the time series and estimated afterwards. An interesting experiment that might serve
as a proof of concept for this theory would be a comparison between a protein known to be
cytosolic and one known to be membrane-bound, with the expectation that the membrane-
bound protein has a larger vi,m. This theory might also be useful for a comparison within the
same measurement. For instance, one might compare two isoforms of a fluorescent proteins
to compare vi,m. One might argue that comparisons made between two cells with similar
morphology and imaging/bleach parameters would also be valid.

5.6 Impact on intracellular distribution

We next assess how im/mobilization rates and mobile fractions—estimated using model
inference (Fig. 5.12)—impacts intracellular distribution of ion channels. We begin by
adapting the measured kinetics of Kv4.2 (Fig. 5.11) to a full neuron morphology.

Our experiments revealed a distribution of recovery rates τ (Fig. 5.11B), from which we
derive the diffusion coefficient D of Kv4.2 subunits. Dendrites in our FRAP experiment were
modeled as small-diameter cylinders, which reduces complexity to diffusion only along the
longitudinal axis. The one-dimensional diffusion equation was solved for D, as described in
Scott et al, 2006 [202]:

D ≈ 0.231
w2

t½
(5.3)

where w is the width of the bleached region and t½ is the time to half recovery: t½ = ln(2)/τ .
See Sec. A.2 for the full derivation of Eq. 5.3 based on the Supporting Text of Scott et al,
2006 [202].

Using fitted τ (Fig. 5.11B), measured w (Fig. 5.4, first column), and Eq. 5.3, we obtain a
distribution of D, depicted in Fig. 5.16A. Estimated median D was 1.2 µm2/sec with first and
third quartiles at 0.69 and 2.0 µm2/sec. These estimates are reasonable for GFP-tagged Kv4.2
subunits—approximately 100 kDa in size. In comparison, GFP alone (26.9 kDa) diffuses
with D ≈ 25 µm2/sec [226, 186]. Further, our estimated D is approximately 30-fold smaller
than a similarly-sized protein in water [162], which is the expected decrease in diffusivity
between cytosol and dilute solution [156].
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Fig. 5.16 Inferred parameters markedly affect cargo distribution in real neuron morphologies.
(A): Histogram of diffusion coefficient D estimated from bleach recovery. (B): A multi-
compartment, mass-action model of mobile xi

mob and immobile xi
imm particles is used to

simulate intracellular distribution of cargo throughout (C): a full morphology of a pyramidal
cell. (D): Simulation with median estimated parameters is depicted, showing a settling time
within 20 hours and a majority of cargo immobilized. (E): Low D produces a decreasing
localization profile (i), whereas high D normalizes the distribution (ii). (F): With vm,i > vi,m,
the immobile fraction increases and xi

imm has higher densities throughout the neuron (i). With
vm,i < vi,m the mobile fraction exceeds the immobile fraction (ii).
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With realistic estimates of D, we built a compartmental model of a full neuron to quantify
intracellular distribution of Kv4.2 subunits. The drift-diffusion equation describes transport
rates, where diffusion D and drift v coefficients describe the bulk flow of a population of
particles. When discretized (Fig. 5.16B), D and v relate to the forward v f and backward vb

rates between compartments as follows:

D =
∆x2

∆t
v f + vb

2
and v =

∆x
∆t

v f − vb (5.4)

as derived in Williams et al, 2016 [247]. In the continuous case, inter-site distance and time
step, ∆x and ∆n, approach 0, and we estimate D ≈ v f+vb

2 and v ≈ v f − vb, as in Appendix
A.1.

Since D >> v (Fig. 5.7), we assume v = 0 and use the distribution of D (Fig. 5.16A) to
solve for v f = vb, which are then scaled to a compartment size of 100-µm. We simulate in a
full size pyramidal cell from the human L3 neocortex (NeuroMorpho.Org ID: NMO_86957),
as depicted in Fig. 5.16C. All cargo is produced in the soma (yellow circle) and degrades
with rate w = 0.000048 sec−1, consistent with the observed half-life of Kv4.2 [210]. In
simulation, a generalized rate v from a donor d to receiver r compartment transfers an amount
of mass vd. As an example, consider the differential equation for the central compartment
xi

mob in Fig. 5.16B:

ẋi
mob =+ v f xi−1

mob(A
ss − xi

mob)+ vbxi+1
mob(A

ss − xi
mob)+ vi,mxi

imm(A
ss − xi

mob)

− vbxi
mob(A

ss − xi−1
mob)− v f xi

mob(A
ss − xi+1

mob)− vm,ixi
mob(1−Ass − xi

imm)−wxi
mob

(5.5)

where each term corresponds to mass entering or exiting xi
mob. Branch points have additional

terms and terminal compartments have fewer terms. Such a system of ODEs—one for each
compartment—describes the distribution of cargo.

With all parameters defined, we now simulate intracellular distribution of Kv4.2 with D
ranging across the first to third quartiles (Fig. 5.16A) and vi,m and vm,i ranging from second
(median) to third quartiles (Fig. 5.12Bii). We begin with median D, vi,m, and vm,i plotted
in Fig. 5.16D, where each line corresponds to an individual compartment. Mean xi

imm is
approximately 15-fold larger than mean xi

mob, consistent with experimental fits. xi
mob reach

95% of their steady states with a settling time of 1-2 hours, whereas xi
imm require 17-19

hours.
Varying D primarily changes the cargo distribution profile (Fig. 5.16E). With high D

(Fig. 5.16Eii), cargo has a flatter profile, with little deviation between proximal and distal
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compartments. Low D results in a larger spread of cargo densities (Fig. 5.16Ei). Average
xi

mob and xi
imm density across the entire neuron remains approximately the same.

Varying vi,m and vm,i changes the steady states of mean xi
mob and xi

imm (Fig. 5.16F).
Simulation with median vi,m and upper quartile vm,i results in significantly increased xi

imm,
averaging 50-fold larger than mean xi

mob but with similar settling times (Fig. 5.16Fi). Upper
quartile vi,m and median vm,i drastically changes the distribution profile, with mean xi

imm

now 25% less than mean xi
mob at steady state. Both xi

mob and xi
imm now have settling times

between 16-20 hours, varying with distance from the soma.

5.6.1 Discussion

In the context of intracellular cargo distribution, these results can be interpreted in a few
ways. The mobile fraction xi

mob is a finite-capacity transport channel. Cargo diffuses in this
channel with rate D. The immobile fraction xi

imm behaves like a sink in which cargo becomes
confined during dissemination. Inferred parameters vi,m and vm,i approximate which fraction
of the dendrite behaves as a transport channel or a sink, which in turn shapes the speed and
profile of cargo localization. Larger xi

mob are achieved more rapidly with high vi,m and low
vm,i. Further, D is the speed at which cargo disseminates. High D allows more cargo into
distal compartments, whereas low D produces a decreasing profile with distance from the
soma.

The presence of two distinct mobile and immobile cargo states has potential benefits to
cell function. Some proteins, like ion channels in postsynaptic densities, are fixed in position
when functionally active. For such cargo, distinct mobile and immobile species are required
for transport. An inactive, mobile state can also provide a local pool from which to replenish
active cargo. We explore this interplay between mobile and immobile, inactive and active
states in Chapter 6.

It is worth considering how diffusion might contribute to intracellular distribution in
comparison to other modes of transport. Even with variation in diffusion coefficient and
im/mobilization rates, the settling times (to 95% steady state) estimated here all fall within
24 hours. As discussed in detail in Chapter 6, this is within the range of observable global
changes in complex neurons, such as in synaptic scaling or regulation of intrinsic excitability
[235, 173, 178]. This brings to light the relative roles of active versus passive transport
mechanisms, which raises a number of questions about models of intracellular distribution.
A model with diffusion alone, such as in these simulations, is sufficient to capture the
regulatory behavior of synaptic receptors or ion channels on the timescales observed in vivo.
The specific contribution of microtubule-based transit, an energy-intensive process, versus
passive diffusion is not fully understood.





Chapter 6

Neuronal morphology imposes a tradeoff
between stability, accuracy, and
efficiency of synaptic scaling

The results described in this chapter are being submitted to eLife. Some sections were written
in direct connection to that manuscript.

6.1 Chapter summary and key findings

We again explore the global distribution of ion channels, now with feedback regulation in
the context of synaptic scaling, which poses logistical problems for large, complex neuron
morphologies.

1. Synaptic scaling in realistic morphologies is reproduced with a unified compartmental
model of synaptic potentiation, AMPA receptor transport, and global/local regulation.

2. A system’s scaling performance is measured using three attributes—efficiency, accu-
racy, and stability. Scaling efficiency is the speed with which a system reaches a steady
state. Accuracy is the percent deviation from perfect scaling or potentiation. Scaling
stability is quantified using Nyquist criterion for phase and gain margins from classic
control theory.

3. Synaptic scaling requires a balance between stability, efficiency, and accuracy in
realistic neuron morphologies. Sensitivity to global regulation mediates between
scaling efficiency and stability. Sensitivity to local regulation mediates between
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stability and accuracy. Internal AMPA receptor pool size mediates between efficiency
and accuracy.

4. Neuron morphology, specifically size and symmetry, significantly impact scaling
performance. Smaller and more symmetric morphologies, such as granule or Purkinje
cells, exhibit better scaling performance than larger, more asymmetric cells, like
pyramidal cells or interneurons.

5. Reduced-order neuron models, including linear representations with varying degrees
of complexity, can predict scaling performance.

6.2 Introduction

Neuron physiology encompasses several neuroplastic mechanisms that regulate the electrical
excitability of the cells in networks. Many of these mechanisms involve modulation of
synapses, the electrochemical connections between neurons, and are thus aptly called synaptic
plasticity. Synaptic plasticity comes in various forms, including synaptic scaling, Hebbian
plasticity, and spike-timing dependent plasticity (covered in Sec. 1.4). Others, broadly
categorized as nonsynaptic plasticity, involve regulatory changes throughout the rest of the
neurons. This includes modification of intrinsic excitability by regulating ion channels,
structural plasticity, and axonal modulation of spike frequency and propagation.

This chapter concerns the distribution and regulation of ion channels—specifically AMPA
receptors—in the context of synaptic scaling. The motivations for specifically studying
AMPAR regulation in synaptic scaling are multifold. AMPA receptors are densely localized
in synapses and prevalently found across many neuron types. Further, AMPA receptors are
highly relevant to synaptic plasticity, with many well-established mechanisms for local and
global regulation. Although a similar theoretical analysis of other ion channels, such as in
the context of intrinsic plasticity or dendritic excitability, could have been studied, AMPA
receptors and synaptic scaling have an extensive literature of experimental characterization
and validation. [217, 228, 235, 131, 233, 41]

Synaptic scaling is a homeostatic normalization mechanism that preserves relative synap-
tic strengths by adjusting them with a common factor [235]. This multiplicative change is
believed to be critical, since synaptic strengths are involved in learning and memory retention
[235]. Further, this homeostatic process is thought to be crucial for neuronal stability, playing
a stabilizing role in otherwise runaway Hebbian plasticity [195, 42, 45]. Synaptic scaling
requires a mechanism to sense total neuron activity and globally adjust synapses to achieve
some activity set-point [235]. This process is relatively slow, which limits its ability to
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stabilize network activity [248]. Here, we show that a slow global response is inevitable in
realistic neuronal morphologies. Furthermore, we reveal that global scaling can in fact be
a source of instability unless scaling efficiency or accuracy are sacrificed. Neuronal mor-
phology therefore imposes a tradeoff between stability, accuracy, and efficiency of synaptic
scaling.

A neuron with tens of thousands of synapses must regulate its own excitability to com-
pensate for changes in input. The time requirement for homeostatic global feedback can
introduce critical phase lags in a neuron’s response to perturbation. The severity of phase lag
increases with neuron size and expansive morphologies. Increasing sensitivity of global feed-
back improves response time (efficiency) at the cost of system stability. Homeostatic local
feedback mitigates instability, but this comes at the cost of scaling accuracy. Local internal
pools from which synapses can withdraw receptors improve accuracy of synaptic potentiation
and scaling. However, production and transport of receptors is time- and energy-intensive
and reduces scaling efficiency. These attributes—stability, efficiency, and accuracy—are
balanced such that improving one always worsens one or both of the others. In this regard, a
neuron has optimized its scaling performance.

Realization of this tradeoff requires a unified model of synaptic potentiation, scaling,
regulation, and transport. A number of studies separately analyze these phenomena in detail,
which we briefly survey here. Turrigiano et al [235] review global and local mechanisms
of synaptic regulation but with no simulations or rigorous analyses. Triesch et al [231]
model synaptic potentiation and scaling, and the authors report that larger internal pools
improve scaling accuracy. However, this analysis considers only a single, central pool for all
synapses and leaves open the question of morphology, effectively avoiding the phase lag. Our
group has described the phase lag instability in toy neurons without realistic morphologies or
synaptic scaling [5]. Williams et al [247] explore trafficking in realistic morphologies and
attributes transport delays to bottleneck effects. Earnshaw et al [64] model AMPA receptor
transport with detailed synapse dynamics in open loop with no feedback. No model to date
has combined these mechanisms to study phase lag instability and the ensuing balance of
stability, efficiency, and accuracy of synaptic scaling.

We present a complete biophysical model of AMPA receptor transport, activation, and
regulation with synaptic potentiation and scaling in realistic neuron morphologies (Fig.
6.1). This framework makes a number of predictions that lead to new conclusions. First,
we demonstrate the tradeoffs imposed by neuron morphology in a pyramidal cell (Fig.
6.3). We discuss mechanisms by which a neuron navigates each tradeoff between stability,
accuracy, and efficiency of synaptic scaling. We devise methods of quantifying each attribute,
including the application of Nyquist criterion for stability (Fig. 6.4). We observe location- and
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morphology-dependent effects on scaling accuracy (Figs. 6.5 and 6.8). In turn, we establish
the fundamental, underlying relationships between stability, accuracy, and efficiency (Fig.
6.9). We create a reduced-order representation of complex dendritic trees that captures their
behavior and predicts their scaling performance (Fig. 6.11). Lastly, we explore scaling
performance in other neuron morphologies (Fig. 6.13).

6.3 A unified model of synaptic potentiation, scaling, and
regulation

We begin by setting out a schematic that outlines the components of our unified model of
synaptic potentiation, scaling, and regulation. A full mathematical description of the model
is presente in Appendix C. Here, we depict these mechanisms using cartoons of AMPA
receptors (AMPARs) in a cell soma and dendritic arbor (Fig. 6.1A).

To prevent excitotoxicity and harm to the cell, a neuron maintains its level of excitability
through global regulation, which occurs in the soma (Fig. 6.1B). The sum of all active
AMPARs, ∑g, produces an average membrane potential V , representing a change in neural
firing rate. This modulates the concentration of internal [Ca2+], which in turn regulates
biosynthesis and release u of new receptors into circulation. The global gain KG is the sensi-
tivity of the global regulator to perturbations in [Ca2+] based on some set point [Ca2+]target.
If neuron activity is too low, more AMPARs are produced; if activity is too high, AMPAR
production is slowed. Global regulation as depicted is sufficient for normalization of synaptic
strengths. [235, 231]

Significant assumptions are made in the modeling of V and internal [Ca2+] that warrant
discussion. There are numerous synaptic inputs and ion channels in addition to AMPA
receptors that contribute to V . Moreover, there are a number of cellular mechanisms that
affect internal [Ca2+] along with total electrical activity in the neuron. Here, we opt for
coarse-grained models with a simple representation of these complex biological properties.
Rather than simulating all details of membrane potential and somatic [Ca2+], we capture the
crucial dynamics for a comparison of global and local homeostasis.

Returning to the model schematic, AMPARs are freely transported on microtubules
throughout the dendrites (Fig. 6.1C). Internal, inactive receptors m are transported with
forward rate v f and backward rate vb. Active, external AMPARs on the surface are denoted
g. Synaptic sites on the plasma membrane c are required for AMPAR activation (m → g). c
is the capacity of the synapse, i.e., the number of available slots for AMPARs. We impose an
abrupt change in c to emulate long term potentiation or depression (LTP or LTD). This is
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Fig. 6.1 Constructing a unified model of synaptic potentiation, scaling, and regulation to
realize phase lag time delay. (A): Cell soma and dendritic arbor in which synaptic scaling
occurs. (B): Global feedback in the soma averages active AMPARs (∑g) to modulate
biosynthesis and release u of new receptors into circulation. (C): Inactive AMPARs m are
transported on microtubules with forward rate v f and backward rate vb. Active AMPARs
g and synaptic sites c are depicted on the dendrite surface. (D): Cargo is activated (m → g)
with activation rate si, which is modulated via local feedback. (E): Components (B)-(D) are
incorporated into a compartmental model of a discretized dendritic arbor. (F): A model with
(B)-(D) alone replicates synaptic scaling following potentiation, as shown for a single branch.
(G): AMPARs act as a global scaling signal, which creates a phase lag for global feedback,
exacerbated in large and asymmetric morphologies.
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consistent with the physiologic increase in structural proteins that support AMPARs on the
plasma membrane during potentiation. [147, 166]

We next focus on the membrane itself—the site of cargo insertion (Fig. 6.1D). Cargo is
activated (m → g) with activation rate si and inactivated (g → m) with rate s−i. Homeostatic
local feedback occurs in each synapse, where local g regulates si based on [Ca2+]target,
similar to the global controller. Local gain KL is the sensitivity of the local controllers to
perturbations in local g. si increases or decreases when local excitability is too low or high,
respectively.

By law of mass action, parameter s−i modulates m at steady state. In other words, s−i

changes the size of an internal reserve pool of AMPARs, as depicted later in Fig. 6.6.
Maintaining a large m requires considerable time and resources, which imposes a tradeoff
for synaptic scaling.

AMPAR transport with global and local feedback are incorporated into a compartmental
model of a discretized dendritic arbor, as depicted Fig. 6.1E (detailed further in Appendix C).
The aforementioned components are sufficient for localized potentiation with subsequent
synaptic scaling (Fig. 6.1F). The unified model can also illustrate the phase lag that imposes
limitations on synaptic scaling (Fig. 6.1G): a neuron globally regulates the strengths of
its synapses to maintain intrinsic excitability through synaptic scaling. This requires a
scaling signal propagated throughout the dendritic arbor to modify synaptic strengths. Scaled
synapses continue to initiate dendritic firing, which is regulated globally. This cycle repeats
and thus is the process of homeostatic synaptic scaling. Transport of a signal over large
distances is the slowest of these processes, which increases phase lag. Further, given that the
scaling signal must travel the full lengths of all dendrites, this time delay increases in larger
neurons. Expansive morphologies are therefore more prone to instabilities induced by the
phase lag of global regulation.

We have schematically introduced the components of our model to establish how mor-
phology contributes to a phase lag. We aim to make this model data driven with conservative
estimates for parameters that can be broadly quantified from experiments, including veloci-
ties, insertion speeds, and degradation rates. Other model mechanisms, including global and
local feedback, encompass numerous physiologic processes and are set as free parameters.
Varying these free parameters balances the limitations of synaptic scaling induced by neuron
morphology. We next navigate the tradeoffs of synaptic scaling by sweeping through these
free parameters.
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6.4 Navigating the tradeoffs

Homeostatic synaptic scaling requires transport of a global scaling signal, which is slow in
large neuron morphologies. This results in limitations in the stability, accuracy, or efficiency
of synaptic scaling. These attributes are defined rigorously in later sections (Secs. 6.5, 6.6,
and 6.7) and are qualitatively depicted in Fig. 6.2. Depicted is a trace of active AMPAR (gi)
density over time in a multi-compartment neuron model undergoing synaptic potentiation. g
in each compartment is plotted; black and red lines denote non-potentiated and potentiated
compartments, respectively. Stability is the degree of overshoots and oscillations as a system
approaches steady state. Efficiency is the rate at which the system approaches a steady state.
Accuracy is how well synapses potentiate and how well non-potentiated synapses maintain
the ratios of their strengths following potentiation.
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Fig. 6.2 The attributes in question—the stability, efficiency, and accuracy of synaptic scaling—
are qualitatively defined here.

Tradeoffs between these attributes are mediated by three free parameters in our model:
(1) global gain, (2) local gain, and (3) internal pool size. We demonstrate these tradeoffs in a
full size pyramidal cell from the human L3 neocortex (NeuroMorpho.Org ID: NMO_86957)
approximately 1000 µm in length, depicted in Fig. 6.3A.

The three tradeoffs are portrayed in a triangle schematic in Fig. 6.3B. The free parameters
that mediate these tradeoffs are depicted in a simplified model schematic in Fig. 6.3C. All
other parameters are held constant between simulations. We next demonstrate simulations
that exemplify each tradeoff.
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Fig. 6.3 Navigating the tradeoffs. (A): The balance between stability, accuracy, and efficiency
of synaptic scaling is demonstrated in an neocortical L3 pyramidal cell with LTP in distal
compartments (red). (B): Three tradeoffs are portrayed in a triangular schematic, where each
attribute is a vertex and each free parameter that mediates a tradeoff is an edge. (C): The
corresponding model mechanism that mediate tradeoffs are depicted. (D): Global gain (KG,
increasing from i to iii) mediates tradeoff between stability and efficiency. (E): Local gain
(KL, increasing from i to iii) mediates tradeoff between stability and accuracy. (F): Internal
pool size (s−i, increasing from i to iii) mediates tradeoff between stability and accuracy.
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6.4.1 Global gain mediates tradeoff between stability and efficiency

The sensitivity of the global regulator to changes in total neural firing rate mediates the
stability and efficiency of synaptic scaling, as depicted in Fig. 6.3D. We use [Ca2+] as an
approximate measure of global neuron activity. Low global regulation results in a stable
system that is slow to reach steady state (Fig. 6.3Di). Increasing global gain improves time
to steady state but decreases stability, evident in [Ca2+] with overshoots and dampened
oscillations (Fig. 6.3Dii). Increasing global gain further results in the neuron filling even
faster but with full non-dampening oscillations (Fig. 6.3Diii). This tradeoff demonstrates
that there’s a hard limit to how quickly a neuron can respond before it becomes unstable.

Suppose a neuron requires a response time as in Fig. 6.3Dii with reduced oscillations.
This can be achieved with increased regulation at the local level.

6.4.2 Local gain mediates tradeoff between stability and accuracy

The sensitivity of the local regulator to changes in local neural firing mediates between sta-
bility and accuracy of synaptic scaling, as depicted in Fig. 6.3E. To demonstrate this tradeoff,
we simulate synaptic potentiation of the distal synapses, depicted as red compartments in Fig.
6.3A, with varying local gain and constant global gain. We plot the AMPAR density in each
of these compartments as approximate measures of local firing rate.

The absence of local control results in synaptic scaling with moderate accuracy and
oscillations (Fig. 6.3Ei). LTP occurs at 5 hours in the distal (red) synapses, which make
up 14% of total compartments. The red synapses strengthen, as expected during LTP. The
unpotentiated, black compartments are scaled down, which is notable because the synaptic
capacity of these compartments was not changed. Fig. 6.3Ei validates that synaptic scaling
works with global control alone. Note that the relative weights of the synapses are preserved
with moderate accuracy. Further, the difference between potentiated (red) and unpotentiated
(black) synapses is prominent.

If we introduce local regulation at low gain (Fig. 6.3Eii), the oscillations are improved
at the cost of accuracy. The difference between potentiated and unpotentiated synapses
begins to diminish. If we increase the local gain (Fig. 6.3Eiii), the oscillations are eliminated
and the system is fully stable now. However, synaptic scaling is no longer accurate, and
red synapses hardly increase compared to black. The degree to which local regulation can
improve stability is limited by a reduction in the accuracy of synaptic scaling.
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6.4.3 Internal pool size mediates tradeoff between accuracy and effi-
ciency

We next consider a stable neuron with strong local control and sweep through internal
pool sizes of inactive AMPARs (m). Internal pool size is mediated by changing AMPAR
endocytosis rate (g → m), as depicted in Fig. 6.6. The neuron with a small internal pool
fills relatively quickly (Fig. 6.3Fi). If we increase internal pool size, cell fill time is slower,
and synaptic scaling is less efficient (Fig. 6.3Fii). However, we can begin to differentiate
between potentiated and unpotentiated synapses. Further increasing the internal pool size
(Fig. 6.3Fiii) continues to improves the scaling accuracy; however, cell fill time becomes
very slow.

Thus far, we have presented a number of simulations in a model pyramidal neuron.
These simulations sweep through ranges of global gain, local gain, and internal pool size
to demonstrate the limitations imposed on the stability, efficiency, and accuracy of synaptic
scaling. How do we know that these examples in this neuron model generalize to other
morphologies? If we reduce the complexity of this example, are we still left with the
fundamental, underlying tradeoffs observed here?

We aim to rigorously quantify these tradeoffs to better understand the relevant dynamics
that limit synaptic scaling. We begin with a didactic introduction to stability from classical
control theory applied to regulation of neuron excitability. We then devise formal definitions
of efficiency and accuracy for synaptic potentiation and scaling. We formalize the tradeoffs
in a simplified model. We are then equipped to make realistic predictions about scaling
performance in a variety of neuron morphologies.

6.5 Quantifying stability using classic control theory

This section was a collaboration with Saeed Aljaberi and Fulvio Forni in the Control Group,
Department of Engineering, University of Cambridge.

The unified model of synaptic potentiation, scaling, and regulation is complex (Fig.
6.1). To quantify stability, we evaluate feedback regulation in a simplified model—a single
compartment with two states m and g for inactive and active cargo, respectively. A third
state u represents cargo production. Strength of global control is mediated by gain KG. This
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three-dimensional system is described by equations:

ṁ =u− s1m(c−g)+ s−1g−ω
mm

ġ =s1m(c−g)− s−1g−ω
gg.

u̇ =kG([Ca2+]target − [Ca2+])− γGu

[Ca2+] =ψ(g)

ψ(g) is a static map of g to [Ca2+] from Eqs. C.4-C.6. The connections between linearized
subsystems are summarized in the block diagram in Fig. 6.4B and briefly described here.
The model has a preset [Ca2+]target that sums with [Ca2+] to produce error eG. Function Gu

outputs cargo production u. Function Gm transports cargo throughout the dendrites. Function
Gg activates cargo by insertion into dendritic spines. Active cargo g then feeds back to
modify [Ca2+].

We next simulate this system as described with increasingly aggressive global regulation
(by increasing KG), as depicted in Fig. 6.4C. For low KG, cargo does not reach [Ca+2]target =

0.5 within the simulation time (Fig. 6.4Ci). Gradually increasing KG decreases settling time
(Fig. 6.4Cii-iv). However, dampened oscillations begin to appear, and excessive KG results
in overshooting [Ca+2]target (Fig. 6.4Civ). Further increasing KG results in the emergence of
oscillations and ultimately instabilities in the form of limit cycles (Fig. 6.4Cv).

These degrees of increasing instability (Fig. 6.4Ci-v) can be quantified using the Nyquist
stability criterion, described in Appendix C and summarized here. We conceptually define
an instability as when the ratio of output to input, called the transfer function, tends toward
infinity. Using the block diagram in Fig. 6.4B, we can define instability as

output
input

=
g

[Ca+2]target
=

GgGmGu

1+K∂ψGgGmGu
→ ∞

The transfer function approaches infinity when the denominator approaches 0:

1+K∂ψGgGmGu → 0

K∂ψGgGmGu →−1

We can plot the proximity of K∂ψGgGmGu to -1 on a Nyquist plot, a graphical representation
of the transfer function parameterized into real and imaginary parts on the x- and y-axis,
respectively (Fig. 6.4D). A line on the Nyquist plot corresponds to a system, and its proximity
to (-1, 0) quantifies system stability.
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Fig. 6.4 System stability is quantified using principles of classic control theory. (A):
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tion of model dynamics as an input-output system is depicted as a box diagram. (C) Model
dynamics are simulated, and resultant intracellular calcium signal is depicted for increasing
KG (i-v). (D) Model dynamics represented as a Nyquist plot for linear approximations with
increasing KG. Gain margin (GM) and phase margin (PM) are depicted.
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Stability margins can be computed from the Nyquist plot. The gain margin (GM) is the
horizontal distance to (-1, 0). The phase margin (PM) is the angle of rotation to (-1, 0). Both
are marked for the purple system (Fig. 6.4Civ) on the Nyquist plot in Fig. 6.4D. Note that
Nyquist plots with increasingly aggressive regulation (Fig. 6.4Ci-v) approach and eventually
surpass (Fig. 6.4Cv) the (-1, 0) point. Derivations and equations for the gain and phase
margins are provided in Appendix C.

6.6 Quantifying accuracy of synaptic potentiation and scal-
ing

We next derive a rigorous definition of accuracy. We discuss both accuracy of synaptic
potentiation and accuracy of synaptic scaling. These concepts are related, and both improve
with larger internal pool size.

During LTP, a synapse increases demand for synaptic proteins. The degree of synaptic
potentiation depends on the availability of cargo near the synapse. Adjacent synapses have
indeed been observed to compete for plasticity related proteins [197]. We simulate synaptic
potentiation by increasing cargo demand in synapses, a method originally formulated in the
sushi belt model [62] and its mathematical implementation [247]. An increased number of
slots ci in the synapse does not necessarily fill to capacity, such as in neurons with small
internal pools or widespread potentiation. How capable are neurons at meeting this demand?
We explore accuracy in the context of morphology and internal pool size.

We assess how well a neurite can potentiate its synapses at varying locations in the
dendritic tree. To this end, we compare potentiated synapses to equivalent unpotentiated com-
partments on an identical branch (Fig. 6.5A). We potentiate single synaptic compartments
with varying strength and at varying distances from the soma. For a small internal pool (Fig.
6.5B), a neuron only fulfills half the demand for increased AMPARs in distal synapses. Inter-
nal pool size dwindles with distance from the AMPAR source, and full synaptic potentiation
is not achieved. Neurites with increasing internal pool size (Fig. 6.5C-D) more readily fulfill
demand during LTP, thus improving accuracy of potentiation.

Synaptic potentiation allows a neuron to maintain the relative strengths of its synapses
following potentiation. We thus explore how internal pool size impacts the accuracy of
synaptic scaling. During scaling, neurons undergo multiplicative changes in synaptic strength
such that the relative strengths of the synapses are preserved. Such modification of synapses
forms the foundation of learning and memory. Stable, reliable changes at the molecular
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Fig. 6.5 Accuracy of synaptic potentiation is quantified as a percentage of full potentiation.
(A): Toy model of multi-compartment model with two parallel, identical branches allows for
comparison between potentiated synapse and equivalent unpotentiated synapse as control.
Single gi are potentiated individually with varying strength (marker shape) in systems
with varying s−i (B-D). Distal synapses potentiate poorly compared to proximal synapses,
mitigated by large receptor pool size.
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Fig. 6.6 By law of mass action, AMPAR inactivation s−i modulates m at steady state,
effectively changing the sizes of internal reserve pools of AMPARs.

and cellular level correspond with stable, reliable memories, which motivates quantifying
accuracy of synaptic scaling.

We demonstrate our measure of scaling accuracy with examples in the ball-stick model
with distributed LTP and LTD (Fig. 6.7). Prior to potentiation, all synaptic capacities ci

are close to 1 (Fig. 6.7A). During simulation, one compartment i = 3 undergoes LTP/LTD,
depicted with dashed lines. The remaining compartments scale and maintain their synaptic
ratios. We trace [Ca2+] and gi for all compartments (Fig. 6.7B,Cii,iii). We next describe a
metric for quantifying the accuracy of scaling in gi.

Prior to LTP/LTD, the steady states of all non-potentiated synapses gss
i are recorded and

averaged as follows:
µ

ss = mean(gss
unpot)

µss is the mean active cargo content for all non-potentiated synapses. We standardize all gss
i

by the mean µss. We then compute the steady state mean following LTP/LTD: µ̂ss, indicated
by .̂ We compare the mean-standardized gss

i /µss between the pre- and post-LTP states. A
synapse that scales perfectly has:

gss
i

µss =
ĝss

i

µ̂ss and qi =
ĝss

i /µ̂ss

gss
i /µss −1 = 0 (6.1)

where qi measures scaling deviation for each individual synapse (Fig. 6.7B,Civ). qi < 0
indicates excess scaling during LTP or incomplete scaling during LTD. qi > 0 corresponds
to incomplete scaling during LTP or excess scaling during LTD. We can use qis to compute
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compute scaling error (iv).
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mean absolute percent error Q from perfect scaling:

Q = mean(|qi|)×100% (6.2)

Larger Q indicates a greater deviation from perfect scaling, i.e. more inaccurate synaptic
scaling.

We next compute Q for varying internal pool sizes and potentiation ratios in distinct
neuron morphologies. We examine linear and stellate architectures—the extreme cases
of structural symmetry, depicted in Fig. 6.8A,Bi. In both, m1 is the soma and site of
AMPAR production and global regulation. Model parameters are scaled such that AMPARs
are transported at 1 µm/s and the linear and stellate models are 1000 µm in length and
250 µm in radius, respectively. In the symmetric, stellate model, each compartment has
proximate access to the soma with minimal transport of scaling signal and AMPARs. In the
asymmetric, linear model, the effect of transport and resultant phase lag increases, particularly
for distal compartments. This results in significantly reduced scaling accuracy in asymmetric
morphologies (Fig. 6.8A,Bii).

In both, scaling accuracy decreases with increasing potentiation ratios. Higher demand
for AMPARs results in scaling error. Scaling accuracy also increases with larger internal
pools. Larger reserves allow synapses to meet demand for AMPARs. The fundamental
tradeoffs of synaptic scaling (Fig. 6.3B) still apply here. We observe that tradeoff constraints
are largely shaped by network morphology.

6.7 Defining efficiency

We lastly define efficiency of synaptic scaling. We use active AMPAR density gi to compute a
meaningful measure of efficiency in the context of synaptic scaling. Efficiency is the average
time for the states to reach within some percentage of steady state across all compartments in
a neuron.

For instance, consider a neuron with i = 1,2...N compartments. In simulation, some
fraction of these compartments are potentiated and approach a new steady state in synaptic
strength following potentiation. Non-potentiated synapses are also perturbed by potentiation
and exhibit a corresponding decrease in synaptic strength (as depicted in Fig. 6.7). Both
potentiated and non-potentiated synapses are used to compute the average efficiency of the
system.

For each compartment i, the steady state active AMPAR density before gpre
i and after

gpost
i potentiation is recorded. A threshold X% is set for proximity to post-perturbation steady
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Fig. 6.8 Asymmetric morphologies scale less accurately than symmetric morphologies,
mitigated by large receptor pools. (A): A linear morphology (i) is simulated for varying
cn and s−i while quantifying mean absolute percent error Q (ii). (B): The same parameter
sweep and quantification (ii) is performed for a stellate morphology (i), demonstrating more
accurate synaptic scaling in symmetric morphologies.
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state: gpost
i ±X |gpre

i − gpost
i |. The time between perturbation and each compartment i first

entering this range is recorded as the time to steady state tss
i , which is estimated from the data

vector output of simulations. The time to steady state of the system tss is then computed as
the average of all tss

i

tss =
∑

N
i=1 tss

i
N

in sec

Efficiency is then defined as the reciprocal of the average time to steady state for all compart-
ments.

efficiency =
1
tss in sec−1

In this definition, the efficiency of a system is analogous to a rate or time constant of a system
returning to a steady state following a perturbation.

6.8 Summary of tradeoffs

By now, we have discussed the tradeoffs involved in balancing the stability, efficiency, and
accuracy of synaptic scaling. We have also introduced a rigorous method of quantifying each
attribute. Using these measures, we create a succinct summary of these tradeoffs, depicted in
Fig. 6.9.

We simulate a toy model with n = 4 compartments. The gain margin (defined in Eq.
C.11) approximates stability. The settling rate, or reciprocal of settling time, approximates
efficiency. The reciprocal of mean absolute percent error (Q−1) approximates accuracy. We
sweep through parameter KG to vary global regulation that modulates the stability-efficiency
tradeoff (Fig. 6.9A). We then sweep through parameter KL to vary local regulation that
modulates the stability-accuracy tradeoff (Fig. 6.9B). Lastly, we sweep through parameter
s−i to vary internal pool size that modulates the efficiency-accuracy tradeoff. The axes
for each tradeoff are adjusted to cover the stable regulation region, characterized by real
eigenvalues of the first order linearization. Beyond the limits of these axes, the system is
unstable and has oscillations, as in Fig. 6.4Cv.

Each tradeoff is hyperbolic in shape, suggesting a negative correlation. No attribute can
be improved without worsening at least one of the other attributes. Further, no modification to
the system can simultaneously improve all attributes. These tradeoffs imply that the balance
of attributes is Pareto optimal.

Experimental studies have suggested that Arc protein is the global scaling signal dissi-
pated throughout the dendrites in response to changes in neural firing rate [222, 47, 221, 235].
In our simulations and analysis thus far, we lump the transport of the scaling signal with
AMPAR trafficking. Our modeling assumption is reasonable since AMPARs and Arc are
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trafficked at similar rates (300 µm/hr, [246]). As a conservative estimate, we use fast rates
for AMPAR transport. To further evaluate this assumption, we also perform simulations with
Arc protein as a separate communication channel to validate that lumping the scaling signal
with AMPAR trafficking produces similar results (Fig. 6.10A). In this system, the global
controller regulates production of both m and a with some bias m : a. This system replicates
the same tradeoffs of synaptic scaling for a wide range of m : a (Fig. 6.10B).

6.9 Reduced-order neuron models capture scaling perfor-
mance

This section was a collaboration with Saeed Aljaberi and Fulvio Forni in the Control Group,
Department of Engineering, University of Cambridge.

To further simplify neuron morphology and predict scaling performance, each structure
is approximated as a ball-stick model with distal LTP. Reduced-order models capture the
qualitative behavior with significantly less states, allowing for intuitive predictions made
with improved computational efficiency. In the ball-stick model, morphology is replaced
by a line of compartments with a single synapse placed at the tip. The general ball-stick
with distal LTP is replicated in Fig. 6.11B, with parameters for diffusion d, capacity c,
number of compartments n, and degradation w. Real neuron morphologies vary in size and
symmetry, which are expected to impact parameters in the optimal ball-stick representation.
For example, a longer neuron like a pyramidal cell would best fit a longer ball-stick than that
of a smaller granule cell.

Fitting to a ball-stick model begins with a raw neuron morphology (Fig. 6.11Ci). The
morphology can be coarsened to some fixed distance (100 µm) between nodes using the
TREES toolbox [57], shown in Fig. 6.11Bii. The layered depiction clarifies the logical
progression of cargo through branches (Fig. 6.11Biii). The coarsened model is simulated,
and input u and output ∑g are recorded. Ball-stick parameters are estimated using Grey-Box
Model Estimation from the MATLAB System Identification Toolbox. Grey-Box Model
Estimation uses the structure of the nonlinear ball-stick model with fixed n for fitting to input
and output vectors.

System identification is performed to demonstrate that a ball-stick model alone can
capture the dynamics of a real neuron morphology (Fig. 6.12). The ball-stick fit improves with
increasing n. Ball-stick models with fixed n = 4 were fitted to each of the real morphologies,
and estimated parameters are tabulated in Table 6.1.
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To assess whether the ball-stick estimates capture scaling performance, the fitted parame-
ters are then plotted against the corresponding stability, scaling error, and settling time of the
morphology. Estimated parameter w best approximates scaling performance, as depicted in
Fig. 6.11D. A ball-stick model with increasing w has increasing gain margins (high stability),
increasing scaling error (low accuracy), and increasing settling time (low efficiency).

Table 6.1 - Ball-stick model parameters fits for various neuron morphologies constrained to
n = 4 are tabulated here. Estimated parameters predict scaling performance.

Estimated parameters Quality of fit
Cell type diffusion d capacity c degradation w % fit
CA1 interneuron 1.072 0.80 0.1062 93
granule cell 0.084 0.93 0.0002 82
L3 pyramidal, asymmetric 2.134 0.99 0.0781 78
L3 pyramidal, symmetric 0.100 1.11 0.0651 87
Martinotti cell 0.040 3.03 0.0593 96
Purkinje cell 0.029 14.52 0.0672 69

6.10 Neuron size and symmetry significantly impact scal-
ing performance

We have demonstrated that neuron morphology directly impacts its transfer function, equiv-
alent line, and stability during synaptic scaling. Other scaling attributes, efficiency and
accuracy, are also affected by neuron morphology. We continue to examine how real mor-
phology shapes scaling performance. We survey dendritic arbors of varying neurons listed in
Table 6.2.

We first simulate synaptic potentiation and scaling in each full morphology. Axon
compartments were manually removed from neuron reconstructions, and dendrites were
discretized to 100 µm-segments while preserving neurite length (using the TREES toolbox,
[57]). Active transport speed was set to 1 µm/sec for a conservative estimate of transport
kinetics. Initial simulations used moderate internal AMPAR pool size (s−i = 0.05) and no
local control (KL = 0). Global regulation (KG) was calibrated for stability in symmetric L3
pyramidal cells (with minimal overshoot and oscillations, as in Fig. 6.3Ci). KG was then
linearly scaled by number of compartments in the remaining morphologies, which yielded
stable convergence in all simulations (Fig. 6.13B). Fifteen percent of synapses most distal to
the soma, indicated in red, underwent LTP with doubling of synaptic strength at time 0 hours.
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Fig. 6.11 Transfer functions and reduced-order models of neuron morphologies predict
scaling performance. (A) Transfer function reductions producing equivalent line models can
represent aggressiveness of synaptic scaling. Morphology symmetry, captured by neurite
variances, strongly affects the number of observable states and transfer function reduction
(i). A family of Nyquist plots in an equivalent line with varying KG accurately predicts the
response time for global regulation (ii-iii). (B): The generalized ball-stick representation has
parameters for diffusion d, capacity c, number of compartments n, and degradation w. (C):
Fitting to ball-stick models begins with a raw neuron morphology (i), which is coarsened
to some discretization (ii), and then layered (iii) before constraining to parameters. (D):
The estimated w from the ball-stick model best captures scaling performance, depicted with
metrics for stability (i), scaling error (ii), and settling time (iii).
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Fig. 6.12 Ball-stick parameters for Martinotti cell converge with increasing n (A-C). Quality
of fit improves with increasing n (D).

Table 6.2 - Size and symmetry metrics of neuron morphologies. Total length is the sum
longitudinal length of all dendrites and branches. The longest path of cargo transport is the
max soma-tip distance. Branch order is the number of bifurcatons to reach a dendrite tip.
For each morphology, the number of tips n1 and n2 in each bifurcation i = 1...B is used to
compute partition asymmetry as follows: Partition asymmetry = ∑

B
i=1 |

n1−n2
n1+n2−2 |/B.

Cell type Total
length (µm)

Max soma-tip
distance (µm)

Max branch
order

Partition
asymmetry

NeuroMorpho
ID

CA1 interneuron 11819.2 1671.66 41 0.87 NMO_124538
granule cell 271.31 155.22 2 0 NMO_80458
L3 pyramidal, asymmetric 12422.1 1503.44 13 0.46 NMO_86997
L3 pyramidal, symmetric 8172.44 948.43 14 0.48 NMO_86957
Martinotti cell 8514.45 573.99 17 0.57 NMO_06140
Purkinje cell 6964.66 254.44 36 0.55 NMO_99860
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depicted at four time points. (D): Scaling error at steady state following LTP reveals
increased error in distal compartments and bottleneck regions. (E): Mean length affects
scaling performance (efficiency, accuracy, and stability). (F): Smaller, more symmetric
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plots are visualized by fixing one scaling attribute, as in (H). (H): Martinotti and pyramidal
cells navigate the tradeoff between scaling attributes.
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Fig. 6.14 Variance in neuron length (which corresponds to asymmetry) strongly correlates
with scaling performance, depicted with stability, accuracy, and efficiency.

We first examine scaling performance across the spatial dimension. The progression
of AMPAR distribution over time is depicted in Fig. 6.13C. Granule cells have small
morphologies and settle within 1 hour (Fig. 6.13Ci). Martinotti and Purkinje cells are larger
and fairly symmetric and settle within 5 hours (Fig. 6.13Cii,iv). The CA1 interneuron and
pyramidal cells require up to 15 hours for complete synaptic scaling (Fig. 6.13Ciii,v,vi).
This is likely a result of bottleneck effects, which cause transport delays and increased
convergence time [247].

The scaling error for individual synaptic compartments (q, see Eq. 6.1) is depicted over
each morphology in Fig. 6.13D. Regions of poor accuracy have high AMPAR demand or
low cargo supply. This includes regions far from the AMPAR source (soma) and adjacent
to potentiated synapses, evident in the pyramidal cells (Fig. 6.13Diii,v). High densities
of bifurcations also increase scaling error, evident in the CA1 interneuron (Fig. 6.13Dvi).
Bottleneck effects might also play a role in limiting AMPAR supply (Fig. 6.13Dv,vi).

We next consolidate measures of neuron morphology (from Table 6.2) to predict scaling
performance. For each morphology, we average all soma-tip path lengths to estimate an
effective neural mean length. In Fig. 6.13E, metrics of scaling performance are plotted
against effective length. In general, cells with low effective lengths have improved scaling
performance. Neurons with the highest effective length (the CA1 interneuron and asymmetric
L3 pyramidal cell) have the lowest efficiency, accuracy, and stability. The variance in soma-
tip lengths also correlates with scaling attributes (Fig. 6.14), which is consistent with
observations and conclusions from toy neuron models (Fig. 6.8).

In Fig. 6.13F, KG was tuned such that each morphology has a similar stability margin
for a fair comparison of scaling efficiency and accuracy. All morphologies have a stability
margin in the range [0.2791,0.344]. Smaller neurons scale synapses with better performance.
The settling times for all neurons vary significantly, with the granule cell reaching 98% of
steady-state in under 5.5 hours, while large neurons like CA1 interneuron require 141 hours.
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We lastly present a conceptual diagram of the tradeoffs across all three attributes (Fig.
6.13G). A neuron morphology undergoes synaptic scaling while varying free parameters KG,
KL, and s−i. By sweeping through these parameters, we create a density cloud of scaling
performance, plotted as a sphere on 3D axes for stability, accuracy, and efficiency. Two such
clouds are depicted for hypothetical simple and complex cells. The complex cell is expected
to have poorer scaling stability, efficiency, and accuracy, and is thus closer to the origin. 2D
tradeoff plots are visualized by fixing one scaling attribute, represented by a plane in Fig.
6.13G. Two neuron morphologies are compared within a fixed scaling attribute, as indicated
by lines representing the intersection of spheres and planes. We perform such simulations for
more simple (Martinotti) and complex (pyramidal) neurons in Fig. 6.13H. We simulate with
varying KG, KL, and s−i in Fig. 6.13H. In all three tradeoffs, the more complex (asymmetric)
neuron—the pyramidal cell—has worse scaling performance. The trends here—negative
relationships—match those obtained in a single-compartment model in Fig. 6.9.

6.11 Discussion

Our results here uncovered that intraneuronal distribution necessitates tradeoffs between
stability, accuracy, and efficiency for transport performance. We study this balance in the
context of synaptic scaling with transport of AMPA receptors, but these conclusions are
generalizable to intracellular trafficking for other functions. We showed that global regulation,
local regulation, and local internal cargo pools mediate between attributes of this tradeoff.
We report numerous disadvantages for highly sensitive regulation, which might account for
why we observed no immediate regulation of cargo trafficking in previous chapters (Sec.
3.6). Our results culminate with a demonstration of ion channel distribution and regulation
in numerous neuron morphologies.

In this chapter, we again examined the regulation of cargo distribution. Neurons face
the challenge of distributing millions of protein subunits throughout large and complex
morphologies. Synaptic scaling is a highly relevant manifestation of protein distribution and
regulation. Homeostatic synaptic scaling is critical for the function of neurons and therefore
for higher cognitive functions including learning and memory. Dysfunction of homeostatic
plasticity are increasingly revealed to be of importance in fields of biomedicine. For instance,
deficits in synaptic scaling have been associated with age and onset of epileptic seizures [81].
Other forms of plasticity that are also activity-dependent, such as structural plasticity, have
been analyzed in a similar framework [4].



Chapter 7

Summary and implications

This thesis concerns the distribution and regulation of ion channels in full neuron morpholo-
gies. We began with an overview of ion channels, cargo transport, and neuronal regulation
(Chapter 1). We then established the experimental, analytical, and theoretical methods as
well as validated preliminary results (Chapter 2). We next explored potassium channel Kv4.2
(Chapters 3-5), which was of particular interest given its distinct localization and expression
profile. Although we thoroughly characterized Kv4.2 active transport (Chapter 3), diffusion
(Chapter 5), and established a unified model of global transport (Chapter 4), we did not
observe global regulation of this cargo. We therefore studied AMPA receptors in the context
of synaptic scaling, a well-established phenomenon of neural homeostasis and regulation.

In this chapter, we summarize the principle findings from this dissertation. We further
discuss the implications of the results, in the context of each individual chapter and of
cellular/molecular biology (across cargo and neuron type).

7.1 Summary of contributions

This thesis sets forth a number of advances in neurobiology and physiology. Most evident are
the substantial data sets and analyses of ion channel kinetics and neuronal dynamics. More
important are the implications of these results in the broader context of neural function.

In Chapter 1, the relevant topics were introduced, with a literature review and overviews
specific the subsequent results. Chapter 2 reiterates and verifies preliminary methods and
results in pyramidal cells of hippocampal cultures. These early chapters guide the author
and readers to a mutual understanding and appreciation of previous work and protocols in
this field. They served to establish the premises and methodological competencies for the
remaining chapters.
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Chapter 3 introduced a sizable data set of neurite recordings from which numerous
basic conclusions are revealed. Kv4.2 primarily localizes along the somatodendritic axis,
with minimal but non-negligible static densities in axons. In pyramidal hippocampal cells,
Kv4.2 is actively trafficked on microtubules in puncta, which are more prevalent in axons
than in dendrites. Actively-trafficked Kv4.2 decreases in density with distance along the
somatodendritic axis. This distribution of mobile density is the reverse of the static density.
The results thus far motivate the differentiation of these two densities in compartmental
modeling (as in Chapter 4). Analysis of trajectory kinetics revealed that transport in axons
and dendrites not only differed quantitatively but also qualitatively. Axonal puncta are
transported over greater distances with higher average velocity. Dendritic puncta stall for
longer, whereas axonal puncta undergo longer unidirectional runs. The analysis of trajectory
kinetics suggest distinct biophysical mechanisms in each neurite type (explored further in
Chapter 4). Lastly, a negative result: the transport of Kv4.2 is not markedly perturbed with
neural excitability (high KCl or AMPA stimulation) over short timescales. This finding, no
global neuron regulation over minutes to hours, is later evaluated in Chapter 6.

Chapter 4 contains models of transport and delivery that reconcile the observed densities
of static and mobile Kv4.2. Mass-action models with lumped and discretized neurites predict
relative densities as observed in Chapter 3. The distinct somatodendritic static distribution
of Kv4.2 is derived from mobile densities and velocities observed experimentally. The
qualitative kinetic measures (displacement, velocity, stall time, superdiffusivity) between
axons and dendrites also reflect the demand in axons and dendrites. However, we infer that
these kinetic differences are not explained by cargo demand alone and that an additional
inertial or propulsion mechanism likely differs between axons and dendrites. The results
of this chapter prompt caution in the interpretation of mobile and static cargo densities in
studies of neuron imaging and cargo distribution.

Chapter 5 focuses on the diffusive element of Kv4.2 transport. Using FRAP microscopy,
the recovery rate and mobile fraction of Kv4.2 is estimated, from which the diffusion
coefficient is derived. Drift is estimated by binning bleach recovery across the length of the
dendrites, revealing a slight directional bias distal to the soma. Fluorescence recovery is then
used to estimate rates between mobile and immobile fractions. Estimated rates are lastly
simulated in a large neuron morphology, revealing settling times consistent with timescales
of global regulation.

The results chapters thus far have concerned the distribution, transport, and delivery
of Kv4.2. Experimental observations of global Kv4.2 regulation, however, were been
unsuccessful. To study homeostasis, we shifted focus to AMPA receptors, which have
well-established mechanisms of local and global regulation.
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Chapter 6 accordingly focuses on AMPA receptors in the context of synaptic scaling. A
model of AMPA receptor transport, activation, and regulation is developed, which replicates
synaptic scaling. Tradeoffs between scaling attributes—efficiency, accuracy, and stability—
are mediated by free parameters—global gain, local gain, and AMPAR pool size. These
tradeoffs are consistent throughout an alternate system with scaling factor Arc as well as full
neuron morphologies of varying size and symmetry. These results indicate that the neuron
morphology itself imposes constraints on the quality of global homeostasis.

7.1.1 Active transit versus passive diffusion

Our results throughout this dissertation encourage the comparison of active versus passive
transport in intraneuronal cargo distribution. Our data sets include measurements of both
microtubule-based transit and diffusion for one specific cargo—Kv4.2. We also simulated
biased and unbiased transport, corresponding to active and passive trafficking, with realistic
rates in full neuron morphologies.

The resultant settling times for cargo distribution in pyramidal cells were on the order of
days regardless of active versus passive transport. For instance, our results in Sec. 5.6 imply
that distribution of cargo throughout a complex morphology with diffusion alone is sufficient
to achieve settling times predicted for global regulation. Simulation of active AMPAR
transport (Sec. 6.10) with velocities similar to those observed experimentally for Kv4.2 (Fig.
3.9) also produces similar settling times. What, then, is the role of active transport? From a
systems-level perspective, the principle feature of active transport is that it provides directed
localization. We hypothesize that active transport is suitable for targeted, local regulation of
cargo. Passive diffusion broadly disseminates a cargo throughout an arbor (see Chapter 5
and [198]). Active transport, like insertion rates or activation rates, targets cargo to a specific
location. These mechanisms are not well-elucidated in the biological literature, and our
coarse-grained models do not capture them in detail.

7.1.2 Timescale of global versus local regulation

Chapter 6 explores the interplay between global and local mechanisms of neuronal regulation
in the context of synaptic scaling. Global and local gains modulate the quality of synaptic
scaling, a global-level homeostatic phenomena. The insights from our theoretical study of
synaptic scaling can be extended to other homeostatic mechanisms involving other cargo
types. Here, we discuss the interplay of global and local regulation for our other cargo of
interest—Kv4.2.
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Previous studies have observed local regulation of Kv4.2 with AMPA stimulation [118,
164]. An early motivation for this course of study was to replicate similar neuronal stimulation
while observing longitudinal cargo transport. In Sec. 3.6, we found no evidence for activity-
dependent regulation of active Kv4.2 transport within a short time frame after perturbation
with KCl or AMPA. Why would neuronal stimulation impact local mechanisms as in previous
studies [118, 164] but not affect active transport over a similar timescale?

We hypothesize that our results from Chapter 6 are directly relevant here. In our the-
oretical study of synaptic scaling, we found that fast global regulation of cargo can result
in instabilities, particularly in large cells. The efficiency-stability tradeoff relates back to
our measurements of Kv4.2. A change in active Kv4.2 transport, such as varying puncta
frequency or kinetics, is a global phenomena. Global regulation of Kv4.2, like that of AMPA
receptors, is limited by neuron size. We might expect global Kv4.2 regulation to occur over
longer timescales of days to weeks, as has been observed for AMPA receptors (Chapter 6)
and other ion channels [174, 178]. In conclusion, the same tradeoffs apply to any process
that requires global signaling throughout a large and complex morphology where that signal
might experience or induce significant time delays. Any such processes must be regulated
slowly enough to avoid instability.

7.1.3 Implications for other cargoes and neuron types

Most of the main conclusions from the data, modeling, and theory in this dissertation
have been relevant for large complex neurons. In general, the tradeoffs, time delays, and
timescales for global regulation discussed here are exacerbated for larger cells and alleviated
for smaller cells. In general, a transport network that strains the time delay between a global
controller (here, ion channel production in soma) and the variable controlled (active ion
channel throughout the arbor) can destabilize global regulation.

The same discussion can be extended to varying cargo type. The conclusions in this
dissertation are most relevant for ion channels. For this discussion, we assume a constant
demand and lifetime across all cargo types. Smaller cargo might diffuse more quickly or
be packed more densely into membrane vesicles, both of which improve delivery, easing
the tradeoffs and instabilities of global regulation. Larger cargoes, like organelles, might be
trafficked more slowly and worsen the tradeoffs.

In summary, the general tradeoffs discussed in this thesis exist in all neurons and cargo
types. However, the severity of the constraints and the degree of biophysically-relevant limi-
tations for neuron physiology are largely dependent on cell size, symmetry, and complexity
as well as cargo size, speed, and demand.
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7.2 Closing remarks

At a basic level, the topic of ion channel distribution and regulation in neurons involves
individual observations of fundamental transport mechanisms. This topic also extends to
broad, lumped phenomena and coarse-grained models. The results presented in this thesis
examine cargo distribution across these multiple levels of granularity. We discussed the
interplay between these types of analyses and their implications for progress in this field.

Throughout the reuslts, we have made physical observations of protein transport. We
monitored actively transported ion channels on microtubules (Chapter 3), localization densi-
ties of subunits (Chapter 3), and passive dissemination through diffusion (Chapter 5). These
experimental observations were focused measurements of singular phenomena, as tradition-
ally studied in molecular and cellular biology. These investigations produced numerous
findings, some of which were unexpected from the narrow perspective of those experiments
alone.

Those basic experiments also produced some unexpected results, such as discordant
distributions of static and transported cargo. In order to explain these findings, we adopted a
broader perspective of cargo distribution and regulation. The systems-level viewpoint com-
prises several molecular- and cellular-level phenomena. With comprehensive, coarse-grained
models, we reconcile these seemingly paradoxical results with our current understanding of
intracellular distribution (Chapter 4). The combination of microscopic measurements with
coarse-grained modeling allows us to draw conclusions that are not apparent from either
experimental or theoretical studies alone.

In this thesis, we selected a cargo—ion channel Kv4.2—with a known function, a specific
intraneurite distribution, high neurite polarity, and available tools for intracellular tracking.
The individual measurements of ion channel localization, passive diffusion, and microtubule-
based transport were novel and interesting on their own (Chapters 3 and 5). However, we drew
greater insight by incorporating these results into detailed biophysical models of trafficking
and global frameworks of cargo distribution (Chapter 4). Both coarse-grained models and
precise physical measurements are necessary for explaining how the unique Kv4.2 gradient
arises or inferring whether cargo sequestration determines transport kinetics. Data-driven,
coarse-grained modeling answers questions that neither data nor modeling can address alone.

We lastly extended this philosophy to study a crucial manifestation of ion channel
distribution and regulation: synaptic scaling (Chapter 6). These models are again based
in physical measurements, using data from other studies. With a global framework of
intraneuronal distribution (now, of AMPA receptors), we replicate synaptic scaling in realistic
morphologies and infer the major limitations imposed by large and complex cells. The
stability, efficiency, and accuracy of synaptic scaling must be balanced—no attribute can
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be improved without worsening the others. Scaling performance is inherently limited by
the morphology of cells. These results are therefore generalizable to other phenomena
involving global cargo trafficking. This extends to other forms of neuronal plasticity, such as
modulation of intrinsic excitability by regulation of voltage-gated ion channels.

In closing, these results address the logistical challenges of continuous and regulated
cargo delivery throughout large and complex neurons. Quantitative measurements of ion
channel Kv4.2 reveal distribution profiles of delivered cargo and cargo in transit, including
the kinetics of microtubule-based and diffusive motion. Coarse-grained models of subunit
transport, delivery, and regulation reconcile these distributions for Kv4.2 and provide insight
on the limitations of intraneuronal distribution of AMPA receptors.
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Appendix A

Derivations

A.1 Derivation of advection-diffusion equation

Here we derive the advection-diffusion equation in one dimension from a random walk.

A.1.1 Random walk master equation

We begin with a one dimension line that is discretized in space with index x = 1,2, ...,X and
in time with index n = 1,2, ...,N. We are observing a random walk, where a random walker
has a probability of f that a step is taken to the right (forwards) and b that a step is taken to
the left (backwards). Each step therefore increases or decreases space by one distance unit
∆x (x → x−∆x or x → x+∆x, respectively). Each step also increases time by one time unit
(n → n+∆n) where ∆n is the duration of one time step.

Let Pn(x) be the probability of finding the walker at position x at some time n. We can
now write a master equation for the walker occupying position x at time n+∆n:

Pn+1(x) = f Pn(x−∆x)+bPn(x+∆x)+(1− f −b)Pn(x) (A.1)

Notice that we allow for the probability that the walker stays in place with probability
1− f −b. If we distribute the last term on the RHS, we have

Pn+∆n(x) = f Pn(x−∆x)+bPn(x+∆x)+Pn(x)− f Pn(x)−bPn(x)

Subtract the term Pn(x) from both sides.

Pn+∆n(x)−Pn(x) = f Pn(x−∆x)+bPn(x+∆x)−bPn(x)− f Pn(x) (A.2)
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We leave the LHS of Equation A.2 as it is now before converting to continuous time and
space after working on the RHS.

The RHS of Equation A.2 is algebraically modified to a form related to the finite difference
approximations of the first and second spatial derivatives. In order to do this, the first and
second terms of the RHS of Equation A.2 are expanded as follows:

pPn(x−∆x) =
1
2

f Pn(x−∆x)−−1
2

pPn(x−∆x)

bPn(x+∆x) =
1
2

bPn(x+∆x)−−1
2

bPn(x+∆x)

Additionally, the following terms summing to zero are added to the RHS of Equation A.2

1
2

f Pn(x+∆x)− 1
2

f Pn(x+∆x)+
1
2

bPn(x−∆x)− 1
2

bPn(x−∆x)

All terms are added to Equation A.2 and expansions are substituted into Equation A.2.
Rearrangement of terms and factoring puts the equation in the desired form, as follows:

Pn+∆n(x)−Pn(x) = f Pn(x−∆x)+bPn(x+∆x)− f Pn(x)−bPn(x)

=
1
2

f Pn(x−∆x)− f Pn(x)+
1
2

pPn(x+∆x)+
1
2

bPn(x−∆x)−bPn(x)

+
1
2

bPn(x+∆x)− 1
2

f Pn(x+∆x)+
1
2

f Pn(x−∆x)+
1
2

bPn(x+∆x)

− 1
2

bPn(x−∆x)

=
1
2

(
f Pn(x−∆x)−2 f Pn(x)+ f Pn(x+∆x)+bPn(x−∆x)−2bPn(x)

+bPn(x+∆x)
)
− 1

2

(
f Pn(x+∆x)− f Pn(x−∆x)−bPn(x+∆x)

+bPn(x−∆x)
)

Pn+∆n(x)−Pn(x) =
1
2
( f +b)

(
Pn(x−∆x)−2Pn(x)+Pn(x+∆x)

)
− 1

2
( f −b)

(
Pn(x+∆x)−Pn(x−∆x)

)
(A.3)

The LHS of Equation A.3 will become the time derivative of P, and the first and second
terms on the RHS will become second and first spatial derivatives of P, respectively.
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A.1.2 Finite difference approximation

As the spatial and temporal step sizes ∆x and ∆n approach zero, Equation A.3 approaches the
continuous advection-diffusion equation. In order to approximate the form of the derivatives
in continuous space and time, we can use the finite difference approximations for first and
second derivatives. We begin with the forward difference equation for a first derivative of
some arbitrary function f (t):

d f
dt

=
f (t +∆t)− f (t)

∆t
(A.4)

We can also consider the central difference equation for the first derivative of f (t):

d f
dt

=
f (t + 1

2∆t)− f (t − 1
2∆t)

∆t

Since the smallest step size in our discrete case was ∆t and not 1
2∆t, it might be more helpful

to take a central difference approximation over two steps 2∆t:

d f
dt

=
f (t +∆t)− f (t −∆t)

2∆t
(A.5)

The central difference approximation can then be applied to a second derivative using the
chain rule:

d2 f
dt2 =

d
dt f (t + 1

2∆t)− d
dt f (t − 1

2∆t)
∆t

d2 f
dt2 =

1
∆t

( f (t +∆t)− f (t)
∆t

− f (t)− f (t −∆t)
∆t

)
d2 f
dt2 =

f (t +∆t)−2 f (t)+ f (t −∆t)
∆t2 (A.6)

The approximations in Equations A.4, A.5, and A.6 can be used to write discrete difference
equations as continuous derivatives.

A.1.3 Discrete to continuous space and time

In order to modify our master equation in Equation A.3 to continuous space and time, all
terms must be in the form of Equations A.4, A.5, or A.6. We can multiply the LHS by unit
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value ∆n
∆n , the first term on the RHS by unit ∆x2

∆x2 , and the second term on the RHS by unit ∆x
∆x :

(
Pn+∆n(x)−Pn(x)

)
∆n
∆n

=
1
2

∆x2

∆x2 ( f +b)
(

Pn(x−∆x)−2Pn(x)+Pn(x+∆x)
)

− 1
2

∆x
∆x

( f −b)
(

Pn(x+∆x)−Pn(x−∆x)
)

Pn+∆n(x)−Pn(x)
∆n

∆n =
∆x2

2
( f +b)

Pn(x−∆x)−2Pn(x)+Pn(x+∆x)
∆x2

− ∆x
2
( f −b)

Pn(x+∆x)−Pn(x−∆x)
∆x

Pn+∆n(x)−Pn(x)
∆n

=
∆x2( f +b)

2∆n
Pn(x−∆x)−2Pn(x)+Pn(x+∆x)

∆x2

− ∆x( f −b)
∆n

Pn(x+∆x)−Pn(x−∆x)
2∆x

We can now make derivative approximations using Equations A.4, A.5, and A.6 and replace
discrete time n and space x with continuous time t and space x.

∂P(x, t)
∂ t

= D
∂ 2P(x, t)

∂x2 + v
∂P(x, t)

∂x

where P(x, t) is the probability of finding a random walker at position x at time t in continuous
space and time. We have also identified D = ∆x2( f+b)

2∆n and v = ∆x( f−b)
∆n as lim∆x→0 and

lim∆n→0. For a population that contains a total of T random walkers, the concentration of
particles in some segment of line can be defined as c(x, t) = T P(x, t)/∆x using the law of
large numbers. Substituting this into our equation produces the one-dimensional advection-
diffusion equation for a large population of particles in a more recognizable form:

∂c(x, t)
∂ t

= D
∂ 2c(x, t)

∂x2 + v
∂c(x, t)

∂x
(A.7)

A.2 Estimation of diffusion coefficient from FRAP

This derivation has been adapted from the Supporting Text of Scott et al, 2006 [202].
The purpose of this derivation is to estimate the diffusion coefficient D from experimental

data obtained with fluorescence recovery after photobleaching (FRAP). We begin by defining
the problem, depicted in Fig. A.1. A neurite is approximated as a cylinder, and intracellular
transport (diffusion) of cargo c(x, t) occurs along the longitudinal axis x of the cylinder over
time t. A bleach region of width w is defined, centered about x = 2l = 0. At t = 0, there is
no cargo in this region c([−l, l],0) = 0, corresponding to the moment fluorescence recovery
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begins, just after photobleaching. In the adjacent regions (x > l and x <−l), the density of
cargo is C0 at t = 0.

w

x=0        lc=0
c=C0 C0

t=0

Fig. A.1 A segment of neurite is depicted immediately after photobleaching. Solving the
diffusion equation in this 1D system estimates D.

We begin with the diffusion equation with the assumption of no drift:

∂c(x, t)
∂ t

= D
∂ 2c(x, t)

∂x2

The solution to this equation with the aforementioned initial conditions is

c(x, t) =
C0

2

(
erfc
( x+ l

2
√

Dt

)
+ erfc

(−x+ l
2
√

Dt

))
where erfc is the complementary error function and all other terms are as previously defined.
We next integrate this fucntion over the bleached area −l to l (see Fig. A.1):

1
2l

∫ +l

−l
c(x, t)dx =C0

(√
Dt
πl2

(
1− exp(

−l2

Dt
)
)
+ erfc

( l√
Dt

))
We then solve for the time at which this expression reaches half maximum t = t½:

1
2
=

√
Dt½
πl2

(
1− exp(

−l2

Dt½
)
)
+ erfc

( l√
Dt½

)
We can solve the preceding equation for Dt½

l2 to obtain the numerical solution:

Dt½
l2 ≈ 0.925

Rearranging

D ≈ 0.925
l2

t½
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Substituting in w = 2l, we have:

D ≈ 0.231
w2

t½
(A.8)

We use Eq. A.8 to estimate the D for dendrites in our dataset in Chapter 5.



Appendix B

Stochastic model: analysis and inference

B.1 Distributions of kinetic measures in stochastic model

In this section, the stochastic model is analyzed as a modified discrete time random walk.
We aim to realize the distributions of the experimental measures of puncta kinetics (Fig. 3.9).
Among the distributions derived here are distance traveled and mean speed.

B.1.1 Total distance traveled

Until absorption, a puncta in this stochastic model behaves as in a one-dimensional unbiased
random walk. We use this premise to solve for the distributions of the kinetic measures of
interest.

We begin with total distance traveled Dtot, which is a measure of the puncta’s final
position relative to its origin. The final position is the site of absorption, which ends the
random walk. The expected value of an unbiased random walk is 0, regardless of the number
of time steps n. For a biased random walk with rightward (+1) propensity f and leftward (-1)
propensity b, the expected value after n time steps is n( f −b). The variability around this
expected value scales with

√
n. As the number of puncta simulated approaches infinity, the

distribution of their final positions - by central limit theorem - approximates a bell curve. In a
DTRW with no absorption, this is well approximated by a normal distribution. We also find
that unidirectional runs (with increasing parameter pmem) increase the the standard deviation
σ of the normal distribution approximation [39, 247].

In a DTRW with absorption (also called decay, degradation, sink, etc.), the shape of the
distribution changes. To estimate the total distance traveled by puncta on a 1D lattice with
absorption, we use a differential equation for diffusion. A random walk with more than a few
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steps is well approximated by diffusion [39]. The PDE for diffusion with decay and source is

∂c
∂ t

= D
∂ 2c
∂x2 −Koffc+ s (B.1)

where c = c(x, t) is the concentration of puncta at some position x at time t, D is the diffusion
coefficient, Koff is the absorption rate, and s is puncta source at x = 0. The distribution of net
displacement of puncta is approximated by the steady-state (∂c

∂ t = 0) of Eq. B.1:

0 = D
∂ 2c
∂x2 −Koffc

Solving this produces two exponentials of the form:

c(x) = Aeλx +Be−λx (B.2)

where λ is a space constant for spread of puncta before absorption: λ =
√

Koff/D. If we
next impose the restriction that c → 0 as x →±∞, then Eq. B.2 is restricted to

c(x) = Aeλx for x < 0

c(x) = Be−λx for x > 0

For continuity at c(0), A = B. Solving for this single coefficient A = B requires the amount
of mass M released at the source at c = 0. This quantity M in units of quantity per cross
sectional area per time is split into left and right directions, therefore

A = B =
M

2Dλ
=

M
2
√

DKoff

. The full symmetric solution is

c(x) =
M

2
√

DKoff
exp
√

Koff/Dx for x < 0

c(x) =
M

2
√

DKoff
exp−

√
Koff/Dx for x > 0

In our experiments, the orientation of axons was not always clear. We therefore report
this measure as distance traveled rather than net displacement, since we can only account
for magnitude of displacement and not direction. The distribution for this measure of total
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distance traveled is thus symmetric about the y-axis:

c(x) =
M√

DKoff
exp−

√
Koff/Dx for x > 0 (B.3)

For a DTRW, the diffusion coefficient can be approximated as D = 2(∆x)2 p+p−/∆t, where
∆x and ∆t are the discrete steps in space and time, and p+ and p− are right and left jump
probabilities [15]. The total punctal distance traveled as computed in our experimental kinetic
measure is follows a distribution with the form of Eq. B.3, a monotonic decreasing function.

B.1.2 Average speed

The next kinetic measure for which we derive a probability distribution is average speed v.
As a kinetic measure, v is computed as distance traveled divided by total puncta run time.

As before, we assume that a DTRW with more than a few steps is well approximated by
diffusion [39]. We can then solve the diffusion equation

∂c
∂ t

= D
∂ 2c
∂x2

for diffusion propagator c(x, t)

c(x, t) =
1√

4πDt
exp
(
− x2

4Dt
−Kofft

)
We use c(x, t) to compute the probability of puncta at position x at time t: p(x|t).

p(x|t) = Koffc(x, t)∫
∞

−∞
Koffc(x, t)dx

=
Koff

1√
4πDt

exp
(
− x2

4Dt −Kofft
)

∫
∞

−∞
Koff

1√
4πDt

exp
(
− x2

4Dt −Kofft
)

dx
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We cancel terms in the numerator and denominator and solve the integral:

p(x|t) =
exp
(
− x2

4Dt

)
∫

∞

−∞
exp
(
− x2

4Dt

)
dx

=
exp− x2

4Dt√
4πDt

Note that p(x|t) is independent of Koff

With p(x|t), we can now compute the probability of a given puncta velocity v at time t:
p(v|t)

p(v|t) =
∫

∞

−∞

δ (v− |x|
t
)p(x|t)dx

where δ is the Dirac delta function. This integral sweeps through all positions x to find
the probability of puncta at least location (p(x|t)) that matches each speed (δ (v− |x|

t ). We
proceed using the scaling, symmetry, and translation properties of the Dirac delta function:

p(v|t) =
∫

∞

−∞

δ (v− |x|
t
)p(x|t)dx

=
∫

∞

−∞

δ
(1

t
(vt −|x|)

)
p(x|t)dx

=
∫

∞

−∞

tδ (vt −|x|)p(x|t)dx

= t
∫

∞

−∞

δ (vt −|x|)p(x|t)dx

= t
(

p(δ t|t)+ p(−δ t|t)
)

=
2t√

4πDt
e−(vt)2/4Dt

p(v|t) = t√
πD

e−v2t/4D

To check this probability distribution, we integrate it over the entire domain to ensure it sums
to 1:

∫
∞

0
p(v|t)dv =

1
2

∫
∞

−∞

p(v|t)dv =
1
2

√
t

πD

∫
∞

−∞

exp−v2t
4D

dv =
1
2

√
t

πD

√
4πD

t
= 1

We next compute the expected time until absorption φ(t), which is approximated as

φ(t) = Koffe−Kofft
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With p(v|t) and φ(t), we can now compute the probability distribution for average speed
F(v). We integrate the velocity distribution at a fixed time (p(v|t)) multiplied by the fraction
of particles (φ(t)) for all time t > 0:

F(v) =
∫

∞

0
p(v|t)φ(t)dt

=
∫

∞

0

( t√
πD

e−v2t/4D
)(

Koffe−Kofft
)

dt

=
Koff√

πD

∫
∞

0

√
te−(v2/4D+k)tdt

=
Koff√

πD

√
π

2
(

v2

4D
+Koff)

−3/2

=
Koff

2
√

D( v2

4D +Koff)−3/2

If we substitute v0 = 2
√

DKoff,

F(v) =
1
v0

(v2

v2
0
+1
)−3/2

(B.4)

To confirm our result, we can compute its integral for all v ≥ 0:∫
∞

0
F(v)dv = 1

Like c(x), F(v) is a monotonically decreasing function. Increasing D and/or Koff increases
the tailedness of the distribution. We can compute the expected value of mean particle speed
⟨v⟩ as follows:

⟨v⟩=
∫

∞

0
vF(v)dv = v0 = 2

√
DKoff

This shows that ⟨v⟩ increases with increasing D and/or Koff

B.2 Statistical inference using stochastic model

The heuristic method of statistical inference of puncta behavior based on experimental
observations is described here. In broad terms, we estimate parameters poff and pmem from
our stochastic model using the observed distributions of kinetic measurements.

We interpret our experimental measures of puncta kinetics (Fig. 3.9) as evidence of puncta
behavior. We have developed a stochastic model of puncta transport based on a modified
random walk (Fig. 4.5), consistent with observed intracellular transport [37, 38, 193]. Our
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model produces simulated data similar to our experiments (compare Fig. 3.8 and 4.6). We
aim to infer whether the observed differences between axons and dendrites can result from
a difference in poff or pmem. To this end, we perform a model fit to data from axons and
dendrites. We then compare a model fit using poff alone as well as with poff and pmem.

B.2.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a standard method of estimating the parameters
of a model such that the model’s output is the most probable match to some observed data.
In this method, a likelihood equation is derived from the joint probability distribution of
simulated and observed data as a function of model parameters. The set of parameters that
maximizes the likelihood equation produces the best fit between the simulated and observed
data.

We first explore the direct estimation of poff and pmem for which our stochastic model
most closely reproduces our observed data. We then estimate parameters that reproduce a
distribution that estimates our observed data—a less direct but simpler method.

We begin by defining the likelihood function:

L (poff, pmem | observed data) = P(transport producing observed data | poff, pmem) (B.5)

where the likelihood L of parameters poff, pmem producing the observed data is equal to the
probability of the actual physical transport mechanism producing the observed data given
those parameters poff, pmem. Defining the probability in Eq. B.5 is difficult for a few reasons.
First, the observed data consists of sets of net displacements δ , mean speeds s, stall fractions
ε , and diffusivities α for Na = 961 puncta in axons and Nd = 507 puncta in dendrites:

δ1,δ2, ...,δNa−1,δNa δ1,δ2, ...,δNd−1,δNd (B.6)

s1,s2, ...,sNa−1,sNa s1,s2, ...,sNd−1,sNd (B.7)

ε1,ε2, ...,εNa−1,εNa ε1,ε2, ...,εNd−1,εNd (B.8)

α1,α2, ...,αNa−1,αNa α1,α2, ...,αNd−1,αNd (B.9)

This observed data is a large combination of variables. Further, these variables (Eqs. B.6-B.9)
are not measured directly; they are computed from the physical coordinates of trajectories
from individual puncta. Computing s, ε , and α involves the trajectories themselves, not just
the final position. The random process in our model is time-dependent (non-stationary) and
non-ergodic, so deriving the statistics (expected value and variance) does not reveal the time
averages. The expected value itself would only be useful in computing net displacements (Eq.
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B.6), since this is the only kinetic measure computed using solely outcome of the random
process without the full trajectory. Since a key parameter of our system pmem abruptly
ends the random process, the statistics are not as simple as those of a standard random
walk. These nontrivial derivations only produce the likelihood function, which then requires
differentiation w.r.t. poff and pmem for an analytical solution to this problem. For these
reasons, rather than deriving the statistics and time-averages of our model, we opt for a
numerical approach to this problem.

Instead of deriving equations for δ , s, ε , and α , we can estimate these probability distribu-
tions of these kinetic measures by averaging the behavior of simulated puncta. Simulating a
large number of puncta Ns is crucial given the stochasticity of the model. From Ns simulated
trajectories with a given poff and pmem, we can then compute:

δ1,δ2, ...,δNs−1,δNs (B.10)

s1,s2, ...,sNs−1,sNs (B.11)

ε1,ε2, ...,εNs−1,εNs (B.12)

α1,α2, ...,αNs−1,αNs (B.13)

With a sufficiently large Ns, we obtain averages of δ , s, ε , and α . This method follows
the law of large numbers, whereby the average of a large number of iterations approaches
the expected behavior of the random process. We can then compare simulated data (Eqs.
B.10-B.13) to observed data (Eqs. B.6-B.9) and optimize for parameter set poff and pmem that
minimizes this variation. This semi-empirical approach employs both model simulation to
estimate kinetic distributions and optimization to minimize the difference between simulated
and observed data.

MLE is still applicable in this approach. Approximating simulated and observed data as
probability distributions simplifies the optimization problem. Both observed and simulated
sample sets can be approximated as probability distributions, and the distance between
distribution parameters is minimized. MLE is a suitable method for fitting observed and
simulated data to a distribution with a defined probability density function (pdf).

The pdf of two kinetic measures δ (Eq. B.3) and s (Eq. B.4) are derived in the previous
section. Both are monotonically decreasing functions with domain [0,∞). The pdf of the
other measures ε and α are seemingly intractable and beyond the scope of this paper. We
therefore approximate the distributions of kinetic measures using an estimate likelihood with
the gamma distribution. The gamma distribution can accommodate the monotonic decreasing
pdfs derived here and is flexible for all simulated and observed data (Eqs. B.10-B.13 and Eqs.
B.6-B.9 depicted in Fig. 4.8). The gamma distribution is appropriate because it is continuous
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and covers a semi-infinite [0,∞) interval. A gamma distribution has shape k and scale θ ,
which are fit to both observed and simulated data.

To this end, we derive a function for the likelihood of the gamma distribution with
parameters k and θ producing observed or simulated data. As an example, we estimate k and
θ that best match the observed mean speed s in axons:

L (k,θ | X = s1, ...,sNa) = P(gamma distribution fits X | k,θ)

Here, the probability in the RHS is, by definition, the pdf of the gamma distribution:

L (k,θ | X = s1, ...,sNa) =
1

Γ(k)θ k Xk−1ex/θ (B.14)

where vector X is the data to which a gamma distribution is fit. The RHS of Eq. B.14 is the
pdf of the gamma distribution, where Γ is the gamma function: Γ(g) =

∫
∞

0 zg−1e−zdz.
The remaining steps for MLE involve calculating the log-likelihood ℓ(k,θ | X), taking

partial derivatives w.r.t. each parameter ∂ℓ(k,θ)/∂k and ∂ℓ(k,θ)/∂θ , setting to zero, and
solving for both k and θ . The solution for MLE using the gamma distribution has no closed-
form expression [46, 86]. Rather, a numerical solution is computed. We use MATLAB
function fitdist, which solves the following system of two equations:

lnk−ψ(k) = ln

(
(∑

Na
i=1 si)/Na

(∏
Na
i=1 si)1/Na

)
, θ =

(∑
Na
i=1 si)/Na

k

where ψ is the digamma function: ψ(g) = d
dx ln(Γ(g)).

MLE for gamma distribution parameters is performed for each set of observed data (Eqs.
B.6-B.9) as well as for Ns trajectories simulated using the stochastic model (Eqs. B.10-B.13)
with a given poff and pmem. Observed data for net displacement and average speed are
normalized between 0 and 1. All resultant gamma parameters are:

kδ ,a,θδ ,a ks,a,θs,a kε,a,θε,a kα,a,θα,a (B.15)

kδ ,d,θδ ,d ks,d,θs,d kε,d,θε,d kα,d,θα,d (B.16)

kδ ,s,θδ ,s ks,s,θs,s kε,s,θε,s kα,s,θα,s (B.17)

where each variable k or θ denotes gamma shape or scale parameter, the first subscript
denotes kinetic measure, and the second subscript denotes source of the distribution (axons,
dendrites, or simulation). The gamma distributions of kinetic measures in axons and dendrites
(Eqs. B.15 and B.16) are plotted over the raw data in Fig. 3.9. We now have a succinct
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description of each distribution using two rather than Na, Nd , or Ns terms. This framework
allows us to compare observed and simulated data. We next use a least squares method fit
simulation parameters poff and pmem to the experimental data.

B.2.2 Least squares method of optimization

MLE allows for a representation of data from axons, dendrites, or simulations as a gamma
distribution using only two parameters k and θ . We now aim to fit our stochastic model to
experimental data. A standard approach in model fitting is the least squares method (LSM) of
regression. Here, we describe LSM in the context of our problem. We then outline numerical
algorithms for solving nonlinear LSM problems.

We describe a model M with output y as a function of independant variable x and
adjustable parameters β :

y = M(x,β )

We substitute an example optimization problem using our data and parameters,

[kδ ,s,θδ ,s] = M(poff, pmem) (B.18)

where M is the stochastic model, poff and pmem are the adjustable parameters that are tweaked
for an optimal fit with output y = [kδ ,s,θδ ,s]. Model fitting can be applied to any number of
outputs from Eq. B.17. Note that our function for optimization in Eq. B.18 differs from that
in curve fitting in that it takes no independent variables x. The model fitting in our example
fits only the model parameters. Further, M itself is a complex, nonlinear function. Contained
within M is a simulation of the Ns puncta trajectories using the stochastic model (Fig. S8).
Also contained within M is computation of kinetic measures (δ , s, ε , and α) for each of the
Ns trajectories. Lastly contained within M is the MLE of the gamma parameters (k and θ )
from the distributions of kinetic measures (Eqs. B.10-B.13). Selection of Ns is therefore a
balance between computational cost (run time) and accuracy of expected puncta behavior
(by law of large numbers). We choose Ns = 10,000 puncta in each iteration of M.

The quality of fit for the output of M is measured by the size of the residuals, or the
difference between the observed data and estimated data:

residuals = observed data− simulated data
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In the context of our problem, we will fit the output in Eq. B.18 to observed data in axons:

r = [kδ ,a,θδ ,a]−M(poff, pmem) (B.19)

r = [kδ ,a,θδ ,a]− [kδ ,s,θδ ,s]

where [kδ ,a,θδ ,a] is the axonal data, and r is a vector of residuals, r = [r1,r2]. The LSM aims
to minimize the sum of the squares S of the residuals: S = ∑r2

i . S is minimized by setting its
gradient to zero. This involves taking a partial derivative of S w.r.t. each parameter. In our
example:

∂S
∂ poff

=
∂

∂ poff
∑

i
r2

i = 0
∂S

∂ pmem
=

∂

∂ pmem
∑

i
r2

i = 0

= 2∑
i

ri
∂ ri

∂ poff
= 0 = 2∑

i
ri

∂ ri

∂ pmem
= 0

Using Eq. B.19 and given that the partial derivatives of [kδ ,a,θδ ,a] w.r.t. poff and pmem is
zero,

∂S
∂ poff

=−2∑
i

ri
∂M

∂ poff
= 0

∂S
∂ pmem

=−2∑
i

ri
∂M

∂ pmem
= 0 (B.20)

A closed-form solution for Eq. B.20, as in most non-linear least squares problems, does not
exist. A numerical algorithm is instead used to minimize S.

There are several algorithms for nonlinear curve-fitting and data-fitting in the least squares
sense. We use MATLAB function lsqcurvefit, which employs a damped LSM, also known
as the Levenberg–Marquardt algorithm [132, 148]. The damped LSM is a combination of
the Gauss–Newton algorithm with a trust region. A broad overview of the damped LSM is
presented here.

The damped LSM is an iterative process that begins at a starting point for parameter
vector β . For our system, β = [poff, pmem]. The aim is to find the set of β that best fits each of
the m data points (xi,yi). Again, in our system, we have no independent variables xi, and we
fit outputs of model M to observed data yi. In each step of the algorithm, β is updated with a
new parameter estimate β +∆. To make a sensible modification ∆ to the parameter estimate,
the nonlinear function M is approximated by linearization (first-order approximation):

M(xi,β +∆)≈ M(xi,β )+ Ji∆ , Ji =
∂M(β )

∂β
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where Ji is the gradient of M w.r.t. β . Using this approximation, we can compute the sum of
squares S of the residuals:

S(β +∆)≈
m

∑
i

r2
i

S(β +∆)≈
m

∑
i

(
yi −M(xi,β )− Ji∆

)2
(B.21)

As before, Eq. B.21 is minimized where its derivative equals zero. The derivative of Eq.
B.21 w.r.t. ∆ is

(JT J)∆ = JT(y−M(β )
)

(B.22)

where J is a Jacobian matrix consisting of rows Ji. Matrix multiplication in Eq. B.22 results
in a system of linear equations that is solved for ∆. This procedure of linearization, function
approximation, and solving for step ∆ repeats to progress toward a minimum S. The algorithm
stops when step size ∆ falls below some preset threshold. The approach as described thus far
is the Gauss-Newton method.

The damped LSM has the addition of damping factor λ , a non-negative scalar, as follows:

(JT J+λ I)∆ = JT(y−M(β )
)

(B.23)

where I is the identity matrix. When λ is small or zero, the method approximates the
Gauss-Newton method. When λ is large, the direction of ∆ approaches the direction of
steepest descent but with magnitude approaching zero. λ adjusts the size of the step,
defining a trust region around the current estimate β that is reevaluated at each iteration. If
S(β +∆) < S(β ), a successful step toward a minima, λ is decreased and the trust region
increased. If S(β + ∆) > S(β ), λ is increased and the trust region decreased. In this
regard, a dynamic λ allows for a search that mediates between steepest descent and the
Gauss-Newton method. For instance, a limitation of the Gauss-Newton method arises
when second-order terms dominant the gradient, since the Gauss-Newton method relies on
first-order approximation. Dampening with λ can ensure descent path more efficient than
searching for steepest descent.

We use this algorithm in a series of model fits to our experimental data. Given the
stochastic nature of M in our system, we increase the lower threshold for the finite difference
step size ∆. This ensures continuous progression toward a global minima despite slight
variation in output with repeated evaluations of M. Otherwise, with a low minimum ∆, the
algorithm greatly reduces the trust region and terminates at a false local minima—an artifact
of the randomness in M.



204 Stochastic model: analysis and inference

We first fit
[kδ ,s,θδ ,s,ks,s,θs,s] = M(poff, pmem = 0)

to the corresponding experimental results in axons ([kδ ,a,θδ ,a,ks,a,θs,a]) and dendrites
([kδ ,d,θδ ,d,ks,d,θs,d]). pmem is constrained to zero, and upper and lower bounds for poff are
set to 0 and 1, consistent with the range of a probability. The starting value was poff = 0.001.
The result of this fit is depicted in Fig. 4.8 (second column). We then fit

[kδ ,s,θδ ,s,ks,s,θs,s,kε,s,θε,s] = M(poff, pmem)

to the corresponding experimental results in axons and dendrites. We now fit both parameters,
and both are bounded between 0 and 1 with starting values poff = 0.001 and pmem = 0.01.
The result of this fit is depicted in Fig. 4.8 (third column). The goodness of these fits and
their implications are discussed in Sec. 4.5.4.



Appendix C

Synaptic scaling: full model description

C.1 Unified model of synaptic potentiation, scaling, trans-
port, and regulation

This section contains a thorough descriptions of all components of the unified model.

C.1.1 Model formulation and methods

A mathematical description of our model begins with discussion of the two species in the
system: m and g. g is the effective form of AMPA receptors (AMPARs), active and located
in their functional sites. g is the form that affects neuron properties (intrinsic excitability,
synapse strength, etc.) and is thus the regulated species. m is the precursor to g. m can take
the form of pro-protein, pre-pro-protein, protein endocytosed in vesicles, or other internalized
pool of the protein. Both fundamentally represent the same cargo, albeit in differing forms.

C.1.2 Cargo insertion (activation and inactivation)

Experimental studies reveal inactive pools of AMPAR receptors located internally or anchored
to nanodomains. These inactive AMPARs are available to cycle to and from post-synaptic
densities ([95]). We therefore implement a reversible reaction between m and g:

mi
si

s−i gi

where si and s−i are the transfer rates from mi to gi, and gi to mi, accordingly. The subscript i
indexes the spatial compartment of the species. Dendritic compartments are discretized into
n compartments. gi are located in the postsynaptic terminals of dendritic spines.
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A dendritic spine consists of a neck that connects the dendritic shaft to a spine head
containing ion channels, receptors, and other proteins. Spines are heterogeneous throughout
a dendritic tree, with variable size, volume, and number of receptor slots. We assume that
spines are significantly smaller than the dendritic shafts. Therefore, gi have finite capacity
which limits gi concentration. Spine size and number of receptor slots are plastic, which
impacts synaptic activity and strength [91]. We capture this property of spines, synapses, and
postsynaptic densities in a single term for capacity ci. With inspiration from [231], we model
the interaction between mi and gi as follows:

ṁi = f (mi)− simi(ci −gi)+ s−igi −ω
m
i mi (C.1)

ġi = simi(ci −gi)− s−igi −ω
g
i gi

Parameters ωm
i and ω

g
i represent degradation rates for mi and gi, respectively. f (m)

summarizes the transport that occur among the m species, discussed next. The nonlinearity
(c−gi) can be interpreted as a saturation and arise from modeling the transition from mi to
gi as a mean-field approximation of a partially asymmetric exclusion process (PASEP) [188].
This allows us to model the finite capacity of a spine/synapse, to simulate perturbations in
synaptic expression and plasticity, all while maintaining the driving force of mass action.

C.1.3 Cargo trafficking via active transport

Transport over long distances in a large neurite is a significant limiting factor for feedback
regulation and maintenance of homeostasis. We assume that inactive AMPARs mi are longi-
tudinally transported via an active, motor-based mechanism. Active and passive transport are
distinct in a few ways. Motor-based transport is significantly faster and metabolically active,
i.e. it requires cellular energy in the form of ATP. Passive transport is diffusive and flows
down concentration gradients. We assume that mi is exclusively transported via motor-based
mechanisms, such as with dynein and kinesin on microtubules or with myosin on actin
filaments. ([160])

Motor-based transport differs between axons and dendrites. In axons, microtubules are
uniformly oriented with plus-ends directed away from the soma. In axons, kinesins and
dyneins thus generally move in different directions (anterograde and retrograde, respectively).
Kinesins are largely responsible for transporting cargo to the periphery, whereas dyneins
carry cargo toward the soma for recycling. ([160, 90])

Dendrites differ in that microtubules have mixed orientation. In dendrites, all motor
protein families carry cargo toward or away from the soma. Two distinct hypotheses have
been proposed regarding directed transport in dendrites. One hypothesis suggests that motors
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act cooperatively, where the motor-cargo complex responds to stimuli for forward movement,
backward movement, attachment, and detachment ([160, 90]). The second hypothesis, called
the tug-of-war model of bidirectional transport describes both active kinesins and dyneins, and
the cargo moves in the direction of the dominant motor type. Net movement thus depends on
the number of kinesins and dyneins motors attached to the cargo, and quantitative predictions
are are based on observations of single motor proteins ([22]). Both hypotheses predict that
the motor-cargo complex experiences bidirectional, stochastic movement ([22, 23]).

To capture such motion, we use on a mean-field description and assign to m transport
a forward v f and backward rate vb. We consider transport parameters where v f > vb for
net movement away from the soma. This assumption of directionality is consistent with
active transport and differs from unbiased diffusion. These rates are depicted as a schematic
between two compartments as follows:

mi
vi, j
v j,i m j

where vi, j > v j,i for compartment i closer to the soma than j. The instantaneous change in mi

as a result of evolves according to the following differential equation:

f (mi) = vi−1,imi−1 − (vi,i−1 + vi,i+1)mi + vi+1,imi+1 (C.2)

We assume that transport between synapse compartments occurs for the cargo precursor m
only.

C.1.4 Homeostasis and feedback regulation

Biological cells tend to maintain a number of their intrinsic properties, a process called
homeostasis. One such regulated property is the average electrical activity in a neuron. We
represent electrical activity using intracellular/somatic calcium levels [Ca2+] as a function of
total active AMPARs gi throughout the cell. We assume that a neuron compares [Ca2+] to a
global set point [Ca2+]target . The mismatch between the two quantities is eG = [Ca2+]target −
[Ca2+]. Production of cargo occurs in soma, where most transcription and translation
machinery is located. Production is regulated by some signaling molecule u that depends on
eG according to the following differential equation:

u̇ = KGeG − γGu. (C.3)

We assume that a number of regulatory pathways for transcription and translation are [Ca2+]-
dependent ([180, 172]). u represents biosynthesis of AMPARs that increases as [Ca2+]



208 Synaptic scaling: full model description

deviates from [Ca2+]target , implemented as integral control in Eq. C.3. Like any signaling
molecule, u is not stored perfectly. We therefore implement a leaky integrator, and u
degrades with rate γG. A non-zero γG prevents the neuron from achieving perfect tracking,
i.e. achieving [Ca2+]target = [Ca2+].

We can express steady-state AMPAR production as ue =
kG
γG

eG. kG
γG

represents the ratio of
AMPAR production to degradation, also called the turnover rate.

We assume that calcium influx occurs on a substantially faster timescale than cargo
production and transport ([225]). We therefore calculate intracellular [Ca2+] as a proxy for
neural activity. We compute [Ca2+] at steady state with a static, monotonic relation to V as
follows:

[Ca2+] =
α

1+ e−V/β
(C.4)

where α and β are buffering mechanisms that shape the correlation. We model V as a leaky
single-compartment equipotential neuron with

CV̇ = gleak(Eleak −V )+ ḡ(Eḡ −V ) (C.5)

where C is the membrane capacitance, Eleak is the equilibrium potential of the ionic leak
conductance, and Eḡ is the equilibrium potential of the cargo channel. ḡ is the mean active
cargo throughout all n compartments of the system:

ḡ =
∑gi

n

This simple model of conductance averages the fast, computationally-expensive dynamics
for electrical signal transmission in a neurite. Rather than simulating EPSP input and
initiation/propagation of dendritic spikes, membrane potential in the soma is computed as
an average of electrical activity over a timescale closer to that of AMPAR production and
trafficking. In this scheme, the global feedback and regulation are dependent on the average
amount of AMPARs throughout the neurite: ḡ. We assume that these dynamics converge
quickly compared to cargo production and transport and occur at a similar timescale to [Ca2+]

influx in Eq. C.4. We therefore compute V using a steady state assumption of Eq. C.5, as
follows:

V =
ḡEḡ +gleakEleak

ḡ+gleak
. (C.6)
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Eqs. C.3-C.6 physiologically resemble the common calcium ion signaling step in the various
signal transduction pathways of cells ([172, 180]). Here, the regulatory signal produced is
excitatory AMPARs g. The cell monitors the level of intrinsic excitability via the average
membrane potential V over time. An increasing V results an influx of Ca2+ ions, likely
through voltage-gated calcium channels. Additional enzyme(s) u respond to the perturbation
in [Ca2+]. If [Ca2+] increases, the cell slows production of regulatory cargo. If [Ca2+]

decreases, the cell increases production. Increased production physiologically corresponds
to mRNA transcription, protein translation, and the various modification and regulatory
processes that occur with these mechanisms in the cell. Negative feedback is used to maintain
homeostasis in membrane potential—a surrogate for intrinsic excitability. This regulation
is global in the sense that all active cargo gi are averaged to produce ḡ, a measure of total
content.

A dendritic tree modeled as a single electrical compartment does not describe the at-
tenuation of distal signals [92]. EPSPs occuring far from the soma attenuate considerably
compared to proximal EPSPs. This discrepancy raises the issue of synaptic democracy, in
which all synapses have equal impact on neural activity [157, 92]. In our model, synaptic
democracy can be achieved by varying synaptic strengths cT = [. . . ,ci, . . . ].

C.1.5 Model interpretation

The described presented model can be interpreted a few different ways in the context of
synaptic plasticity. The aforementioned description interprets species m and g as pre-protein
and protein, which are inactive and active in synapses, respectively.

The model can also represent gene transcription. AMPAR mRNA mi is transported
through the dendritic tree to regions of increased synaptic activity. mi is then transcribed to
AMPAR protein at sites of synaptic demand. These model interpretations can also represent
NMDA receptors, another ionotropic glutamate receptor crucial to synaptic plasticity [137].

Experimental studies have suggested that Arc protein is the global scaling signal dissi-
pated throughout the dendrites in response to changes in neural firing rate ([222, 47, 221,
235]). In our simulations and analysis thus far, we lump the transport of the scaling signal
with AMPAR trafficking. Our modeling assumption is reasonable since AMPARs and Arc
are trafficked at similar rates (300 µm/hr, [246]). As a conservative estimate, we use fast rates
for AMPAR transport. To further evaluate this assumption, we also perform simulations with
Arc protein as a separate communication channel to validate that lumping the scaling signal
with AMPAR trafficking produces similar results (Fig. 6.10A). In this system, the global
controller regulates production of both m and a with some bias m : a. This system replicates
the same tradeoffs of synaptic scaling for a range of m : a (Fig. 6.10B).
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In a variant of the model, we assume that Arc protein is a separate communication channel
for global signaling (Fig. 6.10). This introduces Arc protein as another species a. In this
system, the global controller regulates production of both m and a with some bias m : a. This
modified system has the following dynamics:

ṁi =δu+ f (mi)− kimiai −ω
m
i mi

ȧi =(1−δ )u+ f (ai)− kimiai −ω
a
i ai

˙[ma]i =kimiai − si[ma]i(ci −g)+ s−ig−ω
[ma]
i [ma]i

ġ =si[ma]i(ci −g)− s−ig−ω
gg.

where [ma] is a complex containing both m and a. The remaining model dynamics for this
variant are unchanged.

C.1.6 Local cargo regulation

Both short- and long-term synaptic plasticity in neurons have been associated with infor-
mation processing and memory formation [125]. At the molecular level, the presynaptic
probability of neurotransmitter release for individual synapses is dynamic [21]. Postsynaptic
terminals undergo long-term plasticity, in which AMPARs are inserted or removed from post-
synaptic densities. These neural tasks are enabled by the filtering characteristics of synapses,
in which synapses with varying release probabilities act as low-pass or high-pass filters. This
property can be changed according to the presynaptic action potential. Long-lasting changes
allow neurons to form spatiotemporal patterns as a result of activity-dependent changes. In
our model, this is achieved by fine-tuning individual gi while also maintaining overall neuron
activity level [Ca+2]target . In doing so, a neuron can dynamically vary synaptic strength while
maintaining homeostasis of total neuron activity.

We model these postsynaptic changes, where active AMPARs gi fluctuate with long-term
LTP manifested as changes in synaptic capacity ci. There are several mechanisms of long-
term and short-term LTP, both of which can involve structural changes to the postsynaptic
terminal. [146, 145]. Local activity-dependent regulation also modifies intraspinal AMPAR
trafficking rates, such as with interactions with scaffolding proteins like Stargazin [199].
Further, experiments reveal activity-dependent regulation of AMPAR into and out of the
dendritic spines. For instance, phosphorylation or phosphorylation-induced changes in
synapses can activate AMPARs [97]. In our model, we lump these complex mechanisms and
interactions into synaptic capacity ci and rates si and s−i.
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Next, we augment the dendritic trafficking model with local activity-dependent regulation.
Local regulation is faster than other model dynamics (cargo production, cargo transport,
and cargo insertion). This captures the fine, local biological processes that take place at the
synapse level. In contrast to the broad average for global feedback, local feedback finely
tunes individual gis. This allows for regulation at high spatial resolution, such as homeostatic
plasticity of individual compartments or branches. We assume that individual synapses
measure a local error signal eL that compares local activity gi to the global target activity
level [Ca2+]target to modify local AMPAR activation si. Mathematically,

τ ṡi = kLeL − γL(si − s̄i) (C.7)

eL = [Ca2+]target − f (gi)

f (gi) =
smaxgh

i

gh
i + kh

A
.

where τ is a small (< 1) non-dimensional parameter that reflects the fast dynamics of ṡi, KL is
the sensitivity of the local controller, γL is the degradation/dissipation rate of si, and s̄i is the
uncontrolled/basal value of si. Local regulation takes the form of a Hill equation, where smax

defines the upper limit, kA is the apparent dissociation constant, and h is the Hill coefficient
that describes the degree of cooperativity between ligand (calcium) and regulatory enzyme.

Eq. C.7 shows that the gi negatively regulations si; this also serves as stabilizing effect
on the steady-state value of gi, which opposes runaway dynamics of unconstrained Hebbian
plasticity.

C.2 Transfer functions and Nyquist plots

This section was a collaboration with Saeed Aljaberi and Fulvio Forni in the Control Group,
Department of Engineering, University of Cambridge.

We next demonstrate how to obtain an input-output description of our model to compute
stability margins. To simplify derivations, we begin with a general nonlinear function. Each
biological process—cargo production, cargo trafficking, cargo activation/inactivation, and
membrane conductance—is represented by an individual function.

A nonlinear function of the form

ẋ = f (x,u) (C.8)

y = h(x)
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has u, x, and y as input, state, and output, respectively. In each process, the state x represent a
quantity that dynamically changes with respect to time; i.e. x can be u, m, or g. We separate
each processes and reconnect them as input-output pairs, as shown in Fig. 6.4B. For example,
the cargo production block has eG as its input and u as its output.

We next obtain a linear state-space representation of the functions. To express nonlinear
functions in this form, we take the Taylor series expansion around equilibrium point (xe,ue),
which can be computed analytically or numerically, and truncate the expression after the first
term. This first order approximation is of the form:

ẋ := f (xe,ue)+

(
∂ f
∂x

)∣∣∣∣
(x=xe,u=ue)

(x− xe)+

(
∂ f
∂u

)∣∣∣∣
(x=xe,u=ue)

(u−ue)

y :=h(xe)+

(
∂h
∂x

)∣∣∣∣
(x=xe,u=ue)

(x− xe).

Since (xe,ue) is the equilibrium point, f (xe,ue) = 0. This produces the following state-space
representation:

˙̄x =Ax̄+Bū (C.9)

ȳ =Cx̄

where we have made the following coordinate change:

x̄ := (x− xe), ū := (u−ue), ȳ := (y− ye) = y−h(xe)

and the following substitutions:

A :=
(

∂ f
∂x

)∣∣∣∣
(x=xe,u=ue)

, B :=
(

∂ f
∂u

)∣∣∣∣
(x=xe,u=ue)

,C :=
(

∂h
∂x

)∣∣∣∣
(x=xe,u=ue)

.

The system in state-space form is expressed in the frequency domain using the LaPlace
transform. The transfer function in the s-plane is obtained by applying following operation:

G(s) =C(sI −A)−1B. (C.10)

The transfer function as expressed here shows the input-output relationship of the system in
the s-plane.

The transfer function can be parameterized into real and imaginary parts plotted on x-
and y-axes, respectively. The result is a Nyquist plot, as depicted in Fig. 6.4D. The Nyquist
plot results from evaluating the function H(s) = 1+G(s) around right-half complex plane.
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The gain margin (GM) is the reciprocal of the gain at a phase frequency of −180 degrees.
The phase margin (PM) is the difference in phase between the system phase and 180 degrees
computed at the point of unity gain. Stability margins are computed using the following
equations:

GM = 20log
1

|G( jωcp)|
(in dB) ; PM = 180+ arg{G( jωcg)} (C.11)

where ωcg is the gain crossover frequency, and ωcp is phase crossover frequency. ωcg is the
frequency at which the magnitude of G(s) is unity, while ωcp is the frequency at which the
phase angle of G(s) is −180. Stability margins geometrically correspond to the distance
between the trace of a transfer function on a Nyquist plot (Fig. 6.4D) from the point (−1+0 j),
as shown in Fig. 6.4D. Fig. C.1 shows a generic Nyquist plot with all the relevant quantities.

L(s) plane
unit circle

imaginary 
axis

real 
axisNyquist curve

+

ωpc

PMsm

ωgc

instability 
at (-1,0j)

1
|GM|

Fig. C.1 A generic Nyquist plot showing the different margins as well as the phase and gain
crossover frequencies.

A transfer function is produced for each biological process. The stability of full system
is determined with the transfer function of all phenomena, called the loop gain or return
ratio L(s), acquired by multiplying individual transfer functions in the loop. For our system,
following the loop depicted in Fig. 6.4B, L(s) = K∂ψ(s)Gg(s)Gm(s)Gu(s), where Gu is the
transfer function of the linearized production dynamics, Gm is the transfer function of the lin-
earized transport dynamics, Gg is the transfer function of the linearized activation/inactivation
dynamics, and K∂ψ is the linear approximation of the static map that captures the voltage and
calcium relations. Since we previously assumed that voltage and calcium dynamics occur
at a fast timescale, they are treated as static nonlinearities here. L(s) now captures the the
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interconnected dynamics of the entire system. Lastly, the stability margins are computed
using L(s) with Eq. C.11.

The stability margin sm is another robustness measure. It measures the shortest distance
of Nyquist plot from the (−1,0 j), as shown in Fig. C.1. It is computed from the sensitivity
function, which is obtained from the loop gain L(s):

S(s) =
1

1+L(s)
(C.12)

then sm, or the shortest distance between Nyquist plot and (−1+0 j), is computed from the
following relation

sm =
1

sup
ω

|S( jω)|
. (C.13)

For single-input-single-output (SISO) systems, the H∞ norm of a system is simply the
sup

ω

|S( jω)| or the maximum frequency response of the system (maximal peak value on the

Bode magnitude diagram). It can be interpreted as the worst case amplification over the
range of frequencies.
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